
Assessment of the EDQ-Rank Link
Analysis Algorithm

by

Simon Mc Cann, BSc.

Masters Thesis

Submitted to the National University of Ireland, Maynooth

Department of Computer Science

Hamilton Institute

National University of Ireland.

Maynooth

Co. Kildare,

November 2005

Research Supervisor: Prof. Barak Pearlmutter

Abstract

The expansion and use of the web has proceeded at an exceptional rate since its

conception in 1990, with current estimates of over 11.5 billion documents and nearly 1

billion users (14.9% of the world’s population). As this growth continues, so too does

the pivotal role of search engines, with the majority of users selecting a search engine

as their gateway to the Internet. A problem with current search-engine results is that

often a page important in the context of the entire web is returned in preference to a

page that is important in relation to the user query. To counteract this deficiency, we

propose ‘EQD-Rank’ to refine the result-sets generated using Google’s PageRank algo-

rithm. The premise behind EQD-Rank is that a hyperlink from atopically-equivalent

page, is more important than a hyperlink from a topically disparate page. EQD-Rank is

based on local-graph traversal and implementable at runtime, manipulating a PageRank

vector computed“a-priori ”. Comprehensive evaluation of a link analysis ranking al-

gorithm is a non-trivial matter and within this thesis we provide a testing-environment

framework involving dataset compilation, efficient corpusrepresentation, and an eval-

uation of the EQD-Rank algorithm.

i

Acknowledgements

The research performed during this thesis would not have been possible without

the combined patience and help of many colleagues, friends,and family alike. In par-

ticular I would like to thank my research supervisor Barak Perlmutter for providing the

opportunity to perform this research, under his diligent supervision. Also I would like

to thank Prof. Douglas Leith for allowing me to perform this research at the Hamilton

Institute, NUIM Maynooth.

My time at the Hamilton Institute has been a truly enriching and enlightening pe-

riod, aided by the rich ambiance and assiduous approach to research. In particular,

I would like to thank my office colleagues: Yoshio Konno, RossO’Neill, Santiago

Jaramillo, Paul O’Grady, Steven Strachan, and Yunong Zhang, for their friendship and

support.

I would also like to thank the members of Hamilton F.C.: Dr. Ollie Mason, Mark

Verwoerd, Eric Bullinger, Peter Clifford, Dimitris Kalamatianos, Selim Solmaz and

Rick Middleton. It was through the brave efforts and dedication of these fine sportsmen,

and hours of hard word on the training field that resulted in the epiphany of an 8-1

defeat of the Computer Science department, in a recent interdepartmental challenge

match. Let’s hope there are many more such triumphant occasions.

Also I would like to thank Diarmuid O’ Donohue with whom I began this epic

voyage of discovery during my BSc. Thesis. I would like also to thank all the other

people of the Hamilton Institute not mentioned specificallyabove, for their support

and friendship and last but not least I would like to thank Rosemary Hunt and Kate

Moriarty for providing support and smiles (also muffins!) throughout the period.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Information Retrieval . 3

1.2.1 Early Information Retrieval (pre 1945) 4

1.2.2 Modern Information Retrieval 5

1.2.3 Information Retrieval and the Web 8

1.3 Graph Structure of the Web . 9

1.4 Link Analysis Ranking Algorithms 11

1.4.1 The PageRank Algorithm 13

1.4.2 The HyperLink Induced Topic Search algorithm (HITS) .. . 14

1.4.3 The Topic Sensitive PageRank algorithm 15

1.4.4 The Hilltop Algorithm . 16

1.4.5 The Intelligent Surfer Algorithm 17

1.4.6 Other Algorithms and Ranking Methods 18

1.5 Overview . 19

2 The ViperBot Crawler 21

2.1 Introduction . 21

2.2 Previous Work . 23

iii

2.3 The ViperBot System Architecture24

2.3.1 Overview of the System . 24

2.3.2 The Download thread . 26

2.3.3 The Parsing module . 27

2.3.4 Duplication Detection . 28

2.3.5 System Snapshot Module . 30

2.3.6 Robot Exclusion Protocol 30

2.3.7 The URLsToCrawl module 31

2.3.8 Creation of the DataSet and Page MetaData 32

2.4 The DataSet Collection . 33

2.5 Crawler Optimization . 34

3 Representation of the Transpose Adjacency Matrix and Inverted Index 37

3.1 Transpose Adjacency Matrix Creation and Storage 37

3.1.1 Introduction . 37

3.1.2 Creation of the Transpose Matrix 38

3.1.3 Storage of the Transpose Matrix 40

3.1.4 Previous Work . 42

3.1.5 Optimization of Technique Adopted 44

3.2 Inverted Index Creation and Storage 44

3.2.1 Introduction . 44

3.2.2 Creation of the Inverted Index 45

3.2.3 Storage of the Inverted Index 46

3.2.4 Further Inverted Index Refinements 48

4 Link Analysis Ranking Algorithms 50

4.1 PageRank . 50

4.1.1 Introduction . 50

iv

4.1.2 PageRank Implementation 51

4.1.3 Damping Factor . 53

4.1.4 Convergence . 54

4.1.5 PageRank Merits and Demerits 55

4.1.6 PageRank Example . 57

4.2 Query Dependent PageRank . 59

4.2.1 Implementation . 60

4.2.2 Strengths & Weaknesses . 61

4.2.3 QD-PageRank Example . 62

4.3 Estimated Query Dependent PageRank64

4.3.1 Introduction . 64

4.3.2 Characteristics . 68

4.3.3 EQD-Rank Example . 69

5 Experimental Analysis 74

5.1 Introduction . 74

5.2 Rates of Convergence . 75

5.2.1 PageRank Convergence . 75

5.2.2 QD-Rank Convergence . 76

5.2.3 EQD-Rank Computation times 78

5.3 Rank Distributions . 79

5.3.1 PageRank Distribution . 79

5.3.2 Inlink Distribution . 82

5.3.3 QD-PageRank . 83

5.3.4 EQD-Rank . 92

5.4 Content-Based Document Selection Techniques 97

5.4.1 TF*IDF . 97

5.4.2 Further Document Selection Techniques99

v

5.5 Rank Ordering Similarity . 100

5.5.1 Kendall Tau Algorithm . 100

6 Conclusions and Future Study 102

6.1 Experimental Results Analysis .102

6.1.1 Ranking Similarities . 104

6.1.2 User Study . 106

6.2 Conclusions . 107

6.3 Future Study . 109

6.4 Final Remarks . 110

Bibliography 111

vi

List of Figures

2.1 The ViperBot Architecture . 25

2.2 Dataset Out-link Distribution .. 34

2.3 Dataset In-link Distribution .. 34

3.1 Example of Inverted Index Creation47

4.1 Example of Global Importance Vs. Local Importance 56

4.2 Sample Dataset Graph for PageRank 57

4.3 PageRank Vector . 59

4.4 Sample Dataset Graph for QD-PageRank 63

4.5 QD-PageRank Vector . 64

4.6 A Simple 3 Node Graph . 66

4.7 Example of N-Depth Traversal . 67

4.8 Sample Dataset Graph for EQD-Rank 70

4.9 PageRank Vector . 71

4.10 EQD-Rank at a Depth of One . 71

4.11 EQD-Rank at a Depth of Two . 73

5.1 PageRank Convergence . 76

5.2 QD-PageRank Convergence for ‘shopping’ community 77

5.3 QD-PageRank Convergence for ‘football’ community 77

vii

5.4 QD-PageRank convergence for ‘Physics’ community 77

5.5 PageRank Distribution for 10,000 Pages 79

5.6 PageRank Distribution for 100,000 Pages 80

5.7 PageRank Distribution for Entire DataSet 81

5.8 PageRank Distribution within subset of Amazon.com 82

5.9 IN-Degree Distribution for the Entire DataSet 83

5.10 QD-PageRank Distribution for the ‘shopping’ Community 84

5.11 QD-PageRank Distribution for the ‘games’ Community 84

5.12 QD-PageRank Distribution for the ‘football’ Community 85

5.13 QD-PageRank Distribution for the ‘computers’ Community 86

5.14 QD-PageRank Distribution for the ‘physics’ community. 87

5.15 QD-PageRank Distribution for the ‘biology’ community. 87

5.16 In-Degree for the ‘shopping’ Community 88

5.17 In-Degree for the ‘games’ Community 89

5.18 In-Degree for the ‘football’ community 89

5.19 In-Degree for the ‘computers’ community 89

5.20 In-Degree for the ‘physics’ community 90

5.21 In-Degree for the ‘biology’ community 90

5.22 EQD-Rank Distribution for the ‘shopping’ community 93

5.23 EQD-Rank Distribution for the ‘games’ community 93

5.24 EQD-Rank Distribution for the ‘football’ community 93

5.25 EQD-Rank Distribution for the ‘computers’ community 93

5.26 EQD-Rank Distribution for the ‘biology’ community 94

5.27 EQD-Rank Distribution for the ‘physics’ community 94

viii

List of Tables

5.1 Computation Times Using EQD-Rank 78

5.2 Correlation Between PageRank and In-Degree 91

5.3 The Percentage of Total PageRank Obtained by Top 10% of Pages . . 92

5.4 The Percentage of PageRank Removed Within Each CohesiveCom-

munity . 95

5.5 Total Rank assigned using each Algorithm 96

6.1 The Kendall-Tau Correlation between the Result Sets 105

6.2 User Study Results . 107

ix

Chapter 1

Introduction

1.1 Motivation

Today the web is the largest repository of human information, with an estimated 11.5

billion publicly accessible pages [GS05]. The informationcontained within this hy-

pertext repository lacks the formal structure present in previous Information Retrieval

document collections. In the case of the web, a diverse rangeof information is avail-

able for human digestion in a semi-structured environment.Documents available not

only differ in quality but also in language, range of vocabulary and type (.asp, .HTML,

jsp, etc). To add to the unpredictability of this environment, it is estimated that over

1 million pages are added to the web daily, not uniformly at random but with greater

probability to existing pages that are already highly linked to [BA99].

The task facing modern day search engines involves exploiting this dynamic en-

vironment, to process over 250 million web searches daily and therefore attempt to

satisfy every user information need. An additional problemfacing search engines is

the very nature of the user query involved. The complexitiesinvolved are aptly high-

lighted through an example of a user information need.

