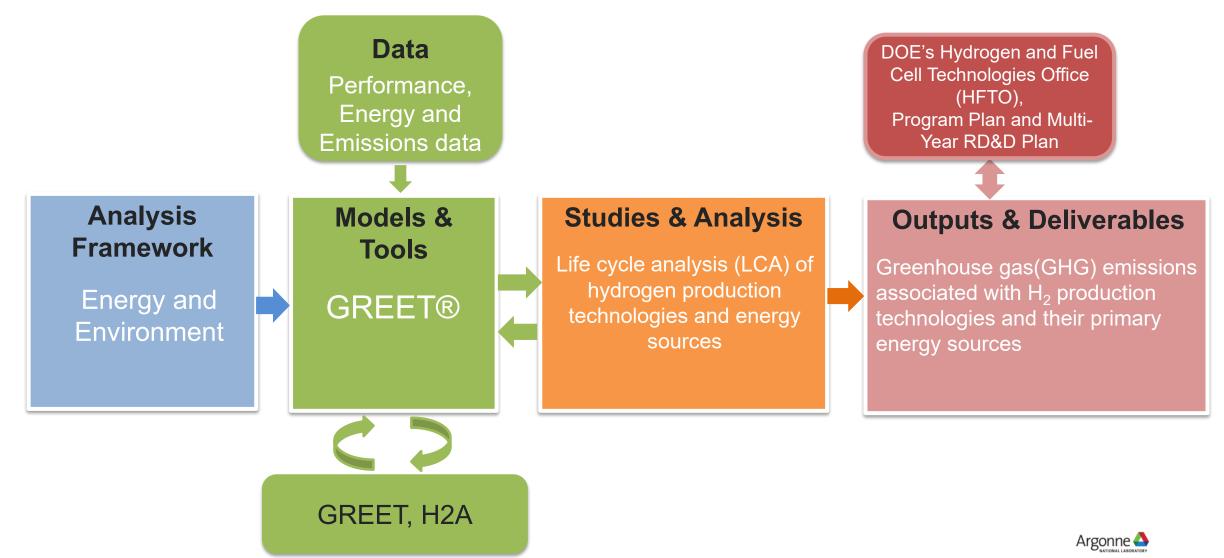
2022 DOE Hydrogen and Fuel Cells Program Annual Merit Review

SA174

Life Cycle Analysis of Hydrogen Pathways

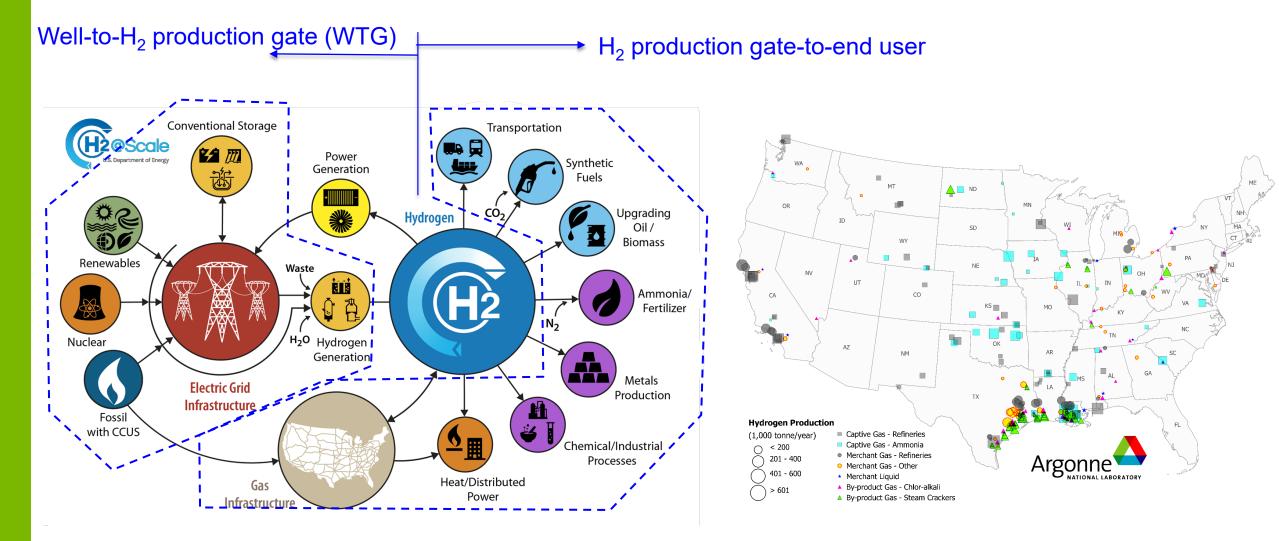
Amgad Elgowainy (PI), Ed Frank, Pradeep Vyawahare, Adarsh Bafana, Pingping Sun

