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Abstract. Satellite remote sensing can be used to investigate
spatially distributed hydrological states for use in modeling,
assessment, and management. However, in the visual wave-
lengths, cloud cover can often obscure significant portions
of the images. This study develops a rule-based, multistep
method for removing clouds from MODIS snow cover area
(SCA) images. The methods used include combining images
from more than one satellite, time interpolation, spatial inter-
polation, and estimation of the probability of snow occur-
rence based on topographic information. Applied over the
upper Salt River basin in Arizona, the method reduced the
degree of cloud obscuration by 93.8 %, while maintaining a
similar degree of image accuracy to that of the original im-
ages.

1 Introduction

Water in the Southwestern United States is a scarce resource,
requiring efficient management to meet the growing demands
of a rapidly growing population. Winter precipitation is par-
ticularly important because cooler temperatures allow the ac-
cumulation and persistence of snowpack at higher elevations
(Jacobs et al., 2005), with spring snowmelt providing inflow
to the reservoirs used for water supply and hydropower gen-
eration. In fact, even though only 39 % of winter precipitation
in the Salt and Verde watersheds falls as snow (Serreze et al.,
1999), snowmelt accounts for up to 85 % of the surface water
supply for the Phoenix metropolitan area (Hawkins, 2006).

Similarly, snowmelt has been shown to provide 40–70 % of
groundwater recharge at several study sites in the Southwest-
ern United States (Earman et al., 2006). This is significant
because∼ 40 % of Arizona’s water supply is taken from the
underlying aquifers (Megdal, 2004). However, with temper-
atures in the Southwestern United States projected to rise by
1◦C or more over the next hundred years, the extent and per-
sistence of snowpack is threatened. The ability to estimate
and monitor the evolution of snowpack is therefore extremely
important.

In this paper we focus on snow cover area (SCA) prod-
ucts derived from spectral imagery collected by the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) sensor
aboard two satellite platforms (Terra and Aqua, respectively).
These satellite platforms follow the same orbit within 3 h of
each other (therefore providing two observations of SCA per
day), and have a higher spatial resolution (500 m, 1 day) than
other available products such as the Advanced Very High
Resolution Radiometer (AVHRR), the Geostationary Orbit-
ing Earth Satellite (GOES) and higher temporal resolution
than Landsat. However, the accuracy of the MODIS SCA
product is affected by several factors, including land cover
type, snow depth conditions, and the presence of cloud cover
(Justice et al., 1998; Hall and Riggs, 2007; Zhou et al., 2005;
Klein and Barnett, 2003; Bitner et al., 2002; Simic et al.,
2004; Tekeli et al., 2005).

Several techniques developed for reducing the cloud cover
noise in SCA images have been reported in the literature
(see Sect. 2). In this work we investigate the performance
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of several such techniques over the Salt River basin in Ari-
zona, and develop a hybrid rule-based, multistep method that
computes the probability that a cloudy pixel is underlain by
snow. Section 2 reviews the literature regarding snow cover
imagery and cloud obscuration, Sect. 3 describes the study
region and data used, Sect. 4 discusses three existing and
one new method for cloud removal from snow cover images,
Sect. 5 reports the results of testing these methods over the
Salt River watershed in Arizona, and Sect. 6 evaluates the re-
sults using ground truth data. Finally, in Sect. 7 we discuss
the results and make suggestions for future work.

2 Review of the literature

2.1 Sensors providing snow cover area imagery

Snow cover maps have been produced since 1966 using re-
motely sensed data. The most widely used satellites/sensors
have been the Landsat thematic mapper (TM) and enhanced
thematic mapper (ETM+), AVHRR, the GOES, and the
Terra and Aqua MODIS sensors. The Landsat TM (launched
in 1982) and the enhanced TM (launched in 1999) pro-
vides images at 30 m spatial resolution and a revisit time of
16 days. Although providing superior spatial resolution, the
limited temporal resolution limits the applicability of Land-
sat images for long-term snow cover mapping and modeling
studies (Rango, 1985), making it unsuitable for studies in the
Southwestern United States, where the snow cover is sparse
and ephemeral, and where the snow can melt away in less
than 16 days. Nonetheless, Landsat images have been used
to evaluate MODIS snow cover products at river-basin-scale
areas (Justice et al., 1998) and as ground truth in accuracy
studies of MODIS in conjunction with ground measurements
(Hall and Riggs, 2007).

The AVHRR sensor, first launched in 1979 aboard the
NOAA polar orbiting satellite, provides snow products
(Carroll et al., 2001) with higher temporal frequency than
Landsat for the continental US and Canada. The AVHRR
sensor provides images a spatial resolution of 1 km and a
revisit time of 12 h (one daytime and one nighttime pass).
While its lower spatial resolution makes it difficult to use for
snow mapping in small basins (Schmugge et al., 2002), stud-
ies on a 572.9 km2 basin in the Pyrenees mountains of Spain
found that the correlation between AVHRR and MODIS
snow maps to be on the order of 0.8–0.9, even in smaller sub-
basins with areas of∼ 8.3 km2 (Gomez-Landesa and Rango,
2000). Similar comparisons in the Columbia and Missouri
River basins showed that, on average, MODIS SCA images
classified fewer pixels as cloud than the AVHRR images
used in the National Operational Hydrologic Remote Sens-
ing Center (NOHRSC) products, indicating it to be a better
resource for snow mapping in forested watersheds (Maurer
et al., 2003).

The (MODIS) sensors, launched in 1999 and 2002 on-
board the Terra and Aqua Earth Observing System satel-
lites, respectively, are designed to complement the Landsat-7
satellite in observing and monitoring Earth system changes
(Justice et al., 1998). Daily, and 8-day composite, snow
products (Hall and Riggs, 2007) are available globally at
no cost and in a variety of resolutions and projections via
the National Snow and Ice Data Center webpage (http://
nsidc.org/data/modis/index.html). Due to its higher spectral
and spatial resolution it has become popular as an alterna-
tive to AVHRR-based snow maps. However, the accuracy
of MODIS snow maps has been found to vary with land
cover type (Justice et al., 1998). The most frequent errors
are caused by difficulties in discriminating between snow
and cloud and in the mapping of very thin snow (Hall and
Riggs, 2007). Nevertheless, despite propagation of errors
from the daily products, errors of commission (mapping pix-
els as snow where there is no snow) have been found to be
very low in the 8-day composite products (Hall and Riggs,
2007).

