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Abstract

Calibration of a model against more than one output variable is important for reliable simulations of internal processes. In this study,
a genetic algorithm combined with local optimisation was proposed for automatic single- and multi-criteria calibration of the HBV
model, a conceptual runoff model. The model and the optimisation algorithm were applied in two catchments with different geology
where, in addition to observed runoff, time series of groundwater level data were available. For a theoretical, error-free test case with
synthetic data, the optimisation algorithm was usually able to find the true parameter values. For the real-world case, parameter
values varied considerably when calibrating against runoff only. However, parameter values were constrained significantly when
calibrating against both runoff and groundwater levels. Furthermore, for one of the catchments, the results of the multi-criteria

calibration motivated a modification of the model structure.
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levels

Introduction

Calibration and validation of conceptual runoff models
usually are limited to comparing simulated with observed
streamflow at the basin outlet. Nevertheless, applying a
model to make predictions into the unknown as, for
instance, extreme floods or effects of climate changes
implicitly presupposes that the internal processes are
simulated correctly. Therefore, evaluating the capability of
a model to simulate various hydrological variables is needed
for a more rigorous analysis of model performance. Multi-
criteria calibration and validation of conceptual runoff
models has become a research topic gaining increasing
attention (de Grosbois ef al., 1988; Ambroise et al., 1995;
Mroczkowski et al., 1997; Franks et al., 1998; Kuczera and
Mroczkowski, 1998; Yapo ez al., 1998).

In conceptual runoff models, various simple routines
represent catchment hydrology in a lumped or semi-
distributed way. Usually, at least 10 to 15 parameters are
used. These parameters may have a physical basis but, as
they are effective parameters on the catchment or sub-
catchment scale, almost all of them need to be determined
by calibration. The information contained in the rainfall-
runoff relationship usually does not allow identification of a
unique parameter set. Reducing the number of parameters
is unattractive because it would transform the conceptual,

grey-box representation of the rainfall-runoff process into a
pure black-box description. A more attractive way to reduce
parameter uncertainty is the use of additional data. Franks ez
al. (1998) demonstrated that the percentage of saturated
areas in the catchment helped to constrain calibrated
parameter values and model predictions in an application
of TOPMODEL. However, the worth of additional data
varies. Using a hydrosalinity model, Kuczera and Mrocz-
kowski (1998) found that groundwater levels helped only a
little into reducing the parameter uncertainty, whereas
stream salinity data substantially reduced the uncertainties.
In this study, the HBV model (Bergstrom, 1976, 1992)
was used as an example of a typical conceptual runoff model.
It has been applied in numerous studies in more than 30
countries (Lindstrom et al., 1997) and has been found to be
capable of simulating runoff in different climatic zones.
Comparisons with variables other than observed runoff,
however, are relatively rare. Hottelet ez al. (1994) found
snow pack observations to be useful for validation of the
model. Bergstrom and Sandberg (1983) used the HBV
model to simulate groundwater levels in three geologically
different aquifers. They modified the general model
structure and found a good agreement between observed
and simulated levels. However, they did not check the
simulated runoff against measurements. Furthermore, the
model has been modified to simulate the transport of
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solutes, which allowed comparing simulations with pH and
alkalinity (Bergstrom ez al., 1985) as well as with
conservative tracers (Lindstrom and Rodhe, 1986).

Manual calibration of a model by trial and error is a time-
consuming method and results may be subjective. This is
particularly true when calibrating against more than one
hydrological variable. Therefore, various automatic calibra-
tion methods have been developed (Sorooshian and Gupta,
1995). Evolution-based methods have been found to be
suitable tools for the optimisation of conceptual runoff
models (Wang, 1991; Duan ez 4/, 1992; Franchini, 1996;
Kuczera, 1997; Yapo et al., 1998). Genetic algorithms are
one class of these methods. The idea of genetic algorithms,
originally suggested by Holland (1975/1992), is to mimic
evolution. Parameter sets are encoded to chromosome-like
strings and different recombination operators are used to
generate new parameter sets. The optimisation starts with a
population of randomly generated parameter sets. These are
evaluated by running the model and those sets that give a
better simulation according to some objective function are
given more chances to generate new sets than those sets that
gave poorer results.

