NUI MAYNOOTH

Ollscoil na hEireann Ma Nuad

Assessment of the EDQ-Rank Link
Analysis Algorithm

by
Simon Mc Cann, BSc.

Masters Thesis
Submitted to the National University of Ireland, Maynooth
Department of Computer Science

Hamilton Institute
National University of Ireland.
Maynooth
Co. Kildare,

November 2005

Research Supervisor: Prof. Barak Pearlmutter



Abstract

The expansion and use of the web has proceeded at an exeg¢ptitsince its
conception in 1990, with current estimates of over 11.%dsilHocuments and nearly 1
billion users (14.9% of the world’s population). As this gitth continues, so too does
the pivotal role of search engines, with the majority of sslecting a search engine
as their gateway to the Internet. A problem with currentceangine results is that
often a page important in the context of the entire web isrnetth in preference to a
page that is important in relation to the user query. To cenatt this deficiency, we
propose ‘EQD-Rank’ to refine the result-sets generatedjBoogle’s PageRank algo-
rithm. The premise behind EQD-Rank is that a hyperlink frotogically-equivalent
page, is more important than a hyperlink from a topicallyédiste page. EQD-Rank is
based on local-graph traversal and implementable at rentimanipulating a PageRank
vector computeda-priori . Comprehensive evaluation of a link analysis ranking al-
gorithm is a non-trivial matter and within this thesis we yid® a testing-environment
framework involving dataset compilation, efficient corpapresentation, and an eval-

uation of the EQD-Rank algorithm.



Acknowledgements

The research performed during this thesis would not hava pessible without
the combined patience and help of many colleagues, friemtkfamily alike. In par-
ticular | would like to thank my research supervisor BaraHliRatter for providing the
opportunity to perform this research, under his diligemteswision. Also | would like
to thank Prof. Douglas Leith for allowing me to perform thésearch at the Hamilton
Institute, NUIM Maynooth.

My time at the Hamilton Institute has been a truly enriching &nlightening pe-
riod, aided by the rich ambiance and assiduous approactséameh. In particular,
I would like to thank my office colleagues: Yoshio Konno, R&%eill, Santiago
Jaramillo, Paul O’Grady, Steven Strachan, and Yunong ZHan¢heir friendship and
support.

| would also like to thank the members of Hamilton F.C.: Drli©Mason, Mark
Verwoerd, Eric Bullinger, Peter Clifford, Dimitris Kalartianos, Selim Solmaz and
Rick Middleton. It was through the brave efforts and dedaradf these fine sportsmen,
and hours of hard word on the training field that resulted & ¢piphany of an 8-1
defeat of the Computer Science department, in a recentepartmental challenge
match. Let's hope there are many more such triumphant cotssi

Also | would like to thank Diarmuid O’ Donohue with whom | begéhis epic
voyage of discovery during my BSc. Thesis. | would like alsdhank all the other
people of the Hamilton Institute not mentioned specificalbove, for their support
and friendship and last but not least | would like to thank éoary Hunt and Kate

Moriarty for providing support and smiles (also muffins!jabghout the period.



Contents

1

Introduction

1.1 Motivation. . . . . . . . ..

1.2 InformationRetrieval . . . . .. .. ... .. .. .. . .. ... ...

121
1.2.2
1.2.3

Early Information Retrieval (pre 1945) . . . ... ... ...
Modern Information Retrieval . . . . .. .. ... ... ...

Information RetrievalandtheWeb . . . . .. .. ... ...

1.3 Graph Structure oftheWeb . . . . . ... .. ... ... .....

1.4 Link Analysis Ranking Algorithms . . . . . . . ... ... ......

14.1
1.4.2
1.4.3
1.4.4
145
1.4.6

The PageRank Algorithm . . . . . .. ... ... ......
The HyperLink Induced Topic Search algorithm (HITS). .
The Topic Sensitive PageRank algorithm . . . . .. .. ..
The Hilltop Algorithm . . . . . . ... ... ... ......
The Intelligent Surfer Algorithm . . . . . ... ... .....
Other Algorithms and Ranking Methods . . . . . .. .. ..

1.5 OVerview . . . . . . . e e e

The ViperBot Crawler

2.1 Introduction . . . . . . . . ...

2.2 PreviousWork. . . . . . . . .



2.3 The ViperBot System Architecture . . . . . ... ... ......
2.3.1 OverviewoftheSystem ... ...............
2.3.2 TheDownloadthread. . . ... ... ... ........
2.3.3 TheParsingmodule . ...................
2.3.4 DuplicationDetection . . ... .. .. ... ........
2.3.5 System SnapshotModule. . . .. ... ..........
2.3.6 Robot Exclusion Protocol . . . . ... ... .......
2.3.7 The URLsToCrawlmodule . . . . ... ... ........
2.3.8 Creation of the DataSet and Page MetaData . . . . . . .

2.4 TheDataSetCollection . . . . . .. ... ... ... .......

2.5 Crawler Optimization . . . . . . .. . . ... .. .. .. ......

3 Representation of the Transpose Adjacency Matrix and Inveed Index

3.1 Transpose Adjacency Matrix Creation and Storage

3.1.1 Introduction. . . .. .. .. ... ...
3.1.2 Creation of the Transpose Matrix . .. ... .... ...
3.1.3 Storage of the Transpose Matrix . . .. ... ... .. ..
3.1.4 PreviousWork . .. ... ... ... ...
3.1.5 Optimization of Technique Adopted . . . . . .. ... ..
3.2 Inverted Index Creationand Storage . . . . . . ... ..... ..
3.2.1 Introduction. . . . . .. ... L
3.2.2 Creation ofthe InvertedIndex . . . ... ... ... ...
3.2.3 Storage ofthe lnvertedIndex . . . . . . .. .. ... ...

3.2.4 Further Inverted Index Refinements . . . ... ... ...

4 Link Analysis Ranking Algorithms
41 PageRank . .. .. ... .. ...

4.1.1 Introduction. . . . . .. . . .. . . ..



4.1.2 PageRankImplementation . ... ... ... ......... 51

4.1.3 DampingFactor . ... ... ... ... ... ... ..., 53
4.1.4 CONVergencCe . . . . . . v v v i i e e 54
4.1.5 PageRank Merits and Demerits . . . . ... ... ... ... 55
416 PageRankExample ... ... ... .. ... ......... 57
4.2 QueryDependentPageRank . . ... ................. 59
421 Implementation. . . ... ... ... ... ... 60
4.2.2 Strengths & Weaknesses . . . . . . ... ... ... ..... 61
4.2.3 QD-PageRankExample . . ... ............... 62
4.3 Estimated Query Dependent PageRank . . . . . . ... ... ... 64
4.3.1 Introduction. . . . . .. ... ... ... 64
4.3.2 Characteristics . . . . . . . . . ... 68
4.3.3 EQD-RankExample . ... ... .... .. ... ..... 69
Experimental Analysis 74
5.1 Introduction . . . . . . . . ... 74
5.2 RatesofConvergence . . . . . . . . . . . i 75
5.2.1 PageRankConvergence. . . .. . ... ... ... .... 75
5.2.2 QD-RankConvergence . . . .. .. .. .. ... ... 76
5.2.3 EQD-Rank Computationtimes . . . . ... ... ....... 78
5.3 RankDistributions . . . .. ... ... o 79
5.3.1 PageRank Distribution . . . ... ... ... ... L. 79
5.3.2 Inlink Distribution . . . . . ... ... .. L 82
533 QD-PageRank . .. .... ... ... ... . ... ... 83
534 EQD-Rank . .. .. .. ... ... 92
5.4 Content-Based Document Selection Techniques . . . . .. ... 97

541 TF*IDF . . .. . . . 97

5.4.2 Further Document Selection Techniques . . . . . . . .. .. 99



5.5 Rank Ordering Similarity

........................ aLo
5.5.1 Kendall Tau Algorithm . . . . .. ... ... ... ...... 100
6 Conclusions and Future Study 102
6.1 Experimental Results Analysis . . . . .. ... .. ... .. .... 102
6.1.1 Ranking Similarites . . . . ... ... ... ... ... 104
6.1.2 UserStudy . ... ... ... . ... ... 106
6.2 Conclusions . . . . . . ... 107
6.3 FutureStudy. ... ... ... ... ... 109
6.4 FinalRemarks. . . ... ... ... ... ... . ... ... 110
Bibliography 111

vi



List of Figures

2.1 The ViperBot Architecture . . . . . ... ... ... ..... 25
2.2 Dataset Out-link Distribution . . . . ... ... ........ 34

2.3 Dataset In-link Distribution . . . . . ... ... .. ...... 34

3.1 Example of Inverted Index Creation . . . ... ........... a7

4.1 Example of Global Importance Vs. Local Importance . . ...... . 56

4.2 Sample Dataset Graph for PageRank . . . . ... ... ... 7 5
4.3 PageRankVector . . . ... ... ... ... 59
4.4 Sample Dataset Graph for QD-PageRank . . . ... .. .. 3 6
45 QD-PageRankVector . . . . . ... ... ... ... 64
4.6 ASimple3NodeGraph . . ... ............... 66
4.7 Example of N-Depth Traversal . . . .. .. .. ... ... ...... 67
4.8 Sample Dataset Graph for EQD-Rank . . . . . ... ... ...... 70
4.9 PageRankVector . . . ... ... ... ... 71
4,10 EQD-RankataDepthofOne . . . . .. .. ... ... ........ 71
4,11 EQD-RankataDepthof Two. . . ... ... . ... ......... 73
5.1 PageRankConvergence . . . . . . . .. .. ... ... 76
5.2 QD-PageRank Convergence for ‘shopping’ community . ...... . 77

5.3 QD-PageRank Convergence for ‘football community . ... ... .. 77

Vii



54

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

QD-PageRank convergence for ‘Physics’ community . . ...... .

PageRank Distribution for 10,000 Pages . . . . . .. .. .. ...

PageRank Distribution for 100,000 Pages

PageRank Distribution for Entire DataSet

PageRank Distribution within subset of Amazon.com . ...... . .

IN-Degree Distribution for the Entire DataSet . . . . . .. .. ..

QD-PageRank Distribution for the ‘shopping’ Communit

QD-PageRank Distribution for the ‘games’ Community .. ... . . .

QD-PageRank Distribution for the ‘football’ Communit .
QD-PageRank Distribution for the ‘computers’ Comntyni
QD-PageRank Distribution for the ‘physics’ community .
QD-PageRank Distribution for the ‘biology’ community .

In-Degree for the ‘shopping’ Community . . . . . . ..

In-Degree for the ‘games’ Community . . . . . . .. .. ... ...

In-Degree for the ‘footbal’ community . . . . ... ...

In-Degree for the ‘computers’ community . . . . .. . ... ...

In-Degree for the ‘physics’ community . . . . . . .. ..
In-Degree for the ‘biology’ community . . . . ... ...
EQD-Rank Distribution for the ‘shopping’ community

EQD-Rank Distribution for the ‘games’ community . . .

EQD-Rank Distribution for the ‘football’ community .... . . . ..

EQD-Rank Distribution for the ‘computers’ community .

EQD-Rank Distribution for the ‘biology’ community . .... . . ..

EQD-Rank Distribution for the ‘physics’ community . ... . . ..

viii



List of Tables

51
5.2
53
5.4

5.5

6.1
6.2

Computation Times Using EQD-Rank . . . . . .. ... ... .. .. 78
Correlation Between PageRank and In-Degree . . . . . . .. .. 91
The Percentage of Total PageRank Obtained by Top 10%gefsPa . 92

The Percentage of PageRank Removed Within Each Coh@sive

MUNItY . . . . 95
Total Rank assigned using each Algorithm . . . . . . . ... ..... 96
The Kendall-Tau Correlation between the Result Sets . . . . . . 105
UserStudyResults . . . ... ... ... ... ... . ........ 107



Chapter 1

Introduction

1.1 Motivation

Today the web is the largest repository of human informatiath an estimated 11.5
billion publicly accessible pages [GS05]. The informat@mmtained within this hy-
pertext repository lacks the formal structure present avipus Information Retrieval
document collections. In the case of the web, a diverse rahggormation is avail-
able for human digestion in a semi-structured environmBoicuments available not
only differ in quality but also in language, range of vocatmyland type (.asp, .HTML,
isp, etc). To add to the unpredictability of this environmeénis estimated that over
1 million pages are added to the web daily, not uniformly adiam but with greater
probability to existing pages that are already highly lidke [BA99].

The task facing modern day search engines involves expipitiis dynamic en-
vironment, to process over 250 million web searches daity therefore attempt to
satisfy every user information need. An additional probfaging search engines is
the very nature of the user query involved. The complexitigslved are aptly high-

lighted through an example of a user information need.



“ Find all pages containing information on the Java programngfanguage which:
(1) are non-commercial and (2) contain working examples.b& relevant, all pages
returned must also include e-mail and phone number for coptaposes along with a
link to the Sun website.”

This query cannot be used directly to return relevant pagdsraust be translated
into the language of the information system. In this cas#hénanguage of the search
engine, by specifying words that adequately convey the séow@presentation of this
information need. The problem being the search engine wmesah language and is
therefore ambiguous and imprecise. Also, another majdylenois that the user need
may be poorly defined or broad in nature. This is particulatlg when you consider
that a user query typically contains 2.35 terms. The fadttiwst IR users are prepared
to examine at most the first 10 or 20 documents [BWB02, SHMM&8hin adds to
the complexity involved.

Taking all of these factors into consideration, the releyaachieved by the leading
search engines (Google, Yahoo, MSN) could be consideratively adequate. This
success has centered around exploitation of the World Wiele Mik topology, with
edges representing links between pages and nodes rejmggeeges. Explicitly this
exploitation is achieved through link analysis rankingagithms. Current ranking al-
gorithms exploit this inherent context information, thghithe premise that a link from
page A to page B denotes an endorsement of the quality of BwAofehe most cited
link analysis ranking algorithms are Google’s PageRankritlym, Kleinberg’'s HITS
algorithm [Kle99], and Lempel and Moran’s SALSA algorithbM00].

In this thesis we focus on the PageRank algorithm and its/gndependent nature.
We suggest a modification of the result set at runtime usingstianking refinement
of the result set, to increase the relevance returned toieatyyser. This modification
enables the reproduction of a query dependent PageRankgesat runtime and is

therefore the focus of this thesis.



1.2 Information Retrieval

The goal of Information Retrieval (IR) involves satisfyitfte information need of an
individual. This problem may initially appear straightf@ard until we consider the
specificity of the user query and structure of the data ctitiac

The type of user query inputto a data collection covers anesspiectrum [CPKT92].
At one end, a narrowly specified search for a particular dentnmay be implemented
through a query such as the document title. At the opposidasa browsing session
with no well defined goal, satisfying a need to learn more &lotopic. It is also
common for a user to move across this spectrum from browsirsgarch, with the
user beginning with a partially defined information need ikaefined as they learn
more about the topic. The objective of an IR system is to ekthee semantic meaning
inherent in these user queries, regardless of the spegificit

Information Retrieval is also concerned with represeatatstorage, organization
of, and access to information items with a view to satisfyangser’s information need.
With regards to the storage of information, documents magepeesented using a set
of index terms or keywords. These keywords may be extragtedtty from the text or
specified by human subjects. Also due to the availabilityaafé disk space, storage of
a full representation of a document is possible through @ede. In practice, however,
a full representation is rarely stored and methods sucheasnsing, elimination of
stop words, and identification of noun phrases are all impleed. Furthermore this
data is often compressed further using modern compressitimigues. Currently the
two main evaluation techniques implemented for IR are tesal precision [Cle97],
with recall defined as the proportion of relevant documegttsaved by the system and
precision described as the proportion of retrieved docusivat are relevant. The
overall goal of an IR system is to retrieve all the documeelsvant to a user query,
while retrieving as few of the non-relevant documents asiptes In the following

subsections we trace the development of information rettifom ancient times to



web information retrieval.

1.2.1 Early Information Retrieval (pre 1945)

The storage and retrieval of information dates from 700Btatetter from the Assyr-
ian king, referring to the storage of books. During ancienes, books were stored in
libraries with the most famous being the library of AlexaadiCallimachus (305-240
BC) devised a classification system for this library, divideto six poetic genres and
five prosaic areas (history, rhetoric, philosophy, medi@nd law, and varia). For each
category, the books were arranged alphabetically by aatidfor each book an incipit
(the first lines of the book) was stored with author dates.

Between the time of these ancient libraries and the libsasfethe middle ages,
papyrus was replaced by parchment and the scroll was replatiethe bounded book,
making texts more compact and manageable. Generally, pyeks9th century were
classified by subject and assigned rooms and shelves basieel method suggested by
Callimachus. Catalogues were kept by most libraries coimgithree parts consisting
of a list of titles containing the volume, number of leaves amumber of separate
treatise contained within the book, a shelf list, and an @ulikt in alphabetical order
of the entire collection.

The invention of the printing press and the rapid growth t&fricy made the re-
trieval of information more difficult and therefore centred book subject rather than
the author. In 1876 Melvil Dewey introduced the idea of riglatas opposed to, ab-
solute location and the assignment of numbers to booksr#tn shelves, with the
subject identity being attached to the book, instead of tedf.s Books were placed
relative to each other using a linear numbering schemeatuieically divided in 10
classes by 10 divisions by 10 sections. The Universal DddBfessification by Paul
Otlet and Henri-Marie Lafontaine, used in many librarieaidescendent of Dewy’s

work. S.R. Ranganathan followed this work with facet analythe technique of di-



viding a subject into its complex parts by relating them teetnaf five fundamental
categories named personality, energy, matter, spacemediti his Colon Classifica-
tion system (1933). Controlled dictionaries and thesagriealso introduced around

this time to instill some semantic order [Fos82].

1.2.2 Modern Information Retrieval

The popularization of the idea of information Retrieval &egn 1945, with Vannevar
Bush'’s article [Bus45]. Bush envisaged a system that wawlct ghe individual notes
and memories of scientists in his Memex machine. “A Memex d@&w@ce in which
an individual stores his books, records, and communicstiamd which is mechanized
so that it may be consulted with exceeding speed and fleibilt is an enlarged
supplement to his memory”. This type of associative linkivegs behind the idea of
automatic access to vast amounts of stored information.

The first information systems built in the 1950'’s included ithvention of Key Word
In Context (KWIC) indexes. These indices were a computeeggrd concordance,
with a concordance being an alphabetical list of importamtds of a book or author,
with reference to the passages in which they occur. The progearches for keywords
and prints them surrounded by the context in which they ocEbhe WRU Searching
Selector program was also introduced at this time by Allent{BK58] to perform
literature searches based on encoded abstracts. Also® 9B Luhn proposed using
words as indexing units for documents and measuring wordagveas a criterion for
retrieval [Luh57].

In the early 1960’s Cyril Cleverdon developed the mathersaif ‘recall’ (the frac-
tion of documents retrieved) and ‘precision’ (the fract@frdocuments retrieved that
are relevant), for the evaluation of retrieval systems anldl the first test collections to
measure them [Cle97]. In 1965 Ted Neilson coined the ternehggt with it defined

as “a combination of natural language text with the compaitapacity for branching,



or dynamic display and text which is not constrained to bediti.

Also, during this period, Salton introduced the Vector spammdel [SWY71]. Us-
ing the Vector Space Model (VSM) text is represented as avefterms. The terms
are usually either words or phrases. If words are repredestéerms, every word be-
comes a dimension in a high dimensional vector space andeahgdcument can be
represented as a vector. As any text contains a limited nuoflierms, most of these
vectors are sparse. The VSM is used to assign a ranking tolwardot based on the
potential similarities of the document to the query. Theutoent score is based on the
similarity between the query vector and the document vedtbe angle between two
vectors is used as a measure of divergence, with the costhe ahgle or dot product
used in most instances.

Similar to the VSM, the Probabilistic model (PR) represelatsuments and queries
as vectors. However, the PR model is founded on the premiéedticuments in a
dataset should be ranked by decreasing probability of thisivance to the query. This
premise is known as the probabilistic ranking principlejRb]. The notion of proba-
bilistic retrieval was introduced by Maron and Kuhns [MK&@ih term weights calcu-
lated based on term distribution within the documents uedaluation. The probabil-
ity of document relevance is calculated by summing indigidarm relevance weights
which are estimations of probabilities that query termd aplpear in relevant and not
irrelevant documents.

Numerous methods exist to assign term weight in the VSM anthBé&el. Most of
these are variants of inverse document frequency (idf) ldipn72]. This weighting
scheme is based on the inverse of the number of documentséh thie term appears.
Often this is coupled with term frequency (tf) to assign &iag, where term frequency
is simply a term’s frequency within a document. Also taketo ioonsideration is the
length of the document, with longer documents tending taesbagher, due to more

word occurrences and word repetitions.



J. J. Rocchio introduced Relevance feedback in 1965 to ledilperthe user query
[Roc71]. Inthis instance results are returned to the usiediby some relevance mea-
sure. Following examination of the results, a further stib§eesults may be selected
which generate a higher level of interest. The selectedgpagethen used to further
refine the user query with the resulting method therefoledal ‘user feedback cycle’.

With the advent of computerized databases, the idea of-tBeesearching arose’,
where complete retrieval of any document, using a particutad, could be achieved
with no cost for manual indexing. Multi-lingual experimsmwere conducted at this
time, using a bilingual thesaurus and mapping words fronh bexiguages into the
same concepts. An example of the existing multi-linguas#ueus is EuroWordNet.
Constructed by many European countries, EuroWordNet usescture called ‘inter-
lingual index’ to represent the semantic structure of ringfual words [Pie98].

During the 1980’s online information retrieval expandedvim main ways. The
first being the availability of full text instead of just alestts and indexing and the
other was the use of online retrieval by non-specialistibearies replaced or supple-
mented their card catalogues with online public accesdatpatas. The CD-ROM was
introduced at this stage, with most libraries having attleag® CD-ROM drive. The
probabilistic and vector space approaches that have bérad®ver the past number
of years cannot claim to imply real understanding of the doents and as Cleverdon
observed human indexing is not consistent enough to gueeatceptable recall and
precision over sizable databases. In the 1990’'s frequbasgd, word orientated mod-
els were again adopted and the large scale corpora of maaradable text, such as
that provided by the TREC collection provided a suitablétgsenvironment, with the
first TREC evaluation conference established in 1992 [HarBt3e development of the

World Wide Web by Tim Berners Lee at this time revolutionibefbrmation Retrieval.