In general, studies have found the accuracy of MODIS
snow products to be persistently good (Bitner et al., 2002;
Klein and Barnett, 2003; Simic et al., 2004; Tekeli et al.,
2005; Zhou et al., 2005; Hall and Riggs, 2007). Klein and
Barnett (2003) compared MODIS snow-cover products with
NOHRSC maps, found that “comparisons . . . over the snow
season show good overall agreement with accuracies of 94 %
and 76 % for MODIS and NOHRSC, respectively”. Zhou et
al. (2005) conducted an evaluation of MODIS SCA prod-
ucts over the upper Rio Grande basin and reported statisti-
cally significant correlations when assessed against stream-
flow and SNOTEL (SNOw TELemetry) measurements. Hall
and Riggs (2007) later found that MODIS fails to map snow
at depths less than 4 cm. However, cloud obscuration was re-
ported to be a major cause of reduced accuracy in all studies.

2.2 The problem of cloud obscuration

Overall, MODIS SCA products have been found to be use-
ful for reducing uncertainty in knowledge of the extent and
amount of snow. However, cloud cover has been found to
significantly impact the usefulness of these data and to cause
problems for assimilation into hydrological models. For ex-
ample, McGuire et al. (2005) and Andreadis and Letten-
maier (2006) reported only being able to use SCA images
for days where cloud obscuration was less than 20 % of the
grid cell, while Rodell and Houser (2004) used 6 % as the
threshold for minimum visibility. Consequently, several in-
vestigations into techniques for removing cloud cover from
SCA images have been reported (e.g., Lichtenegger et al.,
1981; Seidel et al., 1983; Molotch et al., 2004; Parajka and
Blöschl, 2008; Gafurov and B́ardossy, 2009).

Of course, the cloud obscuration problem is not intrinsic
to MODIS SCA products due to the fact that sensors for the
visible portion of the electromagnetic spectrum cannot see
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through clouds and also due to the similarities in the spec-
tral signatures of snow and clouds. The visible and thermal
bands can be used to discriminate between snow and clouds
(see reviews by Lucas and Harrison, 1990; Klein et al., 1998,
2000; Riggs and Hall, 2002; Schmugge et al., 2002) and pas-
sive microwave can be used to infer snow extent, depth, water
equivalent, and state (Schmugge et al., 2002).

Various studies have attempted to reduce the degree of
cloud obscuration in SCA image products. Lichtenegger et
al. (1981) and Seidel et al. (1983) used elevation, slope,
exposure, and brightness information from a digital terrain
model (DTM) to extrapolate snow cover from cloud-free to
cloud-covered areas in digital Landsat multispectral scanner
data, assuming that for each elevation zone, the regions with
equivalent exposure and slope angle carry the same amount
of snow. Molotch et al. (2004) filtered NOHRSC SCA maps
(based on AVHRR/GOES data) using gridded positive ac-
cumulated degree days (ADD) and AVHRR-derived binary
SCA to obtain a threshold for defining snow cover in the Salt
and Verde rivers in Arizona. They reported temperature data
to be helpful for estimating snow extent beneath clouds and
to thereby improve spatial and temporal continuity of SCA
and SWE products.

Parajka and Bl̈osch (2006) reported that although MODIS
SCA had an average accuracy of 95 % when compared
against snow data at 754 climate stations in Austria, clouds
covered fully 63 % of the region (even worse in winter when
interest in the snow product is higher). They tested a tech-
nique for cloud removal that combined MODIS Terra and
Aqua data, used majority classification from the eight nearest
pixels, and applied a 1- to 7-day temporal window. The ap-
proach was found to be remarkably effective at cloud reduc-
tion, although accuracy was found to decrease in an almost
linear fashion with the application of each filtering technique
(Parajka and Bl̈oschl, 2008). Gafurov and B́ardossy (2009)
applied the same techniques (with modifications) plus three
additional filters – snow transition elevation, spatial com-
bination of four neighboring pixels, and a time series of
each pixel over an entire year – to the Kokcha Basin in
Afghanistan. In a synthetic data evaluation they achieved
complete removal of cloud cover and an overall accuracy of
91.49 %.

3 Study region and data used

The MODIS Terra sensor provides SCA map products hav-
ing the best spatio-temporal resolution and accuracy. How-
ever, cloud obscuration reduces the value of these images and
complicates the images use for data assimilation into models.
In this study we develop and test a method for cloud removal
from MODIS SCA images over the Salt River basin in cen-
tral Arizona.

Fig. 1.The upper Salt River basin.

3.1 Study area

The upper Salt River basin (Fig. 1), having a drainage area
of 11 152.5 km2, is a major source of surface water for the
Phoenix metropolitan area. On an average annual basis, the
precipitation varies spatially from∼ 400 to 1200 mm yr−1,
with largest precipitation totals at high elevations in the wa-
tershed (PRISM Climate Group, 2006a, b), and runoff is
71 mm yr−1. Annual minimum temperature varies spatially
from −13.9 to 3.9◦C, and maximum temperature varies
from 17.2 to 39.4◦C (PRISM Climate Group, 2006a, b).
The elevation ranges between 674 m and 3472 m a.s.l., and
land cover types are primarily ponderosa pine (65 %), cha-
parral (26 %), pinyon pine-juniper (10 %), and desert grass-
land (Rinne, 1975). Winter precipitation is of paramount im-
portance since snowmelt can account for up to 85 % of the us-
able water (Hawkins, 2006), and so snow accumulation and
ablation are very important to water resources management.

The local water and power utility, the Salt River Project
(SRP), currently relies on sporadic helicopter flights to ver-
ify snow cover extent. In addition, daily snowpack data from
four SNOTEL locations at higher elevations in the eastern
part of the watershed (where snow water storage is great-
est; Fig. 1) are used for making streamflow forecasts, but this
can lead to erroneous underestimates of streamflow since the
point measurements are not representative of the areal pattern
of snow accumulation. Consequently, the utility is interested
in using remotely sensed SCA imagery to improve the accu-
racy of their forecasts.

3.2 MODIS data

The MODIS SCA products used in this research (MOD10A1
and MYD10A1) are snow cover maps, created from spectral
images obtained by the Terra and Aqua satellites. To generate
these maps, NASA applies several algorithms based on the
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normalized difference snow and normalized difference veg-
etation indices (NDSI and NDVI, respectively), as well as a
cloud mask to distinguish snow and cloud pixels (Hall and
Riggs, 2007). The cloud mask algorithm uses 14 of the 36
MODIS bands in 18 cloud spectral tests that start with an ini-
tial guess of whether snow or cloud is being viewed so that
appropriate processing paths and tests can be applied based
on surface type, geographic location, and ancillary data. The
result – “cloudy”, “clear” or “probably clear” – is reported
for each pixel (Ackerman et al., 1998).