1

“ Find all pages containing information on the Java programming language which:

(1) are non-commercial and (2) contain working examples.” To be relevant, all pages

returned must also include e-mail and phone number for contact purposes along with a

link to the Sun website.”

This query cannot be used directly to return relevant pages and must be translated

into the language of the information system. In this case, inthe language of the search

engine, by specifying words that adequately convey the semantic representation of this

information need. The problem being the search engine uses natural language and is

therefore ambiguous and imprecise. Also, another major problem is that the user need

may be poorly defined or broad in nature. This is particularlytrue when you consider

that a user query typically contains 2.35 terms. The fact that most IR users are prepared

to examine at most the first 10 or 20 documents [BWB02, SHMM98], again adds to

the complexity involved.

Taking all of these factors into consideration, the relevancy achieved by the leading

search engines (Google, Yahoo, MSN) could be considered relatively adequate. This

success has centered around exploitation of the World Wide Web link topology, with

edges representing links between pages and nodes representing pages. Explicitly this

exploitation is achieved through link analysis ranking algorithms. Current ranking al-

gorithms exploit this inherent context information, through the premise that a link from

page A to page B denotes an endorsement of the quality of B. A few of the most cited

link analysis ranking algorithms are Google’s PageRank algorithm, Kleinberg’s HITS

algorithm [Kle99], and Lempel and Moran’s SALSA algorithm [LM00].

In this thesis we focus on the PageRank algorithm and its query independent nature.

We suggest a modification of the result set at runtime using a post-ranking refinement

of the result set, to increase the relevance returned to a typical user. This modification

enables the reproduction of a query dependent PageRank result set at runtime and is

therefore the focus of this thesis.

2

1.2 Information Retrieval

The goal of Information Retrieval (IR) involves satisfyingthe information need of an

individual. This problem may initially appear straightforward until we consider the

specificity of the user query and structure of the data collection.

The type of user query input to a data collection covers an entire spectrum [CPKT92].

At one end, a narrowly specified search for a particular document, may be implemented

through a query such as the document title. At the opposite end is a browsing session

with no well defined goal, satisfying a need to learn more about a topic. It is also

common for a user to move across this spectrum from browsing to search, with the

user beginning with a partially defined information need that is refined as they learn

more about the topic. The objective of an IR system is to extract the semantic meaning

inherent in these user queries, regardless of the specificity.

Information Retrieval is also concerned with representation, storage, organization

of, and access to information items with a view to satisfyinga user’s information need.

With regards to the storage of information, documents may berepresented using a set

of index terms or keywords. These keywords may be extracted directly from the text or

specified by human subjects. Also due to the availability of large disk space, storage of

a full representation of a document is possible through its words. In practice, however,

a full representation is rarely stored and methods such as stemming, elimination of

stop words, and identification of noun phrases are all implemented. Furthermore this

data is often compressed further using modern compression techniques. Currently the

two main evaluation techniques implemented for IR are recall and precision [Cle97],

with recall defined as the proportion of relevant documents retrieved by the system and

precision described as the proportion of retrieved documents that are relevant. The

overall goal of an IR system is to retrieve all the documents relevant to a user query,

while retrieving as few of the non-relevant documents as possible. In the following

subsections we trace the development of information retrieval from ancient times to

3

web information retrieval.

1.2.1 Early Information Retrieval (pre 1945)

The storage and retrieval of information dates from 700Bc and a letter from the Assyr-

ian king, referring to the storage of books. During ancient times, books were stored in

libraries with the most famous being the library of Alexandria. Callimachus (305-240

BC) devised a classification system for this library, divided into six poetic genres and

five prosaic areas (history, rhetoric, philosophy, medicine and law, and varia). For each

category, the books were arranged alphabetically by authorand for each book an incipit

(the first lines of the book) was stored with author dates.

Between the time of these ancient libraries and the libraries of the middle ages,

papyrus was replaced by parchment and the scroll was replaced with the bounded book,

making texts more compact and manageable. Generally, bookspre 19th century were

classified by subject and assigned rooms and shelves based onthe method suggested by

Callimachus. Catalogues were kept by most libraries containing three parts consisting

of a list of titles containing the volume, number of leaves and number of separate

treatise contained within the book, a shelf list, and an author list in alphabetical order

of the entire collection.

The invention of the printing press and the rapid growth of literacy made the re-

trieval of information more difficult and therefore centredon book subject rather than

the author. In 1876 Melvil Dewey introduced the idea of relative, as opposed to, ab-

solute location and the assignment of numbers to books, rather than shelves, with the

subject identity being attached to the book, instead of the shelf. Books were placed

relative to each other using a linear numbering scheme, hierarchically divided in 10

classes by 10 divisions by 10 sections. The Universal Decimal Classification by Paul

Otlet and Henri-Marie Lafontaine, used in many libraries isa descendent of Dewy’s

work. S.R. Ranganathan followed this work with facet analysis, the technique of di-

4

viding a subject into its complex parts by relating them to a set of five fundamental

categories named personality, energy, matter, space and time, in his Colon Classifica-

tion system (1933). Controlled dictionaries and thesauri were also introduced around

this time to instill some semantic order [Fos82].

1.2.2 Modern Information Retrieval

The popularization of the idea of information Retrieval began in 1945, with Vannevar

Bush’s article [Bus45]. Bush envisaged a system that would store the individual notes

and memories of scientists in his Memex machine. “A Memex is adevice in which

an individual stores his books, records, and communications, and which is mechanized

so that it may be consulted with exceeding speed and flexibility. It is an enlarged

supplement to his memory”. This type of associative linkingwas behind the idea of

automatic access to vast amounts of stored information.

The first information systems built in the 1950’s included the invention of Key Word

In Context (KWIC) indexes. These indices were a computer generated concordance,

with a concordance being an alphabetical list of important words of a book or author,

with reference to the passages in which they occur. The program searches for keywords

and prints them surrounded by the context in which they occur. The WRU Searching

Selector program was also introduced at this time by Allen Kent [RK58] to perform

literature searches based on encoded abstracts. Also in 1959, H. P Luhn proposed using

words as indexing units for documents and measuring word overlap as a criterion for

retrieval [Luh57].

In the early 1960’s Cyril Cleverdon developed the mathematics of ‘recall’ (the frac-

tion of documents retrieved) and ‘precision’ (the fractionof documents retrieved that

are relevant), for the evaluation of retrieval systems and built the first test collections to

measure them [Cle97]. In 1965 Ted Neilson coined the term hypertext with it defined

as “a combination of natural language text with the computer’s capacity for branching,

5

or dynamic display and text which is not constrained to be linear”.

Also, during this period, Salton introduced the Vector space model [SWY71]. Us-

ing the Vector Space Model (VSM) text is represented as a vector of terms. The terms

are usually either words or phrases. If words are represented as terms, every word be-

comes a dimension in a high dimensional vector space and any text document can be

represented as a vector. As any text contains a limited number of terms, most of these

vectors are sparse. The VSM is used to assign a ranking to a document based on the

potential similarities of the document to the query. The document score is based on the

similarity between the query vector and the document vector. The angle between two

vectors is used as a measure of divergence, with the cosine ofthe angle or dot product

used in most instances.

Similar to the VSM, the Probabilistic model (PR) representsdocuments and queries

as vectors. However, the PR model is founded on the premise that documents in a

dataset should be ranked by decreasing probability of theirrelevance to the query. This

premise is known as the probabilistic ranking principle [Rob75]. The notion of proba-

bilistic retrieval was introduced by Maron and Kuhns [MK60]with term weights calcu-

lated based on term distribution within the documents underevaluation. The probabil-

ity of document relevance is calculated by summing individual term relevance weights

which are estimations of probabilities that query terms will appear in relevant and not

irrelevant documents.

Numerous methods exist to assign term weight in the VSM and PRmodel. Most of

these are variants of inverse document frequency (idf) weight [Jon72]. This weighting

scheme is based on the inverse of the number of documents in which the term appears.

Often this is coupled with term frequency (tf) to assign a ranking, where term frequency

is simply a term’s frequency within a document. Also taken into consideration is the

length of the document, with longer documents tending to score higher, due to more

word occurrences and word repetitions.

6

J. J. Rocchio introduced Relevance feedback in 1965 to help refine the user query

[Roc71]. In this instance results are returned to the user ranked by some relevance mea-

sure. Following examination of the results, a further subset of results may be selected

which generate a higher level of interest. The selected pages are then used to further

refine the user query with the resulting method therefore called a ‘user feedback cycle’.

With the advent of computerized databases, the idea of ‘free-text searching arose’,

where complete retrieval of any document, using a particular word, could be achieved

with no cost for manual indexing. Multi-lingual experiments were conducted at this

time, using a bilingual thesaurus and mapping words from both languages into the

same concepts. An example of the existing multi-lingual thesaurus is EuroWordNet.

Constructed by many European countries, EuroWordNet uses astructure called ‘inter-

lingual index’ to represent the semantic structure of multilingual words [Pie98].

During the 1980’s online information retrieval expanded intwo main ways. The

first being the availability of full text instead of just abstracts and indexing and the

other was the use of online retrieval by non-specialists, aslibraries replaced or supple-

mented their card catalogues with online public access catalogues. The CD-ROM was

introduced at this stage, with most libraries having at least one CD-ROM drive. The

probabilistic and vector space approaches that have been refined over the past number

of years cannot claim to imply real understanding of the documents and as Cleverdon

observed human indexing is not consistent enough to guarantee acceptable recall and

precision over sizable databases. In the 1990’s frequency-based, word orientated mod-

els were again adopted and the large scale corpora of machinereadable text, such as

that provided by the TREC collection provided a suitable testing environment, with the

first TREC evaluation conference established in 1992 [Har93]. The development of the

World Wide Web by Tim Berners Lee at this time revolutionizedInformation Retrieval.