1.2.3 Information Retrieval and the Web

Until the early 1980’s Information Retrieval was viewed agaarow area of interest
by librarians and information experts. The World Wide Welswaroduced in 1990
by the European Laboratory for Particle Physics (or CERN)a avay for physicists
to track the progress of other individuals. The conceptlire@ the ability of people
working in different locations to learn what each other weogking on, through exam-
ination of a hypertextual document, accessible on the ieterCreation of the World
Wide Web is credited to Tim Berners Lee. His original vision the web was the fol-
lowing: “My definition of the Web is a universe of network-assible information, a
means of human-to-human communication, and a space in whftliare agents can,
through access to a vast amount of everything which is sg@etence and its prob-
lems, become tools to work with us.” The modern web has edolx@n this vision
into a vast repository of human knowledge, thus fulfillingsBis previously discussed
vision. However this repository of information adds a newension of difficulty to
the traditional information retrieval problem.

In traditional information retrieval, content based medrare used to retrieve rele-
vant documents from a structured environment. In the cabdafmation Retrieval on
the Web, however, the collection of documents is containeadtiat can be described
as a semi-structured environment. Documents are constadded and removed from
the Web, with it suggested in [NCOO04] that every week 25% riekslare created, and
that after a year 80% of the hyperlinks are replaced with neeso It is further sug-
gested that new pages are created at a rate of 8% per weekeamalydar roughly 50%
of the web content is new. The content of information presetite web is diverse not
only with respect to quality but also in language, range afalulary and type (.asp,
.HTML, .jsp, etc).

Content-based metrics such as TF*IDF, used in traditiomf@rmation retrieval,

assume the integrity of data in the document collection. &l@s, this assumption is



not applicable with Information Retrieval on the web. Numes methods have evolved
for the commercial exploitation of the web. Invisible teggge cloaking, and page
redirects are a few of the more popular methods used to mlislearch engines and
increase the ranking of a website. Also in the case of contiestranking mechanism
must take into consideration reciprocal link programs atmtolocal link structures,
manufactured for the sole purpose of improving a websitaiing.

As a result, search engines use a combination of content@mdxt score when
assigning a ranking to a page. Through analysis of the streioff the web, we demon-

strate how context information is effectively exploitedthg leading search engines.

1.3 Graph Structure of the Web

The web can be viewed as a directed graph, with every pagesemtied as a node,
and the hyperlinks between pages represented as edgefdreghe web graph of
today is comprised of 11.5 billion nodes and approximat@ypBlion edges [GS05].
The web is constantly evolving and as a result the structigynamic rather than
static. Nodes and edges are constantly being removed frdradgded to this hyperlink
structure, with it suggested in [KRRT99] that the half-lifea web page is in the order
of a few weeks.

The evolution of this structure has been the focus of mucdkares in the past and
suggested in [BA99] is that the addition of pages is not ramdod follows a model
of preferential attachment. Under this model a link is azddtom a new node to an
existing node not uniformly at random, but with a higher abitity to existing nodes
that already have a large in-degree. This is a ‘winner talkesitaation, present in a
large number of social networks. This model, however, da¢saocount for the dis-
tributions present in the low connectivity regions, obserin [BKMT00] as possibly
Poisson or a combination of Poisson and power law. SuggesfP&L02] is a com-

bination of preferential attachment and uniform attachin@nbetter account for this



distribution in the low connectivity regions. Also suggaEsts another model in which
“A new page adds links by picking an existing page, and capgivme links from that
page to itself” [KRRT99]. This is based on the notion that arusill select pages to
link to, based on pages that the user has a preference for.

A hyperlink pointing from a page is said to be an out-link oatipage. With
regards to the page that it points to, the link is referredstarain-link. The number
of in-links to a page is subsequentially referred to as thBégree and the number of
out-links from a page is referred to as the Out-Degree. THedgree and Out-Degree
distributions are conjectured to follow a power-law distition, with best fit exhibited
for exponents of 2.1 and 2.4 respectively [BA99, BKBD, Wan]. These distributions
are also inverse polynomial distributions and can be refetw as Zipfian distributions
[Zip49].

Initially the structure of the web may appear totally hagrdz but further in-
vestigation reveals an underlying structure. This stmgctexposed by Broder et al.
[BKM T00], during experimentation on a web dataset of over 200anilpages, is
likened to that of a ‘bow-tie’. Revealed is a central Strgngbnnected Component;
a subgraph (IN) with directed paths leading to the SCC, a corapt (OUT) leading
away from the SCC and isolated tendrils attached to one afubgraphs. These four
regions are roughly a quarter of the total size of the web eaater work by Dill et al.
[DKM +01] showed that in subgraphs of the web this structure is taiaied, although
the ratio of component sizes differs somewhat.

Overall the structure of the web may be viewed as sparse(#rage out-degree is
eight [KRRT99]), but at a local level the structure is denBlee hyperlink structure at
this level maintains different properties from those agged with the global hyperlink
properties. According to [EM], locality with respect to hepfinks in the web can be
defined through the premise that “links tend to be correltddithks that are nearby in

some measure”. This locality among links is reinforced byt for a “small world”

10



graph of the World Wide Web [Ada99], and is further obsenrefSY01]. In the latter

it is suggested that “almost three quarters of links poinpdages on the same hosts,
and often to pages that are only a short distance from thesdurthe sorted order
of URLs". Also a form of locality is highlighted by Davison @¥00] and Menczer
[Men02], with it suggested that pages linked to or from thmegage are usually
topically related.

It is at the local level that we believe the structure of théoway be further ex-
ploited to identify collections of topically-related pageand therefore increase the
relevance of the results returned to a search engine usgrarBé cores are identi-
fied in a large dataset of the web [KRRT99], with it suggestest & large fraction
are in fact topically coherent. Community structures ase &entified within the web
by [FLGCO02]. In this instance, a community is defined as aemtibn of web pages
such that each member has more hyperlinks within this contgptiman outside of the
community. Later experimentation, discussed within thists, focuses on topically-

related subgraphs and attempts to fully exploit the inhdréarmation.

1.4 Link Analysis Ranking Algorithms

The web as a document collection is unique in comparisomthtional document col-
lections, with the assignment of a ranking value to everyelngpedia webpage being a
non-trivial matter. Firstly, this is due to the previouslgelssed diversity of documents
and constant addition of new pages to the environment. @enalso, the tremendous
size of the web, that the web contains redundant documenitbm@oken links, and
that certain local linkage-structures may be created f@icttmmercial exploitation of
the Web. These attributes highlight the dynamic instabifibherent in this hypertext
corpus.
Other problems facing link analysis ranking algorithmsmp&rom over-simplistic

user queries and possible cognitive overload resulting fijaeries of broad specificity.

11



Dealing with queries sufficiently broad in nature is definedree Abundance Problem
by Kleinberg: “The number of pages that could be reasonailyrmed as relevant is
far too large for a human user to digest” [KIe99]. Also comsidg the fact that a
user query typically contains 2.35 terms [Hen03] and th¢ tfaat most IR users are
prepared to examine at most the first 10 or 20 documents [SH8/BYVB02], the
critical nature of this problem becomes apparent.

As a result traditional information retrieval techniques esufficient and a social
network view of the web is adopted along with the associatedysical-techniques.
Using a directed graph to model a social network is not uniquiae web, with in-
degree intuitively a good indicator of status. In 1949, JSBely [See49] realized the
recursiveness presentin a social network, with web pageg beplaced by actors: “we
are involved in an infinite regress:[the actor’s status]fisrection of those who choose
him; and their status is a function of those who choose them,s@ad infinitum”.
Such social network and therefore web properties form thedations on which the
majority of todays link analysis ranking algorithms aredzhs

Current link analysis algorithms exploit the context imf@tion inherent in the hy-
perlink structure of the Web, with the premise underlyingliak analysis ranking
algorithms, being that a link from page A to page B denotesrafossement of the
quality of B. Following on from social network analysis, anitial indication of page
importance is the number of in-links. This is the premiseihelthe RankDex algo-
rithm [Ran49], with pages assigned ranking values baseth@n tumber of inlinks.
The PageRank algorithm [PBMW98] used by the Google searghmenis a descen-
dant of RankDex. PageRank is based on the premise that th@tanpe of a page
is determined by the importance of the pages linking to i] sna manifestation of
Seely’s observation.

The hyperlink structure of the web is exploited by three pthmportant link anal-

ysis ranking algorithms. Kleinberg’'s HITS algorithm [K@Gattempts to exploit this

12



structure through the use of hubs and authorities over aseipK. Bharat and G. Mi-
haila exploit the link structure between expert and targetidhents, through their Hill-
top algorithm [BMO01], and Lempel and Moran [LMO0O] exploitishstructure through
their SALSA algorithm. In the following subsections we Kiyediscuss the PageRank
algorithm, some query dependent algorithms, and give arvieve of other algorithms

of interest.

1.4.1 The PageRank Algorithm

As previously discussed, the Rankdex algorithm [Ran49iseld on the hypothesis
that the ‘importance’ of a page should be determined by italver of inlinks and is
essentially a form of simple citation counting. The probleith Rankdex is that it
is highly susceptible to spamming and does not favour ingmbpages with only a
few in-links. PageRank evolved from this simple idea intatarative ranking process
over the entire web graph. The hypothesis behind the Padre®dgarithm is that a
page with a large number of in-links, or a link from an impaottpage, should be
deemed important. The PageRank of a page is therefore based-Degree and the
importance of pages linking to it.

The PageRank Algorithm;

Pr(i)=(1—D)+D Y Pr(j)/outlinks(;) (1.1)
JEA;

The PageRanPr of a page is the sum of the PageRaifk of its in-links A4, divided

by the number of their corresponding out-links.

The PageRank algorithm is used to model the behaviour ofiealperson brows-
ing the Web. This person, often referred to as a ‘random suwiél choose to follow
one of the links from a page with equal probability, and otwzaly get bored and

jump to another page completely at random. The computafitineoPageRank vec-

13



tor involves an iterative process over a square adjacentsixmé and is equivalent
to extracting the principal eigenvector of the matrix A detailed description of the

PageRank algorithm is given in chapter 4.

1.4.2 The HyperLink Induced Topic Search algorithm (HITS)

Kleinberg [Kle99] suggests a different method for rankingbapages through the in-
troduction of hubs and authorities. The HITS technique &eblaon the premise that
a sufficiently broad topic contains communities of pagesorter to rank pages each
relevant page is assigned a hub and authority score. An @tithgpage is a highly
referenced topic-relevant page and a hub page is a pagengpiotmany authoritive
pages.

The HITS algorithm:

a(p)=>>_ h(q)
hip)=> al(g) (1.2)

The authority value of page (a (p)) is the sum of hub scores of all pages pointing to
p and the hub value of page(h (p)) is the sum of authority scores of all pages that

points to.

Initially all hub and authority values are setloln a single iteration the authority
score of page is replaced by the sum of the hub score of pages pointipgand the
hub score of pagpg, is replaced by the sum of the authority score of pages pbintby
p. As a result hubs and authorities exhibit a mutually reicifag relationship, where a
good hub points to many good authorities and a good authisrfiginted to by many

good hubs. Convergence of the hub and authority values isagteeed [Kle99] and

14



typically occurs within 10 iterations [BH98].

HITS is inclined to favor the most dense community of hubs anthorities and
is referred to as the ‘Tightly Knit Community effect’. Thisgerence can lead to an
irrelevant result set and is due to query-irrelevant pagésd initial root set. A second
drawback of HITS is a mutually reinforcing relationship aaing between hosts, with
many pages on one host linking to a single page on anotherfostesulting authority
score of the single page is inflated and subsequently so ®tharhub scores of the
pages pointing to it.

Two other drawbacks of HITS are identified by Chakrabarti.€iGDR*98], with
the first occurring when a page discusses a number of topicBnkAwill point to
different topics depending on their location within the padf the page has a large
out-degree, it will receive a large hub weight, which flowsagrhigh authority weights
for referenced pages, regardless of relevance to theligitiary topic. The second
drawback is topic generalization. If the search topic iscHfme the algorithm often
returns good sources for more general topics. This behasinalso be reversed with

pages more specific than the general search topic, domirtatresults set.

1.4.3 The Topic Sensitive PageRank algorithm

With Topic Sensitive PageRank [Hav02] a set of ranking vexcéme computed, as op-
posed to the single PageRank vector generated using steiP@geRank. These vectors
are biased using a set of representative topics, to captemotion of importance with
respect to a topic, indirectly specified through a user qaewy if available through
user context also.

During offline processing of 120 million pages, indexed dgra web crawl in
January 2001, 16 topic-sensitive PageRank vectors argaedeeach biased using
URLs from a top-level category of the Open Directory Prajédtquery time a linear

combination of the topic-sensitive vectors, weighted gsire similarities of the query

15



(and context if available) is used instead of a single ragkiector.

This is an extension of the idea of a personalization vectggssted in [BMPW98].
In terms of the random-walk model, each topic vector reprissthe addition of a
complete set of transition edges, and with probabilityhe random surfer follows an
out-link from the current page, occasionally jumping to alUR the ODP category.
The influence exerted by each topic, over the final rank vasugroportional to their
affinity with the query or query context.

Topic Sensitive PageRank lacks practical application defié categories is insuf-
ficient to cover all topics on the web and therefore a query bealjkened to a category
topic, with which it has little affinity. A more comprehensiimplementation involving
a vast number of category topics would be required with tleeofig finer-grained set of
topics, such as the second or third level of the Open Dirgdi@rarchy, as suggested
within the paper. However such an implementation would reapeofound effect on

the computation and storage constraints.

1.4.4 The Hilltop Algorithm

The Hilltop algorithm [BM01] works on the same hypothesisnagst connectivity-
based algorithms, namely that the number and ‘quality’ gigsgointing to a particular
page are an indication of the page’s quality. The Hilltopoailtpm is unique through
the fact that only pages considered ‘experts’ for a useriipéquery are considered.
An expert page is defined as a page about a certain topic hiwksgto many other
non-affiliated pages on that topic. Initially, a list of theost relevant experts on the
topic is computed, based on a user query. The relevant lioktamed within these
experts are then selected and followed, leading to the ttg@ges. The rank value
of target pages is determined by the number and relevanceroéfiiliated experts
pointing to them. Target pages must be linked to by at leastrten-affiliated expert

pages. The ranking value of a target page therefore refleetsdllective opinion of

16



the best independent experts on the query topic. When noesymrts are available,
no results are returned by Hilltop.

A common consensus in the search engine world is that sonmedbthe Hilltop
algorithm is currently implemented by the Google searchirengor broad queries.
The shortcoming of this method is that computation must bréopmed “a-priori ”.
Therefore if the user query was not previously considerithdard PageRank algo-
rithm is implemented, leaving the query susceptible tolteshat are authoritative in

general, but not in relation to the user query.

1.4.5 The Intelligent Surfer Algorithm

The Intelligent Surfer algorithm [RD02] attempts to impeaypon the standard PageR-
ank algorithm by introducing a more intelligent random surfhis surfer is guided by
a probabilistic model of relevance to the query, with thebyatality distribution given
by:

The Intelligent Surfer Algorithm:

Py(j)=(1=B)P,(j)+ B> Pyli—j) (1.3)

i€B;
whereg is a damping factod < g < 1 and P, (i — j) is the probability the surfer
moves to pageé given that he is on page Where the surfer jumps when not following
links is specified by1 — 3) P (j). The resulting probability distribution over pages is
given by P, () and bothP; (j) and P, (j) are derived from a measure of relevance of

pagej to queryq.

The above equation is best explained using the ‘randomrsarialogy. The web
surfer probabilistically hops from page to page, dependinghe page contents and
the user query. When choosing between multiple out-linbsifa page, the intelligent

surfer will choose a random link from the set of pages deenuedygelevant, instead

17



of one at random from the entire set of page out-links. Wheagegas no out-links
or none deemed relevant, links are added from the page tagdisoin the dataset. To
assign a measure of relevance to a page, a basic conteultfoastion is suggested,
where the relevancy of pagefor queryq (rq (j)) is equal to 1, if the query term
appears in the page, and 0 otherwise. Only pages related tsér queryi(g (j) = 1)
are considered.

The bottleneck for the Intelligent Surfer method is thatreqaery cannot be pro-
cessed at runtime within a reasonable time frame. Suggastadsolution, is the cal-
culation of the Query Dependent PageRank (QD-PageRankdr/Er hundreds of
thousands of query worda-priori ”. At runtime, provided the user query matches one
of these words, the corresponding QD-PageRank vector isubed to populate the
results set. Computation and storage is stated as requanirgnly 100-200 times that
of standard PageRank, for hundreds of thousands of words diidwback being that
provision of a QD-PageRank value for every possible quersdwe@-priori ", is not

realistic.

1.4.6 Other Algorithms and Ranking Methods

Numerous variants of the PageRank algorithm currently &ithardson and Domin-
gos [RD02] and Haveliwala [Hav02] create two variations/masly highlighted. Other
PageRank Personalization variants are discussed by Jéwidodh [JWO03] and Brin
et al. [BMPW98]. Rafiefi and Mendelzon [RM] consider a variahtHITS, incor-
porating random jumps to determine the topic associated avitage. Chakrabarti et
al. [CDR*™98] and Bharat and Henzinger [BH98] come up with improveménthe
HITS algorithm by adding weights to nodes and links, basegaie relevance using
a cosine similarity measure.

Cohn and Chang [CCO00] provide a probabilistic analogue efHKT'S algorithm

through their PHITS approach, with the model attemptingxjpla&n documents and

18



citations in terms of common community-factors. Modifioas to Kleinbergs HITS
algorithm based on a Bayesian statistical approach areestegjin [BRRTO1]. Cohn
and Hofmann propose an extension of their PLSA and PHITSrighgas by creating

a mixture based on a probabilistic factor to allow the id@sgtion of authoritive doc-
uments. Methods to overcome the effects of local aggregétimugh hyperlink eval-
uation and evaluation-based web ranking are suggestedan(Q®y. The idea involves
the weighting of links between different domains, more rsfflg than links within a

single domain, and weighting them based on the distancedestywages.

1.5 Overview

Highlighted in the link analysis ranking algorithms dissed todate, is the inability to
incorporate the user query at runtime, within a reasonaile bound. We therefore
propose the introduction of the EQD-Rank algorithm to camliontent and context
information in a post ranking refinement of the PageRanKteset. The aim of EQD-
Rank is to approximate the query dependent PageRank viuatmugh a manipulation
of the PageRank vector, based on a local-graph traversiallinthe PageRank vector
is computed a-priori” and is then adjusted based on the relevance of each of thee pag
in-links.

This ranking refinement is necessary due to the fact thatapie subgraph for
each query, cannot be reproduced within a reasonable timmedyin an environment
where the user is prepared to wait at most between 10 and 2@dd=c Following
implementation and testing of the algorithm, we show throagiser study that EQD-
Rank can be used to achieve a relevance increase of over 20%.

During subsequent chapters the elements involved in a@ralys link-based al-
gorithm are discussed along the results obtained. The erawkd to download the
dataset and its various components are highlightetiapter 2.Also examined are the

various challenges faced by modern day crawlers and cosyperare made with other

19



crawlers of interest. lchapter 3we examine the various aspects associated with the
storage of a large-scale dataset, creation of the invartiki creation of the transpose
matrix and the memory saving techniques implemen@dhpter fourdescribes the im-
plementation of the standard PageRank algorithm, QD-PagileBRnd our EQD-Rank
refinement, along with the various algorithmic strengthd weaknesses. lchapter 5

we examine the ranking distributions and certain resulpsaperties. Also examined
are the convergence rates and some content-based docigteetios techniques. In
chapter 6we reach our conclusions based on experimental resultsiscissg potential

future work.

20



Chapter 2

The ViperBot Crawler

2.1 Introduction

A modern search engine must index the huge repository ofrimdtion known as the
web, as quickly as possible. A program or collection of pamgs capable of achieving
this, is referred to as a crawler, spider, or bot. ShkapeayukSuel [SS02] note that:
“While it is fairly easy to build a slow crawler that downlogad few pages per sec-
ond for a short period of time, building a high-performangstem that can download
hundreds of millions of pages over several weeks presentsrder of challenges in
system design, I/0 and network efficiency, and robustnessremageability.”

A typical crawler cycle begins with a request for a page aedidrsing of the body
of the fetched page to extract links. These links are addeddatastructure contain-
ing the URLs of pages to be crawled, and the cycle continugksame termination
condition is met or until the list of uncrawled URLSs is exhtigs One important issue
to be addressed when designing a modern-day crawler, igdig strategy to imple-
ment. One common strategy involvebraadth-firstcrawl. In this instance a seed page

is parsed and the links are extracted. Every link on that jmteen crawled until all

21



links have been extracted. Each link on the page, represéntéhe first page’s first
link, is then processed, with the cycle continuing until tis¢ of links is exhausted.
Najork and Weiner [NWO01] usbreadth-firstcrawling to perform a crawl of 328 mil-
lion pages and suggest thabeeadth-firstcrawl discovers high PageRank pages early
in the crawl. Boldi et al. [BCSV02] also testlaeadth-firststrategy against a ran-
dom ordering and an omniscient strategy. Intuitively oneilld@xpect the omniscient
strategy to perform the best, although it is suggested thahy strategies that accumu-
late PageRank quickly explore subgraphs with bad correlateks, and vica versa”.
Also an omniscient strategy requires previous knowleddkefegion of the web to be
crawled in advance, and it is therefore suggested tlmeath-firststrategy performs
best. Adepth-firststrategy is also applicable, although less widely usedndJgiis
strategy the first link on the first page is crawled. Followihig, the first link on that
page is crawled and the cycle continues until no more linkshEaobtained. Another
possible method involves ordering pages based on the PagaReatric [CGMP98].
Numerous ordering methods for discovering important pagely during a crawl are
also recently discussed, with a method using the PageRankdrprevious crawl de-
termining the ordering that performs the best [BYCMRO5].