The products are provided on a sinusoidal grid projection
divided into 10◦ × 10◦ tiles (approximately 1200× 1200 km
at the equator) (Wolfe et al., 1998). The “h08v05” tile in-
cludes Arizona, Utah, Southern California, and parts of
Northern Mexico. The data are provided in Hierarchical Data
Format (HDF), as binary SCA, fractional SCA (FSCA), and
snow albedo for each day, through the National Snow and Ice
Data Center (NSIDC) webpage (http://nsidc.org/data/modis/
index.html). We used SCA data from 1 October 2004 to
31 May 2005 (8 months).

ArcGIS9 ArcMap Version 9.3 was used to compute pro-
jection changes and for processing geographic informa-
tion system data (e.g., digital elevation model). All image-
processing computations were carried out using MATLAB
7.5.0.

Because the eventual goal is to assimilate the SCA images
into a distributed hydrological model, Fig. 2 presents an ex-
ample in which the SCA data were upscaled from its native
resolution of∼ 500 m (51 375 pixels) to grids of∼ 12.5 km
(116 grids). The upscaled data exhibited irregular behavior,
with many grids going from 100 % FSCA to 0 % FSCA from
one day to the next, not properly reflecting the gradual on-
set of snowmelt, as evident in the snow water equivalent
(SWE) time series for a SNOTEL station located inside the
grid (Fig. 2). Such erratic behavior illustrates the large extent
to which clouds cover the watershed during the study period.

Figure 3 illustrates the number of days with snow and
cloud over the study period. Figure 3a shows a pixel map
of the number of “days of snow” across the basin between
1 October and 31 May, constructed from the raw SCA data,
clearly indicating that snow is being accumulated in the right
places (higher elevations on the eastern side). To complement
this, Fig. 3b shows a pixel map of number of days with clouds
over the same period; note that this number ranges from 70–
120 days (29–49 %) of the total 24 days in the study period.
Overall, clouds cover 39 % of the SCA image pixels, mostly
during periods of active snowfall. Further, it can sometimes
be several days before the cloud cover clears away, during
which time some of the snow at lower elevations can melt
away and therefore not be accounted for.

To simplify our analysis, the MODIS SCA images were
first pre-processed to classify each pixel as belonging to only
one of the following five categories – cloud (new code 1/orig-
inal codes 11 and 50), error (new code 2/original codes 0,
254 and 255), snow (new code 3/original code 200), land

Fig. 2. Fractional snow-covered area time series for one grid, over-
layed upon a Snow Water Equivalent time series for a SNOTEL sta-
tion located inside the grid. This plot illustrates the extent to which
clouds cover the watershed during the study period with up to 69 %
cloud cover in February.

(new code 4/original codes 25, 37, 39 and 100), and no de-
cision (new code 5/original code 1). In addition, three new
categories were added – missing day (new code 6), corrected
snow (new code 7), and corrected land (new code 8).

3.3 SNOTEL data

SNOTEL sites are automated snow telemetry stations that
record real-time SWE data as well as snow depth, precipi-
tation, and min. and max. air temperature in their standard
configuration. SNOTEL sites are spread throughout moun-
tainous areas of the western US (more than 750 stations)
and managed by the Natural Resources Conservation Service
(Serreze et al., 1999). Twenty-one of these stations are in the
state of Arizona, but only four fall within the boundary of the
study area (see Fig. 1).

4 Methods applied for cloud removal

Based on the review of previously reported research, we in-
vestigated three methods for their effectiveness in cloud re-
moval from MODIS imagery over our study area:

1. Combining Terra (MOD10A1) and Aqua (MYD10A1)
imagery SCA products.

2. Time interpolation.

3. Nearest neighbor spatial interpolation informed by ele-
vation and aspect. The aspect of a pixel is the exposure
of the terrain represented by that pixel, in other words,
the direction in which the slope of the terrain faces (e.g.,
north, south, northeast, etc.) when it is not flat.

In addition we developed and tested a fourth method:

4. Probability of snow estimation, via logistic regression
informed by elevation and aspect.
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Fig. 3. (a)Pixel map of number of “days of snow” across the basin
between 1 October and 31 May, indicating that snow is accumulated
at higher elevations on the eastern side;(b) pixel map of number of
days with clouds over the same period.

Each of these methods was first tested separately to assess
the effectiveness of its performance. Subsequently, we im-
plemented and tested a hybrid approach based on sequential
application of the aforementioned methods.

4.1 Terra/Aqua combination

Combination of MOD10A1 and MYD10A1 SCA images
takes advantage of the short (3 h) time interval between the
two observations and the transience of clouds during that
time. The principal assumption is that snow conditions re-
main essentially constant (no snow falls or ablates) during
that period. If a pixel on the one image is classified as cloud
(or error) but is reliably classified as land or snow cover on
the other, then the problem pixel is reclassified appropriately.
This method was adopted based on the experience of Para-
jka and Bl̈osch (2008). The algorithm took approximately
12 min to execute on an Intel Pentium D 2.80 GHz computer.

4.2 Time interpolation

The time-interpolation method employs three temporal win-
dows applied sequentially. The first window removes cloud
coverage from image [day] based on snow cover information

from image [day− 1] and image [day+ 1]. If a cloudy
pixel on image [day] has snow (land) cover on both im-
age [day− 1] and image [day+ 1], then it is reclassified as
snow (land) covered. The second window applies a sim-
ilar logic using image [day− 1] and image [day+ 2]. Fi-
nally, the third window applies a similar logic using im-
age [day− 2] and image [day+ 1]. This approach makes the
assumption that snow cover remains essentially constant dur-
ing the spans of the different temporal windows. This as-
sumption may be considered reasonable because the proba-
bility of snowmelt tends to be lower during cloudy days. This
method was adopted based on the experience of Gafurov and
Bárdossy (2009), who modified the temporal windowing ap-
proach applied by Parajka and Blösch (2008). The algorithm
took approximately 3.2 min to execute on an Intel Pentium D
2.80 GHz computer.

4.3 Nearest neighbor spatial interpolation

The nearest neighbor spatial interpolation method uses infor-
mation from the eight pixels surrounding (edge and diago-
nal) a cloudy pixel. If any neighbor pixel has snow cover, is
at a lower elevation, and has the same aspect, then the cloudy
pixel is classified as snow. Once the entire image has been
processed, a similar logic is applied to any remaining cloudy
pixels – if any neighbor pixel is land covered, at a higher ele-
vation, and has the same aspect, the cloudy pixel is classified
as land.