7

1.2.3 Information Retrieval and the Web

Until the early 1980’s Information Retrieval was viewed as anarrow area of interest

by librarians and information experts. The World Wide Web was introduced in 1990

by the European Laboratory for Particle Physics (or CERN), as a way for physicists

to track the progress of other individuals. The concept involved the ability of people

working in different locations to learn what each other wereworking on, through exam-

ination of a hypertextual document, accessible on the Internet. Creation of the World

Wide Web is credited to Tim Berners Lee. His original vision for the web was the fol-

lowing: “My definition of the Web is a universe of network-accessible information, a

means of human-to-human communication, and a space in whichsoftware agents can,

through access to a vast amount of everything which is society, science and its prob-

lems, become tools to work with us.” The modern web has evolved from this vision

into a vast repository of human knowledge, thus fulfilling Bush’s previously discussed

vision. However this repository of information adds a new dimension of difficulty to

the traditional information retrieval problem.

In traditional information retrieval, content based metrics are used to retrieve rele-

vant documents from a structured environment. In the case ofInformation Retrieval on

the Web, however, the collection of documents is contained in what can be described

as a semi-structured environment. Documents are constantly added and removed from

the Web, with it suggested in [NCO04] that every week 25% new links are created, and

that after a year 80% of the hyperlinks are replaced with new ones. It is further sug-

gested that new pages are created at a rate of 8% per week and after a year roughly 50%

of the web content is new. The content of information presentin the web is diverse not

only with respect to quality but also in language, range of vocabulary and type (.asp,

.HTML, .jsp, etc).

Content-based metrics such as TF*IDF, used in traditional information retrieval,

assume the integrity of data in the document collection. However, this assumption is

8

not applicable with Information Retrieval on the web. Numerous methods have evolved

for the commercial exploitation of the web. Invisible text,page cloaking, and page

redirects are a few of the more popular methods used to mislead search engines and

increase the ranking of a website. Also in the case of context, the ranking mechanism

must take into consideration reciprocal link programs and other local link structures,

manufactured for the sole purpose of improving a website’s ranking.

As a result, search engines use a combination of content and context score when

assigning a ranking to a page. Through analysis of the structure of the web, we demon-

strate how context information is effectively exploited bythe leading search engines.

1.3 Graph Structure of the Web

The web can be viewed as a directed graph, with every page represented as a node,

and the hyperlinks between pages represented as edges. Therefore the web graph of

today is comprised of 11.5 billion nodes and approximately 92 billion edges [GS05].

The web is constantly evolving and as a result the structure is dynamic rather than

static. Nodes and edges are constantly being removed from and added to this hyperlink

structure, with it suggested in [KRRT99] that the half-lifeof a web page is in the order

of a few weeks.

The evolution of this structure has been the focus of much research in the past and

suggested in [BA99] is that the addition of pages is not random and follows a model

of preferential attachment. Under this model a link is created from a new node to an

existing node not uniformly at random, but with a higher probability to existing nodes

that already have a large in-degree. This is a ‘winner takes all’ situation, present in a

large number of social networks. This model, however, does not account for the dis-

tributions present in the low connectivity regions, observed in [BKM+00] as possibly

Poisson or a combination of Poisson and power law. Suggestedin [PFL+02] is a com-

bination of preferential attachment and uniform attachment, to better account for this

9

distribution in the low connectivity regions. Also suggested is another model in which

“A new page adds links by picking an existing page, and copying some links from that

page to itself” [KRRT99]. This is based on the notion that a user will select pages to

link to, based on pages that the user has a preference for.

A hyperlink pointing from a page is said to be an out-link of that page. With

regards to the page that it points to, the link is referred to as an in-link. The number

of in-links to a page is subsequentially referred to as the In-Degree and the number of

out-links from a page is referred to as the Out-Degree. The In-Degree and Out-Degree

distributions are conjectured to follow a power-law distribution, with best fit exhibited

for exponents of 2.1 and 2.4 respectively [BA99, BKM+00, Wan]. These distributions

are also inverse polynomial distributions and can be referred to as Zipfian distributions

[Zip49].

Initially the structure of the web may appear totally haphazard, but further in-

vestigation reveals an underlying structure. This structure, exposed by Broder et al.

[BKM +00], during experimentation on a web dataset of over 200 million pages, is

likened to that of a ‘bow-tie’. Revealed is a central Strongly Connected Component;

a subgraph (IN) with directed paths leading to the SCC, a component (OUT) leading

away from the SCC and isolated tendrils attached to one of thesubgraphs. These four

regions are roughly a quarter of the total size of the web each. Later work by Dill et al.

[DKM +01] showed that in subgraphs of the web this structure is maintained, although

the ratio of component sizes differs somewhat.

Overall the structure of the web may be viewed as sparse (the average out-degree is

eight [KRRT99]), but at a local level the structure is dense.The hyperlink structure at

this level maintains different properties from those associated with the global hyperlink

properties. According to [EM], locality with respect to hyperlinks in the web can be

defined through the premise that “links tend to be correlatedto links that are nearby in

some measure”. This locality among links is reinforced by Adamic for a “small world”

10

graph of the World Wide Web [Ada99], and is further observed in [SY01]. In the latter

it is suggested that “almost three quarters of links point topages on the same hosts,

and often to pages that are only a short distance from the source in the sorted order

of URLs”. Also a form of locality is highlighted by Davison [Dav00] and Menczer

[Men02], with it suggested that pages linked to or from the same page are usually

topically related.

It is at the local level that we believe the structure of the web may be further ex-

ploited to identify collections of topically-related pages, and therefore increase the

relevance of the results returned to a search engine user. Bi-partie cores are identi-

fied in a large dataset of the web [KRRT99], with it suggested that a large fraction

are in fact topically coherent. Community structures are also identified within the web

by [FLGC02]. In this instance, a community is defined as a collection of web pages

such that each member has more hyperlinks within this community, than outside of the

community. Later experimentation, discussed within this thesis, focuses on topically-

related subgraphs and attempts to fully exploit the inherent information.

1.4 Link Analysis Ranking Algorithms

The web as a document collection is unique in comparison to traditional document col-

lections, with the assignment of a ranking value to every hypermedia webpage being a

non-trivial matter. Firstly, this is due to the previously discussed diversity of documents

and constant addition of new pages to the environment. Consider also, the tremendous

size of the web, that the web contains redundant documents and broken links, and

that certain local linkage-structures may be created for the commercial exploitation of

the Web. These attributes highlight the dynamic instability inherent in this hypertext

corpus.

Other problems facing link analysis ranking algorithms spawn from over-simplistic

user queries and possible cognitive overload resulting from queries of broad specificity.

11

Dealing with queries sufficiently broad in nature is defined as the Abundance Problem

by Kleinberg: “The number of pages that could be reasonably returned as relevant is

far too large for a human user to digest” [Kle99]. Also considering the fact that a

user query typically contains 2.35 terms [Hen03] and the fact that most IR users are

prepared to examine at most the first 10 or 20 documents [SHMM98, BWB02], the

critical nature of this problem becomes apparent.

As a result traditional information retrieval techniques are insufficient and a social

network view of the web is adopted along with the associated analytical-techniques.

Using a directed graph to model a social network is not uniqueto the web, with in-

degree intuitively a good indicator of status. In 1949, J. R.Seely [See49] realized the

recursiveness present in a social network, with web pages being replaced by actors: “we

are involved in an infinite regress:[the actor’s status] is afunction of those who choose

him; and their status is a function of those who choose them, and soad infinitum”.

Such social network and therefore web properties form the foundations on which the

majority of todays link analysis ranking algorithms are based.

Current link analysis algorithms exploit the context information inherent in the hy-

perlink structure of the Web, with the premise underlying all link analysis ranking

algorithms, being that a link from page A to page B denotes an endorsement of the

quality of B. Following on from social network analysis, an initial indication of page

importance is the number of in-links. This is the premise behind the RankDex algo-

rithm [Ran49], with pages assigned ranking values based on their number of inlinks.

The PageRank algorithm [PBMW98] used by the Google search engine, is a descen-

dant of RankDex. PageRank is based on the premise that the importance of a page

is determined by the importance of the pages linking to it, and is a manifestation of

Seely’s observation.

The hyperlink structure of the web is exploited by three other important link anal-

ysis ranking algorithms. Kleinberg’s HITS algorithm [Kle99] attempts to exploit this

12

structure through the use of hubs and authorities over a rootset, K. Bharat and G. Mi-

haila exploit the link structure between expert and target documents, through their Hill-

top algorithm [BM01], and Lempel and Moran [LM00] exploit this structure through

their SALSA algorithm. In the following subsections we briefly discuss the PageRank

algorithm, some query dependent algorithms, and give an overview of other algorithms

of interest.

1.4.1 The PageRank Algorithm

As previously discussed, the Rankdex algorithm [Ran49] is based on the hypothesis

that the ‘importance’ of a page should be determined by its number of inlinks and is

essentially a form of simple citation counting. The problemwith Rankdex is that it

is highly susceptible to spamming and does not favour important pages with only a

few in-links. PageRank evolved from this simple idea into aniterative ranking process

over the entire web graph. The hypothesis behind the PageRank algorithm is that a

page with a large number of in-links, or a link from an important page, should be

deemed important. The PageRank of a page is therefore based on its In-Degree and the

importance of pages linking to it.

The PageRank Algorithm:

Pr (i) = (1 − D) + D
∑

j∈Ai

Pr (j) /out-links(j) (1.1)

The PageRankPr of a pagei is the sum of the PageRankPr of its in-linksAi, divided

by the number of their corresponding out-links.

The PageRank algorithm is used to model the behaviour of a typical person brows-

ing the Web. This person, often referred to as a ‘random surfer’, will choose to follow

one of the links from a page with equal probability, and occasionally get bored and

jump to another page completely at random. The computation of the PageRank vec-

13

tor involves an iterative process over a square adjacency matrix A and is equivalent

to extracting the principal eigenvector of the matrixA. A detailed description of the

PageRank algorithm is given in chapter 4.

1.4.2 The HyperLink Induced Topic Search algorithm (HITS)

Kleinberg [Kle99] suggests a different method for ranking web pages through the in-

troduction of hubs and authorities. The HITS technique is based on the premise that

a sufficiently broad topic contains communities of pages. Inorder to rank pages each

relevant page is assigned a hub and authority score. An authoritive page is a highly

referenced topic-relevant page and a hub page is a page pointing to many authoritive

pages.