Crawlers are predominantly used to create a large repgsifoveb pages. This
is the function of crawlers such as Googlebot, Yahoo! Slurg lsISNBot. However,
crawlers may also be used for numerous other tasks. A cramdgrbe used to re-
crawl pages for updates. This is particularly importantdonstantly changing pages
such as news webpages. In this instance, indexed page ésssisnessential with Cho
and Garcia-Molina [CGMO0O] previously considering methamee-crawl a page based
on its update history. Crawlers may also be used to perfommesiorm of focused
crawling such as downloading topic-specific pages [CvdBD@gages, mp3 files, or
pdf files. Examination of a site for broken links and email i@dd extraction are some

other functions carried out by crawlers. M. Henzinger et[elHMN99] also use a

22



crawler to perform random walks on the web, measuring seangine index quality.
To perform these functions, however, the crawler must amaitierous pitfalls.

One of the main difficulties faced by a crawler involves aumgca crawler trap. In
this instance, a URL or multiple URLs cause the crawler tastyatk in an infinite loop.
An example of this is a CGI script that dynamically generatesnfinite number of
web documents. No automatic method to detect a trap exi8teugh a site returning
an extraordinary large number of documents can be an ingiicahd can be blocked
from consideration with future crawls. Other pitfalls asedely related to duplicate
pages, resulting from a host containing multiple links te #ame page. Host-name
aliases are another area of concern, occurring when naulipst-names correspond
to the same IP address. Another instance of the duplicatioblgm involves same
page replication across multiple hosts, with mirror wedssind multiple web servers
accessing the same file system, being prime examples.

The difficulties facing crawlers are compounded by the lafckark published to
date, due to the highly competitive nature of the searchrenigdustry. However there

are some notable exceptions and these are discussed britflymext section.

2.2 Previous Work

Widely regarded as the first crawler, the World Wide Web WokicB94] was created
in September 1994 by Oliver Mc Bryan at the University of Gablo. The crawler
was designed to build an index of document titles and URLSl@h¢b the creation of
a dataset of 300,000 multimedia objects. Other Java crawfénterest are the Internet
Archive Crawler, GoogleBot, WebSphinx and the Mercatondea

The Internet Archive Crawler [Bur97] is distributed acr@ssumber of machines,
with each process single threaded and using asynchror@usiie inter-process ex-
change of URLs is carried out in batch to minimize cost, whth dverall aim of down-

loading periodic snapshots of the web.

23



Page and Brin [BP98] give a description of the initial Googlawler known as
Googlebot, described as a fast distributed crawling systemtaining multiple crawlers,
with each keeping approximately 300 connections open at.diach crawler process
runs on an individual machine and contains a single threau) @synchronous 1/O, to
fetch data from up to 300 servers in parallel.

The WebSphinx crawler [MB98] from Compaq Systems Reseaetidt, is a Java-
based toolkit and interactive development suite for cresviBesigned for site-specific,
personal and relocatable crawlers, WebSphinx is muléetied providing library sup-
port for crawling in Java, using HTML parsing, pattern métch and Web transfor-
mations.

The Mercator search engine [HN99] is used by the AltaVistedeengine. De-
signed exclusively in the Java programming language sitié&yab achieved through
its datastructures and through a modular design, it is atgensible. The Mercator
search engine is used to create a snapshot of web pages grosateiintranet, collect
a variety of web statistics, and perform a series of randotksia the web. A detailed

description of the system architecture is provided alsealigt for systems comparison.

2.3 The ViperBot System Architecture

2.3.1 Overview of the System

ViperBot is written entirely in Java. Java’s object-origted nature facilitates the ad-
dition of new components through subclassing or by methadraing. Java's API

(Application Programming Interface) includes classeatesl to objects, threads, ex-
ception handling, and garbage collection, therefore gitle design of an extensible

and scalable crawler.

24



Internet ,

‘ HTTP PROTOCOL A ‘

DOWNLOAD
MODULE \

/ URL
QUEUES
CONTENT
SEEN ?

URL

SEEN ?
FILE < DOWNLOAD fA@FE,SJTS CRAWLED
ARCHIVE DOCUMENT s

URL
FILTER

ViperBot

Figure 2.1: The ViperBot Architecture

The crawler is composed of 100 independent threads witladhmeanagement han-
dled by theDOWNLOAD MODULEas displayed in figure 2.1. The pre-defined maxi-
mum number of threads is one hundred, due to an excessivenaofahireads resulting
in the potential for more CPU time being spent swapping betwareads, than actu-
ally processing them. Initially 100 seed URLs are selected @sed to initialize the
crawl. Seed pages may be randomly selected but to maximizeuthsequent dataset
diversity, the URLs are selected from the top-level categoof the Open Source Di-
rectory and Yahoo Directories. Each thread operates inmdbgraly and once the crawl
is initialized the threads are managed via a ThreadPool. WdBa Access File (RAF)
is initially created for each thread containing a seed URd isrrepresented in figure
2.1 byURL QUEUES.

Each thread continually processes URLSs provided that shefiuncrawled URLs

has not been exhausted. The URLs are selected sequentaatyaf thread specific

25



RAF, and extracted in a First In First Out (FIFO) manner. Talelish a connection
and download page contents within a specified time-fram@arate thread is created.
Should the contents be successfully downloaded G®ANTENT SEEN Pnodule is
invoked and used to prevent the download of duplicate pa@eslifying pages are
passed to th® OWNLOAD DOCUMENTmodule, where they are written to disk and
stored in theFILE ARCHIVEfor further offline processing. At this stage tRARS-
ING MODULE is also invoked writing MetaData to disk and extragtfully qualified
URLs. These URLs are subsequently passed ttJRe FILTER,with URLSs contain-
ing certain unwanted characters (i.e ? symbol) discarded.

A check to see if the URLs were previously crawled, occurgmURL SEEN ?
module, in the next phase. The check involves a comparisitmheé CRAWLED URLS
datastructure. Should the URL surmount this conditionsitdded tofCRAWLED
URLS,preventing a recrawl and is assigned to the appropriate RAFufther pro-
cessing, with the cycle beginning once more. This cyclefgpered by each thread,
continues indefinitely until the list of uncrawled URLs ishewsted, or some global

limit on the number of pages to be downloaded is reached.

2.3.2 The Download thread

The download thread is implemented via the networkingitéesl provided by java.net.
Specifically we create a URLConnection through the URL proto The connection
object is established by invoking the ‘openConnection’hmodton the URL, with the
actual connection to the remote object provided throughdbenect’ method. Once
the object becomes available page contents are downloAgedblem with creating a
‘URLConnection’ is that no provision is made for the speeifion of a timeout value.
A connection request can therefore hang indefinitely, shthe remote server fail to

close the connection. To resolve this problem we initiattgmpted to interrupt the

26



thread, in which the connection is created. However, aftechrsuffering it was dis-
covered that a thread blocked on an I/O operation cannottberipted. As of Java
1.4 support is added for a socket timeout in the URLConngeatlass by setting the
sun.net.client.defaultConnectTimeout and sun.nehttiefaultReadTimeout parame-
ters. These parameters are therefore set as follows, witheotit value of3, 000

milliseconds specified:

System.setProperty("sun.net.client.defaultConneadut”,"8000");

System.setProperty("sun.net.client.defaultRead Tuti¢@®@000");

If the connection is successful, page contents are dowatbéal a string buffer,
with a pre-specified capacity to prevent memory strain. Thie@Buffer is doubled in
size when more memory is required and therefore selecti@m @ppropriate default
size is essential. The download thread is allocated 10 sisdonconnect to the page
and download the contents, after which it is killed.

Following termination of the download thread, a String esgmtation of the page
contents is created and subsequently written to hard dis&.page contents are down-
loaded using an inputStreamReader wrapped in a BufferRetiterefore avoiding
costly conversions. The InputStreamReader is a bridge frgta streams to char-
acter streams, reading bytes and translating them int@cterencoding. The buffere-
dReader reads the text from the character-input streamufet$characters to provide
efficient reading of characters, arrays and lines. Durimgrtext stage of processing,

the downloaded page is parsed and URLs are extracted.

2.3.3 The Parsing module

This module parses page contents and extracts relevast limkking use of the Java
regular expression API library (java.util.regex). In peutar a compiled representation

of a regular expression, known as a Pattern is used. A Pasteepresented as a se-

27



quence of characters describing a character sequence ahe cesed to find matches
in other character sequences. In this case the regularssipnes specified using the

following pattern:

Pattern p = Pattern.compile("http(s?)\:\\\[[a-zA-Z0-8\ ]+(\.[a-zA-Z0-9\-
\_1H){2,}(V?)([a-zA-Z0-90\-\\2\ NV V\W\+=&amp; %\ _]*)?")

Using the above regular expression, URLs are extractedftrdr processing. This
expression is then compared against another sequence laswaiMatcher. This en-
gine performs match operations on a character sequencédogrieting a Pattern. The
Matcher then scans the page contents looking for the negesuignce that matches the
Pattern, until the end of the document is reached. When aristound, it is returned
as a string, provided certain constraints are not violafBtese constraints are used
to specify unwanted page types. Example pages, currentigrooessed by ViperBot
include .gif, .jpeg, and .cgi. Currently these page typeslmer twenty three, with new
page types to be excluded, added regularly. During thisessagne link processing
occurs with absolute and relative URLs prefixed and ancleamoved from links. All
of the constraints mentioned above are in place to maximseling speeds and to
prevent crawler crashes. All relevant links returned frbmnparsing module are added

to the relevant URL queue, provided that the URL has not beeviqusly processed.

2.3.4 Duplication Detection

To avoid downloading multiple copies of the same page, a ieczhsures each URL is
only processed once. The string representation of each BRiput and the HashCode

is extracted. The hash code for a String object is:

28



> sli]s1 (2.1)

0<i<n
wheres [i] is theith character of the string andis the length of the string (commonly

referred to as mo@?>?).

This HashCode is then compared with the HashCode of prdyipuscessed URLSs.
If the HashCode is already contained in the HashSet, the WRliscarded and the
next URL is examined. If not, the HashCode of the URL is staaad the URL is
processed. A more complex alternative would involve immating a hash function
known as MD5. The MD5 algorithm takes an input of arbitranygth and produces a
128-bit fingerprint of the input. URLs may be collapsed intything between 32 and
128 bits, based on the number of distinct URLSs to be supported

Despite this measure, duplicate pages may still be dowethadhis can occur in
the case where different URLs point to the same page. Duplidatection is criti-
cal when it is considered that 29.2% of webpages are veryasitoi other pages and
22.2% are virtually identical [FMNO3]. To detect if the aatipage is a duplicate, a
number of methods may be implemented. One primitive methditating a dupli-
cate page is length. It is a distinct possibility that two gsgre identical if they have
the same number of characters. Therefore omitting a padethgt same length as a
page already downloaded will prevent duplication, altHosgme non-duplicate pages
of the same length may be overlooked. Other methods thatl étmulmplemented are
Rabin’s fingerprint algorithm [Rab81] or Shingling [BGMZP1n the later, Broder et
al. present a syntactic technique to measure the degremitdusiy between two doc-
uments, with a shingle defined as k-word sequences of adjaoeds, and documents

declared equal if they have the same set of shingles.

29



2.3.5 System Snapshot Module

Due to the distinct possibility of critical failure due toasvler hazards, a module to
take a system snapshot at pre-specified time intervals ilemgnted. The measure
prevents an entire recrawl from seed pages in the event ohwlar crash. In the
current implementation, a snapshot of the system is invekedmatically and taken
after every one hundred thousand pages are downloaded tiWfitBnapShot module,
vital system statistics are written to disk using java.im®Vriter. In particular, the
location of the next URL to be processed in each thread sp&diRl. queue is written,
along with global properties such as the number of crawleddmvnloaded pages. In
the event of a crawler crash, this information can be acdessd used to restart the
crawler from the last recorded system state. The snapshatsa be invoked through
a pause button on the GUI during crawling, resulting in aeystnapshot followed by
an exit of the crawler program.

At startup time a previous crawl can be re-initiated fromgheed system position,
through the restart button. In this instance the previogtesy variables are uploaded
from disk using java.io.FileReader. The crawler threadmtread the next location

from their URL queue and crawling recommences.

2.3.6 Robot Exclusion Protocol

Aside from checking if a page has already been processeslgthically correct for
a crawler to implement the Robots Exclusion Protocol [Kogh ethically correct
crawler will first look for a ‘robots.txt’ file before proceisg) a URL on a host, not pre-
viously contacted. The crawler must then parse this file terd@ne pages excluded
from crawling by the webmaster. Sample contents from the Maynooth robots.txt

file are as follows:

30



User-Agent: *
Disallow: /restricted
Disallow: /srs
Disallow: /srs2

In the first line, the User-Agents to which the disallow ruéggply, are specified.
In this case all User-Agents are specified through an akterieaning all robots are
restricted from accessing the areas specified in the subsedigallow statements. The
website in this instance prevents a crawler from acceshiegpaths.

For each host the crawler must request the ‘robot.txt’ filerfithe server and pro-
cess it (if one exists) to determine these paths of restriateess. A drawback of
adherence to this protocol can be a decrease in crawlinglsp&® inhibit this po-
tential bottleneck, our crawler stores the ‘robots.txg fiin hard disk for each host, to
prevent multiple requests for the same ‘robots.txt’ file.rv@e requests over a given
time interval should also be capped to prevent the servasrbieg overloaded with
requests. This can be achieved by maintaining a queue forssager and requesting
pages at a maximum predefined rate. The effect of crawles trépalso be minimized
as no matter how large a file is or the number of pages retuthearawler will only

retrieve pages at a maximum rate, spread across a large nofrdegvers.

2.3.7 The URLsToCrawl module

The URLsToCrawl module has the responsibility of procegsith uncrawled URLSs.
Once parsed, a URL is passed to the URLsToCrawl module firduprocessing. This
module is composed of two functions. The first is concerndl writing the URL to
the appropriate queue of uncrawled URLs. Each queue is aiagtt in an RAF to
facilitate non-sequential access to file contents. The RA&antees that searching
through one disk block costs at most two kernal calls (onk aed either one read or
write). The URLSs to be added and the thread number are pas#ee thodule as input

parameters. The file is then accessed, URLs are added smdjyeand a variable

31



containing the number of URLs in the file is updated. Each URAssigned 512 bytes
and when a URL is added to the RAF, the current number of URU&plied by 512 is
the location to seek to within the file. Each URL string chégats then written to the
file as a two byte value, starting from the current file poiptesition and is followed by
a URL termination character, symbolizing the end of the URH therefore preventing
unnecessary read operations.

When a URL is required by a thread, the associated URL quexsasulted. In this
instance the ‘read’ method is implemented, with the threaglver input and a seek
is made to the current read position within the queue. The R&&dChar’ method
is then implemented, reading unicode characters from fiéetisg at the current file
pointer. Characters will be read from the file until a maximofi256 is reached, or
until the URL termination character is reached, signifying end of the URL. These
characters are then appended to a String until the compRlei&returned.

ViperBot implements breadth-first crawling, maintaining-© queues with each
element dequeued in the order it was added. All of these guangecurrently main-
tained on hard disk. However, to increase crawling speedwiel maintain fixed-size
enqueue and dequeue buffers in memory in a similar fashidimetdlercator crawler

[HN99].

2.3.8 Creation of the DataSet and Page MetaData

Currently each retrieved page is downloaded in its entiaety stored on disk, with
each an average size 20 Kb. Storage in this manner is cyrpogkible as the dataset
is comprised of only one million pages. Should a larger datas required, the crawler
would be reconfigured to compress each file before writing disk. This could be
achieved through the compression library ‘zlib’, with aitgd HTML page of size 10
Kb being compressed to between 2 and 4 Kb.

At this stage page MetaData is stored to prevent the regpo$iciownloaded pages

32



“a-postoiri”. The MetaData facilitates the composition of a dataset gretph offline,
with the information stored in a large text file on disk. Duentaltiple thread access,
each thread must obtain a write Lock, when appending infaamaWhen the thread
holding the lock is finished writing, the lock is released &edomes available to any
waiting thread. The result is a large text file consistinghaf tYRL and associated out-
links of each downloaded page. A further optimization oftimodule would involve

replacing the read/write lock system with pipes and a mieltigx process.

2.4 The DataSet Collection

The information repository resulting from a crawl using &ipBot is a collection of
1,023,285 unique Web pages. Due to the fact that the seed page selected from
two, previously mentioned directory websites, our crawiay be biased towards more
popular pages. The total size of the dataset is 21.1 G, with page having a size
ranging from 1 byte to 1.84 Mb, and the average being 20.6 Kb.

The fact that we explicitly avoid dynamic pages means thgepan the collection
are predominantly HTML. A total of 66,123 unique hosts angresented, helping to
counteract the effects of localized link spamming. Theltotamber of links present
in the dataset is 12,495,560, with an average of 21 out-tmds12 in-links per page.
We established the in-degree and out-degree distributmiisaw comparisons with
previous ranking algorithm datasets. Displayed in figuBeghd 2.3 are log-log plots
of the out-degree and in-degree distributions. The outekedistribution is power law,
with best fit exhibited for an exponent of 2.7. Also in keepinigh [BKM T00], the
initial segment of the distribution deviates significanfilgm power law, suggesting
that pages with a small number of out-links follow a differeistribution. The in-
degree distribution also follows power law, this time witlsbfit exhibiting an expo-
nent of 2.15. These dataset characteristics are in goodmagrg with those of previous

datasets[Hav02, BM01, KRRT99].

33



Outlink Distribution for Entire DataSet

100000 T T T
outlinks —+—
10000
[%2]
[}
= 1000
a
k]
S 100
z
10
1
1 10 100 1000 10000 100000
Outlinks
Figure 2.2: Dataset Out-link Distribution
Inlink Distribution for Entire DataSet
1e+06 T T T
Inlinks —+—
100000 E
£ 10000 E
(=]
I
o 1000 3
o
2 100 ]
10 i ]
1 _ it
1 10 100 1000 10000 100000
No. of Inlinks

Figure 2.3: Dataset In-link Distribution

2.5 Crawler Optimization

A number of benefits are introduced through the design of dpeusing Java. Firstly,

Java’s object orientated support and API class library dealifor a modular design,
the exception handling helps with the design of robust aptibns, memory leaks are
counteracted through garbage collection, and multithngeslupports the design of a
multithreaded crawler. However certain drawbacks to a ilapéementation exist, as

identified by Allan Heydon and Marc Najork [HNOO].

34



In many instances, the Java core libraries sacrifice spee@dfe of use, with many
of the core classes made thread safe by declaring theirqouigtihods to be synchro-
nized, resulting in numerous unnecessary lock conditidhs. real bottleneck for our
implementation and for many Java crawlers, is host namdutéso. In the case of
the Mercator crawler [HN99] it accounted for 91% of each #las elapsed time. The
fact that many created objects cannot be reused is anotebedck. Examples of this
include FilelnputStream, BufferedinputStream and RARghE later the only way to
access a different file is to allocate a new RAF object, with RAF unbuffered and
every read or write requiring a kernal call.

ViperBot's scalable and extensible design means it couldubier optimized
through numerous techniques. The storage of most ViperButstructures on disk
reinforces this scalability and means it could easily b@néigured to handle a crawl
of increased magnitude. ViperBot is designed in a modutdnitan making it extensible
and therefore susceptible to new functionality.

In its current state, ViperBot is well suited to the task ofwidpading one million
pages in less than a day. However to tune ViperBot to inddigtandards, numerous
upgrades are required. The initial upgrade would addresbdktleneck of host-name
resolution. Host-name resolution is concerned with takireghost name and resolv-
ing it into an IP address, with support provided by the Doniéme Service (DNS).
Using the Java API, host name resolution is currently peréat by the ‘getByName’
and ‘getAllIByName’ methods of the InetAddress class. Thiotution, as previously
discussed, accounts for a large percentage of each thymad'sssing time. To over-
come this, we propose to circumvent the standard name tesokystem and use a
DNS resolver.

Another upgrade relates to the storage of the documentiteposin the current
implementation, the full text version of each page is dowdkd and stored on disk.

One basic optimization would involve storing the downlodélkes in compressed for-

35



mat. The ‘zlib’ library could be used to perform this compies, with expected mem-
ory saving in the region of between 60 and 80 percent. Wit tiréllion pages down-
loaded yielding a dataset of 21.1 G we suggest compressianflemented for any
crawl of increased size. Furthermore we suggest the stamfagar repository using
a storage manager, such as the new version of the Berkley xBEH:ition. This is
currently the choice of implementation for the Interneti#ive’s Heritix Web crawler,
and is used to archive over 50 billion URLs. Should ViperBetdme a large scale
crawling system the repository could be distributed oveumiber of storage servers.
Another area of improvement relates to duplication dedectCurrently two pages
identical except for one additional character may be aethin the dataset. To elimi-
nate this problem, shingling would be implemented for theeckion of near-duplicate
pages. The crawler speed could also be improved throughdhege of URL queue
buffers within memory. Should ViperBot be upgraded to adasgale crawling system
we would also implement a load monitor to keep track of systtatistics such as the
number of open sockets, threads assigned to each servéheatithe interval between
server requests. Therefore each thread could use loadanetitistics to prevent de-
nial of service attacks, by limiting the number of activeuests to a server IP address

at any given time.

36



Chapter 3

Representation of the Transpose
Adjacency Matrix and Inverted

Index

3.1 Transpose Adjacency Matrix Creation and Storage

3.1.1 Introduction

Creation of a graph representation of the document corpugésssary in order to
run link-based ranking algorithms. When deciding on graggresentation two fac-
tors must be taken into consideration: speed and storageptkmal implementation
would involve creation of a two-dimensional transpose ktm, and storage in virtual
memory. However, due to memory constraints, this is notiptesand other techniques
are considered.

The corpus is composed of over one million nodes, each reptieg a URL, and

over 60 million directed edges representing hyperlinksasbtering that on average, a

37



URL consists of between 50 [SY01] and 80 [BBBI8] bytes, the extent of the memory
requirement becomes apparent. As previously discusseataaeat graph is composed
of nodes and edges and is represented through a squarerayjatatrixA. If a pagej
links to page thenA4;; = 1, otherwised;; = 0. The result is essentially a very sparse
bit matrix, creating two problems. The first regards the eeljgy matrix size. The
memory requirement is of the order(ﬁ), with n defined as the number of dataset
URLs. This results in a memory requirement of a terabit ofegie space and is too
excessive to be considered. The second relates to the medlopted for the storage of
the square adjacency matrix and has a direct bearing onfibizety of the retrieval
of graph properties and the convergence speeds of link siealgnking algorithms.
Alternately, we create and store the adjacency matrix pese.