A 30 m resolution digital elevation model (DEM) of the
area was obtained from the United States Geological Survey
(USGS) and processed using the aspect tool of the spatial
analyst extension in ArcGIS 9.3. Each pixel was assigned an
aspect value from 0◦ (due north) to 360◦ (again due north)
measured counterclockwise, or a value of−1 if the slope is
flat. The pixels were classified accordingly as north, south,
east, west, northeast, southeast, northwest or southwest fac-
ing. A resampling routine was then run to upscale the “ele-
vation” and “aspect” to the 463.32 m resolution of the SCA
images to allow comparison between the three layers of in-
formation. The resampling rules “bilinear interpolation” and
“majority of pixels” were applied, taking into consideration
the nature of the data. An elevation raster is a continuous
surface and therefore it is most appropriately resampled us-
ing a bilinear interpolation, where the elevation values of the
four nearest 30 m input cell centers (used to create the new
463.32 m cell) are averaged. This average is weighted, tak-
ing into consideration the proximity of the four nearest 30 m
input cell centers to the new 463.32 m cell center. For the as-
pect raster, the “majority of pixels” rule was used. This rule
determines the value of the new cell by choosing the most
frequent values of the 30 m input cell centers that are within
the new 463.32 m cell.

This method was modified from Gafurov and
Bárdossy (2009), who used only elevation information.
We included aspect information because topographic
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controls like elevation, aspect, and slope (not used here) can
significantly influence energy exchange and melt across a
watershed by modifying the exchange of direct-beam and
diffuse shortwave radiation and longwave radiation (Dewalle
and Rango, 2008). The algorithm took approximately 8 h to
execute when run by itself on an Intel Pentium D 2.80 GHz
computer.

4.4 Locally weighted logistic regression

The locally weighted logistic regression (LWLR) method
uses relationships between the spatial and topographic at-
tributes of pixels surrounding a cloudy pixel to estimate the
“probability of snow occurrence” (PSO, Eq. 1). This method
is adapted from Clark and Slater (2006), who used precipita-
tion observations at sparsely located meteorological stations,
as well as spatial maps of elevation, latitude and longitude,
to estimate daily precipitation totals across complex terrain
in western Colorado. Here we used elevation and aspect as
the explanatory variables.

To estimate PSO at a cloudy pixel, the LWLR method
weights the information from neighboring pixels inversely
with distance, and fits the data to a logistic curve. The fol-
lowing equations are used to calculate the PSO of a cloudy
pixel (PSOicloud):

PSOicloud =
1

1+ exp(−Z icloudβ)
, (1)

βnew = βold +

(
XT WVX

)−1
XT W

(
Y

′

− π
)
, (2)

π =
1

1+ exp
(
−X ipixβold

) , (3)

V = diag
(
vipix,ipix = π ipix

[
1− πipix

]T )
(4)

and

W = diag

wipix,ipix =

[
1−

(
dipix

MAXD

)3
]3

 , (5)

whereZ icloud is a vector of elevation and aspect information
for the cloudy pixels indexed as icloud,X is vector of eleva-
tion and aspect information for the non-cloudy pixels,β is a
vector of parameters,Y

′

is a 0–1 vector indicating snow oc-
currence or not on the non-cloudy pixels,W is a diagonal ma-
trix of weights to be assigned to each non-cloudy pixel,V is a
diagonal matrix of the variance associated with the estimate
of snow occurrence at each noncloudy pixel,π ipix indicates
the PSO at each noncloudy pixel,dipix is the distance from
a non-cloudy pixel to the cloudy pixel, and MAXD is a co-
efficient specifying the window size used around the cloudy

pixel (see Clark and Slater, 2006, and Loader, 1999, for de-
tails regarding implementation).

In regression analysis one makes use of one or more
known independent explanatory variablesX to predict the
value of an unknown dependent variableY . In logistic re-
gression the model fitted to the data is a logistic function or
logistic curve (Eq. 1) that represents the probability of oc-
currence of a “categorical” [0, 1] variableY givenX, and the
regression coefficients are estimated using maximum likeli-
hood estimation via an iterative process (Eqs. 2, 3, and 4).
Note that althoughX can take any value on [−∞, ∞], the
value ofY is confined to the range [0, 1]; in our caseY rep-
resents the probability of snow occurrence. The regression
is computed using information from the pixels that are not
obscured by clouds, and then used to estimate probability of
snow for the cloudy pixels in the image. In addition, the re-
gression is computed and applied in a locally weighted man-
ner, meaning that pixels closer to the cloudy pixel have more
weight than pixels those that are further. The weights are cal-
culated via Eq. (3).

For this study we tested different values for the window
size MAXD (from 5 to 45 pixels) for their ability to pro-
vide statistically robust results, reduce significant numbers
of cloudy pixels, and require reasonable computational time.
Reliability was evaluated using the Brier score (BS) verifica-
tion statistic (see Wilks, 2005) and Clark and Slater (2006)
computed from the joint distribution of the LWLR forecast
probabilities and the observed snow/land pixels in the image.
Although the best results (not shown) were obtained using
MAXD = 45, we instead chose MAXD = 30 due to the rel-
atively high performance achieved using only 1/3rd of the
computer time (22 h as opposed to 67 h on a 2.66 GHz dual-
core Intel Xeon computer).

Note that LWLR does not, by itself, automatically reclas-
sify cloudy pixels, but only provides an estimate of the prob-
ability that the pixel is actually snow or land. Therefore, a
minimum probability threshold must be selected to convert
the probability to a binary outcome. To select this threshold,
we conducted a sensitivity analysis by varying the thresh-
old from 0 to 1 in steps of 0.025 and chose the threshold
value that minimized the sum of the conditional probabili-
ties of commission and omission errors computed over all
non-cloudy pixels inside the window (for details see López-
Burgos, 2010). The threshold was separately selected for
each cloudy pixel to which LWLR was applied. Figure 4
shows an example of the transition from original to corrected
MOD10A1 image (26 November 2004), along with maps of
the estimated PSO and the values of the thresholds selected.

5 Results for each cloud removal method applied
independently and in sequence

Each of the four methods was first tested separately to as-
sess the effectiveness of its performance. Subsequently, a
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Fig. 4. Example of the transition from original to corrected MOD10A1 image (26 November 2004), along with maps of the estimated PSO
and the values of the thresholds selected.

sequential approach was tested, in which the methods were
applied in sequence. Two summary statistics are used to indi-
cate the change achieved by implementation of each method:

%Change=

(
#Corrected(xi, t) − #Original(xi, t)

#Original(xi, t)

)
· 100 (6)

and

%Cover=

 #Pixels(xi, t)

6∑
i=1

Pixels(xi, t)

 · 100, (7)

wherexi represents codes 1 through 6, andt represents the
time period for which the statistic was calculated (e.g., year
or month).