rain and snow

—

For a general overview of genetic algorithms and
discussions on their optimisation capabilities the reader is
referred to Goldberg (1989), Davis (1991), Beasley ez al
(1993a,b), Whitley (1994) and Mitchell (1996). In hydrol-
ogy, genetic algorithms have been used for the calibration of
conceptual runoff models by Wang (1991), Franchini (1996)
and Kuczera (1997). Kuczera (1997) compared different
probabilistic optimization algorithms including a genetic
algorithm and found the shuffled complex evolution (SCE-
UA) algorithm (Duan ez al., 1992) to be superior to the
genetic algorithm. However, Kuczera (1997) used a
traditional genetic algorithm and pointed out that “im-
proved genetic algorithm performance is therefore possible”
(p. 184). Franchini ez al. (1998) found only slight differences
in the performance between the SCE-UA algorithm and a
genetic algorithm combined with a subsequent local
optimisation when calibrating a model to a single catchment.

In this study, a genetic algorithm was proposed for multi-
criteria calibration of the HBV model. Firstly, the model
was calibrated to a synthetic runoff series generated by the
model. Thereafter, two catchments with different geology
were used to calibrate the model against both runoff and
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Fig. 1. Structure of the HBV model.
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groundwater level observations. The aim was twofold, a test
of the capability of the genetic algorithm as a tool for multi-
criteria calibration and an assessment of the worth of
groundwater data for the calibration of a conceptual runoff
model.

Materials and methods

HBV MODEL

The HBV model (Bergstrom, 1976, 1992) is a conceptual
model that simulates daily discharge using daily rainfall
and temperature, and monthly estimates of potential
evaporation as input. The model consists of different
routines (Fig. 1, Table 1), where snowmelt is computed by
a degree-day method, groundwater recharge and actual
evaporation are functions of actual water storage in a soil
box, runoff formation is represented by three linear
reservoir equations and channel routing is simulated by a
triangular weighting function. For both the snow and the
soil routine, calculations are performed for each different
elevation zone, but the response routine is a lumped
representation of the catchment. Further descriptions of
the model can be found elsewhere (e.g. Bergstrom, 1992,
1995; Lindstrém et al., 1997; Seibert, 1997a). The version
of the model used in this study, ‘HBV light 1.2" (Seibert,
1997b) corresponds to the original version described by
Bergstrom (1992, 1995).

The agreement between observed (Q,) and simulated
(Qsim) catchment runoff was evaluated by the efficiency,

Table 1. Model parameters and feasible ranges

(Nash and Sutcliffe, 1970), here called R4 (Eqn. 1).

D ol (Y s
off = —3
> (Qots — Qo)

In both catchments used in this study, groundwater
levels were measured about fortnightly at a number of
groundwater tubes. Because the HBV model simulates the
groundwater lumped over the catchment, local observa-
tions could not be compared directly to the simulations.
The groundwater observations were also spatially averaged
i.e. the arithmetic mean was computed from the observa-
tions at the different tubes. To allow comparison with the
observed mean groundwater level, the storage in the
groundwater boxes (Syz and Szz) had to be transformed
into a groundwater level, 2 [m as.1.]. A linear equation
(Eqn. 2) with a slope m, which corresponded to the inverse
of the storage coefficient, and an offset ¢ was used. The
coefficients were determined by linear regression between
the simulated storage and groundwater levels. The
performance of the groundwater level simulation was
evaluated using the coefficient of determination, 7, as
objective function.

z2=m(Syz +Siz) +¢ (2)

(1)

DESCRIPTION OF THE GENETIC ALGORITHM

With a genetic calibration algorithm, optimised parameter
sets are found by an evolution of parameter sets using

Parameter Explanation Unit Lower bound Upper bound
Snow routine

T Threshold temperature °C -1.5 2.5
CFMAX Degree-day factor mm °C~! 47! 1 10
SFCF Snowfall correction factor - 0.5 1.2
CWH Water holding capacity - 0 0.2
CFR Refreezing coefficient - 0 0.1
Soil routine

FC Maximum of SM (storage in the soil) mm 50 500
LP Threshold for reduction of evaporation (SM/FC) - 0.3 1
BETA Shape coefficient - 1 6
Response routine