With an adjacency matrix transpose representation, ewsvyrepresents page in-
links as opposed to out-links. A sparse representationeofrdnspose matrix is stored
instead of am « n bit dataset representation, with each row containing aitrarip

amount of page in-link numbers, instead of a fixed amountrdityi digits.

3.1.2 Creation of the Transpose Matrix

The steps involved in converting the connectivity inforioatinto the transpose ma-
trix are highlighted in this section. Initially, a brief dine of the contents of the
connectivity-informationfile is provided. Secondly a pregessing stage, enabling fast
URL lookup during the creation of the transpose matrix ishhghted. The prevention
of multiple-identical link re-processing is also discuksalong with the problem of

dangling-link detection.

The Connectivity-Information File

Creation of the Transpose Matrix involves processing thielge information compiled

during a crawl of the Internet. During the crawl, linkageamhation is written to a

38



large text file named “Connectivity.txt”. The file is compdsa the URL of each page
and the URL representation of each out-link. The URLs arewnriten to the file in

sequential order and as a result each page number is storeglwaith the number of
out-links, to provide fast out-link number lookup for anygeaduring the propagation

of a link analysis ranking algorithm.

The Detection of Url Presence

With the corpus currently containing over 1 million URLs, URokup can become
a severe bottleneck during the creation of the transposexmas a result, during
a preprocessing stage all of the downloaded page URLs aracted and stored in
virtual memory. Each of the URLs is stored in one of one thadddashMaps. The
HashMap to which each URL is added is determined based onuimenic value of
the last three digits of the HashCode. Therefore if the lastet digits are 000 the
URL will be added to the first HashMap, if the digits are 999 tHeL will be added
to the 1000th HashMap, with all intermediate digits usedefenence the HashMaps

sequentially from the second to the 999th.

Prevention of Multiple Processing of the same Out-link

Creation of the transpose matrix begins with extractionhef page number of each
URL, due to the un-sequential nature of URLs in the file. Nbgtaut-links associated
with each downloaded URL are processed (if any exist), withWRL string repre-
sentation of each out-link extracted. The URL is then addexdtemporary ArrayList,
to prevent identical out-links being processed for a pagesatbsequently to prevent
a page having two or more inlinks from the same page. If theibmalready in the
ArrayList, it is not processed further and the next link isueined, otherwise the link

is added to the ArrayList and becomes available for furtmecgssing.

39



Dangling-Link Detection

Before an out-link is used to update the transpose matristh&n check is made to
establish if the page pointed to is contained in the corgdukid is not the case, the link
is dangling and is discarded. This is determined by querthedJRLs present in the
set of HashMaps. The HashCode of each out-link is computtittie last three digits
used to determine the HashMap to query. The Java API Hashitagiién ‘get()’

is then called, with the HashCode used as the URL key. Therretua null object

indicates that the link is dangling and results in the didicay of the link. Should
a non-null object be returned, page presence within theusoip indicated and the

transpose matrix is updated accordingly.

3.1.3 Storage of the Transpose Matrix

In this section we discuss how the transpose matrix is writtememory. Initially
we look at the structure used for storage of the transposexnaatd the reason for
its selection. The steps involved in populating the trasspuatrix are discussed next,
including how initial markers are written to the RAF, howiink integer representations

are added and finally a discussion is made on the use of oveRifdve.

Storage Structure

Storage of the Transpose matrix is designated to an RAHRjtédicig non-sequential
access and as previously mentioned guaranteeing thahgeatisrough one disk block
costs at most two kernel calls (one seek and either one readte). A fixed number
of bytes is assigned to each page for the storage of its ks-hvithin the RAF. The
figure is currently set to four thousand bytes facilitatihg storage of one thousand
in-links per page. This restriction is implemented due ® fdict that 74 % of pages
have less than one thousand inlinks, and the provision oagtospace based on the

maximum number of inlinks received by any page (in exces26000), would lead to a

40



considerable waste of storage space. As an alternativie peaye could be assigned an
individual RAF to contain its inlinks exclusively, greatigducing storage requirements
although to the detriment of link analysis ranking algarittmplementation speeds. In
the event of the number of inlinks associated with a pageassipg one thousand, an

overflow RAF is created to store the additional inlinks faatthage.

Creation of the Transpose Matrix

Creation of the main RAF begins with a seek to the locationkingrthe beginning
of the in-links for each page. Each location is determinedrutiplying the page
number by 4000 and writing a -1. This integer is used to sygthié end of in-links for
each page and is moved every time a new in-link is added foge,peith a -1 written
immediately after the rightmost in-link.

To write an in-link number to the transpose matrix, firstlyegls is made to the
beginning of the byte allocation for that page by multiptythe page number by 4000.
Integers are then read until a -1 or a -2 is processed. Wherisaericountered, the
-1 is overwritten by the in-link number and proceeded by theln the later case, -2
symbolizes the end of space allocated for the pages in-inkighe in-link number is

written to the overflow RAF.

OverFlow Storage

An overflow RAF is created for every page with in excess of drmusand in-links.
When a -2 is encountered in the main RAF, signifying the ertti@byte allocation for
that page, an RAF is created for that page, if the file doesIneady exist. Therefore
a check is initially made to see if the file is empty and if thighe case an integer 2
is initially written, followed by the integer representatiof the in-link. The integer 2
represents the next write location within the file. When theeidi re-accessed, if the file

is not empty this integer is read, used to calculate the sskibn, and incremented.

41



The in-link number is then written as a four byte integer (witie high byte written
first) using the RAF function ‘writelnt()’ and the connedtito the random access file

is closed.

3.1.4 Previous Work

Graph representation for a large corpus relies on comressthniques. However de-
creased storage space often leads to an increase in datealeand therefore currently
available compression techniques need to be closely sizedi.

URLs and link structure need to be compressed separatelgar@ntherefore two
separate problems. K. Bharat et al. [BB8B] suggest that the average URL is ap-
proximately 80 bytes on average and that storage of 100omillRLs is reduced by
70% using delta-encoded text files, with each URL stored adlifierence between
the current and previous URL.

In relation to link compression, locality and similarityeatwo features generally
exploited. The majority of links on a page are navigationatature, leading to other
pages within the same host, with T. Suel and J. Yuan [SYOlgssiing that three
quarters of links on a page, point to pages on the same hott.régards to similarity
many pages occurring close to each other tend to share numeoonmon out-links,
with many navigational links the same across numerous laggtq often copied from
one page to another. It may also be observed that many linkéwa page are con-
secutive in terms of lexicographical order, due to the faet mavigational links on
most pages point to a fixed-level hierarchy. Therefore thayesa long common prefix
which can be exploited. These host structures may also Inéified within the global
dataset and compressed individually, and blocks withimth&ix graph representation
may also be stored individually, to decrease storage reougnts.

K. Randall et al. [RSWWO01] exploit the fact that most links apage point to

other pages on the same host, suggesting that 80 % of linkstalthis category.

42



Also exposed is the fact that many pages on the same host rslzame of the same
hyperlinks. For each adjacency list, it is suggested trettita gap between URLs is
stored, and also introduced the idea of partitioning adjegésts into groups based on
the number of links they contain, to compress pointers totHdsing these technique
each link is reduced to roughly 6 bits.

T. Suel and J. Yuan [SYO01], store global links (non interthiogs) using Huffman
coding for the majority of more popular destinations anduBotoding for the rest.
For local links (inter-host links) Huffman coding is agamplemented for the more
popular, with delta coding introduced for the rest. Eack igreportedly reduced to an
average of roughly 14 bits. Suggested also is that the ag&fRd consists of about 50
characters (compared to the 80 suggested by K. Bharet éh allcompressed format
and can be compressed to about 13 bytes by exploiting the oonpmefixes in the
sorted list of URLSs.

P. Boldi and S. Vignain [BV03a] suggest gaps of web graphsdatibuted as
power law with an exponent ranging from 1.1 to 1.3 and thegefbat codes coming
from full text indexing, such as Golumb codes are not usefsithey are based on
exponentially decaying distributions. Other dataset gregmmpression techniques are
discussed by P. Boldi and S. Vignain in [BV03b], with innedwadancies of the web
exploited, enabling graph storage in a limited space in nrgnmide compression tech-
niques evolve around referentation and intervalisatiompmressing a transpose graph
of 118 million nodes to 2.89 bits per link. Suggested are r@tlgms exploiting gap
compression, referentiation, intervalisation and akfons for accessing a compressed
graph without the need for re-compression, resulting indeali workbench for web

graph manipulation.

43



3.1.5 Optimization of Technique Adopted

Corpus connectivity information is represented using asspanspose matrix, stored
in a main RAF with additional overflow files. The structure topted to increase
algorithmic implementation speeds by storing the vast nitgjof page inlinks in a
single file, although consequently at the cost of additiom@mory. This implementa-
tion is sufficient in our case with the transpose matrix raggi4 G, a long way from
approaching the storage capacity of the PC. In the event afagase in the size of
the dataset, each page’s inlinks could be stored in a singke Rilizing compression
techniques. It is suggested that the transpose of the gsagiten more “entropic” and
therefore more difficult to compress than the graph itsele@9], although this is dis-
missed by P. Boldi and S. Vignain where the transpose isétsmg less bits per link
than when the original graph matrix is compressed.

Therefore optimization would involve storage of the gamssn in-links and adop-
tion of compression techniques, such as delta encodingsetbuggested by P. Boldi
and S. Vignain. Although this would lead to an increase indbmputation time re-
quired by the link analysis ranking algorithms, storageinegnents would be reduced
considerably and facilitate the storage of a web graph cm®gifrom many tens of

millions of pages.

3.2 Inverted Index Creation and Storage

3.2.1 Introduction

To facilitate efficient user-query processing a searchrengiaintains an inverted index
file. An inverted index is a datastructure mapping a word ® ght of documents
containing the word, and is sometimes referred to as a gssfile. Creation of an
inverted index requires the presence of a list of all wordgeaping in the corpus,

known as a lexicon.

44



A few important factors should be taken into consideratidrem creating an in-
verted index. These include, the time taken to index the ohecus, to access the
inverted index, to access the postings for a particular vaodithe index updated rate.
Of importance also, is the amount of storage memory reqivbdre the inverted in-
dex size should be proportional to the number of posting®{T,Rvith the indexing
overhead defined as the index size expressed as a percefitagentire dataset.

Atypical inverted index is composed of the word documemtidieation, the num-
ber of word occurrences and the position of the word withim decument, for each
word contained in the lexicon. The word position may, howelse excluded from
the inverted index, should word proximity not be considesb@n processing a query.
Storage of word to document IDs can be provided by a storagegaa such as the
Berkley DB storage manager and is ideal for a dynamic indéweres documents are
constantly added, removed, and deleted. For the statieatimh used in our exper-
imentation, we implement a custom made datastructure,igimgythe potential for

more space-efficient implementations.

3.2.2 Creation of the Inverted Index

Once downloaded from the Internet, the hypertext corpusires| further processing
before a user query can be addressed. Corpus documentssed paing a HTML
parser, extracting words and the number of word occurrentesse extracted words
exclude links, HTML tags or meta-data of any kind. Esselytiahly text visible when
viewing the documentwith a browser is extracted. A word §lereated for every word
in the lexicon, containing document IDs and word occurrenegth the necessary
random access provided through a Java RAF. Once a docunparsisd, the number
of word occurrences and document ID are written to a word file.

When deciding on what document content to index, case fg/ditemming and

stop words should be considered. Case folding is conceriitbdthe conversion of

45



characters to their lowercase equivalent. Instead of iaiggan individual posting for
three strings such as ‘car’, ‘CAR’ and ‘Car’, the strings niag/ converted to their
lowercase equivalent, with all document IDs stored in alsimpstings file for the
word ‘car’.

In the case of stemming [Por], every word is stripped to thod amd stored accord-
ingly. For example the words ‘acceptance’ and ‘accepting'saripped to the root and
stored using ‘accept’. The storage of the indexed wordsetbee requires less space,
although some accuracy is removed from the query matchiogegs and is therefore
not appropriate for every document collection. Howevermalgimation of case folding
and stemming can be used to reduce the number of documestehdy 40 percent
[WMB99], with stop word removal another technique capalfleeducing index size.
A stop word is a word occurring frequently within most docuntsg with its removal
having minimal impact. The set of stop words is referred t@agop list with an
example stop list given below:

the, and, it, was, of, for which, be, a, are, have, or, its, lbeif on
The removal of stop words from the inverted index, can rasudt space saving of 25
percent, for large document collections [WMB99]. Howeueipdist words are often
the shortest words in the lexicon, requiring the least arhofiatorage space and as a

result, the benefits of a stop list may not be as great as thsseajnitially.

3.2.3 Storage of the Inverted Index

For each word in the corpus, a list of document IDs and wordigeaces are stored
within a RAF, containing an arbitrary number of integers. iAitial integer is used

to specify the number of document IDs present and therefotseéd to specify the
seek position when writing to file. For every document thedwappears in, two four
byte integers are written to the file, representing the dentrib and number of word

occurrences. A sample corpus consisting of three docuraadtthe resulting inverted-

46



index is displayed in figure 3.1.

dl: The fat cat
d2: The fat cat slept

d3: The cat is on the mat

The.txt slept.txt
311|213 2‘ 112|1
fat.txt is.txt
2111|121 1(3|1
cat.txt on.txt
311|213 1‘ 113|1

Figure 3.1: Example of Inverted Index Creation

The corpus contains the three documents d1, d2 and d3. Tée documents are
parsed sequentially, with the list of integers displayefijare 3.1 written to each word
file. For the word file “The.txt” the integer values are expkd. The initial integer
specifies the number of documents in which the term appeatiisiinstance the word
is present in three documents and therefore the initiabertés a three. Each of the
document IDs are then written followed by the number of tirieessword appeared in
the document. Looking at the second integer we can see thatahd appeared in
document one and by looking at the third we see that it ocdwnee. The remaining
document IDs and word occurrences are written to “The.ixthe same manner, with
the procedure repeated for the five remaining word files.

When writing to a word file initially the first integer is readdused as the location

to seek to within the file. This value is calculated(as« 8) + 4, with x defined as

a7



the initial integer . Therefore it is the number of documengigresented in the file
multiplied by 8, taking into account that 2 four byte integers will be addedirt
each write with the final four taking into account the initiateger. Once the initial
integer sets the pointer position it is incremented anditemrto file. The document
ID and word occurrences are then appended to the file andéteofilnection is closed.
Following the parsing and processing of every corpus dooimwe are left with an
inverted index where every word in the lexicon is represgriteough a word file.
Therefore if a query contains a word in the index, the wordidilemply accessed and
every document present can be assigned a weighting, bastt srumber of word

occurrences within the text.

3.2.4 Further Inverted Index Refinements

Numerous inverted-index compression techniques are mtlyravailable, with it is
suggested that compression techniques can reduce an indds between 10 and 15
percent of the uncompressed index [SWYZ02].

A large portion of the inverted index is composed of docuniBist and can be
exploited though a delta coding compression technique.uBent IDs are sorted in
increasing order, storing the first document ID in full andseguently only the differ-
ence from the previous ID, called the gap. This method is kitig efficient, and best
described through an example. Consider a we@ppearing in the following 10 doc-
uments numbered, 11, 20, 29, 36, 51,71, 77,82, 96. The wordw will be represented
through the following list:

(10;7,11,20,29, 36,51, 71,77, 82, 96)

Therefore the list for wordv contains the number of documerls in which the
term appears (10), followed by the document IDs. As the d¢ishiascending order, it
can be compressed by storing the initial complete docunignfiollowed by a list of

gaps. The list above therefore translates to the following:

48



(10;7,4,9,9,7,15,20,6,5,14)

As aresult, the original document IDs can always be retddaeobtaining the cu-
mulative sum of the gaps and allows the storage of word Istsgusubstantially fewer
bits on average. Many models are available to describe thteapility distribution of
d-gap sizes. One method available is Unary Coding and iegoboding an integer
x > 1, asxz — 1 one bits followed by a zero. For example the integaould be coded
as1110. Unary coding favors short gaps and is equivalent to assigaiprobability of
Prlz] = 27% to gaps of lengthx. This is excessively small and may not be suitable
for the compression of an inverted index.

Another efficient compression technique available is Gd@oding. Related to
Unary Coding, exponentially decreasing probabilitiessmsigned with the exponential
decay often close to one. Golumb coding is more efficient wdeuments not con-
taining the word are stored, rather than those that do. Aerted-index compression
technique based on Golumb coding is therefore suggestée &detal implementation

for most large-scale document corpora.

49



Chapter 4

Link Analysis Ranking

Algorithms

4.1 PageRank

4.1.1 Introduction

L. Page and S. Brin [PBMW98] state that “The original goal abPRank was to sort
backlinks so if there were a large number of backlinks for euthoent the ‘best’ back-
links could be displayed first”. PageRank is currently thganmfluence behind the
Google search engine and is an extension of simple citatanting. Citation count-
ing simply ranks pages based on the their number of in-linkswever this ranking
technique is susceptible to link spamming and can overlogdortant pages with only
a few in-links. Through the necessity to overcome this ktiitn, PageRank emerged
from social network analysis into an iterative ranking msgover the entire web graph.
The hypothesis underlying the PageRank algorithm is thaige pvith a large number

of in-links or a link from an important page should be deenmagdartant. Using the

50



PageRank paradigm, if a page A links to page B the importamcfecred on B by A, is
proportional to the importance of A and inversely proparéibto the number of pages

pointed to by A.

PageRank Algorithm:

Pr(i)=(1—D)+D Y Pr(j)/outlinks(;) (4.1)
JEA;

The PageRank (Pr) of a pageis the sum of the PageRank (Pr) of its in-links,
divided by the number of corresponding out-link3.is the damping factor (typically

0.85) and ensures every page receives a minimum rankifg ef D).

The PageRank algorithm can be described using the ‘randdier’'sanalogy, where
the behaviour of a archetypical person browsing the web idetedl. Starting from a
random page, the surfer will choose to follow one of the pagdiaks with equal prob-
ability, occasionally getting bored and jumping to anoth&ge completely at random.
The algorithm propagates index linkage information, repntéed in a non-negative ad-
jacency matrix with row sums equal to one or zero, often date Google matrix. The
resulting PageRank vector is used to optimize the layouhefinverted-index struc-
ture accordingly and while PageRank is query independehtamputed offline, it is

typically aggregated with other content-based scores.

4.1.2 PageRank Implementation

One important issue to address before implementing PadgRatangling-node man-
agement. A dangling node occurs when a page is linked to,dsihb out-link and a
dangling link refers to a link pointing to one of these padgesnsidering that no search

engine indexes more than approximately 16% of the web [LGOG] not surprising

51



to find that many links on a page are dangling, and can be duadader of reasons.
Possible reasons for this is that there may be restrictezsacdo the page or due to the
majority of PDF and Postscript pages having no embeddesd, ltokname but a couple.

In most datasets the number of dangling links greatly outmenthe crawled links,
with numerous methods available to counterbalance thiactelEMTO04]. Simple re-
moval of the dangling links will skew the results, as the nemdif out-links associated
with non-dangling links will have to be adjusted accordinginstead of completely
removing these pages, one can simulate a random-surfertiumpandom node with
probability 1, by adding a link from the dangling page to every other pageee
move the dangling links and reinsert them for the last fevatiens [KHMGO03, Hav99,
BMPW98].

Once the dangling links issue is resolved PageRank compugabegin with an
iterative process over the non-negative square adjaceatryxml. Initially every page
is assigned a PageRank valuelobr 1 divided by the total number of pages in the
dataset, with initial values not affecting the final valued anly affecting the conver-
gence rate [GL83]. If a pagglinks to pagei thenA;; = 1/N;, otherwised,; = 0.
The PageRank vector is computed by repeatedly multiplyiatgimA, with the vector
of the current estimate of page importance until the estnsagtable, and is equivalent
to extracting the principal eigenvector from the Markov hitatA.

The PageRank of a page is therefore acquired through ativiefixed point com-
putation, with the Power method [FKSO03] used to perform thmjgutation in most
instances. Using the Power Method, the number of iteratiegsired to achieve con-
vergence grows with the damping factor, requiring incrdasemerical precision as D
gets closer td.

Single precision computations are sufficient for the majost PageRank imple-
mentations, but across an index on the scale of modern-degtsengines (i.e. Google,

Yahoo and MSN), double precision becomes necessary [EMTO® PageRank com-

52



putation terminates in logarithmic time (time logarithnricthe size of the grapH?])
with potential for the reduction of total computation tinsailable through improved

I/0 management [Hav99, CGS].

4.1.3 Damping Factor

The web is modeled using a directed graph and the assumgtithrati it is strongly
connected, meaning every page can be reached by followikg/fiiom any other page.
In reality this is not the case and as a result a damping fdetisrincorporated in the
PageRank equation. In terms of the random surfer analogycém be viewed as the
occasion when the surfer gets bored and jumps to a page lithithataset completely
at random. The damping factor is described by L. Page andi§.[BBMW98] as
“a vector over the Web pages which is used as a source of ramake up for the
rank sinks such as cycles with no outedges”. This rank sifédcefs exhibited during
iteration when PageRank gets concentrated in recurreesstaamely loops of pages
accumulating rank but never distributing any. The valuesed forD can be any
value in the rangé < D < 1, although as the damping factor goed f¢he rank of all
important nodes goes tb A value of(0.85 suggested by L. Page and S. Brin is more
commonly used, striking a balance between achieving rapidergence with minimal
perturbation to the rankings.

The damping factor limits the effects of rank sink, ensurihg web graph is
strongly connected and consequently guarantees conwergés the damping factor
corresponds to the distribution of web pages jumped to gevédly by a web surfer, it
results in the assignment of a PageRank valud of D) uniformly to all pages, sim-
ply because they exist. The rank is passed from each pagethtbe out-links, with
one common form of link spamming involving the passing of fiaink to a single page,
therefore leading to an inflated PageRank value. The danfaatgr can be used to to

increase or decrease a site’s PageRank value, perhapdsb pususpected link-farmer

53



or to reward a favored client. Instead of the random surfeasionally jumping to a
page completely at random, personalization PageRank mayglemented. In this
case, using the ‘random surfer’ analogy the jump may be taticpkar page such as
an individual’'s home page or with equal probability to a pligen a set of topic-related

pages [BMPW98, Hav02].