The HITS algorithm:

a (p) =
∑

q→p

h (q)

h (p) =
∑

p→q

a (q) (1.2)

The authority value of pagep (a (p)) is the sum of hub scores of all pages pointing to

p and the hub value of pagep (h (p)) is the sum of authority scores of all pages thatp

points to.

Initially all hub and authority values are set to1. In a single iteration the authority

score of pagep is replaced by the sum of the hub score of pages pointing top, and the

hub score of pagep, is replaced by the sum of the authority score of pages pointed to by

p. As a result hubs and authorities exhibit a mutually reinforcing relationship, where a

good hub points to many good authorities and a good authorityis pointed to by many

good hubs. Convergence of the hub and authority values is guaranteed [Kle99] and

14

typically occurs within 10 iterations [BH98].

HITS is inclined to favor the most dense community of hubs andauthorities and

is referred to as the ‘Tightly Knit Community effect’. This preference can lead to an

irrelevant result set and is due to query-irrelevant pages in the initial root set. A second

drawback of HITS is a mutually reinforcing relationship occurring between hosts, with

many pages on one host linking to a single page on another host. The resulting authority

score of the single page is inflated and subsequently so too are the hub scores of the

pages pointing to it.

Two other drawbacks of HITS are identified by Chakrabarti et al. [CDR+98], with

the first occurring when a page discusses a number of topics. Alink will point to

different topics depending on their location within the page. If the page has a large

out-degree, it will receive a large hub weight, which flows onas high authority weights

for referenced pages, regardless of relevance to the initial query topic. The second

drawback is topic generalization. If the search topic is specific, the algorithm often

returns good sources for more general topics. This behaviorcan also be reversed with

pages more specific than the general search topic, dominating the results set.

1.4.3 The Topic Sensitive PageRank algorithm

With Topic Sensitive PageRank [Hav02] a set of ranking vectors are computed, as op-

posed to the single PageRank vector generated using standard PageRank. These vectors

are biased using a set of representative topics, to capture the notion of importance with

respect to a topic, indirectly specified through a user queryand if available through

user context also.

During offline processing of 120 million pages, indexed during a web crawl in

January 2001, 16 topic-sensitive PageRank vectors are generated, each biased using

URLs from a top-level category of the Open Directory Project. At query time a linear

combination of the topic-sensitive vectors, weighted using the similarities of the query

15

(and context if available) is used instead of a single ranking vector.

This is an extension of the idea of a personalization vector suggested in [BMPW98].

In terms of the random-walk model, each topic vector represents the addition of a

complete set of transition edges, and with probabilityD the random surfer follows an

out-link from the current page, occasionally jumping to a URL in the ODP category.

The influence exerted by each topic, over the final rank value,is proportional to their

affinity with the query or query context.

Topic Sensitive PageRank lacks practical application as 16topic categories is insuf-

ficient to cover all topics on the web and therefore a query maybe likened to a category

topic, with which it has little affinity. A more comprehensive implementation involving

a vast number of category topics would be required with the use of a finer-grained set of

topics, such as the second or third level of the Open Directory hierarchy, as suggested

within the paper. However such an implementation would havea profound effect on

the computation and storage constraints.

1.4.4 The Hilltop Algorithm

The Hilltop algorithm [BM01] works on the same hypothesis asmost connectivity-

based algorithms, namely that the number and ‘quality’ of pages pointing to a particular

page are an indication of the page’s quality. The Hilltop algorithm is unique through

the fact that only pages considered ‘experts’ for a user specified query are considered.

An expert page is defined as a page about a certain topic havinglinks to many other

non-affiliated pages on that topic. Initially, a list of the most relevant experts on the

topic is computed, based on a user query. The relevant links contained within these

experts are then selected and followed, leading to the target pages. The rank value

of target pages is determined by the number and relevance of non-affiliated experts

pointing to them. Target pages must be linked to by at least two non-affiliated expert

pages. The ranking value of a target page therefore reflects the collective opinion of

16

the best independent experts on the query topic. When no suchexperts are available,

no results are returned by Hilltop.

A common consensus in the search engine world is that some form of the Hilltop

algorithm is currently implemented by the Google search engine, for broad queries.

The shortcoming of this method is that computation must be performed “a-priori ”.

Therefore if the user query was not previously considered, standard PageRank algo-

rithm is implemented, leaving the query susceptible to results that are authoritative in

general, but not in relation to the user query.

1.4.5 The Intelligent Surfer Algorithm

The Intelligent Surfer algorithm [RD02] attempts to improve upon the standard PageR-

ank algorithm by introducing a more intelligent random surfer. This surfer is guided by

a probabilistic model of relevance to the query, with the probability distribution given

by:

The Intelligent Surfer Algorithm:

Pq (j) = (1 − β)P ′
q (j) + β

∑

i∈Bj

Pq (i → j) (1.3)

whereβ is a damping factor0 ≤ β ≤ 1 andPq (i → j) is the probability the surfer

moves to pagej given that he is on pagei. Where the surfer jumps when not following

links is specified by(1 − β)P ′
q (j). The resulting probability distribution over pages is

given byPq (j) and bothP ′
q (j) andPq (j) are derived from a measure of relevance of

pagej to queryq.

The above equation is best explained using the ‘random surfer’ analogy. The web

surfer probabilistically hops from page to page, dependingon the page contents and

the user query. When choosing between multiple out-links from a page, the intelligent

surfer will choose a random link from the set of pages deemed query relevant, instead

17

of one at random from the entire set of page out-links. When a page has no out-links

or none deemed relevant, links are added from the page to all pages in the dataset. To

assign a measure of relevance to a page, a basic content-based function is suggested,

where the relevancy of pagej for query q (rq (j)) is equal to 1, if the query term

appears in the page, and 0 otherwise. Only pages related to the user query (rq (j) = 1)

are considered.

The bottleneck for the Intelligent Surfer method is that each query cannot be pro-

cessed at runtime within a reasonable time frame. Suggestedas a solution, is the cal-

culation of the Query Dependent PageRank (QD-PageRank) vector for hundreds of

thousands of query words“a-priori ”. At runtime, provided the user query matches one

of these words, the corresponding QD-PageRank vector is then used to populate the

results set. Computation and storage is stated as requiringroughly 100-200 times that

of standard PageRank, for hundreds of thousands of words. The drawback being that

provision of a QD-PageRank value for every possible query word, “a-priori ”, is not

realistic.

1.4.6 Other Algorithms and Ranking Methods

Numerous variants of the PageRank algorithm currently exit. Richardson and Domin-

gos [RD02] and Haveliwala [Hav02] create two variations previously highlighted. Other

PageRank Personalization variants are discussed by Jen andWidom [JW03] and Brin

et al. [BMPW98]. Rafiefi and Mendelzon [RM] consider a variantof HITS, incor-

porating random jumps to determine the topic associated with a page. Chakrabarti et

al. [CDR+98] and Bharat and Henzinger [BH98] come up with improvements to the

HITS algorithm by adding weights to nodes and links, based onpage relevance using

a cosine similarity measure.

Cohn and Chang [CC00] provide a probabilistic analogue of the HITS algorithm

through their PHITS approach, with the model attempting to explain documents and

18

citations in terms of common community-factors. Modifications to Kleinbergs HITS

algorithm based on a Bayesian statistical approach are suggested in [BRRT01]. Cohn

and Hofmann propose an extension of their PLSA and PHITS algorithms by creating

a mixture based on a probabilistic factor to allow the identification of authoritive doc-

uments. Methods to overcome the effects of local aggregation through hyperlink eval-

uation and evaluation-based web ranking are suggested in [Wan03]. The idea involves

the weighting of links between different domains, more strongly than links within a

single domain, and weighting them based on the distance between pages.

1.5 Overview

Highlighted in the link analysis ranking algorithms discussed todate, is the inability to

incorporate the user query at runtime, within a reasonable time bound. We therefore

propose the introduction of the EQD-Rank algorithm to combine content and context

information in a post ranking refinement of the PageRank results-set. The aim of EQD-

Rank is to approximate the query dependent PageRank vector,through a manipulation

of the PageRank vector, based on a local-graph traversal. Initially the PageRank vector

is computed “a-priori” and is then adjusted based on the relevance of each of the page

in-links.

This ranking refinement is necessary due to the fact that the topic subgraph for

each query, cannot be reproduced within a reasonable time bound, in an environment

where the user is prepared to wait at most between 10 and 20 seconds. Following

implementation and testing of the algorithm, we show through a user study that EQD-

Rank can be used to achieve a relevance increase of over 20%.

During subsequent chapters the elements involved in analysis of a link-based al-

gorithm are discussed along the results obtained. The crawler used to download the

dataset and its various components are highlighted inchapter 2.Also examined are the

various challenges faced by modern day crawlers and comparisons are made with other

19

crawlers of interest. Inchapter 3we examine the various aspects associated with the

storage of a large-scale dataset, creation of the inverted index, creation of the transpose

matrix and the memory saving techniques implemented.Chapter fourdescribes the im-

plementation of the standard PageRank algorithm, QD-PageRank and our EQD-Rank

refinement, along with the various algorithmic strengths and weaknesses. Inchapter 5

we examine the ranking distributions and certain result-set properties. Also examined

are the convergence rates and some content-based document selection techniques. In

chapter 6we reach our conclusions based on experimental results and discuss potential

future work.

20

Chapter 2

The ViperBot Crawler

2.1 Introduction

A modern search engine must index the huge repository of information known as the

web, as quickly as possible. A program or collection of programs capable of achieving

this, is referred to as a crawler, spider, or bot. Shkapenyukand Suel [SS02] note that:

“While it is fairly easy to build a slow crawler that downloads a few pages per sec-

ond for a short period of time, building a high-performance system that can download

hundreds of millions of pages over several weeks presents a number of challenges in

system design, I/O and network efficiency, and robustness and manageability.”

A typical crawler cycle begins with a request for a page and the parsing of the body

of the fetched page to extract links. These links are added toa datastructure contain-

ing the URLs of pages to be crawled, and the cycle continues until some termination

condition is met or until the list of uncrawled URLs is exhausted. One important issue

to be addressed when designing a modern-day crawler, is the crawl strategy to imple-

ment. One common strategy involves abreadth-firstcrawl. In this instance a seed page

is parsed and the links are extracted. Every link on that pageis then crawled until all

21

links have been extracted. Each link on the page, represented by the first page’s first

link, is then processed, with the cycle continuing until thelist of links is exhausted.