K, Recession coefficient (upper storage) da! 0.1 0.5
K; Recession coefficient (upper storage) a! 0.05 0.3
K, Recession coefficient (lower storage) da! 0.001 0.1
UZL Threshold for the Ky-outflow mm 0 50
PERC Maximal flow from upper to lower box mm d~! 0 4
MAXBAS Routing, length of weighting function d 1 7
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selection and recombination. An initial population of z (set
to 50) parameter sets was generated randomly in the
parameter space and the ‘fitness’ of each set was evaluated
by the value of the objective function(s). From this popu-
lation, a new population (generation) was generated by »
times combining two of the parameter sets. The two sets
were chosen randomly but the chance of being picked was
related to the fitness of the parameter set (i.e. the value of
the objective function) giving the highest probability to the
sets with the highest fitness. A new parameter set was
generated from the two parent sets (sets A and B) by
applying one of the following four rules for each parameter
randomly with certain probabilities, p:

o value of set A (p =0.41)

e value of set B (p =0.41)

e random value between the values of set A and set B
(alternatively, if both values were equal, a random value
close to this value) (p = 0.16)

e random value within the limits given for the parameter

_ (mutation) (p = 0.02).

The first two rules preserve the values of the
preceding generation, whereas the other two rules
provide an amount of random search. A balance between
these rules is important for the success of the algorithm.
However, within reasonable ranges, adjustments to the
probabilities for the different rules had only minor effects
on the performance of the algorithm. Subsequently, the
fitness of each set in the new population was evaluated
and the new generation replaced the old one. The best
set was retained if there was no better set in the proceeding
generation. This evolution was repeated for a number of
generations (the maximum number of model runs was set
to 3800).

Wang (1991) mentioned that the combination with a local
search method could improve the results of a genetic
algorithm. Franchini (1996) used the parameter set found
by a genetic algorithm as a starting point for a local
optimisation. In addition to this form of subsequent ‘fine-
tuning’ the idea of a local search was implemented in a
second way in this study. At a small probability (p = 0.02)
the new parameter set was generated not by the parameter-
by-parameter combination described above but by a one-
dimensional optimisation along the line determined by the
two parameter sets using Brent’s method (Press ef al., 1992).
The total number of 5000 model runs was divided into 3800
runs for the genetic algorithm and 1200 runs for the
subsequent local optimisation. For the latter, Powell’s
quadratically convergent method as described by Press ez
al. (1992) was used.

The genetic algorithm described above differs from those
used by Wang (1991), Franchini (1996) and Kuczera (1997)
in several different respects of which the following two are
the most important. While the other algorithms used a
binary representation of the parameter sets, in this study
real numbers were used. The advantage of the latter method
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is that the parameters are represented directly (Davis, 1991)
and it has been found to give faster, more consistent and
more accurate results (Janikow and Michalewicz, 1991).
Furthermore, in all three studies one- or two-point
crossover has been used to combine two strings represent-
ing parameter sets. This means that the values of several
successive parameters are swapped jointly between the
parent parameter sets. For the one-point crossover the
parameter strings are divided into two parts at a randomly
chosen point and one part is swapped between the two
strings. Consequently the location of the various parameters
on the string is of importance, e.g. the probability that the
values of two parameters are chosen from the same parent
decreases with the distance between the parameters on the
string. The implementation used in this study, also called
uniform crossover ensures independence on the location of
the parameters. This is assumed to make the algorithm
more robust (Syswerda, 1989; Beasley ez al., 1993b) and
makes subjective ordering of the parameters unnecessary.

The use of multiple populations can improve genetic
algorithms (Whitley, 1994; Punch, 1998). Usually the same
criterion are used to define fitness in the different
populations, but obviously the use of multiple populations
provides a means to extend a genetic algorithm for multi-
criteria calibration. In this study, three populations of
parameter sets were used in which fitness was defined in
different ways: (1) the efficiency, R, for the runoff
simulations (2) the coefficient of determination, #%, for the
groundwater level simulations and (3) a combined measure
(see below). After a certain number of iterations (set to 10 in
this study) a number of parameter sets (set to 40) was
exchanged between the populations. By this means,
characteristics of good parameter sets were transferred
and helped to find parameter sets valid for both runoff and
groundwater levels.