4.1.4 Convergence

PageRank convergence is guaranteed provided the web grépbducible and ape-
riodic [Hav99], with the latter guaranteed for the web and trmer true with the
introduction of the previously discussed damping factor.

Numerous factors influence the rate of convergence, not tdfashich are the
damping factor and the matrix size. An increase in dampirgevdecreases the con-
vergence rate with a low damping value providing the oppotyufor spam pages to
accumulate an excessive PageRank value. The rate of cemgergan be measured
through examination of the PageRank-induced orderingeguke Kendall tau dis-
tance [Ram98], or through the more traditional L1 norm métfikkHG03, KHMGO03,
KHMG].

The rate of convergence and overall implementation timescatical for PageR-
ank implementations on web datasets where regular updegeequired, due to the
inherent dynamic nature of the web. Using the Power Metheddte of convergence
for individual pages is nonuniform, with many pages conireggjuickly and a few
pages taking much longer to converge. On a datas28@f000 nodes and million
links, Sepandar D. Kamvar et al. [KHGO03] observe that theomitgj of pages con-
verge within15 iterations, with a few (those with higher PageRank valuegyiring
over4( iterations and exploit this observation to decrease thelRagk computational
overhead by up t80%.

Using Quadratic Extrapolation, Sepandar D. Kamvar et aHj}G03] again speed

54



up PageRank computations by betw@srand300% and introduce their BlockRank
algorithm in [KHMG], to exploit host structures. A local Relgank vector is computed
for each host, giving the relative importance of pages withhost, and is then used to
provide an approximation of the standard PageRank veciibrymost hosts converging
to an L1 residual <0~! in less thanl2 iterations. No correlation between the con-
vergence of a host and the host’s size is observed and habtstwing nested block
structures appear slower to converge, when compared te thits a more random

connectivity pattern.

4.1.5 PageRank Merits and Demerits

One of the main benefits of PageRank is its resistance tofiaknging. This is due to
the fact that it is very difficult for a web page author to obtailink from an important
page, unless the page contains information of interesteartiportant page author.
Through the introduction of link farms and reciprocal linfbograms, PageRank is not
immune to spamming. The query independent nature of PadgeiRavever, combined
with the fact that the PageRank vector is computed over thiecemeb graph makes
the algorithm less susceptible to localized link spam thieolink analysis ranking
algorithms such as HITS.

Another benefit of the PageRank algorithm is that the damfaiotpr is not fixed
and may be used to bias the algorithm to a particular pagegasralated to a particular
topic (Personalization PageRank). For example, as prsliomoentioned, the damping
factor may be set to a user home page or bookmark list to béaalgorithm towards
pages of a similar topic [Hav02, JWO03]. However the drawbafckuch an implemen-
tation is the computation time involved in generating thdtiple PageRank vectors,
that correspond to various teleportation vectors for déff topics [KHMGO3].

Overall, the main weakness of the PageRank algorithm iabiiity to differ-

entiate between pages that are authoritive in general agespghat are authoritive in

55



relation to a particular query. As a result, a page with a lfiggeRank value that con-
tains a query word, but is not relevant to the user query, neagturned in a prominent
result-set position. This is due to the fact that the PagkRégorithm is query inde-
pendent and therefore not influenced by the user query.

For example consider a hypothetical situation involving tweb pages and the
query word ‘Jaguar’. Examination of the page contents fevitat both the Yahoo
homepage and Jaguar.com contain the query word. In thistbas¥ahoo home-
page occupies a more central position in the web graph tredabuar homepage,
and will therefore be returned in a more prominent resultggsition for the query
word ‘Jaguar’. From figure 4.1 we can see that the Yahoo siekiar twice as many
links as the Jaguar site and is more likely to obtain a higlageeRank value. This is
due to the fact that PageRank is assigned based on globattampe, rather than local
importance and as a result the Yahoo site will obtain a higtagreRank value. It is
suggested, however that the Jaguar page is more relevdr tpuery due to the fact
that it's inlinks are all topic related. In an attempt to reduhis effect the PageRank

score is usually combined with a content score (and additiscores) at runtime.

QQ@ /

@

Figure 4.1: Example of Global Importance Vs. Local Impoc&n

56



No bias towards topic-related links exists for the PageRagkrithm and it is
suggested that a link from a topic-related page should caong weight. This intuition
is based on the idea that a link to a page from one of its peboeajtshould be viewed
as more important than a link from an author whose page idateckto the topic of
the page in question. This is the fundamental principalgtie QD-PageRank and
subsequently the EQD-Rank algorithm.

4.1.6 PageRank Example

To demonstrate the computations involved in a PageRankemmgtation, we calcu-
late the PageRank vector for the web graph consisting ofsvebdes and twenty eight

links, displayed below:

DEONOEaS
SRS
N\
N
B

Figure 4.2: Sample Dataset Graph for PageRank

The square adjacency matrik is thus created, based on the connectivity infor-

mation displayed in figure 4.2. Rowof the matrix corresponds to the page row

57



11 corresponds to pagk, with all intermediate rows representing the pages fidm

to K sequentially. Instead of creating a sparse bit matrix, wibh row entry 4,;)

represented by either@or 1 divided by the number of out-links, only out-links are

represented, divided by the total number of out-links.

2
0/3
0/3
1/3
1/4
1/4
2/3
3
3/2
4/2
5
10

2/3
5
4/3
5/4
2/4
11/3

4/2
5/2

3/3

7/3
8/4
4/4
12/3

4/3

9/4
6/4

From the matrixA above we can see that the out-links for each page are repre-

sented in row$) to 11, divided by the total number of out-links for that row. Tagin

pageFE as an example we can see that its four out-links, pdges, I, and.J are all

represented in row four, divided by the total number of dnitd associated with page

FE. Inits current state matrixd is stochastic, due to the fact that each node has at least

one out-link. However, consider a situation where a pagh wit out-links is intro-

duced and represented by r@d: This would result inA becoming non-stochastic and

would result in the necessity for every zero entry in ribeing replaced with /13.

Matrix A is however reducible and results in the introduction of tamding factorD.

As a result, matrixA is now stochastic and irreducible and following iteratidrttee

PageRank algorithm (equatidnl), we obtain the following PageRank vector:

58



PageRank vector
2.2 T T

' PageRanlz —

1.8
16
1.4
1.2

PageRank

0.8
0.6
0.4
0.2 1 1 1 1 1

Page No.

Figure 4.3: PageRank Vector

The result is a PageRank vector with values ranging from aimmam of 2.07 to
a minimun of0.32. In this case pag€’ received the maximum value with pages
and E next in order. This can be attributed to their central laatvithin the web
graph. Pagd. receives the lowest ranking and can be attributed to théaspliink

from ‘unimportant’ pagé-.

4.2 Query Dependent PageRank

The fundamental premise underlying link analysis rankitlggp@athms is that a link
from page A to page B, is a recommendation of page B, by theoaoftA. Therefore
should page A be considered query relevant, intuitivelylithie from page A should
be weighted more heavily than a link from a query-irreley@ge. A query-dependent
ranking algorithm can focus specifically on the topic comityuand disregard irrel-
evant links. As a result, a page deemed important within tthpgéc community and
thus by its peers, is more relevant than a page deemed impadss the entire web.
Consequently, M. Richardson and P. Domingos [RD02] intoedhe user query to the
previously query independent PageRank algorithm. The thygsis underlying Query
Dependent PageRank (QD-PageRank) is that a page with numigrdinks or a link

from an important page within the topic community, is morgartant than a page

59



with numerous in-links or a link from an important page witlhe entire web. The

QD-PageRank algorithm is therefore an augmentation ofistahPageRank.
QD-PageRank algorithm:

QD-PR(i) = (1 D) + D > QD-PR(j) /Outlinks(;) (4.2)
JEA;
The QD-PageRank (QD-PR) of pagés the sum of the Query Dependent PageRank
(QD-PR) of its in-linksA;, where bothi and j are query relevant, divided by the
number of their corresponding out-links. The damping fadids typically 0.85 en-

suring every query-related page receives a minimum raringl5.

Using the 'random surfer’ analogy, when the random surfethisosing from multi-

ple page out-links, only those deemed query relevant arsidered. When the surfer
makes a random jump, it is random only within the set of quetgvant pages. Query
irrelevant pages therefore exert no influence over the fanating values and are as-

signed a ranking of zero.

4.2.1 Implementation

A preprocessing stage to determine page relevance is eggb@fore QD-PageRank
can be implemented. Every page in the index is assignedwarale score based on the
user query, with numerous ranking metrics available tordstee this relevance (e.g.
TFIDF [SL68], Latent Semantic Indexing [DF188], or Probabilistic Latent Semantic
Indexing [Hof99]. Pages with a relevance score above somgepermined threshold
are included in the subgraph, through which the QD-PageRkydithm will iterate.
Every relevant page is assigned an initial QD-PageRanleail, with all other pages
assigned a value of Therefore in the square adjacency mattixepresentation of the

subgraph, if a pagg links to pagei, and both are relevant thetu; = 1, otherwise

60



Aij = 0.

The issue of dangling nodes must be addressed for the suhgrib a link from
the dangling node to every other node introduced. Also tamnthat the matrix is
irreducible and to prevent rank sink, the damping factopigliad. The QD-PageRank
values are computed next by simulating the repeated muhign of the adjacency
matrix for the query-related subgraph, with the vector ef thirrent estimate of page
importance, until the estimate is stable and is equivalergxtracting the principal
eigenvector from matrix A.

Each QD-PageRank value is computed through an iterative fixént computa-
tion using the Power method [GL83], with the number of itenas required to achieve
convergence dependent on query broadness and subsedbersize of the subgraph.
Single-precision computations are sufficient for the cotapaon of the QD-PageRank
vector for all words in our lexicon. The computations teratain logarithmic time
(time logarithmic in the size of the graph) with potential the reduction of com-
putation times available through various algorithmic spap techniques [KHGO0S3,

KHMGO03, KHMG, Hav99].

4.2.2 Strengths & Weaknesses

The primary benefit of QD-PageRank is that pages that arevast but authorita-
tive in general no longer dominate. However, as typicalcd®eangine users are pre-
pared to wait at most betwedd and 20 seconds, calculation of the ranking values
for pages in the query-related subgraph is not feasibleinvithis time bound. M.
Richardson and P. Domingos suggest the computation anagstaf QD-PageRank
values ‘a-priori”, with computation and storage requirements stated asnagap-
proximately100 times that of standard PageRank. Despite the somewhatrvatige
nature of these figures, the infinite number of possible wamiess the different lan-

guages means QD-PageRank cannot be implemented by modech sagines. One

61



possible method to address this shortcoming is the compntet QD-PageRank val-
ues for a limited number of popular queries, in a similar n&radopted for the Hilltop
algorithm [BMO1].

When the user query is very specific the resulting topic comitpumay be sparse
and the ranking algorithm becomes less effective. For sugiaase community the
algorithm will be highly susceptible to localized link sparesulting in a preference
for a standard PageRank implementation.

The main drawback of a QD-PageRank implementation is thepatation time.
These times, however are minimized through the fact that query-relevant pages
need to be considered and results in a decrease in the QIR&algeomputations. The
number of query relevant pages can be reduced through ttstraion that if the word
does not appear in the document, the document is autontatiesdmed irrelevant and
through a threshold on the content-based retrieval score.

The overall computation times are proportional to the nunobeocuments in the
subgraph. The overall time will require, a factor$)fN times the computation of the
guery independent PageRank vector, witllefined as the number of relevant pages
andN defined as the number of corpus pages. On average the QD-Bargutations
require0.75 x S/N, with potential for further improvements arising througk &bility

of some of the smaller sub graphs to now fit into memory, elatiing costly disk seeks.

4.2.3 QD-PageRank Example

To demonstrate the computations involved in a QD-PageRaplementation, the QD-
PageRank vector is computed for the web graph consistingad¥¢ nodes and twenty

eight links, displayed below:

62



DEONOECE
R
N
v
B

Figure 4.4: Sample Dataset Graph for QD-PageRank

This is the same as the web graph from the PageRank examples(A¢gR) with
the addition of node-relevance classification. In figurenbdesA, B, C, E, andF
are deemed relevant, with interconnectivity displayedgdlack arrows. All other
links are extraneous, therefore excluded, and represasied white arrows. Once the
relevant nodes and links are identified, the next stagewegahe creation of a square

adjacency matrix for the sub graph. The mattixherefore consists of five rows:

2
0/3 2/3 3/3
A=10/2 4/2
1/2 4/2

| 1/3 2/3 3/3 |

From matrix A we can see that each row displays the out-links associatéd wi

each query-relevant page divided by the number of out-lidlgain for this example,

63



if a hypothetical sixth row existed containing no out-linksery zero entry in the row
would be replaced by/6. As with the standard PageRank example the damping factor
of D = 0.85 is introduced, eliminating reducibility. The matrik is stochastic and
irreducible and QD-Pagerank algorithm (equation 4.2) enpntation results in the

following QD-PageRank vector:

QD-PageRank vector

0.9 T T T T
QD-PageRank —+— |

PageRank

Figure 4.5: QD-PageRank Vector

The result is a QD-PageRank distribution ranging from a maxn rank value of
0.84 to a minimum value 0).348. In this case only five pages are deemed relevant
to the query and as a result all other seven pages have a rgkofazero. Page®
and F obtain the minimum ranking value in this instance, with pagebtaining the
maximum value, attributed to the fact that three out of itgimal four in-links are

query relevant.

4.3 Estimated Query Dependent PageRank

4.3.1 Introduction

The problem with QD-PageRank is its inability to be perfodnad runtime, due to
the necessity of creation of the query-related subgraphrefion an estimation of

the QD-PageRank vector and a similar rank ordering, we dioite a result-set post-

64



ranking refinement, based on local graph-traversal. EQBkR&oids the creation
of the query-related subgraph through a manipulation ofthgeRank values. The
difference between QD-PageRank and EQD-Rank is that theéngmector is created

at runtime instead dfa-priori ”, with experimentation revealing an average relevance
increase of 21.26%.

As discussed previously, the PageRank of a page is based anttiber and impor-
tance of the pages linking to it. QD-PageRank is assignedim#ar manner, with the
additional constraint that pages are also query relevdrd.PageRank vector is there-
fore representative of the PageRank contributions (TheRagk value divided by the
number of out-links, with the result multiplied I8y85) of relevant and non-relevantin-
links. Through EQD-Rank a type of PageRank reverse-engimgms suggested, with
the PageRank contribution of non-relevant in-links reneyeoviding an estimation
of the QD-PageRank values at runtime. The EQD-Rank alguonigitherefore:

EQD-PR Algorithm:

EQD-PR(i) = PR(i) — D )  PR(j) /Outlinks(;) (4.3)
JEA
Where A; is the set of relevant pages, the EQD-PR of a paigehe PageRank (PR)
of pagei minus the PageRank contribution of non relevant pggesth the damping

factor (D) applied.

Implementation

The EQD-PageRank process begins with the computation d?délgeRank vectora-
priori”. Subsequently a query-relevance vector is computed gir@icontent-based
retrieval metric such as TFIDF, Latent Semantic Indexing?mbabilistic Latent Se-
mantic Indexing.

All pages falling below some relevance threshold are assigm EQD-Rank of,

requiring no further processing. A non-zero EQD-Rank vadudben assigned exclu-

65



sively to all relevant pages, based on a traversal of thé ¢peph associated with each
page. The depth to which this local graph is traversed igrargiand dependent on the
maximum time a user is prepared to wait for result-set coatipih (between 0 and20
seconds).

The EQD-Rank (equation 4.3) is implemented across the sgteyl/-related pages.
Computation of the EQD-Rank score begins with an examinatfdhe immediate in-

links to a page. For example, consider a dataset with the tiwdesA, B andC.

()
h
\@

Figure 4.6: A Simple 3 Node Graph

In figure 4.6, black arrows link relevant-pages and whitews symbolize a link
either to or from a non-relevant page. When determining ab#@geRank score for
pageB we examine it's in-links, paged4 andC. From the graph it is therefore evident
that in-link C'is relevant andi is irrelevant. As a result the PageRank contribution of
pageA (0.85 (Pr(A)/Outlinks (A))) is removed from the PageRank of paBie As
C'is also query relevant it's rank contribution is not remofredn pageB.

In the event that all in-links to a page are relevant, the BRdAMk and standard
PageRank value will be equivalent. At the other extremege péath no query-relevant
in-link will obtain an EQD-PageRank ¢l — D). A page with only query-relevantin-
links, may however have EQD-Rank and QD-PageRank valuediffex significantly.
This occurs when the PageRank value of an in-link is compéreed the rank contri-

bution of a majority of non-relevant pages. This promptsifer examination of the

66



relevance of the pages linking to each in-link, to increas®tion accuracy.

N-Depth Traversal

Each time the in-links to a page are examined, the depth dfdkiersal is increased by

1. Therefore when the initial in-links of a page are examirgadyith the example from
figure 4.6, the depth of the traversal) is one. To increase the accuracy achieved, fur-
ther in-links may also be examined. When computing the EQIDK0f pageB, the
inlinks of pagesA andC' may also be examined, resulting in a traversal with a depth

of two.

Figure 4.7: Example of N-Depth Traversal

From figure 4.7 we can see that padds linked to by paged, E, andC and
that pageC' is linked to by B, F andG. As pageA is deemed irrelevant there is no
need to examine it’s in-links, due to the fact that the tomy#Rank contribution of
A is removed fromB. PageC is deemed relevant therefore with = 2, the in-links
of C are also examined. In this case pagkandG are relevant, with¥' classified as
irrelevant. Therefore the PageRank contributiorfois removed from the PageRank

of C, and subsequently leads to the removal of further rank fragep.

67



Therefore whenV = 2, not only the relevance of the in-links to a page, but also
the relevance of the in-links to the in-links, affect the E@&nk of a page. The re-
sulting distance between the EQD-Rank and QD-PageRankregstreduced. This
is due to the fact that the local-graph traversed is clossize to the query-relevant
subgraph used to calculate the QD-PageRank vector. Thé déple traversal can
continually be increased in this manner until the EQD-Rae&ter is composed ex-
clusively from the PageRank contribution of relevant pades therefore suggested
that N be increased until a sufficient level of accuracy is achiewdithin a reasonable

time-bound.

4.3.2 Characteristics

EDQ-Rank exploits the large number of community structymessent in the global
haphazard structure of the web. The connectivity inforaratwithin these communi-
ties is currently not fully exploited by the PageRank altjori, due to the equal treat-
ment of query relevant and irrelevant links. To demonstitsitenotion it is therefore
suggested that if a page is related to science, examindtibie ink structure between
the science community pages will return a better measureagé pmportance, than
examination of the science page in relation to the globatstre.

The effectiveness of EQD-Rank is dependent on the breadtteafser query and
therefore on the size of the subgraph. The accuracy of timaa#in does not decrease
for a more specific query, but if the query is too specific, tize sf the relevant sub-
graph can be very small and potentially result in the indosif less relevant pages
in the result set. When the query is highly specific, EQD-Riarddso susceptible to
localised link spamming. For example if a webmaster createst of web pages, all
related to a specific topic, and points all out-links to onlevant page, using QD-
PageRank and subsequently EQD-Rank, the page receivegambiated value. This

effect is present also for standard PageRank but is not aalpre due to the global

68



nature of the algorithm. To counterbalance this effects iliggested that when the
number of relevant pages falls below a predefined threslioddstandard PageRank
algorithm be implemented.

A strength of EQD-Rank is that the closer the traversal déptbne, the greater
the affect of the in-link examination. In other words, th&etience between the rank
orderings at a depth of five and four will be much less significhan the difference
achieved at depths of one and two. This characteristic isifgignt, due to the fact
that the computational cost increases considerably with &arther layer of inlinks

examined.

4.3.3 EQD-Rank Example

The calculation of the EQD-Rank vector is best describedutin an example. For
consistency we select the same web graph used in the PagaRdr®@D-PageRank
examples. The graph therefore consists of twelve nodesnarigpm A to L and

twenty eight links.

69



DEONOECS
R
N
v
B

Figure 4.8: Sample Dataset Graph for EQD-Rank

After a user query is input and some relevance techniquepkeimented, we state
that the pages!, B, C, E and F' are relevant and that pagés G, I, J, K andL
are irrelevant. Once more, links to relevant pages areaiispl using black arrows and
links to or from non-relevant pages are displayed usingendnitows. Initially the set of
irrelevant pages are automatically given an EQD-Rank dfhe PageRank values for
each relevant page are then manipulated using the EQD-Raakligm, estimating the
query-dependent values, and therefore avoiding creafithredopic-related subgraph.
From the standard PageRank example in section 4.1.6, we kmivwhe PageRank

vector is:

70



PageRank vector
2.2 T T

' PageRanlz —

1.8
16
1.4
1.2

PageRank

0.8
0.6
0.4
0.2 1 1 1 1 1

Page No.

Figure 4.9: PageRank Vector

Using EQD-Rank forNV. = 1 with a depth traversal of, the relevance of the in-
links of pagesA , B, C, E, andF are examined. Taking pagé as the example the
relevance of in-linksB andC are examined. In this case both pages are relevant and
therefore no further computation is required. TherefoeeEQD-Rank value for page
A, with N = 1, is the same as the standard PageRank value. With the depdhteq

one the EQD-Rank vector is:

EQD-Rank Vector for depth=1
2 T T

"EQD-Rank —+—

EQD-Rank
1

8 10 12

Figure 4.10: EQD-Rank at a Depth of One

For N = 2, again inlinks of pages!, B, C, E, and F' are examined, with the
additional constraint that the inlinks of their inlinks aiso examined. Taking page

as the example again, the relevance of inlidkandC' is examined. Both in-links are

71



deemed relevant and therefore the relevance of the in4mksth these pages is also
examined.

PageB has an in-link from pageB, E, andF'. In this instance pages andF are
relevant and pag#® is irrelevant. Therefore the PageRank contribution of pAgs
removed from pagé. The ranking contribution removed @885 (0.962/3) resulting
in a total removal 0f).2725 from the PageRank aB. This drop in rank of pag®
will in turn be passed on to pagé To determine the total rank to be removed fradm
we divide this drop in rank by the number of out-links asstedavith B and multiply
the result by0.85 to take into account the damping factor. This results theorahof
0.0579 from the rank ofA.