We first discuss the results of applying each method sep-
arately. The change in percentage cover achieved over the
entire study time period by each method is shown in Table 1
for each category. Note that 39 % of the image pixels were
initially classified as cloudy.

In brief:

1. The Terra/Aqua combination method had a percent
change of cloud cover, error, and no-decision pixels of
−23 %, −97 %, and−3.7 %, respectively. This trans-
lates to a cloud cover change from 39 % to 30 %. These
results are similar to the cloud removal achieved with

the same method by Parajka and Blöschl (2008), Xie
et al. (2009), and Gao et al. (2010). Furthermore, the
2 days missing in the Terra images time series were
not missing in the Aqua images and so a more com-
plete time series was achieved. In addition, the com-
bination of MOD10A1 and MYD10A1 increased the
snow-covered pixels and the no-snow pixels by 34.5 %
and 14.6 %, respectively (+1.55 and+8.13 snow and
land cover). On a monthly basis, this approach works
better during the fall and spring months versus the win-
ter months with a maximum cloudy pixels reduction in
May (−36 %) and a minimum cloud reduction in Jan-
uary (−16 %) (Fig. 5).

The monthly distribution of differences in cloud
removal are similar to those of Parajka and
Blöschl (2008), Xie et al. (2009), Gafurov and
Bárdossy (2009), and Gao et al. (2010), while differing
on the amount of cloud cover removed on each site.
This might be due to differences in climate, topography,
study area (km2), and cloud dynamics between the
watersheds during the different time periods used.

2. The time interpolation method had a percent change of
cloud cover, error, and no-decision pixels of−43 %,
−95 % and−46 %, respectively, with a cloud cover
change from 39% to 22% while increasing the snow-
covered pixels and no-snow pixels by 33 % and 28 %,
respectively (+1.51 and+7.25 snow and land cover).
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Table 1. “%Cover” change of the MOD10A1 images, achieved by each method for each category for the entire study period.

Method Cloud Error Snow Land No Decision Missing Day

Initial 38.77 0.064 4.52 55.80 0.025 0.823

T/A Combination 30.00 0.002 6.07 63.93 0.024 0
%Change −22.71 −96.71 +34.50 +14.57 −3.74 −100

Time Interpolation 21.95 0.004 6.02 71.18 0.014 0.823
%Change −43.37 −94.56 +33.33 +27.56 −45.50 0

Spatial Interpol. 36.94 0.058 4.79 57.36 0.025 0.823
%Change −4.72 −9.45 +6.13 +2.80 −0.032 0

LWLR (30 pixels) 14.67 0.036 8.86 75.60 0.01 0.823
%Change −62.16 −44.10 +96.14 +35.48 −60.27 0

Sequential 2.41 0.001 11.47 86.11 0.009 0
%Change −93.79 −98.90 +153.9 +54.32 −63.79 −100

Fig. 5. (a) Shows how the percentage of pixels classified as cloudy in the original MODIS SCA images varies for each month during the
study period; subplots(b), (c), and(d) show the corresponding percentage change in clouds, snow, and no snow achieved by each method
for each month.

These results are similar to the 1-day temporal filter
used by Parajka and Blöschl (2008) and significantly
less than their 7-day temporal, though the results are
not strictly comparable since they applied the tempo-
ral filters to the already improved images by way of
Terra/Aqua combination. The same applies to the cloud
removal results obtained by Gao et al. (2010), which
also used improved images as the inputs for their tem-
poral filters. Xie et al. (2009) achieved a cloud cover
reduction from 39.5 % to 6.0 %, but the amount of days

used for each image and the weighted mean function
used are not clear. This method removed more bad pix-
els than Terra/Aqua, but it does not give information on
missing days. It also performed better during the fall and
spring months than in the winter months, with a maxi-
mum cloud reduction in May (−84 %) and a minimum
in February (−17.6 %). However, as shown on Fig. 5,
cloud reduction in November was not as good as in Oc-
tober and December due to higher percentage of cloud
cover in November. As is the case with the Terra/Aqua
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combination, this method performed less strongly dur-
ing winter months due to cloud persistence beyond the
temporal window used to improve the images.

3. The nearest neighbor spatial interpolation method is the
least effective of the four methods. The percent changes
on cloud cover, error, and no-decision pixels were only
−5 %, −9 %, and−0.03 %, respectively, with a cloud
cover change from 39 % to 37 %. These results are sim-
ilar to that of Parajka and Blöschl (2008). Their spatial
interpolation method reduced the cloud cover from 52 %
to 46 %, although they applied this algorithm to the im-
ages after having improved them with the Terra/Aqua
combination. Again, this method does not give informa-
tion on missing days. Furthermore, this method does not
show the seasonal difference in cloud reduction power
of the three previous methods; its effect is almost con-
stant throughout the time period.

4. The locally weighted logistic regression (LWLR)
method achieved the highest effectiveness at the cloud-
covered and no-decision pixels (−62 % and−60 %, re-
spectively), but was significantly less effective than ei-
ther Terra/Aqua combination or time interpolation at
reducing the number of “error” pixels (−44 %). This
method also had the highest increase in snow-covered
pixels (96 %) and no-snow pixels (35 %) and shows a
similar seasonal pattern of cloud removal with the max-
imum cloud reduction in April (−90 %) and a minimum
in February again (−50 %). The change in cloud cover
was from 39 % to 15 %. Notwithstanding, it does not
take care of the missing days problem either.

Figure 5 presents the change in pixel classification for each
month in the study period. Figure 5a shows how the percent-
age of pixels classified as cloudy in the original MODIS SCA
images varies for each month, from a low of 24 % in April to
a high of 69 % in February. Figure 5b–d shows the % change
in clouds, snow, and land pixels achieved by each method for
each month. Nearest neighbor spatial interpolation is con-
sistently poor at cloud removal, while logistic regression
is the most effective. For removing no-decision pixels, the
Terra/Aqua and time interpolation algorithms perform best.
All methods increased the amount of snow-covered pixels
more than they increased the amount of land pixels – a rea-
sonable result since the areas with the most consistent cloud
cover throughout the study period are the areas of snow ac-
cumulation, mainly at higher elevations, and the period with
more cloud cover is during the winter months when snow
accumulates (Fig. 3).