For the combined measure of model performance, both
the efficiency, R,g; of the runoff simulation and the #* value
for the groundwater level simulations were transformed into
fuzzy measures, fp and fep. These transformations were
based on the highest value of each objective function
obtained by the individual calibration, R,gmax and P max
(Egns. 3 and 4). The fuzzy measures evaluated the degree of
truth of the statement ‘this parameter set is the best possible
one’. The combined measure, F, was computed as the
geometric mean of the two fuzzy measures according to each
criterion (Eqn. 5).

B Ry — 0.8 Regr s
Jfo = max (0, 02 Ry e ) (3)
” —0.8 2
fGW = max (0, _—ﬁ) (4)

F=\/fo fow (5)
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Table 2. Catchment characteristics

Characteristic Lilla Tivsjon Térnsjo
SMHI' station number 42-1920 54-2299
Area [km?] 12.8 14
Forest percentage [%] 88 85

Lake percentage [%] 2.7 1.8
Range of elevation [m a.s.1.] 246440 55-105
Mean annual precipitation [mm] 586 729
Mean annual runoff [mm] 262 266
Mean annual temperature [°C] 2.1 5.3

! Swedish Meteorological and Hydrological Institute.

STUDY CATCHMENTS

Lilla Trvsgjon

The Lilla Tivsjon catchment (Table 2) is a sub-basin of the
former International Hydrological Decade representative
basin Kassjoin (Waldenstrom, 1977) in central Sweden,
50 km NW of the city of Sundsvall. The landscape is hilly
with elevations ranging from 250 to 440m asl The
catchment is mainly forested and covered by till soil. The
simulation period was September 1971 to August 1981.
Precipitation and temperature were measured close to the
catchment outlet. Almost complete data series with twice-
monthly observations of groundwater levels were available
from ten tubes located in different parts of the catchment.

Térnsjo

The Tirnsjo catchment (Table 2) is located in central
Sweden, 50km NW of the city of Uppsala and about
300km S of the Lilla Tivsjon catchment. A large esker
(ridge of glaciofluvial deposits), rising up to 50 m above the
surrounding land, runs through part of the catchment. The
remaining part of the mainly forested catchment is covered
by till soil. The simulation period was September 1981 to
December 1991. Precipitation measurements were available
from a station within the catchment whereas temperature
was measured about 30km away from the catchment.
Groundwater levels were observed twice monthly at several
tubes, from which seven tubes with almost complete data
sets were used in this study. It should be noted that some of
the tubes were located up to 4 km outside the water divide;
however, they were assumed to correspond with the
conditions within the catchment.

Initial simulations indicated that the traditional HBV
model structure might not be appropriate for the Tarnsjo
catchment. Therefore, an alternative model structure was
tested as well. The recharge simulated by the soil routine
was divided into two parts. A portion Cp4gr[—], related to

recharge

Q,=K,exp(a S)
Q=K S,

Fig. 2. Modified model structure of the response routine for the Térngjo
catchment. The new parameters control the division of the recharge
between the two boxes (Cpqrt), the delay of the recharge in one box
(Cprray) and the exponential storage (a).

the portion of the till soil area, was added directly to an
exponential storage whereas the remaining recharge gener-
ated on one day was evenly distributed over a subsequent
period of Cpgr4y [d] days to a linear storage (Fig. 2). The
latter storage was thought to represent the esker in which
recharge is delayed because of the large unsaturated zone. A
similar approach has been used by Bergstrom and Sandberg
(1983). In the modified model structure, the same number
of parameters as in the original version of the model were
used. In order to compare the simulations using this modi-
fied model structure, with the groundwater observations,
the tubes were grouped according to whether they were
located on the esker or not and mean time series were
computed for both groups. The geometric mean of the 7
values of the fit for the two series was computed as objective
function. :