Next the in-links of pag€’ are examined, namely pagéand page~. In this case
pageF is relevant and pag€ is irrelevant. Therefore the PageRank contribution of
pageG will be removed from pagé€'. In this instance the contribution to be removed is
0.85(0.590/3), resulting in the removal af.167 from the PageRank value of page
Therefore this drop in rank will in turn be passed on to pdgdo determine the total
rank to be removed from, we divide this drop in rank by the number of out-links
associated witiC' and multiply the result by).85 to take into account the damping
factor. This results in a total removal @071 from A.

The result of a depth 2 traversal for padeis that a total 0f).0579+0.071 must
be removed from its PageRank value resulting in an EQD-Rahlewof1.1722. The
resulting EQD-Rank vector is displayed in figure 4.11:

72



EQD-Rank

18

EQD-Rank Vector for depth=2

'EQD-Rank —+— |

Figure 4.11: EQD-Rank at a Depth of Two

Page No.

73

8 10

12



Chapter 5

Experimental Analysis

5.1 Introduction

The distribution of rank within the dataset for the threelamalysis ranking algo-

rithms is examined in this chapter, along with a justificatfor rank accumulation

within certain areas of the dataset graph. Convergence aa¢cthe subject of the first
section, focusing on the PageRank and QD-PageRank algaritnd the relationship
between the convergence rate and the number of dataset pdg@gxamined are the
EQD-Rank computation speeds and the potential tradeoffdeat the accuracy of the
induced orderings and the computation time.

In the second section the distribution of PageRank as théoeupf dataset pages
increases is analyzed, along with the global datasetialision. Also observed is the
effect a hierarchical structure has on the distributionagéRank within an individual
host.

The rank distribution induced using the QD-PageRank and HRabk algorithms
is considered in the third section. For QD-PageRank we exarhithe self-similarity

of the web [DKM*"01] is exhibited in the dataset and also measure the cdmelat

74



between PageRank and the In-Degree. The distribution &fganerated using EQD-
Rank within the dataset, the affect cohesive-communitgretnnectivity has on the
amount of rank removed, and the correlation between thenemkved and the depth
of the EQD-Rank traversal, are also analyzed.

The different content-based document selection metriadadble to assign a rele-
vance ranking, such as TF*IDF and Latent Semantic IndexXu®j)( are highlighted
in section four with a discussion of the merits and demefitsodh. The final section
presents a discussion of the rank-ordering similarity mesaselected to compare the

induced result-sets.

5.2 Rates of Convergence

The rate of convergence for PageRank is ascertained witihigraphs, cohesive com-
munities, and on a global scale in the following section hwite following test for
convergence:

XD - X P10 < 1073

The total rank in the dataset is measured following eachtitar and a comparison
is made with the total rank from the previous iteration, wéttnvergence achieved

when the difference is less than three significant decimiaitpo

5.2.1 PageRank Convergence

The global PageRank vector is computedbriterations, a graph of which is displayed

below:

75



Rate of Convergence for Entire Dataset
1e+06

Total PageRank —+—

PageRank

100000 L
1 10 100
No. of Iterations

Figure 5.1: PageRank Convergence

Analysis reveals that after 12 iterations the majority of@mhave converged and
that following 18 iterations rank ordering is establishdthe last seven iterations do
not effect the rank orderings and it is therefore suggestatdan optimal test for con-
vergence would measure the rank orderings (Kendall Tasteaal of the rank values.
The rate of convergence achieved is comparable with thatiof &d Page [BP98],

where convergence on a 322 million page dataset is achieltieth\B2 iterations.

5.2.2 QD-Rank Convergence

The rates of convergence within cohesive communities, rgéee for queries rang-
ing from broad to narrow specificity, are also evaluated. Thevergence rates are
highlighted for the communities generated using the qaésigopping’, ‘football’ and
‘physics’. The number of iterations required is small in garison to the number re-
quired to achieve convergence across the entire datagetodine decreased intercon-
nectivity. The rate of convergence for these three quesidssplayed in the following

three successive graphs:

76



Rate of QD-PageRank Convergence for 'shopping’ community
9750 T T
9700
9650
9600
9550
9500
9450
9400
9350
9300
9250 1 1 1 1 1

' Total QD'-PageRankI —

QD-PageRank

No. of Iterations

Figure 5.2: QD-PageRank Convergence for ‘shopping’ comitpun

Rate of QD-PageRank Convergence for ‘fooball’ community
4740 T T

' Total ('QD-PagéRank —
4720

4700

4680

QD-PageRank

4660

4640

4620 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

No. of Iterations

Figure 5.3: QD-PageRank Convergence for ‘football’ comityun

Rate of QD-PageRank Convergence for 'physics’ community
2026 T T
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006

' Total QD'-PageRankI —

QD-PageRank

15 2 25 3
No. of Iterations

Figure 5.4: QD-PageRank convergence for ‘Physics’ comtyuni

77



The rate of convergence within the 'shopping’ community ispthyed in figure
5.2 and illustrates that the final QD-PageRank vector is adetpwithin six iterations.
This expeditious rate of convergence, for a community dairtg 60, 886 pages, can be
attributed to the fact that a relatively moderate amouninddsl are present, totaling of
69, 781. As the specificity of the query increases the rate of corerrg also increases,
as illustrated in figures 5.3 and 5.4. The convergence witierifootball’ and 'shop-
ping’ communities is achieved within four and three itavat respectively and can be

attributed to the low level of interconnectivity within theecohesive communities.

5.2.3 EQD-Rank Computation times

The “Achilles heel” of the QD-PageRank algorithm is the iitigbto compute the QD-
PageRank vector within real-time, following the obtainmefthe user query. Subse-
quently the EQD-Rank approximation algorithm is introddigaroviding the relevance
obtainable using QD-PageRank within real time speedsalt@mmon consensus that
a typical search engine user is prepared to wait at most leetd@ and 20 seconds for
the result set and therefore EQD-Rank must be implementetién this time span.
The current average computation times for thirty query wanek displayed in the table

below:

Algorithm QD-PR| EQD-L1 | EQD-L2 | EQD-L3
Computation Time (secondsg) 217 24 30 36

Table 5.1: Computation Times Using EQD-Rank

From the graph above it can be observed that an 83 % decrethsesnerage com-
putation time is introduced using EQD-Rank at a depth ofghwvi¢h the figure increas-
ing to 89 % at a depth equal to one. The average computati@staurrently range
between 24 and 36 seconds, using a naive implementatidegstrdt is suggested that
the implementation of algorithmic optimization techniqueould reduced these figures

drastically. A refinement of the number of pages qualifyingdohesive-community

78



selection could be introduced, using a threshold basedendhtent-based relevance
score (see section 5.4) and consequently lead to a furtthectien in the computation
speeds. This is an area of future research and it is suggstiegsing the techniques

discussed above, real-time computation speeds can bevadhie

5.3 Rank Distributions

5.3.1 PageRank Distribution

In this section we evaluate the change in PageRank distiibat dataset variables are
varied. Initially the number of dataset pages is varied tilifate the characterization
of the degree of distribution change. Individual host disttions are also analyzed to

ascertain if any abnormal deviation is introduced.

PageRank Distribution within Corpus Subsets

A subset containing 10,000 pages is examined initiallyveduate the PageRank dis-
tribution. Construction of the subset involves the setattif one out of every hundred
dataset pages, therefore preventing the presence of arcbigiages from one partic-

ular site or host. The inherent distribution is displayelbive

PageRank Distribution for subset of 10000 pages
10000 T

PageRank —+—

1000 F E

No. of pages
=
o
o
]
d

l ! 1
0.1 1 10

PageRank

Figure 5.5: PageRank Distribution for 10,000 Pages

79



This subset contains an interconnectivity2d®6 links, with only 659 of the pages
receiving an inlink and therefore explaining the small mang the distribution of
PageRank. Despite this low interconnectivity the distidouis power law with an
exponent of 2.1, with the vast majority of pages receivingnalsPageRank value and
a few receiving a high value (with respect to the majorityfisTdistribution is symp-
tomatic of power-law scaling and can be attributed to a “geh richer” mechanism
called preferential attachment. As the graph grows the gty that a node will
receive an increase in PageRank is proportional to the ahudlrageRank it already
has. In order to examine if the distribution pattern is cstesit across datasets of varied
size we, also analyze the PageRank distribution within aetuii100, 000 pages.

The subset of pages is generated by selecting one out ofevepgages to minimize
the influence of one or two individual hosts. The distribntiwithin this dataset is

displayed below:

PageRank Distribution for subset of 100000 pages
100000

' PageRank —+—

10000

1000 F

No. of pages

100 F

10

1

0.1 1 10
PageRank

Figure 5.6: PageRank Distribution for 100,000 Pages

The interconnectivity in this instance is significantly gier, consisting 0f30, 984
links. From figure 5.6 it can be observed that the distrilbutsopower law with best fit

exhibited for an exponent @f1 once more and is due to the “rich get richer” behaviour.

80



Global Distribution

The global PageRank distribution within the total dataseisisting of1,023, 285

pages and2, 496, 560 links is displayed in the log-log plot below:

PageRank Distribution for Entire DataSet
1e+06 T

lli’ageRank —
100000

10000

1000

No. of Pages

100

10

1

100

PageRank

Figure 5.7: PageRank Distribution for Entire DataSet

Analysis of figure 5.7 reveals that the the distribution aflkk@anges from a mini-
mum of0.15 to a maximum 089.13, with the minimum value representative of pages
not linked to from other pages within the dataset. Using thadom surfer’ analogy,
these are the pages that the random surfer can reach thrgagd@m jump, but not
by following the page out-links. The power law tail illusted in this graph charac-
terizes not only the PageRank distribution but also the eotivity of many naturally
occurring network distributions, research paper citajonovie actor collaborations,
and United States power grid connections [PBR]. The distribution of PageRank is
once more power law with best fit exhibited for an exponert of

We therefore conjecture that irrespective of the dataget #ie PageRank distribu-

tion is very well approximated by the functigiPR(z) = k)) oc k=21

PageRank Distribution within a particular Host

To examine the influence of a hierarchical structure on tlgeRank distribution, the

distribution among pages downloaded framazon.conis measured. The dataset

81



consists 0f)092 pages and figure 5.8 shows a significant deviation from thbajlo
PageRank distribution. This is due to a structure that isgleat with many internet
websites The structure is comprised of a home page that is heavilgdrtk and sub-
sequent pages that are linked to less heavily as the deplie Gfite increases. In the
case ofamazon.conthe interconnectivity consists a3, 544 links with an average of
30 links per page. PageRank values range betwethand5.83, with the maximum
value assigned to@ontact upage that receives a total @37 inlinks. Considering the
relatively small dataset size, the diversity among the naalies is significant, and is
affiliated with the large amount of interconnectivity andttarger extent the hierarchi-
cal structure of the site. The PageRank distribution in itgance is power law and
concurs with [PFEE02], where it is suggested that within competing pages o$tmae

type, this rich get richer distribution is not as prevalent.

j aval/ host Di strifbuti on. ps not found!

Figure 5.8: PageRank Distribution within subset of Amazom

5.3.2 Inlink Distribution

The dynamics of link accumulation can strongly influence petition on the web and
therefore leads to the necessity of global dataset In-[Reghnaracterization. The In-

Degree distribution is therefore computed and displayéalbi a log-log plot:

82



Inlink Distribution for Entire DataSet
le+06 T T

Inlinf<s —
100000

10000

1000

No. of Pages

100

10

irﬁ

1 10 100 1000 10000 100000
No. of Inlinks

1

Figure 5.9: IN-Degree Distribution for the Entire DataSet

This distribution is in strong agreement with previous wehblgsis experimentation
[KRRT99, BM01, Hav02] and similar to PageRank distributigmvery well approx-
imated by the functiop(In-Degreéz) = k)) oc k=2-1. This distribution is another
example of the “rich get richer” mechanism, with the majoof pages receiving a
few inlinks and a small percentage of pages receiving theritgjenough to skew the
mean well above the median. The number of inlinks to a pagiewhing insufficient
as a measure of relevance due to a high susceptibility tsfiaknming, can be used as

an indication of page importance.

5.3.3 QD-PageRank

In this section we analyze the distribution of PageRankiwitohesive communities
of web pages as opposed to the global distribution acrossauof pages related to
a diverse set of topics. Initially the distribution is exad for six queries of varied
specificity to provide a cross section of the PageRank Higign. The distribution

of In-Degree is also examined in the following section. Thethe third section the
correlation between PageRank and In-Degree is evaluatede ffinal section we look
at the amount of PageRank obtained by the top k percent, asyitw@ave implications

for the compression of the inverted index.

83



QD-PageRank Distribution

Cohesive collections of web pages (query-related subg)ayk examined in this sec-
tion, for numerous queries ranging from broad to narrow igég. The communities
induced for two queries of broad, medium and narrow spetyifanie analyzed in this
instance. Various community attributes are also examinednge attempt to ascertain
if cohesive-collection PageRank distributions mirror ¢ihabal distribution.

Induced distributions for queries of broad specificity atamined initially with the
query words ‘shopping’ and ‘games’ selected. The corredpmnPageRank distribu-

tions are displayed below:

QD-PageRank Distribution for query word 'shopping’
100000

' QD-PageRank —+—
10000 f E
1000 -
100 F E
10 ¢ -
) ot
1 1

0 10

No. of pages

QD-PageRank

Figure 5.10: QD-PageRank Distribution for the ‘shoppingh@munity

QD-PageRank Distribution for query word 'games’
100000

' QD-PageRank —+—
10000 f E
1000 -
100 F E
10 ¢ -
) 1 ,
1 1

0 10

No. of pages

QD-PageRank

Figure 5.11: QD-PageRank Distribution for the ‘games’ Camity

84



The distribution of QD-PageRank for a ‘shopping’ cohesiemmunity consisting
of 60, 886 pages, is displayed in figure 5.10. The community represed®éso of the
dataset pages and contains an interconnectivigpof81 links. The total amount of
QD-PageRank distributed within this communityiz’5.94 with values ranging from
a minimum of0.15 to a maximum 0f0.979. The distribution of QD-Rank within
the ‘games’ cohesive community is displayed within Figurel5with the number of
community pages in this instance equab® 023 and the number of intercommunity
links equalst0, 237. The distribution of QD-PageRank is power law with exporgt
for both queries of broad specificity.

A significant reduction in the community interconnectivi¢yintroduced through
gueries of medium specificity to evaluate if the power lawtrdiation is preserved.
The query words selected in this instance are ‘footaball momputers’ with the

respective distributions displayed below:

QD-PageRank Distribution for query word 'football’
100000

QD-PageRank —+—

10000

1000 F E

100 F E

No. of pages

10 E

T 1
0.1 1 10
QD-PageRank

1

Figure 5.12: QD-PageRank Distribution for the ‘footbalb@munity

85



QD-PageRank Distribution for query word 'computers’
100000

QD-PageRank —+—

10000 ¢ E

1000 F E

100 g E

No. of pages

10 F E

1 1
0.1 1 10
QD-PageRank

Figure 5.13: QD-PageRank Distribution for the ‘comput&smmunity

For the ‘football’ and ‘computers’ communities it can be eb&d that the distribu-
tion remains consistent, although on a somewhat smallég.s€ae community sizes
in this instance arg0, 622 and32, 440 with inter-connectivities o018, 229 and21, 712
respectively. This distribution is again power law with erent2.1 despite a reduc-
tion in the community size of an average of over 44%. It isé¢fane suggested that the
PageRank distribution is immune to query specificity andseghently community-
interconnectivity.

To reinforce this hypothesis we evaluate the distributidthivw cohesive commu-
nities of low connectivity. The communities are generatétth the narrow specificity
query words ‘physics’ and ‘biology’, with the PageRank disitions displayed below

in the log-log plots:

86



QD-PageRank Distribution for query word 'physics’
100000

QD-PageRank —+—

10000 ¢ E

1000 F E

100 g E

No. of pages

10 F E

1 1
0.1 1 10
QD-PageRank

Figure 5.14: QD-PageRank Distribution for the ‘physicsroaunity

QD-PageRank Distribution for query word ’biology’
100000

QD-PageRank —+—

10000 g E

1000 F E

100 g E

No. of pages

10 F E

1 T 1
0.1 1 10
QD-PageRank

Figure 5.15: QD-PageRank Distribution for the ‘bioclogyhamunity

The ‘physics’ and ‘biology’ communities in this case, catsiof 13,329 and
11, 382 pages and, 582 and3, 165 links respectively. In these cases the connectivity
is extremely low with a large proportion of the nodes isadateceiving no inlink and
therefore receiving a PageRank valueg)df5. The tail in these distributions is steeper
than with previous distributions and it is conjectured ttds is related to the signifi-
cant decrease in the number of community in-links, althaibhghcorrelation between
the number of inlinks and the QD-PageRank of a page has yet ésdessed.

PageRank distribution analysis within cohesive commaesitif web pages of vary-
ing size, results in the following premise. Within commiastof varied interconnec-

tivity the distribution can be characterized though thection p(QD-PRz) = k))

87



o k=21, In extremely low connectivity cohesive communities alslideviation from

this premise is experienced and the rich get richer effenpiss prevalent.

Distribution of IN-Degree

The distribution of In-Degree within cohesive communifgevaluated in this section.
Suggested by [DKMO01] is that global dataset properties are preserved at caritynu
level and we ascertain if this is the case for In-Degreeibigtion. The global distri-
bution of In-Degree is power law with best fit exhibited forexponent oR.1. If the
self-similarity premise applies at community level, théenent distributions should
follow the same distribution pattern. The cohesive commiesithat we focus on are
the two broad, narrow and specific query communities fronptegious experimenta-

tion, the In-Degree graphs of which are displayed below:

Inlink Distribution for query word 'shopping’

10000 T
Inlinks —+—
1000 F -
[}
(]
j=2]
[
S 100F E
o
S
=4
10 k r
l 1
1 10 100 1000

Inlinks

Figure 5.16: In-Degree for the ‘shopping’ Community

88



Inlink Distribution for query word 'games’

10000 T T
Inlinks —+—

1000 -
%]
(]
j=2]
[

S 100 E
o
S
z

10 E

1000
Inlinks

Figure 5.17: In-Degree for the ‘games’ Community

Inlink Distribution for query word ‘football’

10000 T
Inlinks —+—

1000 -
%]
[}
j=2]
[

S 100 E
o
S
=4

10 E

l 1

100 1000

Inlinks

Figure 5.18: In-Degree for the ‘football’ community

Inlink Distribution for query word 'computers’

10000 T
Inlinks —+—

1000 -
%]
[}
j=2]
[

S 100 E
o
S
=4

10 E

l 1

100 1000

Inlinks

Figure 5.19: In-Degree for the ‘computers’ community

89



No. of pages

Figure 5.20:

No. of pages

10000

1000

100

10

10000

1000

100

10

Inlink Distribution for query word 'physics’

Inlinks —+—

100 1000
Inlinks

In-Degree for the ‘physics’ community

Inlink Distribution for query word ’biology’

T
Inlinks —+—

ht .
10 100 1000
Inlinks

Figure 5.21: In-Degree for the ‘biology’ community

Analysis of figures 5.16 to 5.21 reveals that the In-Degrsgrilution at commu-
nity level is equivalent to the global distribution and igtefore best characterized as
power law with an exponent of 2.1. Slight deviations from povaw scaling are ex-
hibited for the narrow queries ‘physics’ and ‘biology’, ledtugh overall we conjecture
the self-similarity premise is maintained within cohesieenmunity-structures of the
web dataset. These results conflict slightly with those afrieek et al. [PFI02],
where it is suggested that the In-Degree distribution fdr categories of pages such

as university home pages deviate from power law scalind) thié magnitude of the

deviation varying depending on the community category.

90



Examination of the Correlation between QD-PageRank and thén-Degree

If a page has a high PageRank value does it also have a higledreP or are they
unrelated?. Intuitively one might expect that a page withgd hn-Degree will have

a high PageRank value and vica versa. The correlation ciegffioetween the two is
therefore assessed in order to measure the validity of taqurs hypothesis and is

displayed below for the six queries of varied specificity.

word | shopping| games| football | computers| physics| biology
correl. 0.297 | 0.181| 0.219 0.177 0.239 | 0.316

Table 5.2: Correlation Between PageRank and In-Degree

From the results above we perceive a weak correlation betwree two, while
observing that the strongest relationship exists withi 'thology’ community. We
conjecture that the reason for the relatively high corretain this instance is the low
PageRank values resulting from a sparsely-connected caityrgraph. These find-
ings are in strong agreement with [PRU02, CRI3], where a weak correlation is also
reported. It is therefore conjectured that a PageRank vallazgely independent of

the In-Degree of a page, although it may be weakly indicatitbe value.

Examination of the Percentage of QD-PageRank obtained by thTop k percent of

Pages

The percentage of PageRank obtained by the top k percentgefspaerits further

analysis, as it can have implications for the compressichefnverted index and for
optimization of the available storage. In this case the Rag& obtained by the top ten
percent is highlighted, within the communities generatethfthe six queries of varied

specificity, with the results illustrated below:

91



word shopping| games| football | computers| physics biology|
% obtained 12.85 | 12.27 | 12.07 12.06 11.17 | 11.29 |

Table 5.3: The Percentage of Total PageRank Obtained by Q¥padf Pages

The figures displayed in table 5.2 above exhibit the pergentd PageRank ob-
tained by the top 10 percent of pages, within each of the diresive communities.
These figures are below the expected values and it is congecthat the reason for
this is the relatively low interconnectivity and smallenge of distribution within these
communities. From the table above it can also be observedhitbareater the speci-
ficity of the query word, the lower the percentage of Pagertkined by the top ten
percent. We therefore postulate that the greater the mieextivity within a dataset
of webpages the greater the percentage of PageRank.

To measure the validity of this premise, the top ten percatitinvthe global dis-
tribution is assessed. In this instance the PageRank @otdup the top ten percent
of pages i29.97 % and is symptomatic of a power law distribution. This culatas
in the supposition that given the number of nodes and levaitefconnectivity, the
percentage of rank obtained by the top k percent of pages t@uhccurately approxi-

mated.