Najork and Weiner [NW01] usebreadth-firstcrawling to perform a crawl of 328 mil-

lion pages and suggest that abreadth-firstcrawl discovers high PageRank pages early

in the crawl. Boldi et al. [BCSV02] also test abreadth-firststrategy against a ran-

dom ordering and an omniscient strategy. Intuitively one would expect the omniscient

strategy to perform the best, although it is suggested that “many strategies that accumu-

late PageRank quickly explore subgraphs with bad correlated ranks, and vica versa”.

Also an omniscient strategy requires previous knowledge ofthe region of the web to be

crawled in advance, and it is therefore suggested that abreath-firststrategy performs

best. Adepth-firststrategy is also applicable, although less widely used. Using this

strategy the first link on the first page is crawled. Followingthis, the first link on that

page is crawled and the cycle continues until no more links can be obtained. Another

possible method involves ordering pages based on the PageRank metric [CGMP98].

Numerous ordering methods for discovering important pagesearly during a crawl are

also recently discussed, with a method using the PageRank from a previous crawl de-

termining the ordering that performs the best [BYCMR05].

Crawlers are predominantly used to create a large repository of web pages. This

is the function of crawlers such as Googlebot, Yahoo! Slurp and MSNBot. However,

crawlers may also be used for numerous other tasks. A crawlermay be used to re-

crawl pages for updates. This is particularly important forconstantly changing pages

such as news webpages. In this instance, indexed page freshness is essential with Cho

and Garcia-Molina [CGM00] previously considering methodsto re-crawl a page based

on its update history. Crawlers may also be used to perform some form of focused

crawling such as downloading topic-specific pages [CvdBD99], images, mp3 files, or

pdf files. Examination of a site for broken links and email address extraction are some

other functions carried out by crawlers. M. Henzinger et al.[HHMN99] also use a

22

crawler to perform random walks on the web, measuring search-engine index quality.

To perform these functions, however, the crawler must avoidnumerous pitfalls.

One of the main difficulties faced by a crawler involves avoiding a crawler trap. In

this instance, a URL or multiple URLs cause the crawler to getstuck in an infinite loop.

An example of this is a CGI script that dynamically generatesan infinite number of

web documents. No automatic method to detect a trap exists, although a site returning

an extraordinary large number of documents can be an indication and can be blocked

from consideration with future crawls. Other pitfalls are largely related to duplicate

pages, resulting from a host containing multiple links to the same page. Host-name

aliases are another area of concern, occurring when multiple host-names correspond

to the same IP address. Another instance of the duplication problem involves same

page replication across multiple hosts, with mirror websites and multiple web servers

accessing the same file system, being prime examples.

The difficulties facing crawlers are compounded by the lack of work published to

date, due to the highly competitive nature of the search engine industry. However there

are some notable exceptions and these are discussed briefly in the next section.

2.2 Previous Work

Widely regarded as the first crawler, the World Wide Web Worm [McB94] was created

in September 1994 by Oliver Mc Bryan at the University of Colorado. The crawler

was designed to build an index of document titles and URLs andled to the creation of

a dataset of 300,000 multimedia objects. Other Java crawlers of interest are the Internet

Archive Crawler, GoogleBot, WebSphinx and the Mercator crawler.

The Internet Archive Crawler [Bur97] is distributed acrossa number of machines,

with each process single threaded and using asynchronous I/O. The inter-process ex-

change of URLs is carried out in batch to minimize cost, with the overall aim of down-

loading periodic snapshots of the web.

23

Page and Brin [BP98] give a description of the initial Googlecrawler known as

Googlebot, described as a fast distributed crawling system, containing multiple crawlers,

with each keeping approximately 300 connections open at once. Each crawler process

runs on an individual machine and contains a single thread using asynchronous I/O, to

fetch data from up to 300 servers in parallel.

The WebSphinx crawler [MB98] from Compaq Systems Research Center, is a Java-

based toolkit and interactive development suite for crawlers. Designed for site-specific,

personal and relocatable crawlers, WebSphinx is multi-threaded providing library sup-

port for crawling in Java, using HTML parsing, pattern matching, and Web transfor-

mations.

The Mercator search engine [HN99] is used by the AltaVista search engine. De-

signed exclusively in the Java programming language scalability is achieved through

its datastructures and through a modular design, it is also extensible. The Mercator

search engine is used to create a snapshot of web pages on a corporate intranet, collect

a variety of web statistics, and perform a series of random walks in the web. A detailed

description of the system architecture is provided also, ideally for systems comparison.

2.3 The ViperBot System Architecture

2.3.1 Overview of the System

ViperBot is written entirely in Java. Java’s object-orientated nature facilitates the ad-

dition of new components through subclassing or by method overriding. Java’s API

(Application Programming Interface) includes classes related to objects, threads, ex-

ception handling, and garbage collection, therefore aiding the design of an extensible

and scalable crawler.

24

Internet

HTTP PROTOCOL

FILE

ARCHIVE

URL

QUEUES

CRAWLED

URLS

DOWNLOAD
DOCUMENT

URL

URL

FILTER

PARSING
MODULE

CONTENT
SEEN

DOWNLOAD
MODULE

ViperBot

 ?

SEEN ?

Figure 2.1: The ViperBot Architecture

The crawler is composed of 100 independent threads with thread management han-

dled by theDOWNLOAD MODULE,as displayed in figure 2.1. The pre-defined maxi-

mum number of threads is one hundred, due to an excessive amount of threads resulting

in the potential for more CPU time being spent swapping between threads, than actu-

ally processing them. Initially 100 seed URLs are selected and used to initialize the

crawl. Seed pages may be randomly selected but to maximize the subsequent dataset

diversity, the URLs are selected from the top-level categories of the Open Source Di-

rectory and Yahoo Directories. Each thread operates independently and once the crawl

is initialized the threads are managed via a ThreadPool. A Random Access File (RAF)

is initially created for each thread containing a seed URL and is represented in figure

2.1 byURL QUEUES.

Each thread continually processes URLs provided that the list of uncrawled URLs

has not been exhausted. The URLs are selected sequentially from a thread specific

25

RAF, and extracted in a First In First Out (FIFO) manner. To establish a connection

and download page contents within a specified time-frame a separate thread is created.

Should the contents be successfully downloaded, theCONTENT SEEN ?module is

invoked and used to prevent the download of duplicate pages.Qualifying pages are

passed to theDOWNLOAD DOCUMENTmodule, where they are written to disk and

stored in theFILE ARCHIVEfor further offline processing. At this stage thePARS-

ING MODULE is also invoked writing MetaData to disk and extracting fully qualified

URLs. These URLs are subsequently passed to theURL FILTER,with URLs contain-

ing certain unwanted characters (i.e ? symbol) discarded.

A check to see if the URLs were previously crawled, occurs in the URL SEEN ?

module, in the next phase. The check involves a comparison with theCRAWLED URLS

datastructure. Should the URL surmount this condition, it is added toCRAWLED

URLS,preventing a recrawl and is assigned to the appropriate RAF for further pro-

cessing, with the cycle beginning once more. This cycle, performed by each thread,

continues indefinitely until the list of uncrawled URLs is exhausted, or some global

limit on the number of pages to be downloaded is reached.

2.3.2 The Download thread

The download thread is implemented via the networking facilities provided by java.net.

Specifically we create a URLConnection through the URL protocol. The connection

object is established by invoking the ‘openConnection’ method on the URL, with the

actual connection to the remote object provided through the‘connect’ method. Once

the object becomes available page contents are downloaded.A problem with creating a

‘URLConnection’ is that no provision is made for the specification of a timeout value.

A connection request can therefore hang indefinitely, should the remote server fail to

close the connection. To resolve this problem we initially attempted to interrupt the

26

thread, in which the connection is created. However, after much suffering it was dis-

covered that a thread blocked on an I/O operation cannot be interrupted. As of Java

1.4 support is added for a socket timeout in the URLConnection class by setting the

sun.net.client.defaultConnectTimeout and sun.net.client.defaultReadTimeout parame-

ters. These parameters are therefore set as follows, with a timeout value of8, 000

milliseconds specified:

System.setProperty("sun.net.client.defaultConnectTimeout","8000");

System.setProperty("sun.net.client.defaultReadTimeout", "8000");

If the connection is successful, page contents are downloaded to a string buffer,

with a pre-specified capacity to prevent memory strain. The StringBuffer is doubled in

size when more memory is required and therefore selection ofan appropriate default

size is essential. The download thread is allocated 10 seconds to connect to the page

and download the contents, after which it is killed.

Following termination of the download thread, a String representation of the page

contents is created and subsequently written to hard disk. The page contents are down-

loaded using an inputStreamReader wrapped in a BufferReader, therefore avoiding

costly conversions. The InputStreamReader is a bridge frombyte streams to char-

acter streams, reading bytes and translating them into character encoding. The buffere-

dReader reads the text from the character-input stream and buffers characters to provide

efficient reading of characters, arrays and lines. During the next stage of processing,

the downloaded page is parsed and URLs are extracted.

2.3.3 The Parsing module

This module parses page contents and extracts relevant links, making use of the Java

regular expression API library (java.util.regex). In particular a compiled representation

of a regular expression, known as a Pattern is used. A Patternis represented as a se-

27

quence of characters describing a character sequence and can be used to find matches

in other character sequences. In this case the regular expression is specified using the

following pattern:

Pattern p = Pattern.compile("http(s?)\:\/\/[a-zA-Z0-9\-\._]+(\.[a-zA-Z0-9\-

\._]+){2,}(\/?)([a-zA-Z0-9\-\.\?\,\’\/\\\+=&%\$#_]*)?")