MODEL APPLICATION

The optimisation algorithm was initially tested for calibra-
tion against runoff for the theoretical case without any
model and data errors. Real precipitation and temperature
data were used to generate an 8-year runoff data series by
the model. Consequently, for this runoff series a perfect fit
was possible and the true parameter values were known.
The performance of the algorithm was then tested by
calibrating the model 50 times against the synthetic runoff
data. To reduce the problem of over-parameterisation the
parameters CWH and CFR were fixed to 0.1 and 0.05
respectively and K and UZL were not used, i.e. two instead
of three linear equations were used (see Table 1 for
parameter definitions). Reducing the number of free
parameters from 14 to 10 was assumed not to restrict the
general conclusions that could be drawn from this test.
For the theoretical case, the optimisation algorithm was
expected always to find the same, i.e. the true, parameter set.
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For the real-world case, however, initial calibration tests
indicated that a similar goodness of fit was achieved in most
calibration trials, but with varying parameter values. The
effect of the additional groundwater level data on this
parameter uncertainty was investigated using the Lilla
Tivsjon catchment. The model was calibrated 25 times to
both criteria using three populations of parameter sets as
described above. From the 20 best calibration trials the
variations of calibrated parameter values were evaluated by
the ranges and the standard deviations, and the ratios of
those measures of dispersion between the multi-criteria and
the single-criterion calibrations were computed for each
parameter.

A parameter set found by a multi-criteria calibration will
simulate a single variable (in this study runoff or ground-
water levels) less accurately than a parameter set which was
identified by calibration against this variable only. However,
for a good model, which gives an appropriate description of
the catchments’ hydrological behaviour, this drop in model
fit should be small. For both test catchments, the model was
calibrated independently to runoff and groundwater levels
as well as to the combination of these two criteria. Here, only
the best parameter sets found in ten calibration trials were
considered.

Results

TEST WITH SYNTHETIC DATA SERIES

For the synthetic data series, only two of the 50 calibration
trials failed to provide a good model fit (R 7< 0.9995). In
the other 48 runs the R,y value was at least 0.99978 with a
median of 0.99996. Despite these high R, values for a few
parameters, the true parameter values were not always
found. The optimised values for the parameters of the soil
routine differed by more than ten per cent from their true
values, while these differences were insignificant for the
other parameters (Table 3).

PARAMETER UNCERTAINTY

The lowest efficiency obtained after calibrating the model 25
times against runoff was 0.867 and it varied between 0.872
and 0.879 for the 20 best trials. Although the differences in
fit between these 20 calibration trials were relatively small,
parameter values varied over large ranges. On average these
ranges extended over about one third of the feasible ranges
as given in Table 1. For the multi-criteria calibration the
combined fuzzy measure varied, for the best 20 of 25 trials,
between 0.66 and 0.74. The corresponding ranges were
0.821 to 0.834 for R,rand 0.835 to 0.855 for the #* of the
groundwater levels.

In general, the variations of parameter values found in
different calibration trials were considerably smaller when
calibrating to both runoff and groundwater levels. The
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Table 3. Range of calibrated parameter values obtained in
the best 48 out of 50 independent calibration trials

Parameter True value Calibrated parameter values
Min Max
T 1 1.00 1.05
CFMAX 3 2.93 3.09
SFCF 0.8 0.78 0.81
FC 250 228 281
LP 0.7 0.61 0.78
BETA 3 2.56 3.58
PERC 0.5 047 0.51
K, 0.3 0.297 0.303
K, 0.05 0.049 0.053
MAXBAS 2.5 2.48 2.51

results were similar when comparing ranges and standard
deviations (Fig. 3). Most significant was the reduction of
parameter uncertainty for some parameters of the response
routine, where the variation was only 10 to 30 per cent of the
variation of the single-criterion calibration. However, for
some parameters (CFR, FC, MAXBAS) the variation was
between 10 and 80 per cent larger for the multi-criteria
calibrations than for the calibrations to runoff alone.