5.3.4 EQD-Rank

The main focus of this section is to validate EDQ-Rank as dimab algorithmic im-
plementation for the estimation of the QD-PageRank vectolewproviding numerous
indications to fortify this premise. Experimental anasysiolves around the evalua-
tion of cohesive-communities generated using thirty cqaseoif diverse specificity. The
distribution of EQD-Rank within a selection of cohesive coomities is initially exam-
ined. The relationship between the rank removed and thess@eommunity query
type is examined in section two, to determine if a bias towaa@nmunities of a cer-

tain specificity exists. In the final section the amount okreamoved using EQD-Rank

92



at a depth ranging from one to three is appraised to measeraffihity between the

EQD-Rank and QD-PageRank vectors.

EQD-Rank Distribution

The EQD-Rank algorithm is a QD-PageRank vector approxomaind it is conjec-
tured that the similarity between the QD-PageRank and E@bBkRlistributions will

provide an indication of the approximation effectiveneS queries of varied speci-
ficity are therefore focused upon with the resulting EQDRdistributions at a depth

equal to two displayed in the figures below:

j aval/ cont ent / EQDRESULTS/ shoppi ng_EQD. ps not found!

Figure 5.22: EQD-Rank Distribution for the ‘shopping’ comnity

j aval cont ent / EQDRESULTS/ ganmes_EQD. ps not found!

Figure 5.23: EQD-Rank Distribution for the ‘games’ commtyni

j aval/ cont ent / EQDRESULTS/ f oot bal | _EQD. ps not found!

Figure 5.24: EQD-Rank Distribution for the ‘football’ conumity

j aval cont ent / EQDRESULTS/ conput ers_EQD. ps not found!

Figure 5.25: EQD-Rank Distribution for the ‘computers’ aonmity

93



j aval cont ent / EQDRESULTS/ bi ol ogy_EQD. ps not

Figure 5.26: EQD-Rank Distribution for the ‘biology’ commity

j aval/ cont ent / EQDRESULTS/ physi cs_EQD. ps not

Figure 5.27: EQD-Rank Distribution for the ‘physics’ comnity

Comparison between the figures displayed above and thespomding QD-PageRank
distributions in figures 5.10 to 5.16 reveal that the EDQ+Rdistribution mirrors that
of the QD-PageRank vector albeit on a comparatively largales The distributions
are power law with best fit exhibited for an exponent of 2.1 arglight deviation ex-
perienced within the cohesive communities induced for gwards of narrow speci-
ficity. The distributions within these communities are sarhat skewed and may be
attributed to the existence of low community-interconityt Overall the average
correlation coefficient between the EQD-Rank and QD-PagkRBestribution is 0.986.
As a result of this high correlation-coefficient and the dpiaplly illustrated similarity
between the distributions, it is suggested that EQD-Raakiges a very close approx-

imation of the QD-PageRank values, with further evidencwigled in latter sections.

The relationship between the cohesive community connectty and Rank Re-

moval

The total amount of PageRank removed from each communityg SQD-Rank at
a depth of two, is highlighted in this section to ascertaithére is a bias towards
communities generated using a query of a certain specifi€ighesive communities

of web pages may contain QD-PageRank and PageRank diffégniicantly and we

94

f ound!

f ound!



therefore measure the rank removed as a percentage ofahBageRank, to assess the
relationship between the rank removed and the number of eaoritypages. The rank
removed for each of the thirty queries used in the analysisQ@b-Rank is displayed

in the table below:

| Word | Size | PR | QD-PR | EQD-PR | % |
abortion 4122 | 871.04 | 619.05| 619.06 | 28.93
alcoholism | 1094 | 232.17 | 164.13 | 164.13 | 29.31
architecture| 14647| 3250.72 | 2205.69| 2205.85 | 32.14
bank 24333| 5341.89 | 3673.73| 3674.66 | 31.21
bicycling 874 178.84 | 131.11 | 131.11 | 26.69
biology 11382| 2466.39 | 1712.09| 1712.42 | 30.57
cheese 6334 | 1364.18 | 951.91 | 951.98 | 30.22
chemistry | 8683 | 1846.21 | 1305.05| 1305.10 | 29.31
complexity | 4608 | 978.69 | 691.86 | 691.86 | 29.31
computers | 32440| 7042.37 | 4909.90| 4912.67 | 30.24
cruises 2628 | 55491 | 394.48 | 394.48 | 28.91
energy 35291 | 7742.69 | 5345.46| 5347.32 | 30.94
fithess 18635| 3982.99 | 2809.37| 2809.57 | 29.46
football 30622 | 6758.18 | 4634.44| 4635.86 | 31.40
games 52023| 11055.85| 7898.77| 7902.55 | 28.52
golf 17388| 3861.64 | 2621.90| 2622.41 | 32.09
hiv 5474 | 1182.04 | 822.79 | 822.83 | 30.39
holiday 16291 | 3554.14 | 2454.24| 2454.58 | 30.94
jaguar 1717 | 364.13 | 257.76 | 257.77 | 29.21
java 15134| 3264.89 | 2279.15| 2279.50 | 30.18
law 61877 | 13533.23| 9440.94| 9449.21 | 30.23
nutrition 17725| 3781.94 | 2670.94| 2671.21 | 29.37
physics 13329| 2892.97 | 2006.49| 2006.66 | 30.64
recreation | 9367 | 1992.74 | 1407.92| 1408.00 | 29.34
shakespeare 2430 | 530.12 | 364.71 | 364.71 | 31.20
shopping | 60886 | 13268.12| 9285.95| 9296.09 | 29.94
sushi 901 198.99 | 135.17 | 135.19 | 32.07
terrorism | 30622| 1694.53 | 1113.65| 1113.72 | 34.28
volcano | 32440| 568.35 | 395.74 | 395.75 | 30.37
workplace | 7418 | 1610.75| 1115.60| 1115.68 | 30.74

Table 5.4: The Percentage of PageRank Removed Within Edebste@ Community

In the table above the initial column displays the word frotmick the cohesive

community is created. The column labelled ‘size’ indicatesnumber of pages within

95



the cohesive community, the proceeding three columns atelithe amount of rank
within the community for each of the three ranking methodsj the final column

displays the percentage of rank removed, using EQD-Rar&kpascentage of the total
PageRank.

Examination of table 5.3 reveals that the removal of PagkRam communi-
ties of varied type is consistent when viewed as a percermtatiee total community
PageRank. As the size of the cohesive community varies,a@heeptage of PageRank
removed remains relatively consistent with the total reahoanging between 26.69
and 34.28 percent for each of the queries tested. As a resylostulate that on aver-
age 30.27 percent of a page’s PageRank value will be remawétgthe EQD-Rank

calculations for a depth equal to two.

The amount of Rank removed in relation to the number of layersexamined

As the depth of inlinks examined increases, using EQD-Rumgkaccuracy of the esti-
mation increases also, and therefore so too does the amfdRayeRank removed from
the community pages. In this section we examine the amouRagéRank removed
in relation to the number of number of layers examined andsoneathe result with
the QD-PageRank values. In table 5.5 we display the averaget of rank within a
community using the PageRank and QD-PageRank algoriththEB®@-Rank using a

depth from one to three.

[ Pr | QD-PR [ EQD-PR | EQD-D2 | EQD-D3 |
[3120.69] 2169.41] 2186.94 | 2170.36 | 2169.93 |

Table 5.5: Total Rank assigned using each Algorithm

From table 5.5 above it can be seen that the average amoul-&a@k (column
2) is 69.51 percent of the total induced using PageRank ifwoll)). The next three
columns show the average amount of rank achieved using EQik-Rarting a depth

of one and arriving at a depth equal to three. It can be obdahat as the depth of

96



inlinks examined increases so to does the affinity betweemterage QD-PageRank
and EDQ-Rank values. As a result we conjecture that the ahwduank removed is
inversely proportional to the number of layers examineds #lso suggested that the
close approximation of the average QD-PageRank vectarguSQD-Rank at a depth
of two and three, is a further indication of the degree of aacy obtainable using

EQD-Rank.

5.4 Content-Based Document Selection Techniques

In order to determine the relevance of a document in relatioa user query, it is
necessary to implement a content-based document sel¢etbnique. The methods
available typically provide a content-based represegtiatif a document, based on
the term frequency within a document, with the user quenyjlfirmpared with the
document score.

One simplistic approach involves representing a documera laor a0 and is
referred to adinary judgementUsing this method a document is represented through
a boolean vector, with aindicating term presence andaon-presence. This is exact
match text filtering and results in an unranked set of docusnefwo other content-
based models are thpobabilistic retrieval modehnd thevector space modeMith
the former, documents are ranked based on the probabiliheafrelevance in relation
to a user query and often rely on term weighting schemes ima& the relevance.
The later technique involves representing every documeat\gector of terms and is

examined further.

5.4.1 TF*IDF

The Vector-Space Model (VSM) [SWY71] represents every doent as a vector of
terms, with associated weights describing a term’s valua kbel for a document.

The vector-space effectiveness is improved considerapliransforming the term-

97



frequency vector, to augment the influence of words occgmiiten in the document,
but rarely within the entire document collection. The VSMgedure involves ex-
tracting terms representative of the document, weightiegérms, and finally ranking
the documents based on a similarity measure (e.g the cokthe angle between two
vectors).

In the VSM term vectors are constructed using a term-selectiatrix, measuring
the importance of terms within the document. The term fraquef corpus documents
is generally used as the weights for the document vectontoexperimentation how-
ever, we implement the TF*IDF [SB88] term selection metmc assign a weighting
to each page, for every word in the lexicon. This weight imtheed at runtime to
determine relevant pages and can be combined with a linkegbbased score (e.g
EDQ-Rank) at runtime, to provide a final ranking value.

Using the TF*IDF metric, the importance of a word in a documierbased on
the number of occurrences of the word within the documenthadumber of occur-
rences within all indexed documents. TF (Term Frequencyliga that terms used
more frequently are more important and IDF (Inverse DocurResquency) works on

the hypothesis that words occurring rarely in the index égblia discriminative.

TF*IDF equation:

wij = tfi;*logy &

where:

w;;= weight of TermT’; in DocumentD

fi;= frequency of Tern¥'j in DocumentD
N = number of documents in the collection

n = number of documents where Teffij occurs at least once

TF*IDF works well for large datasets. However in the case mfb text docu-

98



ments there may be insufficient data for a statistical evain®f the descriptive value
of terms. Term weights may also be normalized due to long nhecus generally
having a larger term set than short documents, making latgemments more likely
to contain increased occurrences of a word than short datismé@he advantage of
TF*IDF is that computation is simple and therefore fast tompoite. However on the
downside TF*IDF does not allow for synonymy, polysemy angéadn documents. To
counteract these constraints we therefore suggest thaefakperiments incorporate

Latent Semantic Indexing or Probabilistic Latent Semalmiatexing.

5.4.2 Further Document Selection Techniques

To counteract these problems we could exploit the fact thatigwith similar meaning
tend to occur together and use Latent Semantic Indexing (bSépresent documents
and queries, not by terms but by the underlying conceptsrezfé¢o by terms. The
objective of LSl is to provide information well beyond theileal level and reveal rela-
tions between the entities of interest. Using singularealecomposition (SVD), LSI
transforms a matrix of word vectors, computed using the&feSpace Model (VSM),
to discover the semantics of the words and documents pregehigh-dimensional
word vector is transformed into a lower dimensional spacg.r&lucing the multi-
dimensional term space to a small number of dimensions, strally close keywords
get squeezed together. During this collapse noise is lasirdormation and content
words are superimposed on one another. According to [DE], LSI is 30% more
effective than other word-matching methods at helpingsied relevant information.
LSI considers documents which have many words in common sebntically close
even if they do not share a particular word. This way docustrdt are relevant and
do not contain the keyword may be returned.

Other methods could also be introduced taking into acccanus page properties

such as anchor text, text size, page title meta tags, cigpiiah bit, font size, and

99



position in document [BP98].

Another method that could be used to improve upon LSI is Phitisic Latent
Semantic Indexing (PLSI) and is based on a mixture decortippsierived from a
statistical latent class model. This results in a more fpied approach which has
a solid foundation in statistics. It is based on the liketiigrinciple and defines a
proper generative model of the data. PLSI can be used towacimiereased recall and

precision and works well in cases were LS| fails completelgfP9].

5.5 Rank Ordering Similarity

As a means of evaluating the algorithms, we measure theeefresult-set similarity.
To do this we select a correlation coefficient. A correlatioefficient is intended to
measure the strength of a relationship, with differentelation coefficients measuring
the strength of the relationship in different ways. Theertith’ discussed in this in-
stance refers to the tendency of the variables to move ireime ®r opposite direction.
Some correlation coefficients available are pineduct moment coefficient of correla-
tion, the spearman coefficierand theKendall Tau coefficientor our experimentation
we select the Kendall Tau metric to determine the strengthlationship between the
rank-orderings induced using the PageRank, QD-PageRadkha EQD-Rank algo-

rithms.

5.5.1 Kendall Tau Algorithm

To evaluate the rank orderings induced and gauge the strengite relationships we
implement the Kendall Tau correlation coefficient [Ken38,suggested in [EMTO04].
Kendall's Tau is a non-parametric measure of the agreemsmtden two rankings,
essentially measuring the strength of the relationshigvéen two paired observa-
tions. The values are initially ordered and numbered foheaciable separately, with

the Kendall Tau coefficient finally applied. Consider the erations(X;,Y;) and

100



(X;,Y;). If X; — X, andY; — Y; have the same sign, the pair is described as con-
cordant, otherwise if they have opposite signs the pairfesmed to as discordant. For
a sample of: observations we can form(n — 1)/2 pairs corresponding to choices

1 <i < 7 <n. The Kendall Tau coefficient is therefore:

The Kendall Tau coefficient:

" _ > signix—x;) Signy; - vi)
n(n—1)/2

The numerator is defined as the sum of the concordant paifs minus the sum of
the discordant pairy_ D with the denominator defining the total number of pairs.
Hence, the statistic is the proportion of concordancesdddtal number of relations.

A positive correlation indicates that the ranks of the twoalales increase together
and a negative correlation indicates that as the rank of ariahle increases, the other
one decreases. In the case whereéll — 1) /2 pairs are concordant a maximum value
of 1 is obtained. Correspondingly the minimum value-df is achieved if all the pairs
are discordant. Using the Kendall Tau coefficient the odtle & P./Pp, wherec
andd are the number of concordant and discordant pairs, is equal+ ¢)/(1 — t).
Therefore if the tau value i5/3 the set of observatior(s{;, Y;)and (X}, Y;) are twice

as likely to be concordant as discordant.

101



Chapter 6

Conclusions and Future Study

6.1 Experimental Results Analysis

In this section we further justify EQD-Rank as a means ofegtiing the QD-PageRank
vector. |Initially the query word selection process is di&sad. Following this, a
measure of the degree of accuracy achieved with EDQ-Ranktima&ting the QD-
PageRank vector is provided, with the subsequent levekoltrset relevance analyzed

through a user study.

Discussion of Query selection

A justification for the selection of the queries used durirgeximentation is provided
in this section, along with reasons for their inclusion. Tuery set comprising thirty

words is displayed below:
abortion, alcoholism, architecture, bank, bicycling, loigy, cheese, chemistry, com-

plexity, computers, cruises, energy, fitness, footbales golf, hiv, holiday, jaguar,

java, law, nutrition, physics, recreation, shakespeahmpping, sushi, terrorism, vol-

102



cano, workplace

The queries are predominantly selected to provide a divarsge in query specificity.
At one end of the spectrum, narrow specificity queries suchaguery words ‘sushi’
and ‘cheese’ are introduced. For these query words the nuafbyelevant pages is
small and there may be comparitively little interconnattiv At the other end of
the spectrum, query words such as ‘shopping’ and ‘compugeesintroduced, with
it suggested that the number of relevant pages will be sagmifj therefore providing
cohesive communities large in size, with the potential ftarge amount of intercon-
nectivity. A number of queries fall between these two qugpes and are referred to
as medium-specificity queries. These queries have a nunfilbelewant pages closer
to the average and therefore an intermediate cohesive-coitysize, with ‘football’
and ‘computers’ examples of two such queries.

Other query words containing unique characteristics deztal to provide a com-
prehensive evaluation of the link analysis ranking aldgwnis. One such characteris-
tic is polysemy, a difficulty that must be surmounted by skeanegines and therefore
meriting inclusion in the query-word set. Polysemy refersatword with multiple
meanings, an example of which is the word ‘Jaguar’. In thigance the word may
be referring to the animal or to the car. The result of such eryis that the co-
hesive community will consist of both types of pages, tharefproviding a unique
link-structure. Another example is the word ‘bank’ where tieference may be to a
reliance on somebody or something, a place to store savdndise side of a river. A
bi-polar query is also selected and occurs when the set af/qetated pages have a
biased stance in relation to the query. An example is theyquerd ‘abortion’, where
the set of query-related pages will predominantly condiptges that are either pro or

anti abortion.

103



6.1.1 Ranking Similarities

Initially, we compare the PageRank and QD-PageRank omgietmobtain a Kendall-
Tau value representative of result-set similarity. Forhequery, the QD-PageRank
orderings are then compared with the result-set inducedjsQD-Rank at a depth of
one, two and three. Each result set examined is formed usimyafrom the lexicon,
discussed in the previous section, with the similarity measpplied to the top one
hundred results for each query. The Kendall-Tau valuesediragn —1 to 1, with a
value of—1 indicating no rank ordering similarity and a valuelodignifying identical

orderings.

104



| QueryWord [ PR | EQD-D1 | EQD-D2 | EQD-D3 |

abortion 0.1811| 0.6040 0.9810 0.9828
alcoholism | 0.3777| 0.6888 1.0000 1.0000
architecture | 0.3194| 0.6636 0.9848 0.9873
bank 0.4141| 0.7662 0.9821 0.9884
bicycling 0.3349| 0.8000 0.8000 0.8000
biology 0.2325| 0.6563 0.9852 0.9882
cheese 0.1824| 0.6276 0.9839 0.9878
chemistry | 0.2222| 0.6871 0.9877 0.9925
complexity | 0.2199| 0.5950 0.9854 0.9871
computers | 0.4672| 0.7311 0.9808 0.9891
cruises 0.1015| 0.6172 0.9821 0.9901
energy 0.4560( 0.7484 0.9820 0.9906
fitness 0.3586| 0.7260 0.9863 0.9921
football 0.4452| 0.7435 0.9820 0.9911
games 0.4784| 0.7689 0.9816 0.9926
golf 0.3844| 0.7076 0.9836 0.9906
hiv 0.1961| 0.6259 0.9870 0.9885
holiday 0.3491| 0.6883 0.9859 0.9910
jaguar 0.6618| 0.7256 0.9807 0.9862
java 0.3169| 0.6720 0.9821 0.9874
law 0.5184| 0.7666 0.9774 0.9916
nutrition 0.3733| 0.7001 0.9858 0.9914
physics 0.3432| 0.6923 0.9856 0.9902
recreation | 0.2896| 0.6668 0.9879 0.9116
shakespeare| 0.3040| 0.6260 0.9831 0.9864
shopping | 0.5334| 0.7830 0.9784 0.9897
sushi 0.4286| 0.3571 1.0000 1.0000
terrorism 0.2775| 0.6102 0.9851 0.9897
volcano 0.1196| 0.6099 0.9731 0.9873
workplace | 0.2846| 0.6796 0.9863 0.9883
Mean: 0.3333| 0.6777 0.9783 0.9837

Table 6.1: The Kendall-Tau Correlation between the Resetk S

105

From table 6.1, little similarity between QD-PageRank aiagdRank orderings
(column 2) can be observed. For the majority of queries thedidd-Tau value is less
than0.5, with an average value 0£33, revealing a large amount of dissimilarly in the
rank orderings. Comparison between EQD-Rank at a depthefond QD-PageRank

(column 3) reveals an increased similarity in rank ordesinfon averagd 12.5%.



However, an average Kendall-Tau value0ad77, reveals that a reasonable degree of
dissimilarity between the two rank orders, still exists.

This dissimilarity is to a large extent eradicated with EQBrk at a depth of two,
where the average Kendall Tau value)i§78. For EQD-Rank at a depth of three, a
further increase in the accuracy of the estimation is redkakith the orderings near
identical or identical in all cases and an average Kendallvilue 0).984.

Analysis revealed that the greater the depth of in-linkar@rad, the greater the
estimation accuracy. However, as the number of layers exadnncreases, so does the
computational cost and we therefore hypothesis that EQbkRgaa depth equal to two

provides a sufficient level of accuracy, without an extemsiomputational overhead.

6.1.2 User Study

To compare the relevance achieved using PageRank and EQBaRa depth of two,
we perform a user study involving six volunteers. Each vtdanis presented a results
set containing the URLs of 20 web pages, composed from thietopesults achieved
using these two algorithms, with the results randomly mix&d return a result-set
representative of each algorithm, a combination of cordegtcontent scores is used.
Pagerank and EQD-Rank values are combined with TF*IDF scamd ranked accord-
ingly. The merging of context and content based scores isenad research on which
little has been published to date. As this paper is, in margswasuccessor of [RD02],
we scale each vector to have the same average value in trenttgrins, before adding
the two vectors. Following composition of the URL set, vakers are asked to assign
a page rating, ranging fromto 4, with 1 signifying no relevance? some relevance,
but not a sufficient leveR signifying good relevance, and four signifying a very good

level of relevance. The scores for each query are displayttkitable below:

106



| Query Word | PR | EQD-PR | QueryWord | PR | EQD-PR |

abortion 141 152 golf 202 220
alcoholism | 182 190 hiv 109 136
architecture | 190 227 holiday 123 139
bank 201 229 jaguar 117 109
bicycling 169 182 java 211 232
biology 176 231 law 147 172
cheese 178 210 nutrition 141 181
chemistry | 179 213 physics 202 231
complexity | 195 176 recreation 112 162
computers | 188 229 shakespeare| 116 91
cruises 206 198 shopping 201 226
energy 161 223 sushi 116 105
fithess 189 205 terrorism 195 227
football 207 233 volcano 145 186
games 179 228 workplace 139 156
Average 156.66| 189.66

Table 6.2: User Study Results

From the data above, it can be observed that, on average, eserfound EQD-
Rank results more relevant for 25 out of the 30 queries. Qlyé&®D-Rank led to
an increase in relevance 2f.26%. On the few occasions PageRank performed better
than EQD-Rank, it should be noted that the induced topicroanities were small in
size, with little interconnectivity. In a real world implemtation, when the induced
community falls below a predefined threshold, it is suggettte standard PageRank

values be applied, optionally with intercommunity linksigmed more weight.