Argonne National Laboratory


DOE Project Award # 5.1.0.6 June 6-8, 2022

This presentation does not contain any proprietary, confidential, or otherwise restricted information

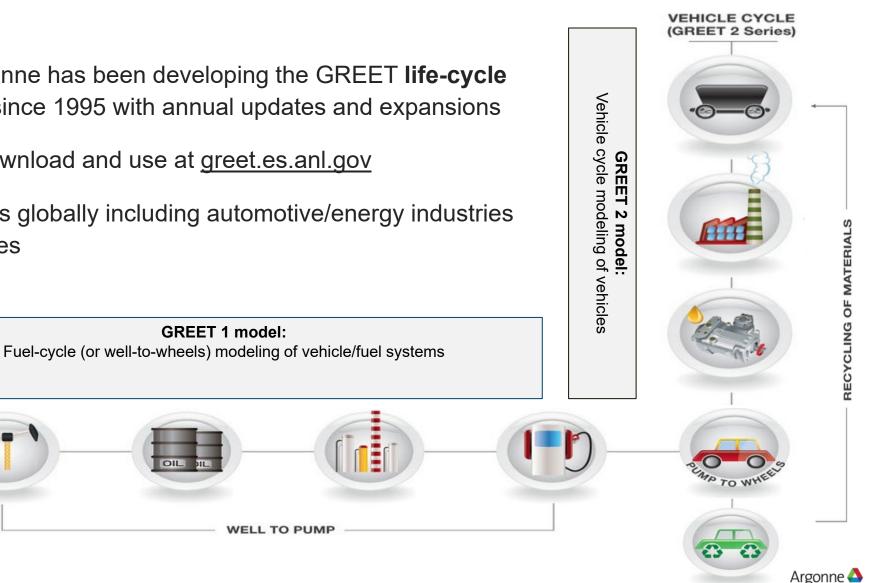
Project Overview


Timeline	Barriers Addressed
 Start: October 2019 End: Determined by DOE % complete (FY22): 80% 	 Inconsistent data, assumptions and guidelines Insufficient suite of models and tools Stove-piped/Siloed analytical capability for evaluating sustainability
Budget	Partners
• Funding for FY22: \$250K	 NETL NREL Industry experts

<u>Project GOAL</u>: Evaluate environmental implications of H₂ production technologies

H2@Scale: a DOE initiative for a hydrogen economy

Relevance/Impact


BAS OFFARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

The GREET[®] (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) model

GREET 1 model:

- With DOE support, Argonne has been developing the GREET life-cycle analysis (LCA) model since 1995 with annual updates and expansions
- It is available for free download and use at greet.es.anl.gov
- >50,000 registered users globally including automotive/energy industries and government agencies

FUEL CYCLE (GREET 1 Series)

Approach/Strategy

GREET includes a suite of models and tools

- **GREET** coverage
 - ✓ GREET1: fuel cycle (or WTW) model of vehicle technologies and transportation fuels
 - ✓ GREET2: vehicle manufacturing cycle model of vehicle technologies
- Modeling platform
 - ✓ Excel
 - ✓ .net
- **GREET** derivatives
 - ✓ ICAO-GREET by ANL, based on GREET1
 - ✓ China-GREET by ANL, with support of Aramco
 - ✓ CA-GREET by CARB, based on GREET1
 - ✓ AFLEET by ANL: alternative-fuel vehicles energy, emissions, and cost estimation
 - EverBatt by ANL: energy, emissions, and cost \checkmark modeling of remanufacturing and recycling of **EV** batteries