20—
A *
] x x
o 15— .
3 ]
~ 3 x
g ] .
R
iz 7 . *
L Ny R .
~ ] x
g e * x o o
© os5—x x x Ratio of ...
i N e Ranges
i x % x x Standard
b » deviations
00— T T 717 T T T T T T 1
E 3 Fe Yy g dex e
FREET RESEER S

Fig. 3. Comparison of the variations of calibrated parameter values
obtained by single-and multi-criteria calibration of the HBV model in

-the Lilla Tvvsjon catchment. Both ranges and standard deviations were

calculated from the 20 best of 25 calibration trials. The ratios were
computed by dividing those values for standard deviation and range
from calibrations against both runoff and groundwater levels, 6 ¢
and ryic, by the values from calibration against only runoff, 6sc and
rsc.
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Table 4. Performance of simulation after calibration according to one and both criteria (measured runoff and groundwater
levels). Objective function values which were considered during calibration are written in bold

Model application Runoff calibration Groundwater level calibration = Multi-criteria calibration
Runoff, Groundwater Runoff, Groundwater  Runoff, Groundwater
Ry levels, ? Ry levels, ¥ Ry levels,

Lilla Tivsjon 0879 0313 0.649 0.901 0.834 0.855

Tirnsjo 0734 0412 0.214 0.837 0.677 0.720

Tirnsjo (modified model structure) 0.762  0.521 0.435 0.845 0.713 0.787

COMPARISON BETWEEN SINGLE- AND
MULTI-CRITERIA CALIBRATIONS

Lilla Tivsjon

A good fit between simulated and observed runoff could be
obtained for the Lilla Tivsjon catchment (R.;= 0.879).
However, when calibrating against runoff, the groundwater
level simulations did not fit the observations (** = 0.313).
The situation was similar when the model was calibrated
against groundwater level data, the fit was good for the
groundwater levels but poor for runoff (Table 4).

When calibrating the model against both runoff and
groundwater simultaneously, the fit between simulations
and observations was acceptable for both runoff and
groundwater (Fig. 4). The values of the objective functions

Runoff [nm/day]

were about 5 per cent below their values from the single-
criterion calibration for both criteria (Table 4). Despite the
generally acceptable fit the reproduction of periods with low
flow was poor.

Tirnsjo
For the Tirnsj6 catchment, the single-criterion calibrations
gave poorer fits than in the Lilla Tivsjon catchment (Table
4). Furthermore, the drop in fit when calibrating simulta-
neously to both runoff and groundwater levels was twice as
large as in the Lilla Tivsjon catchment. This difficulty in
simulating both runoff and groundwater levels with the
same parameter set indicated a major problem in the model
structure.

The modified model structure with two parallel ground-
water boxes, where one box represented the delayed

E 17 ‘
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Fig. 4. Observations and simulations of runoff (thick line = simulated, thin line = observed) and groundwater levels (line = simulated,
points = observed) for the Lilla Tivsjon catchment (using the parameter set calibrated to both runoff and groundmwater levels).
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Fig. 5. Observed (points) and simulated (lines) groundwater levels for the Tirnsjo catchment using the modified model structure (using the

parameter set calibrated to both runoff and groundwater levels).

response of the esker criterion aquifer, gave better results.
The fit according to one criterion was slightly better and,
most important, the drop of fit in the multi-criteria
calibration was smaller and of similar magnitude to the
Lilla Tivsjon catchment (Table 4). The groundwater level
simulations agreed well with the measurements in the tubes
both on the esker and in the till soil (Fig. 5).

There were two apparent deviations between simulated
and observed groundwater levels. For the till soil tubes, the
model failed systematically to simulate the fall in level
during dry conditions, because the simulated storage was
already approaching zero at the beginning of these periods.
The simulation of levels for the esker tubes that were too
high in a half-year period starting in August 1985 was most
probably caused by erroneous precipitation data. A large
runoff event in August 1985 was also missed totally by the
model and did not agree with the precipitation amount used
as model input. It is reasonable that a large, but local rainfall
event was missed by the measurements because precipita-
tion data were not available from the station at Térnsjo
during this time and stations about 20 km away had to be
used instead.

Discussion

For the synthetic data series, the optimisation was in general
capable of optimising the parameter values, ie. the
differences between simulated and ‘observed’ runoff were
insignificant. Lidstrom (1997) proposed an automatic cali-
bration routine for the HBV model, which corresponds in
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principle with the local optimisation used for the subse-
quent fine-tuning in this study. He mentioned that for
synthetic data an efficiency of 0.998 on average was obtained
after several hundred evaluations of the objective function.
More model runs were performed using the genetic
algorithm, but the deviation from the correct fit (R = 1)
was about 50 times smaller compared to the method of
Lindstrém (1997).