Using the above regular expression, URLs are extracted for further processing. This

expression is then compared against another sequence knownas a Matcher. This en-

gine performs match operations on a character sequence by interpreting a Pattern. The

Matcher then scans the page contents looking for the next subsequence that matches the

Pattern, until the end of the document is reached. When a match is found, it is returned

as a string, provided certain constraints are not violated.These constraints are used

to specify unwanted page types. Example pages, currently not processed by ViperBot

include .gif, .jpeg, and .cgi. Currently these page types number twenty three, with new

page types to be excluded, added regularly. During this stage some link processing

occurs with absolute and relative URLs prefixed and anchors removed from links. All

of the constraints mentioned above are in place to maximise crawling speeds and to

prevent crawler crashes. All relevant links returned from the parsing module are added

to the relevant URL queue, provided that the URL has not been previously processed.

2.3.4 Duplication Detection

To avoid downloading multiple copies of the same page, a module ensures each URL is

only processed once. The string representation of each URL is input and the HashCode

is extracted. The hash code for a String object is:

28

∑

0≤i<n

s [i] 31i (2.1)

wheres [i] is theith character of the string andn is the length of the string (commonly

referred to as mod232).

This HashCode is then compared with the HashCode of previously processed URLs.

If the HashCode is already contained in the HashSet, the URL is discarded and the

next URL is examined. If not, the HashCode of the URL is storedand the URL is

processed. A more complex alternative would involve implementing a hash function

known as MD5. The MD5 algorithm takes an input of arbitrary length and produces a

128-bit fingerprint of the input. URLs may be collapsed into anything between 32 and

128 bits, based on the number of distinct URLs to be supported.

Despite this measure, duplicate pages may still be downloaded. This can occur in

the case where different URLs point to the same page. Duplicate detection is criti-

cal when it is considered that 29.2% of webpages are very similar to other pages and

22.2% are virtually identical [FMN03]. To detect if the actual page is a duplicate, a

number of methods may be implemented. One primitive method indicating a dupli-

cate page is length. It is a distinct possibility that two pages are identical if they have

the same number of characters. Therefore omitting a page with the same length as a

page already downloaded will prevent duplication, although some non-duplicate pages

of the same length may be overlooked. Other methods that could be implemented are

Rabin’s fingerprint algorithm [Rab81] or Shingling [BGMZ97]. In the later, Broder et

al. present a syntactic technique to measure the degree of similarity between two doc-

uments, with a shingle defined as k-word sequences of adjacent words, and documents

declared equal if they have the same set of shingles.

29

2.3.5 System Snapshot Module

Due to the distinct possibility of critical failure due to crawler hazards, a module to

take a system snapshot at pre-specified time intervals is implemented. The measure

prevents an entire recrawl from seed pages in the event of a crawler crash. In the

current implementation, a snapshot of the system is invokedautomatically and taken

after every one hundred thousand pages are downloaded. Withthe SnapShot module,

vital system statistics are written to disk using java.io.PrintWriter. In particular, the

location of the next URL to be processed in each thread specific URL queue is written,

along with global properties such as the number of crawled and downloaded pages. In

the event of a crawler crash, this information can be accessed and used to restart the

crawler from the last recorded system state. The snapshot can also be invoked through

a pause button on the GUI during crawling, resulting in a system snapshot followed by

an exit of the crawler program.

At startup time a previous crawl can be re-initiated from thesaved system position,

through the restart button. In this instance the previous system variables are uploaded

from disk using java.io.FileReader. The crawler threads then read the next location

from their URL queue and crawling recommences.

2.3.6 Robot Exclusion Protocol

Aside from checking if a page has already been processed, it is ethically correct for

a crawler to implement the Robots Exclusion Protocol [Kos].An ethically correct

crawler will first look for a ‘robots.txt’ file before processing a URL on a host, not pre-

viously contacted. The crawler must then parse this file to determine pages excluded

from crawling by the webmaster. Sample contents from the NUIMaynooth robots.txt

file are as follows:

30

User-Agent: *
Disallow: /restricted
Disallow: /srs
Disallow: /srs2

In the first line, the User-Agents to which the disallow rulesapply, are specified.

In this case all User-Agents are specified through an asterisk, meaning all robots are

restricted from accessing the areas specified in the subsequent disallow statements. The

website in this instance prevents a crawler from accessing three paths.

For each host the crawler must request the ‘robot.txt’ file from the server and pro-

cess it (if one exists) to determine these paths of restricted access. A drawback of

adherence to this protocol can be a decrease in crawling speeds. To inhibit this po-

tential bottleneck, our crawler stores the ‘robots.txt’ file on hard disk for each host, to

prevent multiple requests for the same ‘robots.txt’ file. Server requests over a given

time interval should also be capped to prevent the server becoming overloaded with

requests. This can be achieved by maintaining a queue for each server and requesting

pages at a maximum predefined rate. The effect of crawler traps will also be minimized

as no matter how large a file is or the number of pages returned,the crawler will only

retrieve pages at a maximum rate, spread across a large number of servers.

2.3.7 The URLsToCrawl module

The URLsToCrawl module has the responsibility of processing all uncrawled URLs.

Once parsed, a URL is passed to the URLsToCrawl module for further processing. This

module is composed of two functions. The first is concerned with writing the URL to

the appropriate queue of uncrawled URLs. Each queue is maintained in an RAF to

facilitate non-sequential access to file contents. The RAF guarantees that searching

through one disk block costs at most two kernal calls (one seek and either one read or

write). The URLs to be added and the thread number are passed to the module as input

parameters. The file is then accessed, URLs are added sequentially, and a variable

31

containing the number of URLs in the file is updated. Each URL is assigned 512 bytes

and when a URL is added to the RAF, the current number of URLs multiplied by 512 is

the location to seek to within the file. Each URL string character is then written to the

file as a two byte value, starting from the current file pointerposition and is followed by

a URL termination character, symbolizing the end of the URL and therefore preventing

unnecessary read operations.

When a URL is required by a thread, the associated URL queue isconsulted. In this

instance the ‘read’ method is implemented, with the thread number input and a seek

is made to the current read position within the queue. The RAF‘readChar’ method

is then implemented, reading unicode characters from file, starting at the current file

pointer. Characters will be read from the file until a maximumof 256 is reached, or

until the URL termination character is reached, signifyingthe end of the URL. These

characters are then appended to a String until the complete URL is returned.

ViperBot implements breadth-first crawling, maintaining FIFO queues with each

element dequeued in the order it was added. All of these queues are currently main-

tained on hard disk. However, to increase crawling speeds wecould maintain fixed-size

enqueue and dequeue buffers in memory in a similar fashion tothe Mercator crawler

[HN99].

2.3.8 Creation of the DataSet and Page MetaData

Currently each retrieved page is downloaded in its entiretyand stored on disk, with

each an average size 20 Kb. Storage in this manner is currently possible as the dataset

is comprised of only one million pages. Should a larger dataset be required, the crawler

would be reconfigured to compress each file before writing it to disk. This could be

achieved through the compression library ‘zlib’, with a typical HTML page of size 10

Kb being compressed to between 2 and 4 Kb.

At this stage page MetaData is stored to prevent the reparsing of downloaded pages

32

“a-postoiri”. The MetaData facilitates the composition of a dataset webgraph offline,

with the information stored in a large text file on disk. Due tomultiple thread access,

each thread must obtain a write Lock, when appending information. When the thread

holding the lock is finished writing, the lock is released andbecomes available to any

waiting thread. The result is a large text file consisting of the URL and associated out-

links of each downloaded page. A further optimization of this module would involve

replacing the read/write lock system with pipes and a multiplexer process.

2.4 The DataSet Collection

The information repository resulting from a crawl using ViperBot is a collection of

1,023,285 unique Web pages. Due to the fact that the seed pages were selected from

two, previously mentioned directory websites, our crawlermay be biased towards more

popular pages. The total size of the dataset is 21.1 G, with each page having a size

ranging from 1 byte to 1.84 Mb, and the average being 20.6 Kb.

The fact that we explicitly avoid dynamic pages means that pages in the collection

are predominantly HTML. A total of 66,123 unique hosts are represented, helping to

counteract the effects of localized link spamming. The total number of links present

in the dataset is 12,495,560, with an average of 21 out-linksand 12 in-links per page.

We established the in-degree and out-degree distributionsto draw comparisons with

previous ranking algorithm datasets. Displayed in figure 2.2 and 2.3 are log-log plots

of the out-degree and in-degree distributions. The out-degree distribution is power law,

with best fit exhibited for an exponent of 2.7. Also in keepingwith [BKM +00], the

initial segment of the distribution deviates significantlyfrom power law, suggesting

that pages with a small number of out-links follow a different distribution. The in-

degree distribution also follows power law, this time with best fit exhibiting an expo-

nent of 2.15. These dataset characteristics are in good agreement with those of previous

datasets[Hav02, BM01, KRRT99].

33

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
o.

 o
f P

ag
es

Outlinks

Outlink Distribution for Entire DataSet

outlinks

Figure 2.2: Dataset Out-link Distribution

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

N
o.

 o
f P

ag
es

No. of Inlinks

Inlink Distribution for Entire DataSet

Inlinks

Figure 2.3: Dataset In-link Distribution

2.5 Crawler Optimization

A number of benefits are introduced through the design of ViperBot using Java. Firstly,

Java’s object orientated support and API class library are ideal for a modular design,

the exception handling helps with the design of robust applications, memory leaks are

counteracted through garbage collection, and multithreading supports the design of a

multithreaded crawler. However certain drawbacks to a Javaimplementation exist, as

identified by Allan Heydon and Marc Najork [HN00].

34

In many instances, the Java core libraries sacrifice speed for ease of use, with many

of the core classes made thread safe by declaring their public methods to be synchro-

nized, resulting in numerous unnecessary lock conditions.The real bottleneck for our

implementation and for many Java crawlers, is host name resolution. In the case of

the Mercator crawler [HN99] it accounted for 91% of each thread’s elapsed time. The

fact that many created objects cannot be reused is another drawback. Examples of this

include FileInputStream, BufferedInputStream and RAFs. In the later the only way to

access a different file is to allocate a new RAF object, with the RAF unbuffered and

every read or write requiring a kernal call.

ViperBot’s scalable and extensible design means it could befurther optimized

through numerous techniques. The storage of most ViperBot datastructures on disk

reinforces this scalability and means it could easily be reconfigured to handle a crawl

of increased magnitude. ViperBot is designed in a modular fashion making it extensible

and therefore susceptible to new functionality.