GREET applications by agencies

California Environmental Protection Agency CA-GREET3.0 built based on and uses data from ANL **Air Resources Board** GRFFT

Oregon Dept of Environ. Quality Clean Fuel Program

EPA RFS2 used GREET and other tools for LCA of fuel pathways; **GHG** regulations

NHTSA National Highway Traffic Safety Administration (NHTSA) fuel economy regulation

FAA and ICAO AFTF using GREET to evaluate aviation fuel

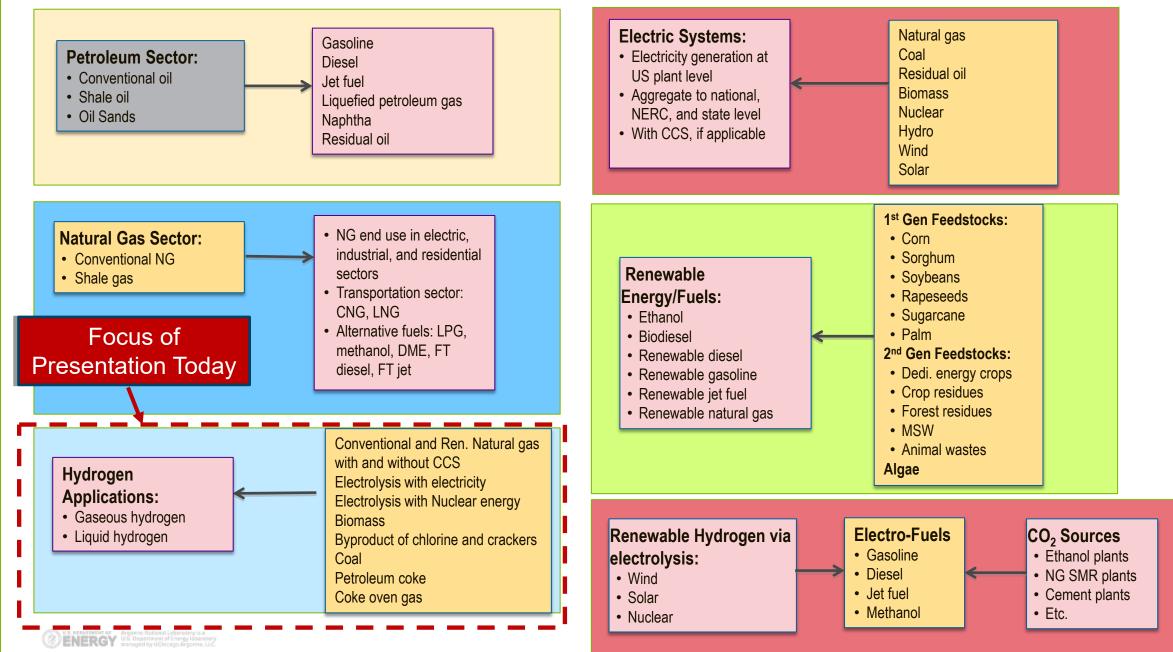
USDRIVE GREET was used for the US DRIVE Fuels Working Group Wellto-Wheels Report

LCA of renewable marine fuel options to meet IMO 2020 sulfur regulations for the DOT MARAD

USDA US Dept of Agriculture: ARS for carbon intensity of farming practices and management; ERS for food environmental footprints; Office of Chief Economist for bioenergy LCA

Government of Canada Environment and Climate Change Canada for its Clean **Fuel Standard**

GREET sustainability metrics include energy use, criteria air pollutants, <u>GHG</u>, and water consumption


Approach/Strategy

Energy use	Air pollutants	Greenhouse gases	Water consumption
 Total energy: fossil energy and renewable energy Fossil energy: petroleum, natural gas, and coal Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy 	 VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx Estimated separately for total and urban (a subset of the total) emissions 	 CO₂, CH₄, N₂O black carbon, and albedo CO_{2e} of the five (with their global warming potentials) 	 Addressing water supply and demand (energy-water nexus)