The results above indicate that each method has differ-
ent strengths and weaknesses. To synergistically exploit the
strengths of all four methods, we next applied the methods in
sequence (in the order Terra/Aqua combination, time interpo-
lation, spatial interpolation, and locally weighted logistic re-
gression), at each step retaining the results from the previous

one. Table 1 shows that the sequential approach achieved a
very high degree of cloud cover, error, and no-decision pixel
removal (−94 %,−99 % and−64 %, respectively), while in-
creasing the number of snow and land pixels by∼ 154 %
and ∼ 54 %, respectively – a considerable increase in the
amount of SCA indicated by the images. Figure 6 shows
the progressive improvement obtained by sequential appli-
cation of the methods in terms of percent cover (i.e., how the
cloud/snow/no-snow covers change with each step) and how
this improvement distributes across months.

Overall, using the sequence the cloud cover was reduced
from 39 % to 30 % using the Terra/Aqua combination, then
to 14 % with the time interpolation, to 13 % with the near-
est neighbor spatial interpolation and down to 2 % with the
LWLR. On a monthly basis the cloud cover was reduced to
less than 10 % for all months with the most cloudy month
(February) having a final cloud cover of 9 % and October,
April, and May having a final cloud cover of less than 1 %.
Figure 6c and d look like a typical snow curve and an upside-
down snow curve. The increase in snow-covered pixels fol-
lows the expected monthly snow distribution except that
more snow was added to the month of January than in Febru-
ary. This is likely due to the difficulty of removing clouds in
February as it had a higher percentage of cloud cover. The
increase in no-snow pixels also shows the expected monthly
distribution with the fall and spring months showing a higher
increase. Moreover, only 5 % of the days were left with a
cloud cover greater than 10 % (not shown). These days are
distributed between December and March with the majority
being in February, the cloudiest month, and are grouped in
doubles or triples (i.e., 2 or 3 consecutive days with heavy
cloud cover). Therefore, it makes sense that the algorithms
were not able to reduce the cloud cover to less than 10 %. Fig-
ure 7 shows the significant change obtained by the sequential
method for the MODIS SCA image of 18 February 2005. The
changes achieved by the hybrid approach are clearly substan-
tial and in marked contrast to the changes achieved by each
method applied independently.

6 Evaluation of accuracy of the results

Finally, we assess the accuracy of the results by comparing
the SCA images with data from four available SNOTEL sites
located in the mountainous zones of the Salt River basin
(Fig. 1). Although the SNOTEL sites are effectively point-
scale measurements, their pixel locations were localized us-
ing ArcGIS 9.3 by converting the station’s point shapefile to
a raster with the same extent, resolution, and projection of
the images. This raster was then converted to an ASCII file
for processing. Several evaluation statistics were calculated
for (a) the original MOD10A1 and MYD10A1 images, (b)
each cloud removal method applied separately, and (c) the
sequential cloud removal approach.
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Fig. 6.Progressive improvement obtained by sequential application of the methods and how this improvement distributes across months.

For each SNOTEL site pixel, the hit, false alarm, miss,
and correct rejection rates were computed for each day of
the available time series. A simple approach to evaluation
would be to consider each SNOTEL site pixel to be snow
covered if the corresponding SNOTEL station has recorded
measurable SWE (SWE> 0). This assumption would imply
that each station measurement, corresponding to an area of
approximately 9 m2 (snow pillow standard size is 3× 3 m),
is representative of conditions across the entire 500× 500 m
(250 000 m2) image pixel. However, this assumption can be
poor for several reasons – an important one being that the
MODIS sensor fails to map snow when snow depths are less
than 4 cm (Hall and Riggs, 2007).

Based on an average snow density of 0.3621 g cm−3

(average snow density for one of our SNOTEL stations
during WY 2005), 4 cm of depth corresponds to ap-
proximately 1.4478 cm of SWE. Therefore, to establish
a more accurate basis for evaluation, a sensitivity analy-
sis was performed to find a threshold value of recorded
SWE above which the pixel could be considered to be
snow covered. To do this the SNOTEL station raster
was used as the observed ground truth and the MODIS
SCA images as the modeled forecast. The conditional
probabilities of hits (observed = snow/forecast = snow), false

alarms (observed = no snow/forecast = snow), misses (ob-
served = snow, forecast = no snow) and correct rejections (ob-
served = no snow/forecast = no snow) were computed for
20 different threshold SWE values (from 0 to the max-
imum value of SWE = 49.53 cm recorded at the stations
over the observation time period), and an optimal threshold
(SWE = 2.61 cm) was selected that minimized the sum of the
conditional probabilities of misses and false alarms, while
maximizing the sum of the conditional probabilities of hits
and correct rejections.

The following evaluation statistics recommended by
Wilks (1995) were then computed:

PC=
a + d

n
, (8)

TS=
a

a + b + c
, (9)

B =
a + b

a + c
, (10)

FAR =
b

a + b
, (11)
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Fig. 7. Example of the sequence results for 18 February 2005;
(a) original image,(b) after T/A combination,(c) after time interpo-
lation,(d) after spatial interpolation, and(e)after logistic regression
(final result).

and

H =
a

a + c
, (12)

where a = number of hits, b = number of false alarms,
c = number of misses,d = number of correct rejections, and
n =a+b+c+d. The proportion correct (PC) and threat score
(TS) are accuracy statistics, whileB is a measure of bias, the
false alarm ration (FAR) is a measure of reliability and the
hit rate (H) is a measure of discrimination.

Table 2.Evaluation Statistics for the original images and individual
results. The data in bold is the method with the best accuracy results.

Method PC TS B FAR H

Unaltered Terra 0.85 0.73 0.85 0.08 0.78
Unaltered Aqua 0.82 0.68 0.91 0.15 0.77

T/A Combination 0.83 0.71 0.89 0.12 0.78
Time Interpolation 0.88 0.79 0.90 0.07 0.84
Spatial Interpol. 0.85 0.73 0.86 0.09 0.78
LWLR 0.80 0.67 0.81 0.10 0.73
Sequential 0.85 0.74 0.89 0.10 0.81

The proportion correct is a good measure of accuracy if
the event (snow) and nonevent (no snow) occurred with equal
frequency (i.e., 50/50). A completely accurate estimator will
achieve a PC = 1 (b = c = 0), while a completely inaccurate
estimator will have a PC = 0 (a =d = 0). This accuracy mea-
sure would be most useful during the winter months. Dur-
ing the fall and spring months, snow cover is less frequent
than no-snow cover, thus the threat score is a better accu-
racy statistic for those months since it is good for situations
in which the event to be forecasted (snow occurrence in this
case) occurs less frequently than nonoccurrence. An accurate
estimator will achieve a TS = 1 (b = c = 0), while an inaccu-
rate estimator will have a TS = 0 (a = 0). An unbiased estima-
tor will achieveB = 1 (b = c = 0); B > 1 indicates that snow
is estimated more often than observed, whileB < 1 indicates
that snow is estimated less often than observed. A good esti-
mator will also achieve an FAR close to 0 (no false alarms)
while FAR close to 1 indicates very poor performance (no
hits). Finally, a good estimator will achieve a hit rate close to
1 (no misses).