In its current state, ViperBot is well suited to the task of downloading one million

pages in less than a day. However to tune ViperBot to industrial standards, numerous

upgrades are required. The initial upgrade would address the bottleneck of host-name

resolution. Host-name resolution is concerned with takingthe host name and resolv-

ing it into an IP address, with support provided by the DomainName Service (DNS).

Using the Java API, host name resolution is currently performed by the ‘getByName’

and ‘getAllByName’ methods of the InetAddress class. This resolution, as previously

discussed, accounts for a large percentage of each thread’sprocessing time. To over-

come this, we propose to circumvent the standard name resolution system and use a

DNS resolver.

Another upgrade relates to the storage of the document repository. In the current

implementation, the full text version of each page is downloaded and stored on disk.

One basic optimization would involve storing the downloaded files in compressed for-

35

mat. The ‘zlib’ library could be used to perform this compression, with expected mem-

ory saving in the region of between 60 and 80 percent. With the1 million pages down-

loaded yielding a dataset of 21.1 G we suggest compression beimplemented for any

crawl of increased size. Furthermore we suggest the storageof our repository using

a storage manager, such as the new version of the Berkley DB Java Edition. This is

currently the choice of implementation for the Internet Archive’s Heritix Web crawler,

and is used to archive over 50 billion URLs. Should ViperBot become a large scale

crawling system the repository could be distributed over a number of storage servers.

Another area of improvement relates to duplication detection. Currently two pages

identical except for one additional character may be archived in the dataset. To elimi-

nate this problem, shingling would be implemented for the detection of near-duplicate

pages. The crawler speed could also be improved through the storage of URL queue

buffers within memory. Should ViperBot be upgraded to a large-scale crawling system

we would also implement a load monitor to keep track of systemstatistics such as the

number of open sockets, threads assigned to each server, andthe time interval between

server requests. Therefore each thread could use load monitor statistics to prevent de-

nial of service attacks, by limiting the number of active requests to a server IP address

at any given time.

36

Chapter 3

Representation of the Transpose

Adjacency Matrix and Inverted

Index

3.1 Transpose Adjacency Matrix Creation and Storage

3.1.1 Introduction

Creation of a graph representation of the document corpus isnecessary in order to

run link-based ranking algorithms. When deciding on graph representation two fac-

tors must be taken into consideration: speed and storage. Anoptimal implementation

would involve creation of a two-dimensional transpose bit matrix, and storage in virtual

memory. However, due to memory constraints, this is not possible and other techniques

are considered.

The corpus is composed of over one million nodes, each representing a URL, and

over 60 million directed edges representing hyperlinks. Considering that on average, a

37

URL consists of between 50 [SY01] and 80 [BBH+98] bytes, the extent of the memory

requirement becomes apparent. As previously discussed, a dataset graph is composed

of nodes and edges and is represented through a square adjacency matrixA. If a pagej

links to pagei thenAij = 1, otherwiseAij = 0. The result is essentially a very sparse

bit matrix, creating two problems. The first regards the adjacency matrix size. The

memory requirement is of the order O
(

n2
)

, with n defined as the number of dataset

URLs. This results in a memory requirement of a terabit of storage space and is too

excessive to be considered. The second relates to the methodadopted for the storage of

the square adjacency matrix and has a direct bearing on the efficiency of the retrieval

of graph properties and the convergence speeds of link analysis ranking algorithms.

Alternately, we create and store the adjacency matrix transpose.

With an adjacency matrix transpose representation, every row represents page in-

links as opposed to out-links. A sparse representation of the transpose matrix is stored

instead of ann ∗ n bit dataset representation, with each row containing an arbitrary

amount of page in-link numbers, instead of a fixed amount of binary digits.

3.1.2 Creation of the Transpose Matrix

The steps involved in converting the connectivity information into the transpose ma-

trix are highlighted in this section. Initially, a brief outline of the contents of the

connectivity-informationfile is provided. Secondly a preprocessing stage, enabling fast

URL lookup during the creation of the transpose matrix is highlighted. The prevention

of multiple-identical link re-processing is also discussed, along with the problem of

dangling-link detection.

The Connectivity-Information File

Creation of the Transpose Matrix involves processing the linkage information compiled

during a crawl of the Internet. During the crawl, linkage information is written to a

38

large text file named “Connectivity.txt”. The file is composed of the URL of each page

and the URL representation of each out-link. The URLs are notwritten to the file in

sequential order and as a result each page number is stored along with the number of

out-links, to provide fast out-link number lookup for any page, during the propagation

of a link analysis ranking algorithm.

The Detection of Url Presence

With the corpus currently containing over 1 million URLs, URL lookup can become

a severe bottleneck during the creation of the transpose matrix. As a result, during

a preprocessing stage all of the downloaded page URLs are extracted and stored in

virtual memory. Each of the URLs is stored in one of one thousand HashMaps. The

HashMap to which each URL is added is determined based on the numeric value of

the last three digits of the HashCode. Therefore if the last three digits are 000 the

URL will be added to the first HashMap, if the digits are 999 theURL will be added

to the 1000th HashMap, with all intermediate digits used to reference the HashMaps

sequentially from the second to the 999th.

Prevention of Multiple Processing of the same Out-link

Creation of the transpose matrix begins with extraction of the page number of each

URL, due to the un-sequential nature of URLs in the file. Next the out-links associated

with each downloaded URL are processed (if any exist), with the URL string repre-

sentation of each out-link extracted. The URL is then added to a temporary ArrayList,

to prevent identical out-links being processed for a page and subsequently to prevent

a page having two or more inlinks from the same page. If the link is already in the

ArrayList, it is not processed further and the next link is examined, otherwise the link

is added to the ArrayList and becomes available for further processing.

39

Dangling-Link Detection

Before an out-link is used to update the transpose matrix, another check is made to

establish if the page pointed to is contained in the corpus. If this is not the case, the link

is dangling and is discarded. This is determined by queryingthe URLs present in the

set of HashMaps. The HashCode of each out-link is computed with the last three digits

used to determine the HashMap to query. The Java API HashMap function ‘get()’

is then called, with the HashCode used as the URL key. The return of a null object

indicates that the link is dangling and results in the discarding of the link. Should

a non-null object be returned, page presence within the corpus is indicated and the

transpose matrix is updated accordingly.

3.1.3 Storage of the Transpose Matrix

In this section we discuss how the transpose matrix is written to memory. Initially

we look at the structure used for storage of the transpose matrix and the reason for

its selection. The steps involved in populating the transpose matrix are discussed next,

including how initial markers are written to the RAF, how inlink integer representations

are added and finally a discussion is made on the use of overflowRAFs.

Storage Structure

Storage of the Transpose matrix is designated to an RAF, facilitating non-sequential

access and as previously mentioned guaranteeing that searching through one disk block

costs at most two kernel calls (one seek and either one read orwrite). A fixed number

of bytes is assigned to each page for the storage of its in-links within the RAF. The

figure is currently set to four thousand bytes facilitating the storage of one thousand

in-links per page. This restriction is implemented due to the fact that 74 % of pages

have less than one thousand inlinks, and the provision of storage space based on the

maximum number of inlinks received by any page (in excess of 12000), would lead to a

40

considerable waste of storage space. As an alternative, each page could be assigned an

individual RAF to contain its inlinks exclusively, greatlyreducing storage requirements

although to the detriment of link analysis ranking algorithm implementation speeds. In

the event of the number of inlinks associated with a page surpassing one thousand, an

overflow RAF is created to store the additional inlinks for that page.

Creation of the Transpose Matrix

Creation of the main RAF begins with a seek to the location marking the beginning

of the in-links for each page. Each location is determined bymultiplying the page

number by 4000 and writing a -1. This integer is used to signify the end of in-links for

each page and is moved every time a new in-link is added for a page, with a -1 written

immediately after the rightmost in-link.

To write an in-link number to the transpose matrix, firstly a seek is made to the

beginning of the byte allocation for that page by multiplying the page number by 4000.

Integers are then read until a -1 or a -2 is processed. When a -1is encountered, the

-1 is overwritten by the in-link number and proceeded by the -1. In the later case, -2

symbolizes the end of space allocated for the pages in-linksand the in-link number is

written to the overflow RAF.

OverFlow Storage

An overflow RAF is created for every page with in excess of one thousand in-links.

When a -2 is encountered in the main RAF, signifying the end ofthe byte allocation for

that page, an RAF is created for that page, if the file does not already exist. Therefore

a check is initially made to see if the file is empty and if this is the case an integer 2

is initially written, followed by the integer representation of the in-link. The integer 2

represents the next write location within the file. When the file is re-accessed, if the file

is not empty this integer is read, used to calculate the seek location, and incremented.

41

The in-link number is then written as a four byte integer (with the high byte written

first) using the RAF function ‘writeInt()’ and the connection to the random access file

is closed.

3.1.4 Previous Work

Graph representation for a large corpus relies on compression techniques. However de-

creased storage space often leads to an increase in data retrieval and therefore currently

available compression techniques need to be closely scrutinized.

URLs and link structure need to be compressed separately andare therefore two

separate problems. K. Bharat et al. [BBH+98] suggest that the average URL is ap-

proximately 80 bytes on average and that storage of 100 million URLs is reduced by

70% using delta-encoded text files, with each URL stored as the difference between

the current and previous URL.

In relation to link compression, locality and similarity are two features generally

exploited. The majority of links on a page are navigational in nature, leading to other

pages within the same host, with T. Suel and J. Yuan [SY01] suggesting that three

quarters of links on a page, point to pages on the same host. With regards to similarity

many pages occurring close to each other tend to share numerous common out-links,

with many navigational links the same across numerous host pages, often copied from

one page to another. It may also be observed that many links within a page are con-

secutive in terms of lexicographical order, due to the fact the navigational links on

most pages point to a fixed-level hierarchy. Therefore they share a long common prefix

which can be exploited. These host structures may also be identified within the global

dataset and compressed individually, and blocks within thematrix graph representation

may also be stored individually, to decrease storage requirements.

K. Randall et al. [RSWW01] exploit the fact that most links ona page point to

other pages on the same host, suggesting that 80 % of links fall into this category.