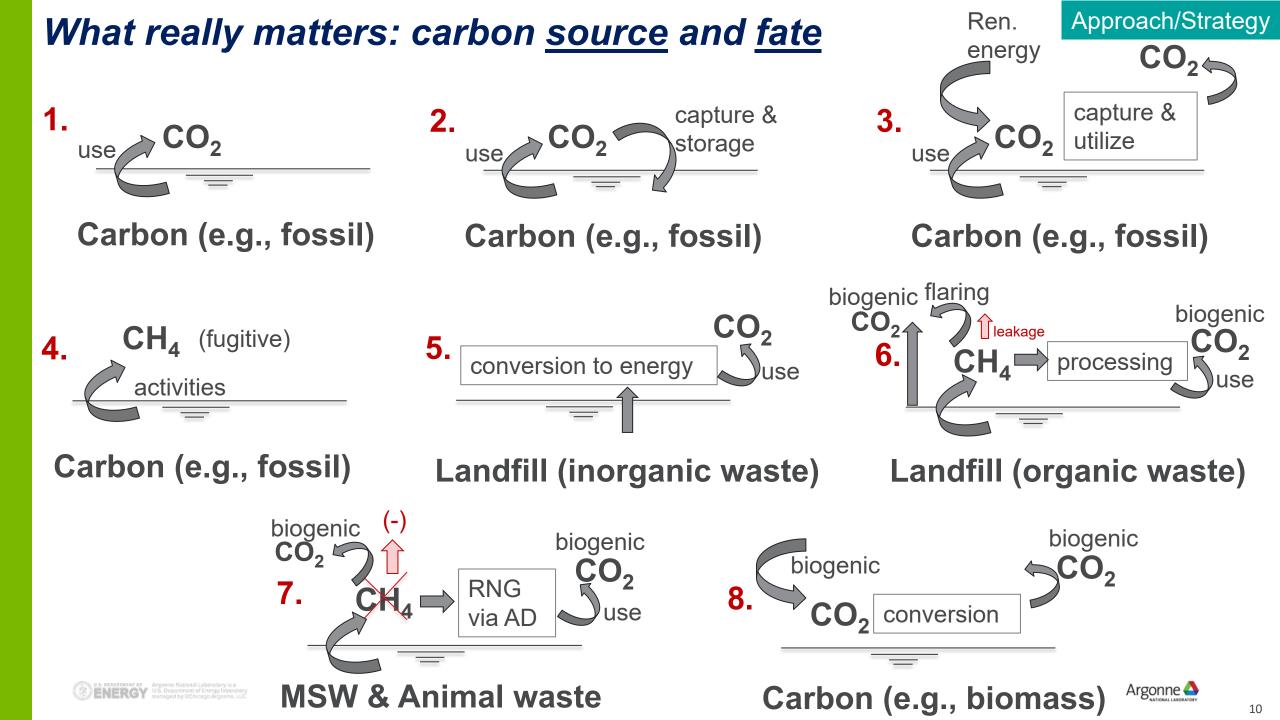
- GREET LCA functional units
 - Per service unit (e.g., mile driven, ton-mile, passenger-mile)
 - Per unit of output (e.g., million Btu, MJ, gasoline gallon equivalent)
 - Per units of resource (e.g., per ton of biomass)