The results are summarized in Table 2. We see the follow-
ing

1. Both Terra and Aqua images have an overall high frac-
tion of correctly classified snow-covered and snow-free
pixels (PC = 0.85, 0.82) but tend to underestimate the
occurrence of snow (B = 0.85, 0.91); therefore, com-
mission errors are low. The latter is shown by low FAR
values (0.08, 0.15). TheH values (0.78, 0.77) are con-
sistent with theB values; both Terra and Aqua images
slightly underestimate the occurrence of snow. Overall,
the Terra images have better accuracy than the Aqua im-
ages and both images show higher omission errors than
commission. These results are consistent with those of
Parajka and Bl̈oschl (2008), Xie et al. (2009), and Gao
et al. (2010) although they used other measures of accu-
racy.

2. The Terra/Aqua combination reduces the accuracy of
the MOD10A1 image. This result is different from other
studies where this step actually increased the images’
accuracy (Parajka and Blöschl, 2008; Xie et al., 2009;
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and Gao et al., 2010) This might be due to differences
in evaluation statistics used, the amount of stations with
ground truth observations used to calculate the accu-
racies and their distribution throughout the watersheds,
and/or the fact that the other studies included the entire
water year including summer where mapping accuracies
are high because there is no snow and therefore omis-
sion and commission errors are practically non-existent.

3. The time interpolation method achieves the best over-
all accuracy, and provides consistently better evaluation
statistics – better even than those of the original images.
This is likely due to the seasonal persistence of snow
at the SNOTEL sites (e.g., see Fig. 2), and the result
may not be representative of mapping accuracy near the
snow line. We will return to this point later in the paper.

4. The other three methods have varying results, with
LWLR achieving the worst PC, TS,B, andH statis-
tics. The lower accuracy results for the LWLR might be
caused by the size of the window used for the analysis; a
smaller window has better accuracy results but removes
less clouds (Ĺopez-Burgos, 2010). The most appropri-
ate tradeoff between these two qualities can be chosen
by the user based on the future applications of the fi-
nal images. The lower accuracy of the LWLR may also
be due to the thresholds used to decide if a pixel has
snow or not. One way to improve this would be for the
user to give more weight to the minimization of the sum
of conditional probabilities of commission errors than
omission errors (refer to Sect. 4.4) since this would give
more conservative results for snow cover. It is better to
plan for less SWE in the watershed (underestimation)
and find that there is more usable SWE than to plan for
a higher amount of SWE (overestimation) and find out
there was actually less. Development of a method that
improves this step remains a topic for future work.

5. The sequential approach is second best in terms of ac-
curacy (PC = 0.85, TS = 0.74), matches the Terra/Aqua
combination in terms of bias (0.89), is middling in terms
of false alarms (0.10) and second in terms of hit rate
(H = 0.81). Table 3 shows how the evaluation statistics
changed with each step during the sequence application.
As shown on the table, the first step (Terra/Aqua com-
bination) worsens all the evaluation statistics except for
the hit rate, which stayed the same. Following this step
the time interpolation was applied and the evaluation
statistics improved to values even better than the origi-
nal Terra image, except for the FAR, but still showed an
improvement on this statistic over the Terra/Aqua com-
bination. The spatial interpolation did not cause any sig-
nificant changes and the LWLR worsened the evaluation
statistics of the sequence, but the final outcome is equal
or better than the original Terra image.

Table 3.Evaluation statistics for each step of the sequence.

Step PC TS B FAR H

Unaltered Terra 0.85 0.73 0.85 0.08 0.78
Unaltered Aqua 0.82 0.68 0.91 0.15 0.77

T/A Combination 0.83 0.71 0.89 0.12 0.78
Time Interpolation 0.86 0.76 0.92 0.10 0.83
Spatial Inter. 0.86 0.76 0.91 0.10 0.82
LWLR/End of Sequence 0.85 0.74 0.89 0.10 0.81

The final FAR statistic is higher than the original image
and so is the bias. This is most likely caused by an in-
crease in the commission errors for the FAR and also a
decrease in omission errors for the bias. A way of im-
proving or balancing this result was mentioned above.

6. Overall, all methods showed higher omission errors
than commission errors. These results are similar to
those of Parajka and Blöschl (2008), Xie et al. (2009),
and Gao et al. (2010). In addition, the final result of the
sequence has similar or higher accuracy than the orig-
inal MODIS images; this result is also similar to the
aforementioned papers with respect to the methods they
used and final products.

7 Discussion

7.1 Differences in performance between the cloud
removal algorithms

The cloud removal algorithms examined in this study gave
differing results with regards to the number of cloudy pix-
els removed. In terms of number of cloudy pixels re-
moved, LWLR was best, followed by time interpolation, and
Terra/Aqua combination in that order. Spatial interpolation
provided very little cloud removal performance. When re-
moving clouds, all methods added more snow pixels than
land pixels – a reasonable result since clouds tend to con-
centrate at higher elevations where more snow accumulates
and the time period used only includes months when there
is snow presence. The methods also share the same seasonal
patterns of cloud removal and distribution of added snow-
covered and no snow-covered pixels. Overall, the sequential
approach achieved a 94 % reduction of cloud-covered pix-
els (from an overall cloud cover of 38.7683 % to 2.4084 %),
which can be considered to be very successful. The results
would, of course, be even better if we did not include images
from days that were completely covered by clouds and for
which the algorithms had little effect. Furthermore, the se-
quential approach reduced the cloud cover to less than 10 %
for all months, with a maximum of 9 % in February fol-
lowed by 4 % in January and a minimum of 0.15 % in April.
The sequence showed similar seasonal trends as the methods
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applied separately and left only 5 % of the images with more
than 10 % cloud cover.

It is likely that LWLR is able to remove more cloudy pix-
els than any other method because it uses information from
a window of pixels of area∼ 775 km2 around each cloudy
pixel (∼ 7 % of the total area of the watershed). This gives
the method an advantage over the other algorithms, which
only draw upon information at the same pixel or in the 8 pix-
els neighborhood having an area of 0.86 km2. Because the
Terra/Aqua combination and time interpolation methods de-
pend on the dispersion of clouds during the time step, cloud
cover that persists for several days can confound the meth-
ods. In contrast, even if cloud cover persists on the same area
for several consecutive days, the LWLR method can use in-
formation from non-cloudy pixels at lower elevations or high
elevations elsewhere in the watershed.