For the synthetic data series, the optimised values of most
parameters came very close to the values that were used
when generating the series. For the real-world case, opti-
mised parameter values varied over larger ranges although
similar values of the efficiency were achieved in most
calibration trials. The use of additional data for calibration
was expected to reduce this parameter uncertainty. The
results obtained in this study agreed with this expectation.
The parameter uncertainty decreased for all five parameters
of the response routine, which is the part of the model
representing groundwater dynamics. Among the other
parameters the decrease was less significant and for three
parameters the parameter uncertainty even increased. It
could be expected that data on snow pack storage or soil
moisture might help to constrain the parameters of the snow
and soil routine respectively.

Apart from the reduced parameter uncertainty, the multi-
criteria calibration is assumed to provide parameter sets that
are a more appropriate representation of the catchment than
a calibration against runoff alone. During the calibration
period, simulated run off will be poor but the internal
variables come into much better agreement with the
conditions in the catchment. It seems reasonable that this
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improved internal consistency is associated with more
reliable predictions outside the calibration domain. This
assertion has to be tested in future studies using validation
periods during which the hydrological conditions differ
from those during calibration.

In the case of the Tirnsjo catchment, the additional
groundwater data together with the multi-criteria calibra-
tion helped to disprove an improper model structure.
Obviously, the modification of the model structure could
also be motivated by hydrological experience alone. The
results of the multi-criteria calibration provided additional
and more objective grounds.

The poor reproduction of low flow periods (Fig. 4) is a
result of the chosen objective function for evaluation of the
agreement between simulated and observed runoff. By
using the efficiency, which is based on the sum of squared
errors (Eqn. 1), most stress was put on high-flow
conditions, whereas deviations during low-flow conditions
were of less importance. It would be possible to achieve a
better fit for low-flow conditions by using some other
objective function (e.g. considering relative, rather than
absolute, deviations), but this would cause a poorer fit for
high-flow conditions. A combination of different objective
functions, which could be implemented similarly to the
combination of runoff (R, and groundwater levels (**) in
this study, might be valuable.

The results obtained in this study indicate that the
genetic algorithm is capable of optimising the parameters for
a conceptual runoff model and that it can easily be extended
for multi-criteria calibration. This is supported by Seibert ez
al. (1999) where this algorithm was used to calibrate the
HBYV model simultaneously with runoff series from nested
catchments. Nevertheless, comparisons of the algorithm
with other optimisation algorithms remain to be done to
assess fully its value in terms of speed and accuracy. Such
comparisons are not straightforward because the outcome
may depend on the application used for comparison
(Whitley et al, 1996). The general assessment of the
capabilities of genetic algorithms for optimisation is a topic
of active research (Mitchell er al, 1994; Jennison and
Sheehan, 1995; Michalewicz and Schoenauer, 1996,
Whitley er al., 1996). Usually in hydrological modelling
simplified problems are used for comparison. Both Duan ez
al. (1992) and Kuczera (1997) compared the shuffled
complex evolution algorithm with other optimisation
methods using simplified models with only 6 and 5
parameters respectively. The use of such a model which
“... is not intended for use in operational setting” (Duan et
al., 1992, p. 1016) is justified since, in models with a larger
number of parameters, parameter uncertainty may obstruct
the identification of the global optimum. However, results of
comparisons between various algorithms may differ in a
parameter space of higher dimension. Furthermore,
synthetic data series allow for achieving the performance
of an optimisation algorithm more directly, but results may
differ when using a real-world case.

CONCLUDING REMARKS

In this study, an algorithm for single- and multi-criteria
calibration has been proposed for the HBV model which can
be implemented easily into other models. It has been
demonstrated that the use of additional data, here ground-
water levels, can help to constrain the ranges of parameter
values. Furthermore, the multi-criteria calibration moti-
vated a modification of the model structure that provided a
more realistic representation of the catchment hydrology. In
further studies, the genetic algorithm used in this study will
be compared to other algorithms and additional data, such as
snow cover or soil moisture, will be included in the
calibration.
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