GREET covers 100s of pathways, including H₂ production Approach/Strategy

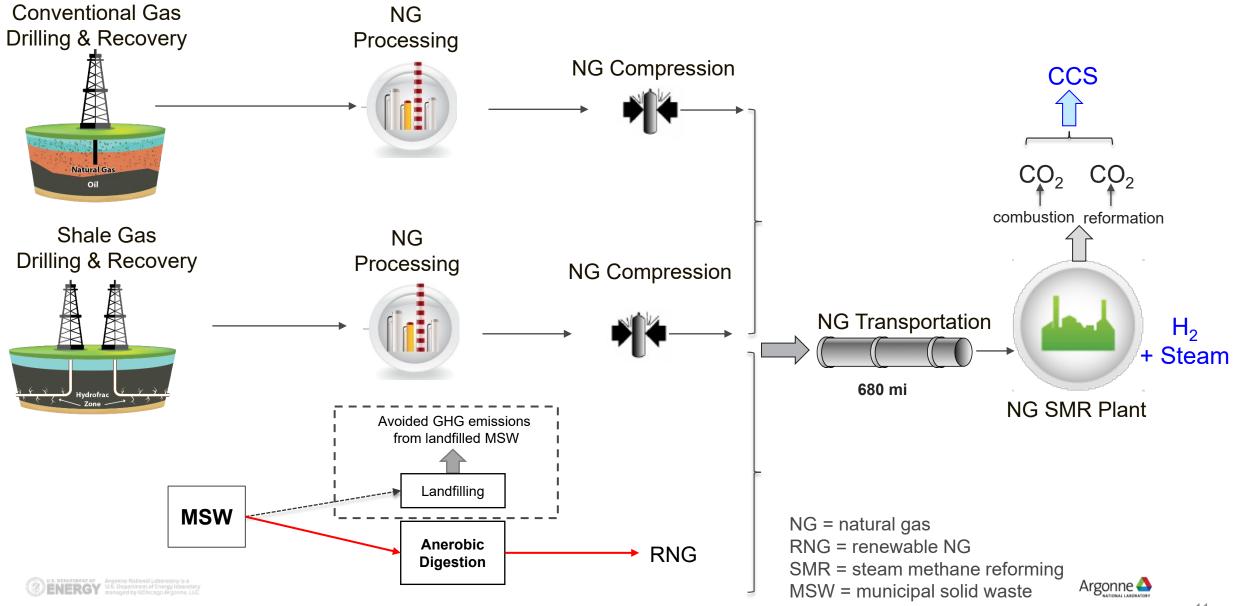
Global warming potentials (GWPs) of gases

Greenhouse gases

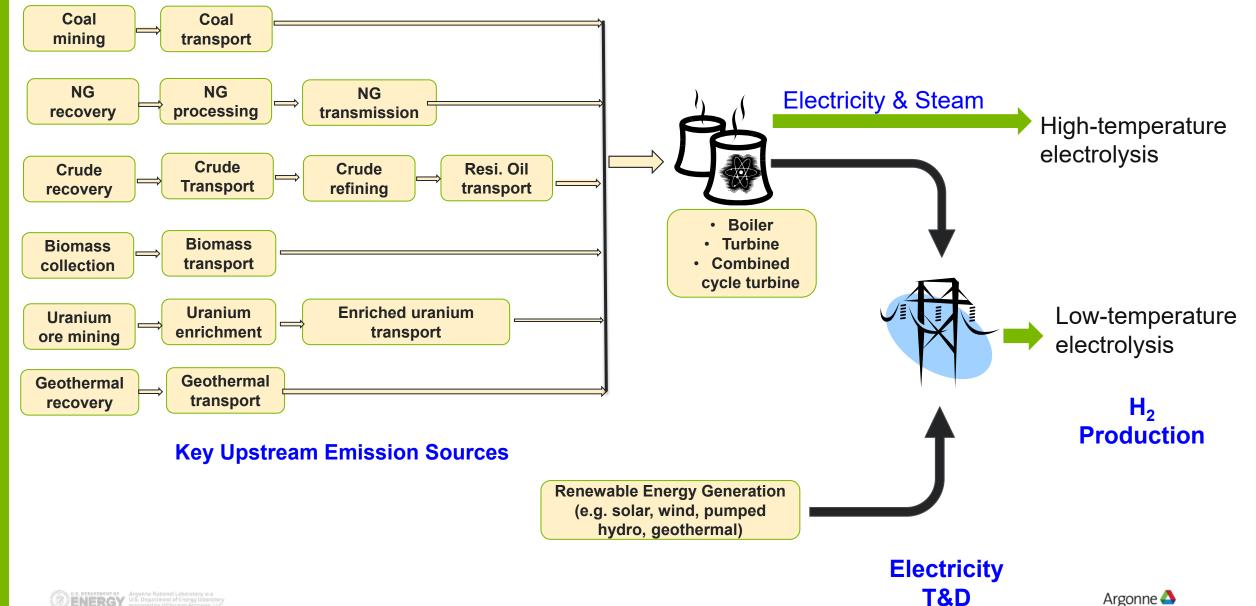
- CO₂, CH₄, N₂O, black carbon, others
- CO_{2e} with their global warming potentials