On the other hand, LWLR is unable to remove cloud cover
on days when clouds cover all or much of the watershed. In
such situations, the Terra/Aqua combination and time inter-
polation methods can be effective, provided the clouds do not
persist for too many hours or days. Further, the Terra/Aqua
combination helps to complete the time series – a positive
and useful aspect that none of the other algorithms possess.
Taken together, it therefore makes logical sense that a se-
quential combination of these algorithms provides synergis-
tic effects. Overall, spatial interpolation provides only minor
improvements, and its abilities are partially replicated by the
LWLR approach. Elimination of this method from the se-
quence will reduce processing time and have very little over-
all impact on the results.

7.2 Differences in evaluation results between the cloud
removal algorithms

Time interpolation provides the best overall accuracy with
consistently better evaluation statistics (better than that of
the original images). LWLR removes the largest amount of
cloud cover but has worse evaluation performance due in-
herently to the extrapolation of information from surround-
ing pixels. This may be aggravated by the large window size
used. Terra/Aqua combination also reduces accuracy even
though the observations are from the same day and the instru-
ments should give similar results. One reason for this may be
that the MODIS instrument aboard Aqua has degraded data
quality in band 6 (70 % of the band 6 detectors have been
identified as nonfunctional), pertaining to the shortwave in-
frared portion of the electromagnetic spectrum (∼ 1.6 µm)
where snow surfaces have low reflectance, and used in the
computation of NDSI used for SCA computations. As a con-
sequence, band 6 was substituted with band 7 in an Aqua-
specific algorithm to map snow. The 2005 accuracy of the
Aqua MYD10A1 images has not yet been assessed (Hall and
Riggs, 2007).

Overall, sequential application of the methods achieved
accuracy similar to that of original MOD10A1 image, with

improvements in certain areas. Further, the threat score in-
creased (which means that more pixels were correctly clas-
sified as snow), the bias came closer to one (meaning that in
general there were relatively more hits than misses and false
alarms and underestimation of snow events was reduced),
and the hit rate moved closer to one (meaning that more pix-
els were correctly classified as snow).

7.3 Data assimilation applications

While satellite SCA estimates can be assimilated into a hy-
drologic model to update model states and improve stream-
flow simulations and forecasts (e.g., see McGuire et al.,
2005; Andreadis and Lettenmaier, 2006; Clark et al., 2006),
cloud obscuration reduces the value of SCA information by
reducing the number of updates and by complicating proce-
dures to interpolate/aggregate SCA estimates from the satel-
lite pixels to the model grid cells. As such, cloud removal
procedures provide additional information for assimilation
into hydrologic models and simplify data assimilation pro-
cedures.

In a data assimilation context, the value of SCA informa-
tion depends on the seasonality of snow and the availabil-
ity of SCA images. For example, models and satellites typi-
cally have a high level of agreement in the portrayal of SCA
throughout much of winter in seasonally snow-covered areas
– both are close to 100 % – suggesting that assimilation will
be most effective in locations where snow is ephemeral (see
Clark et al., 2006, for more discussion of this issue). The key
problem therefore is to map the snow line.

Based on this discussion, the use of SNOTEL sites in
seasonally snow-covered areas is perhaps a suboptimal data
source to evaluate the value of cloud removal methods for
data assimilation applications. The persistence of snow at
these SNOTEL sites means that temporal infilling methods
should perform much better than spatial methods (as evident
in the results presented in Table 2) – these site-specific results
are not necessarily representative of the value of different
cloud removal procedures for SCA assimilation in spatially
distributed models. We speculate that spatial methods such
as logistic regression may provide superior estimates of the
snow line as well as provide an estimate of the observation
error needed in more formal data assimilation schemes such
as the Kalman filter (Andreadis and Lettenmaier, 2006; Clark
et al., 2006) – further work is necessary to directly evaluate
how different methods for cloud removal can improve SCA
assimilation in spatially distributed models.

8 Conclusions

The sequential cloud removal approach has the poten-
tial to be applied successfully at other locations. Whereas
the Terra/Aqua combination, time interpolation, and spa-
tial interpolation methods have been previously tested in
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watersheds having different topographical and climate char-
acteristics (Parajka and Blösch, 2008; Gafurov and Bárdossy,
2009; Xie et al., 2009; and Gao et al., 2010), the LWLR
probability of snow method has not previously been used for
cloud removal and SCA estimation and is the only method
found so far that uses probabilities in the rules used to re-
move clouds. It should therefore be subjected to more exten-
sive testing (e.g., how to choose the better thresholds to get
binary results). It may also be interesting to examine whether
the additional use of slope information and topographic shad-
ing as explanatory variables would prove helpful.

In addition, in order to make better comparisons with re-
sults of other papers, it is necessary to address the mapping
accuracies of the methods on a monthly basis to find out
the tradeoffs between cloud removal and mapping accura-
cies during transitional and stable periods. This step was not
included in the original version of this study (López-Burgos,
2010) and therefore could not be added to this paper. How-
ever, the seasonal differences in mapping accuracies of the
Terra/Aqua combination and time interpolation are expected
to be similar to the ones found by Parajka and Blösch (2008)
and Gao et al. (2010). In general, mapping accuracies for
these methods are higher during the snow-covered periods
and lower for the snow accumulation and snow ablation pe-
riods. This is due to the sudden change of snow cover from
one day to the other during the transition periods. These two
other studies also found that increasing the temporal window
used in the time interpolation/filter reduces the accuracy of
the images. This would be even more important during the
transitional periods.

The most closely related study that we could use to give
an estimate of the seasonal mapping accuracy of the LWLR
is that of Parajka et al. (2010), who used a regional snow-line
method for estimating the snow cover from MODIS during
cloud cover. This method would be similar because it also
uses snow cover information and elevation from cloud-free
pixels to decide if there is snow or not on the cloudy pixel.
However, this method does not take into consideration the
aspect of the pixels, and as the topography and snow regime
in Arizona and Austria are different, the mapping accuracies
would not be strictly comparable (Parajka et al., 2010).

Our future work will include the assimilation of cor-
rected SCA images into a distributed hydrologic model to
reduce the uncertainty of streamflow forecasts. McGuire
et al. (2005) and Andreadis and Lettenmaier (2006) have
demonstrated that although assimilation of MOD10A1 im-
ages into the variable infiltration capacity model can provide
favorable results, cloud cover reduces the assimilation fre-
quency. Since removal of cloud cover can result in consid-
erably larger estimates of snow, application of the algorithm
developed in this work should help to simplify the assimila-
tion process while improving the model estimates of various
hydrological states and fluxes.
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