6.2 Conclusions

During this thesis numerous research areas are coveratindeto the formulation
of a number of conclusions. The creation of a webpage colmesigh a ‘crawler’
is initially examined. The numerous challenges in systesigie 1/0 and network
efficiency, and robustness and manageability imposed gluhie downloading over

a million pages, are highlighted. Difficulties such as cexwitaps, hosts containing

107



multiple links to the same page, host-name aliases, an@nvireb sites must also be
overcome and are discussed. We then demonstrate that iffeesstiebs are surmount-
able through the extensible and scalable ViperBot crawlidithe resulting obtainment
of a dataset in excess of one million pages.

Creation and storage of the transpose matrix is the sec@adodiresearch exam-
ined. The dataset graph is represented as a very sparseatbix;nnesulting in two
problems. The naive representation of the matrix requires)> amount of memory,
with n the number of pages in the dataset. The resulting memonyirsggent is a a
terabit of storage space, resulting in the necessity oftenraite representation. In the
area of inverted-index representation, case folding, stieng, and stop words are all
considered. The storage of the resulting document IDs amd wacurrences are also
discussed, along with compression techniques such as Galading.

A discussion of the PageRank, Query Dependent PageRanlk@bdRank en-
sues, highlighting various algorithmic traits and impleration details. As a result
a number of important conclusions are reached and discudsexdconjectured that
that the distribution of PageRank and the In-Degree can aeackerized as power law,
with best fit exhibited for an exponent of 2.1. Despite theé RegeRank and In-Degree
distributions exhibit a power law distribution, with an id&al exponent, we postulate
that a high In-Degree is not indicative of a high PageRankevaind vica versa, with
experiments revealing a correlation coefficien0®9. Also revealed, having implica-
tions for inverted index compression and available stogg#nization, is that within
the entire dataset0% of the PageRank is obtained by the toppercent of pages,
despite deviation at community level.

EQD-Rank is based on the premise that QD-PageRank providé@sceease in
result-set relevant when compared with PageRank, withggested in [RD02], that
arelevancy increase of up 3% is obtainable. It is demonstrated that EQD-Rank at a

depth of two provides an extremely close approximation ef@b-PageRank vector,

108



with a Kendall-Tau value of on average)8. The increase in relevance is also verified

through a user study, with the increase greater f#iém.

6.3 Future Study

A rich body of potential research is uncovered during thestb. The creation of an
industrial strength crawling application, using ViperBxst a platform, is one area of
future research. Issues to be addressed in this instanckrénthe bottleneck of host
name resolution, the improvement of duplicate-page detgecthe introduction of a
load monitor, and the storage of URL queue buffers within rmgmViperBot could
also be transformed into a distributed crawler with the si#fpoy spread over a number
of storage servers.

In the area of transpose matrix and inverted-index storageimber of modifica-
tions could also be introduced. With regards to the transpoatrix, delta encoding
could be introduced storing the gaps between the inlink rersjlinstead of the inlinks
themselves. A compression technique based on Golumb caedind also be imple-
mented to compress the inverted index to betwseand 15% of the uncompressed
index.

The current EQD-Rank implementation speed is another drpatential refine-
ment, with much scope for increased speeds currently &aithrough improved 1/0
and efficient datastructure implementation techniquesa fesult it is anticipated that
the computation speeds could be reduced to below five sedomddypical user query.

The culmination of these optimization techniques wouldepthe way for a full-
scale web search engine. One billion plus pages would ligiti@ downloaded using
the new industrial-strength ViperBot. Offline processingwd then ensue, through
the calculation of the PageRank vector, along with the @meatnd storage of the com-
pressed inverted index and transpose matrix. In realtimedpthe EQD-Rank algo-

rithm would then be implemented, returning a result-setabég of competing with,

109



and improving upon, the relevance achieved by the leadiagbengines.

6.4 Final Remarks

During this thesis numerous search-engine techniquesdmgted, to facilitate the
analysis of the EDQ-Rank result-set post-ranking refindme&he refinement, based
on local graph-traversal provides an approximation of therg dependent PageRank
vector, while avoiding the computational strain involvadhe creation of the query-
related subgraph. We therefore conjecture that EQD-Ramlkl ¢ easily incorporated
into the ranking process of a modern search engine and usetlita result-sets, with

relevance increases in exces20%6.

110



Bibliography

[Ada99]

[BA99]

[BBH+98]

[BCSV02]

[BGMZ97]

Lada A. Adamic;,The small world wepProc. 3rd European Conf. Re-
search and Advanced Technology for Digital Libraries, EGBLAbite-
boul and A.-M. Vercoustre, eds.), no. 1696, Springer-\gri4999,
pp. 443-452.

Albert-Laszlo Barabasi and Reka AlbeEmergence of scaling in ran-

dom networksScience286(1999), 509.

Krishna Bharat, Andrei Broder, Monika Henzinger, Purtéemar, and
Suresh Venkatasubramaniafhe connectivity server: fast access to
linkage information on the webWWW?7: Proceedings of the seventh in-
ternational conference on World Wide Web 7 (Amsterdam, Ththblr-

lands), Elsevier Science Publishers B. V., 1998, pp. 469-47

P. Boldi, B. Codenotti, M. Santini, and S. Vigridbicrawler: A scal-
able fully distributed web crawletn Proc. AusWeb02. The Eighth Aus-
tralian World Wide Web Conference, 2002.

Andrei Z. Broder, Steven C. Glassman, Mark S. Maeasind Geoffrey
Zweig, Syntactic clustering of the weBelected papers from the sixth
international conference on World Wide Web (Essex, UK)efsr Sci-
ence Publishers Ltd., 1997, pp. 1157-1166.

111



[BHO8]

[BKM *+00]

[BMO1]

[BMPWOS8]

[BP9S]

[BRRTO1]

[Bur97]

Krishna Bharat and Monika R. Henzingkmproved algorithms for topic
distillation in a hyperlinked environmerRroceedings of SIGIR-98, 21st
ACM International Conference on Research and Developnnelmifor-

mation Retrieval (Melbourne, AU), 1998, pp. 104-111.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakagfavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, anetJ&iener,
Graph structure in the WellProceedings of the 9th international World
Wide Web conference on Computer networks : the internatijons-
nal of computer and telecommunications netowrking (Antser, The

Netherlands), North-Holland Publishing Co., 2000, pp.-33D.

Krishna Bharat and George A. Mihaild¥hen experts agree: using
non-affiliated experts to rank popular topjc#/orld Wide Web, 2001,
pp. 597-602.

Sergey Brin, Rajeev Motwani, Lawrence Page, andyT®/inograd,
What can you do with a Web in your PockeEPata Engineering Bul-
letin 21 (1998), no. 2, 37-47.

Sergey Brin and Lawrence Pagée anatomy of a large-scale hyper-
textual Web search engin€omputer Networks and ISDN Syster38
(1998), no. 1-7, 107-117.

Alan Borodin, Gareth O. Roberts, Jeffrey S. Rosahtand Panayiotis
Tsaparaskinding authorities and hubs from link structures on the \&/or

Wide WebWorld Wide Web, 2001, pp. 415-429.

M. Burner,Crawling towards eternity - building an archive of the world

wide webh Web Techniques, 1997, p. 2(5).

112



[Bus45]

[BVO03a]

[BVO3b]

[BWB02]

[BYCMRO5]

[CCO0]

[CDR"98]

Vannevar BushAs we may thinkThe Atlantic Monthly176 (1945),
no. 1, 101-108.

P. Boldi and S. VignaThe WebGraph framework |I: Compression tech-
nigues Technical Report 293-03, Universit di Milano, Dipartinteri

Scienze dell'Informazione, 2003., 2003.

Paolo Boldi and Sebastiano Vigriehe webgraph framework ii: Codes
for the world wide wepbTechnical Report 294-03, Universit di Milano,

Dipartimento di Scienze dell'Informazione, 2003., 2003.

Michael W. Berry, P. Wang, and J. Bowna#lebsite query analysis:
trend and behaviour detectipSecond SIAM conference on Data Min-

ing, 2002.

Ricardo Baeza-Yates, Carlos Castillo, MauriMarin, and Andrea Ro-
driguez,Crawling a country: better strategies than breadth-firstiieeb
page orderingWWW '05: Special interest tracks and posters of the 14th
international conference on World Wide Web (New York, NY, A)S
ACM Press, 2005, pp. 864-872.

David Cohn and Huan Changearning to Probabilistically Identify
Authoritative DocumenisProc. 17th International Conf. on Machine

Learning, Morgan Kaufmann, San Francisco, CA, 2000, pp-184.

Soumen Chakrabarti, Byron Dom, Prabhakar Raghavadh&riRa-
jagopalan, David Gibson, and Jon Kleinbefgitomatic resource com-
pilation by analyzing hyperlink structure and associatext tWWW?7:
Proceedings of the seventh international conference otdWdide Web
7 (Amsterdam, The Netherlands, The Netherlands), Els&sgznce
Publishers B. V., 1998, pp. 65-74.

113



[CGMOO]

[CGMP98]

[CGS]

[Cle97]

[CP90]

[CPKT92]

[CRL*03]

Junghoo Cho and Hector Garcia-Molifide Evolution of the Web and
Implications for an Incremental CrawleiProceedings of the Twenty-

sixth International Conference on Very Large Databasd3)20

Junghoo Cho, Hector Garcia-Molina, and LawrenageREfficient
crawling through URL orderingComputer Networks and ISDN Sys-
tems30(1998), no. 1-7, 161-172.

Yen-Yu Chen, Qingging Gan, and Torsten Sté;Efficient Techniques
for Computing Pagerankin Proc. of the 11th International Conf. on

Information and Knowledge Management, pp. 549-557.

Cyril Cleverdon,The cranfield tests on index language devjidesad-
ings in information retrieval (San Francisco, CA, USA), Man Kauf-

mann Publishers Inc., 1997, pp. 47-59.

Doug Cutting and Jan Peders@ptimizations for dynamic inverted in-
dex maintenancgeProceedings of the 13th International ACM SIGIR
Conference on Research and Development in InformationidRaty

1990, pp. 405-411.

Douglass R. Cutting, Jan O. Pedersen, David Kaagetr John W. Tukey,
Scatter/Gather: A Cluster-based Approach to Browsing keaipc-
ument CollectionsProceedings of the Fifteenth Annual International
ACM SIGIR Conference on Research and Development in Inftoma

Retrieval, 1992, pp. 318-329.

G. Caldarelli, P. De Los Rios, L. Laura, S. Leonardi, and8lozzi,
A study of stochastic models for the \\W@bch. report, dipartimento di

Informatica e Sistemistica, Universita’ di Roma, Techhieport, 2003.

114



[CvdBDYY]

[Dav00]

[DDL+90]

[DFL*88]

[DKM *01]

[EM]

[EMTO4]

Soumen Chakrabarti, Martin van den Berg, and Byfom, Fo-
cused crawling: a new approach to topic-specific Web resodiscov-
ery, Computer Networks (Amsterdam, Netherlands: 198D)1999),
no. 11-16, 1623-1640.

Brian D. DavisonJopical locality in the wepSIGIR '00: Proceedings
of the 23rd annual international ACM SIGIR conference ondresh
and development in information retrieval (New York, NY, USACM

Press, 2000, pp. 272-279.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Land&eerge W.
Furnas, and Richard A. Harshmdngdexing by Latent Semantic Analy-
sis Journal of the American Society of Information Scieddg1990),
no. 6, 391-407.

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwesiad

R. HarshmanUsing latent semantic analysis to improve access to tex-
tual information CHI '88: Proceedings of the SIGCHI conference on
Human factors in computing systems (New York, NY, USA), ACM
Press, 1988, pp. 281-285.

Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhaj&gopalan,
D. Sivakumar, and Andrew Tomkin§elf-similarity in the WebThe
VLDB Journal, 2001, pp. 69-78.

Nadav Eiron and Kevin S. Mccurley,ocality, Hierarchy, and Bidirec-
tionality in the Web In Workshop on Algorithms and Models for the
Web Graph, Budapest.

N. Eiron, K. McCurley, and J. TomlirRanking the web frontiein Pro-
ceedings of the 13th conference on World Wide Web, 2004, p§-3
318.

115



[FKS03]

[FLGCO2]

[FMNO3]

[Fos82]

[GL83]

[GS05]

[Har93]

[Hava9]

[Hav02]

[Hen03]

R. Fagin, R. Kumar, and D. Sivakum@omparing top k listsin Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithn2003.

Gary William Flake, Steve Lawrence, C. Lee Gilesd &rans M. Co-
etzee,Self-Organization and Identification of Web Communijtiésm-

puter35(2002), no. 3, 66—71.

D. Fetterly, M. Manasse, and M. Najorkhe Evolution of Clusters of
Near-Duplicate Web Pagek 1st Latin American Web Congress, Nov.
2003., 2003.

A. C. FosketfThe subject approach to information (4th edacet Pub-
lishing, 1982.

G. H. Golub and C. F. Van LoaMatrix computationsJohns Hopkins

University Press, Baltimore, Maryland, 1983.

A. Gulli and A. SignoriniThe Indexable Web is More than 11.5 Billion
Pages 2005.

Donna HarmarQverview of the first trec conferenc®IGIR '93: Pro-
ceedings of the 16th annual international ACM SIGIR confeeson Re-
search and development in information retrieval (New Y&{K, USA),

ACM Press, 1993, pp. 36—-47.

Taher Haveliwalaffficient Computation of PageRanKech. report,

Stanford University Technical Report, 1999.

T. Haveliwala,Topic-Sensitive PageRanRroceedings of the Eleventh

International World Wide Web Conference, Honolulu, Haw2002.

M. HenzingerHyperlink analysis on the wel2003, available online at

http://www-cad.eecs.berkeley.edu/ tah/170/Notes/dd@gle.ppt.

116



[HHMN99]

[HN99]

[HNOO]

[Hof99]

[Jon72]

[JWO3]

[Ken38]

[KHGO3]

[KHMG]

[KHMGO3]

Monika R. Henzinger, Allan Heydon, Michael Mitzaracher, and Marc
Najork, Measuring index quality using random walks on the V&dm-
puter Networks (Amsterdam, Netherlands: 1999)1999), no. 11-16,
1291-1303.

Allan Heydon and Marc NajorkMercator: A scalable, extensible web

crawler, World Wide Web2 (1999), no. 4, 219-229.

, Performance limitations of the Java core librarje€oncur-

rency: Practice and Experient2 (2000), no. 6, 363-373.

Thomas HofmanrRProbabilistic Latent Semantic AnalysRroc. of Un-

certainty in Artificial Intelligence, UAI'99 (Stockholm},999.

K. S. JonedA statistical interpretation of term specificity and its dipp

cation in retrieval Journal of Documentation, 1972, pp. 28:11-21.

Glen Jeh and Jennifer Wido®c¢aling personalized web searah\WW
'03: Proceedings of the 12th international conference omld\@/ide

Web (New York, NY, USA), ACM Press, 2003, pp. 271-279.

Maurice G. KendallA new measure of rank correlatip@iometrika,

1938, pp. 30(1-2):81-93.

S. Kamvar, T. Haveliwala, and G. Golulidaptive methods for the com-
putation of pagerankTech. report, Stanford University Technical re-

port., 2003.

S. Kamvar, T. Haveliwala, C. Manning, and G. Golubxtrapolation

methods for accelerating PageRank computations

, Exploiting the block structure of the web for computing FRge

ank Tech. report, Stanford University Technical Report, 202803.

117



[Kle99] Jon M. Kleinberg Authoritative sources in a hyperlinked environment

Journal of the ACM46 (1999), no. 5, 604-632.

[Kos] M. Koster, Guidelines for robot writers available online at

http://www.robotstxt.org/wc/guidelines.html.

[KRRT99] S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rggam, and Andrew
Tomkins, Extracting large-scale knowledge bases from the ,wEte

VLDB Journal, 1999, pp. 639-650.

[LGOO] Steve Lawrence and C. Lee Gile&gcessibility of information on the

welh Intelligencell (2000), no. 1, 32—-39.

[LMOO] R. Lempel and S. MoranThe stochastic approach for link-structure
analysis (SALSA) and the TKC effeProceedings of the 9th interna-
tional World Wide Web conference on Computer networks : ttieri
national journal of computer and telecommunications netimg (Am-
sterdam, The Netherlands, The Netherlands), North-HdlRublishing
Co., 2000, pp. 387—401.

[Luh57] H. P. Luhn A statistical approach to mechanized encoding and search-
ing of literary information IBM Journal of Research and Development,

1957.

[MB98] Robert C. Miller and Krishna Bhara§phinx: a framework for creating
personal, site-specific web crawleM/WW?7: Proceedings of the sev-
enth international conference on World Wide Web 7 (Amstardahe

Netherlands), Elsevier Science Publishers B. V., 19981 pp--130.

[McB94] O. A. McBryan,Genvl and wwww: Tools for taming the wedb First
International Conference on the World Wide Web, 1994, p3-323.

118



[Men02] F. Menczer,Growing and navigating the small world web by local
content Proceedings of the National Academy of Sciences, 2002,

pp. 99(22):14014-14019.

[MK60] M.E. Maron and J.L. KuhnsOn relevance, probabilistic indexing and
information retrieval Journal of the ACM, 1960, pp. 216-244.

[NCOO04] A. Ntoulus, J. Cho, and C. Olstowhat’s new on the web? the evolu-
tion of the web from a search engine perspegtimeProceedings of the

Thirteenth International World Wide Web Conference, 2004.

[NWO01] Marc Najork and Janet L. WieneBreadth-first crawling yields high-
quality pagesWWW '01: Proceedings of the 10th international con-
ference on World Wide Web (New York, NY, USA), ACM Press, 2001
pp. 114-118.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, andyl@inograd,The
PageRank Citation Ranking: Bringing Order to the \W&bch. report,
Stanford Digital Library Technologies Project, 1998.

[PFLT02]  D. Pennock, G. Flake, S. Lawrence, E. Glover, and C. Gidianers
Don't Take All: Characterizing the Competition for Links tre Web
Proceedings of the National Academy of Scien®8852002), no. 8,
5207-5211.

[Pie98] V. Piek,Introduction to eurowordnetComputers and the Humanities,

1998, pp. 32(2-3):73-89.

[Por] M. F. Porter,An algorithm for suffix strippingProgram: Automated

Library and Information Systems.

119



[PRUO2]

[Rab81]

[Ram98]

[Ran49]

[RDO2]

[RK58]

[RM]

[Rob75]

[Roc71]

[RSWW01]

Gopal Pandurangan, Prabhakara Raghavan, and fali Uging PageR-
ank to Characterize Web Structu&th Annual International Computing

and Combinatorics Conference (COCOON), 2002.

M. O. RabinFingerprinting by random polynomial$iarvard Univer-
sity Technical Report TR-15-81, 1981.

R. Ramakrishnabatabase management systeidgGraw-Hill, 1998.

Rankdex,The Rankdex search engjnd949, available online at

http://rankdex.gari.com/.

Mathew Richardson and Pedro Domingbise Intelligent Surfer: Prob-
abilistic Combination of Link and Content Information in geRank
Advances in Neural Information Processing Systems 14, Mids#,

2002.

J. Rees and A. Kenlechanised searching experiments using the wru

seacrhing selectorAmerican Documentation, 1958, pp. 9(4):277-303.

Davood Rafiei and Alberto MendelzoNlyhat is this Page Known for?
Computing Web Page Reputatiohs Proc. 9th World Wide Web Con-

ference, Amsterdam.

S. E. RobertsorThe probabilistic ranking pronciple in jrJournal of

Documentation, 1975, pp. 33:294-304.

J. J. RoccioRelevance feedback in information retrievi G. Salton,
editor, The SMART Retrieval System: Experiments in Automatoc-
ument Processing, 1971, pp. 313-323.

K. Randall, R. Stata, R. Wickremesinghe, and J.nafieThe link
database: Fast access to graphs of the Wdsearch Report 175, Com-
paq Systems Research Center, Palo Alto, CA, 2001., 2001.

120



[SB88]

[Seed9]

[SHMM98]

[SL68]

[SS02]

[SWY71]

[SWYZ02]

[SYO1]

[Wan]

Gerard Salton and Chris Buckleferm-weighting approaches in au-
tomatic text retrieval Information Processing and Management, 1988,

pp. 24(5):5133-523.

J. R. Seelyhe net of reciprocal influence. a problem in treating socio-

metric data Canadian Jornal of Psychology, 1949, pp. 3:234-240.

Craig Silverstein, Monika Henzinger, Hannes Mayaand Michael
Moricz, Analysis of a very large altavista query logech. Report 1998-
014, Digital SRC, 1998.

G. Salton and M. E. LeskComputer evaluation of indexing and text

processingJ. ACM 15(1968), no. 1, 8-36.

Vladislav Shkapenyuk and Torsten Suegsign and Implementation
of a High-Performance Distributed Web Crawlelin Proceedings of
the IEEE International Conference on Data Engineeringaly 2002,

2002.

Gerard Salton, A. Wong, and C. S. Yargyector space model for au-
tomatic indexingCommunications of the ACM, 1971, pp. 18(11):613—
620.

F. Scholer, H. Williams, J. Yiannis, and J. Zob€pmpression of in-
verted indexes for fast query evaluatj&®CM SIGIR conference on re-

search and development in information retrieval, 2002222—-229.

Torsten Suel and Jun Yua@ompressing the Graph Structure of the Web

Data Compression Conference, 2001, pp. 213-222.

Ziyang Wang|mproved Link-Based Algorithms for Ranking Web Pages
citeseer.ist.psu.edu/651305.html.

121



[Wan03]

[WMB99]

[Zip49]

Z. WangJmproved link-based algorithms for ranking web page¥U
Computer Science Technical Report TR2003-846, 2003.

lan H. Witten, Alistair Moffat, and Timothy C. BellManaging giga-
bytes (2nd ed.): compressing and indexing documents argkisidor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

G. K. Zipf, Human behavior and the principle of least-effar949.

122