- \succ CO₂ is the reference gas with GWP=1
- ➤ GWP is mainly impacted by:
 - \checkmark ability of gas to absorb energy
 - \checkmark how long it stays in the atmosphere

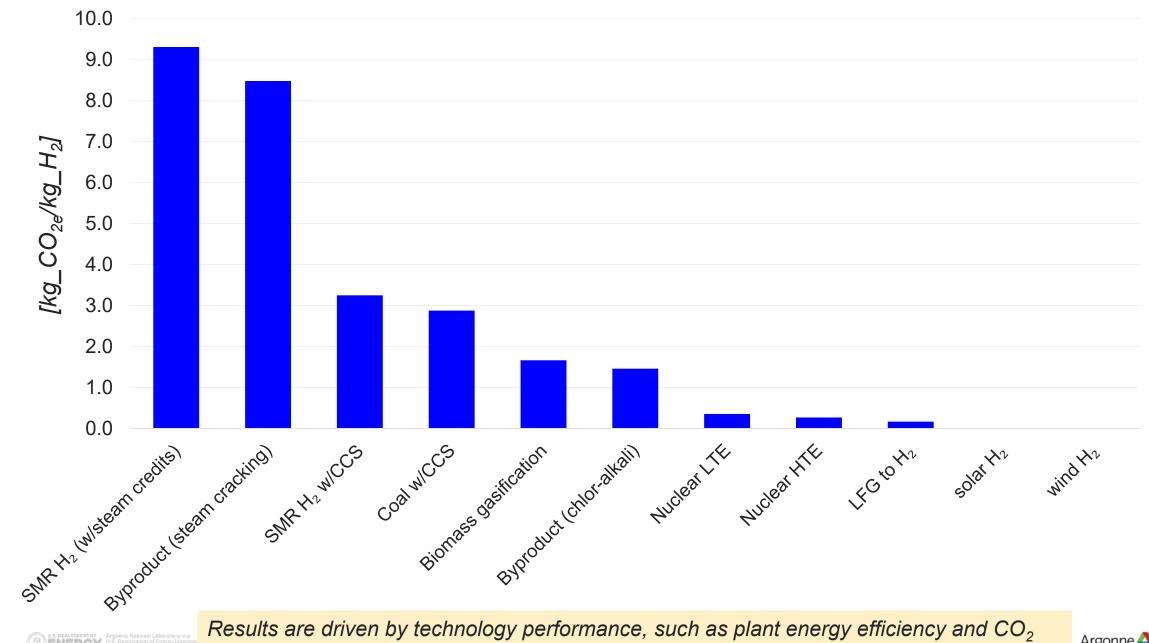
GAS	GWP *	Timeframe	Life in the atmosphere
CO ₂	1	All	~100s of years
CH₄	29.8	100 years	10.00 %
	82.5	20 Years	~10-20 years
N ₂ O	273	100 Years	~100 years
H ₂	?	100 Years	~ 2 years


* Based on latest IPCC AR6

✓ H_2 GWP not yet in GREET



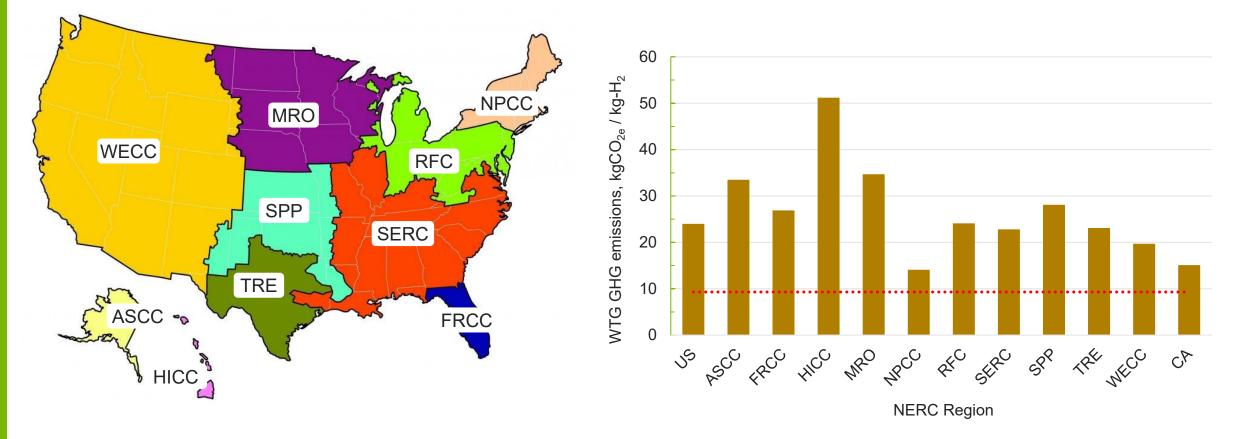
SMR hydrogen production pathway w/ and w/o CCS



Example hydrogen production pathway: water electrolysis

12

WTG GHG emissions of key hydrogen production pathways


capture rates, as well as other factor such as upstream methane leak rates for SMR

Argonne

Accomplishments

Electrolysis via regional grid electricity – including compression

WTG emissions for electrolysis H₂

✓ The grid electricity CI decreases in the future, given the increasing share of renewable energy

Variability and uncertainty in LCA

- □ Technical variability of LCA results reflects
 - Variability of input data, which reflect variabilities in operations of a given facility, facility differences, regional differences, and temporal differences
 - Well defined scope of a LCA can help on data representation for targeted LCA for facilities, regions, or a given time period
 - > Key inputs with variability that influence hydrogen production LCA include:
 - ✓ Plant level energy efficiency
 - $\checkmark\,$ Regional emissions intensity of energy supply for electricity
 - $\checkmark\,$ Type of biomass or waste feedstock
 - $\checkmark\,$ Transportation distance of NG
 - ✓ Treatment of co-products (e.g., SMR by-product steam)
 - Uncertainties
 - > Sensitivity analysis can show importance of input parameters (e.g., upstream CH₄ leakage)
 - Scenario analysis to show LCA results of different future technologies
 - □ Transparency is key to inform stakeholders

Summary

- Updated hydrogen production technology pathways in GREET
 - SMR w/ and w/o CCS, low-temperature and high-temperature electrolysis, coal and biomass gasification w/ and w/o CCS, by-product hydrogen from chlorine and steam cracking plants, etc.
- Updated hydrogen upstream energy supply chain in GREET – Natural gas, RNG, electricity, nuclear, biomass, etc.
- Conducted life cycle analysis with GREET[®] model for key hydrogen pathways of interest
- Documented data sources, methodology, results and sensitivity to key parameters in a journal article (currently under peer-review)

Collaborations and Acknowledgments

• NETL:

- ✓ provided process-level mass and energy balance for SMR w/ and w/o CCS, and coal gasification w/ and w/o CCS
- NREL:
 - ✓ provided biomass gasification process level data through H2A models
- Industry stakeholders:
 - ✓ provided input on process level data and typical industry practices for various technologies

Future Work

- Develop user friendly interface for simple user input-output for hydrogen production technologies
 - Dissect GHG emissions by scope (Scope 1, 2, 3)
- Expand GREET model to include new/emerging technology pathways of interest (e.g., ATR, POX, methane pyrolysis, etc.)
- Include embodied emissions in H₂ production equipment and upstream CAPEX (e.g., solar PV, wind turbines, etc.)
- Include GWP of H₂ to assess impact of potential hydrogen leakage throughout value chain
- Model and analyze potential co-benefits of H₂ pathways such as impact on lowering air pollutant emissions as related to human health and environmental justice
- Publish GREET model with new and updated hydrogen technology pathways
- Document modeling and analysis in peer-reviewed publications

Any proposed future work is subject to change based on funding levels

Project Summary

- Relevance: Evaluate carbon intensity of hydrogen technology pathways from various energy sources along their value chain
- Approach: Expand and update GREET model for environmental life cycle analysis
- Collaborations: NETL, NREL and industry stakeholders

Technical accomplishments and progress:

- Updated hydrogen production technology pathways in GREET
- SMR w/ and w/o CCS, low-temperature and high-temperature electrolysis, coal and biomass gasification w/ and w/o CCS, by-product hydrogen from chlorine and steam cracking plants, etc.
- Updated hydrogen upstream energy supply chain in GREET:
- Natural gas, RNG, electricity, nuclear, biomass, etc.
- Conducted life cycle analysis with GREET® model for key hydrogen pathways of interest
- Documented data sources, methodology, results and sensitivity to key parameters in a journal article (currently under peer-review)

• Future Work:

- Develop user friendly interface for simple user input-output for hydrogen production technologies
- Dissect GHG emissions by scope (Scope 1, 2, 3)
- Expand GREET model to include new/emerging technology pathways of interest
- Include embodied emissions in H_2 production equipment and upstream infrastructure
- Include GWP of H₂ to assess impact of potential hydrogen leakage throughout value chain
- Model and analyze potential co-benefits of H₂ pathways such as impact on lowering air pollutant emissions
- Publish GREET model with new and updated hydrogen technology pathways
- Document modeling and analysis in peer-reviewed publications

TECHNICAL BACKUP AND ADDITIONAL INFORMATION

ACCOMPLISHMENTS AND PROGRESS: RESPONSES TO PREVIOUS YEAR REVIEWERS' COMMENTS

- Not Applicable: no reviewers comments from 2021 AMR on LCA of hydrogen pathways

TECHNOLOGY TRANSFER ACTIVITIES

- Not applicable to this project

SPECIAL RECOGNITIONS AND AWARDS

- None for this project

PUBLICATIONS AND PRESENTATIONS

- 1. Young, B., Chiquelin, C., Hawkins, T.R., Sun, P. and A. Elgowainy (2022) "Environmental Life Cycle Assessment of Olefins and By-product Hydrogen from Steam Cracking of Natural Gas Liquids, Naphtha, and Gas Oil," Accepted for publication in Journal of Cleaner Production, in press.
- Kelly, J., Elgowainy, A., Isaac, R., J., Ward, J., Islam, E., Rousseau, A., Sutherland, I., Wallington, T., Alexander, M., Muratori, M., Adam J., Rustagi, N. (2022) "Cradle-to-grave (C2G) lifecycle analysis of U.S. light-duty vehicle-fuel pathways: A GHG emissions and economic assessment of current (2020) and future (2030-2035) technologies," ANL-22/27.
- 3. Elgowainy, Amgad, Volume Editor, (2021) "Electric, Hybrid and Fuel Cell Vehicles", Encyclopedia of Sustainability Science and Technology Series, Springer (ISBN-13: 978-1071614914).
- 4. Frank, E.D., Elgowainy, A., Reddi, K. and A. Bafana (2021) "Life-Cycle Analysis of Greenhouse Gas Emissions from Hydrogen Delivery: A Cost-Guided Analysis," International Journal of Hydrogen Energy, ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2021.04.078.

PROGRESS TOWARDS DOE TARGETS OR MILESTONES

Progress towards analysis targets / milestones can be assessed through our contributions to relevant barriers:

- 1. Inconsistent data, assumptions and guidelines
 - Updated hydrogen production technologies pathways in collaboration with other national laboratories and industry stakeholders to develop more representative technology performance data and produce more consistent LCA results
- 2. Insufficient suite of models and tools
 - Expanded and updated GREET model with more representative data of current industry practices
- 3. Stove-piped/Siloed analytical capability for evaluating sustainability
 - Developed common modeling platform using established LCA protocol to evaluate various hydrogen production technologies and value chains on a consistent basis
 - Vetted model inputs and analysis output with industry experts and national laboratories