42

Also exposed is the fact that many pages on the same host sharemany of the same

hyperlinks. For each adjacency list, it is suggested that the delta gap between URLs is

stored, and also introduced the idea of partitioning adjacency lists into groups based on

the number of links they contain, to compress pointers to them. Using these technique

each link is reduced to roughly 6 bits.

T. Suel and J. Yuan [SY01], store global links (non inter-host links) using Huffman

coding for the majority of more popular destinations and Golub coding for the rest.

For local links (inter-host links) Huffman coding is again implemented for the more

popular, with delta coding introduced for the rest. Each link is reportedly reduced to an

average of roughly 14 bits. Suggested also is that the average URL consists of about 50

characters (compared to the 80 suggested by K. Bharet et al.)in uncompressed format

and can be compressed to about 13 bytes by exploiting the common prefixes in the

sorted list of URLs.

P. Boldi and S. Vignain [BV03a] suggest gaps of web graphs aredistributed as

power law with an exponent ranging from 1.1 to 1.3 and therefore that codes coming

from full text indexing, such as Golumb codes are not useful,as they are based on

exponentially decaying distributions. Other dataset graph compression techniques are

discussed by P. Boldi and S. Vignain in [BV03b], with inner redundancies of the web

exploited, enabling graph storage in a limited space in memory. The compression tech-

niques evolve around referentation and intervalisation, compressing a transpose graph

of 118 million nodes to 2.89 bits per link. Suggested are algorithms exploiting gap

compression, referentiation, intervalisation and algorithms for accessing a compressed

graph without the need for re-compression, resulting in an ideal workbench for web

graph manipulation.

43

3.1.5 Optimization of Technique Adopted

Corpus connectivity information is represented using a sparse transpose matrix, stored

in a main RAF with additional overflow files. The structure is adopted to increase

algorithmic implementation speeds by storing the vast majority of page inlinks in a

single file, although consequently at the cost of additionalmemory. This implementa-

tion is sufficient in our case with the transpose matrix requiring 4 G, a long way from

approaching the storage capacity of the PC. In the event of anincrease in the size of

the dataset, each page’s inlinks could be stored in a single RAF utilizing compression

techniques. It is suggested that the transpose of the graph is often more “entropic” and

therefore more difficult to compress than the graph itself [Kle99], although this is dis-

missed by P. Boldi and S. Vignain where the transpose is stored using less bits per link

than when the original graph matrix is compressed.

Therefore optimization would involve storage of the gap between in-links and adop-

tion of compression techniques, such as delta encoding or those suggested by P. Boldi

and S. Vignain. Although this would lead to an increase in thecomputation time re-

quired by the link analysis ranking algorithms, storage requirements would be reduced

considerably and facilitate the storage of a web graph comprised from many tens of

millions of pages.

3.2 Inverted Index Creation and Storage

3.2.1 Introduction

To facilitate efficient user-query processing a search engine maintains an inverted index

file. An inverted index is a datastructure mapping a word to the set of documents

containing the word, and is sometimes referred to as a postings file. Creation of an

inverted index requires the presence of a list of all words appearing in the corpus,

known as a lexicon.

44

A few important factors should be taken into consideration when creating an in-

verted index. These include, the time taken to index the documents, to access the

inverted index, to access the postings for a particular wordand the index updated rate.

Of importance also, is the amount of storage memory required, where the inverted in-

dex size should be proportional to the number of postings [CP90], with the indexing

overhead defined as the index size expressed as a percentage of the entire dataset.

A typical inverted index is composed of the word document identification, the num-

ber of word occurrences and the position of the word within the document, for each

word contained in the lexicon. The word position may, however, be excluded from

the inverted index, should word proximity not be consideredwhen processing a query.

Storage of word to document IDs can be provided by a storage manager such as the

Berkley DB storage manager and is ideal for a dynamic index, where documents are

constantly added, removed, and deleted. For the static collection used in our exper-

imentation, we implement a custom made datastructure, providing the potential for

more space-efficient implementations.

3.2.2 Creation of the Inverted Index

Once downloaded from the Internet, the hypertext corpus requires further processing

before a user query can be addressed. Corpus documents are parsed using a HTML

parser, extracting words and the number of word occurrences. These extracted words

exclude links, HTML tags or meta-data of any kind. Essentially only text visible when

viewing the document with a browser is extracted. A word file is created for every word

in the lexicon, containing document IDs and word occurrences, with the necessary

random access provided through a Java RAF. Once a document isparsed, the number

of word occurrences and document ID are written to a word file.

When deciding on what document content to index, case folding, stemming and

stop words should be considered. Case folding is concerned with the conversion of

45

characters to their lowercase equivalent. Instead of creating an individual posting for

three strings such as ‘car’, ‘CAR’ and ‘Car’, the strings maybe converted to their

lowercase equivalent, with all document IDs stored in a single postings file for the

word ‘car’.

In the case of stemming [Por], every word is stripped to the root and stored accord-

ingly. For example the words ‘acceptance’ and ‘accepting’ are stripped to the root and

stored using ‘accept’. The storage of the indexed words, therefore requires less space,

although some accuracy is removed from the query matching process and is therefore

not appropriate for every document collection. However a combination of case folding

and stemming can be used to reduce the number of documents indexed by 40 percent

[WMB99], with stop word removal another technique capable of reducing index size.

A stop word is a word occurring frequently within most documents, with its removal

having minimal impact. The set of stop words is referred to asa stop list with an

example stop list given below:

the, and, it, was, of, for which, be, a, are, have, or, its, but, be, on

The removal of stop words from the inverted index, can resultin a space saving of 25

percent, for large document collections [WMB99]. However stop list words are often

the shortest words in the lexicon, requiring the least amount of storage space and as a

result, the benefits of a stop list may not be as great as they appear initially.

3.2.3 Storage of the Inverted Index

For each word in the corpus, a list of document IDs and word occurrences are stored

within a RAF, containing an arbitrary number of integers. Aninitial integer is used

to specify the number of document IDs present and therefore is used to specify the

seek position when writing to file. For every document the word appears in, two four

byte integers are written to the file, representing the document ID and number of word

occurrences. A sample corpus consisting of three documentsand the resulting inverted-

46

index is displayed in figure 3.1.

d1: The fat cat

d2: The fat cat slept

d3: The cat is on the mat

The.txt slept.txt

3 1 1 2 1 3 2 1 2 1

fat.txt is.txt

2 1 1 2 1 1 3 1

cat.txt on.txt

3 1 1 2 1 3 1 1 3 1

Figure 3.1: Example of Inverted Index Creation

The corpus contains the three documents d1, d2 and d3. The three documents are

parsed sequentially, with the list of integers displayed infigure 3.1 written to each word

file. For the word file “The.txt” the integer values are explained. The initial integer

specifies the number of documents in which the term appears. In this instance the word

is present in three documents and therefore the initial integer is a three. Each of the

document IDs are then written followed by the number of timesthe word appeared in

the document. Looking at the second integer we can see that the word appeared in

document one and by looking at the third we see that it occurred once. The remaining

document IDs and word occurrences are written to “The.txt” in the same manner, with

the procedure repeated for the five remaining word files.

When writing to a word file initially the first integer is read and used as the location

to seek to within the file. This value is calculated as(x ∗ 8) + 4, with x defined as

47

the initial integer . Therefore it is the number of documentsrepresented in the file

multiplied by 8, taking into account that 2 four byte integers will be added during

each write with the final four taking into account the initialinteger. Once the initial

integer sets the pointer position it is incremented and rewritten to file. The document

ID and word occurrences are then appended to the file and the file connection is closed.

Following the parsing and processing of every corpus document we are left with an

inverted index where every word in the lexicon is represented through a word file.

Therefore if a query contains a word in the index, the word fileis simply accessed and

every document present can be assigned a weighting, based onthe number of word

occurrences within the text.

3.2.4 Further Inverted Index Refinements

Numerous inverted-index compression techniques are currently available, with it is

suggested that compression techniques can reduce an index size to between 10 and 15

percent of the uncompressed index [SWYZ02].

A large portion of the inverted index is composed of documentIDs and can be

exploited though a delta coding compression technique. Document IDs are sorted in

increasing order, storing the first document ID in full and subsequently only the differ-

ence from the previous ID, called the gap. This method is simplistic, efficient, and best

described through an example. Consider a wordw appearing in the following 10 doc-

uments numbered7, 11, 20, 29, 36, 51, 71, 77, 82, 96. The wordw will be represented

through the following list:

〈10; 7, 11, 20, 29, 36, 51, 71, 77, 82, 96〉

Therefore the list for wordw contains the number of documentsdn in which the

term appears (10), followed by the document IDs. As the list is in ascending order, it

can be compressed by storing the initial complete document ID, followed by a list of

gaps. The list above therefore translates to the following:

48

〈10; 7, 4, 9, 9, 7, 15, 20, 6, 5, 14〉

As a result, the original document IDs can always be retrieved by obtaining the cu-

mulative sum of the gaps and allows the storage of word lists using substantially fewer

bits on average. Many models are available to describe the probability distribution of

d-gap sizes. One method available is Unary Coding and involves coding an integer

x ≥ 1, asx− 1 one bits followed by a zero. For example the integer4 would be coded

as1110. Unary coding favors short gaps and is equivalent to assigning a probability of

Pr [x] = 2−x to gaps of lengthx. This is excessively small and may not be suitable

for the compression of an inverted index.

Another efficient compression technique available is Golumb Coding. Related to

Unary Coding, exponentially decreasing probabilities areassigned with the exponential

decay often close to one. Golumb coding is more efficient whendocuments not con-

taining the word are stored, rather than those that do. An inverted-index compression

technique based on Golumb coding is therefore suggested as the ideal implementation

for most large-scale document corpora.

49

Chapter 4

Link Analysis Ranking

Algorithms

4.1 PageRank

4.1.1 Introduction

L. Page and S. Brin [PBMW98] state that “The original goal of PageRank was to sort

backlinks so if there were a large number of backlinks for a document the ‘best’ back-

links could be displayed first”. PageRank is currently the major influence behind the

Google search engine and is an extension of simple citation counting. Citation count-

ing simply ranks pages based on the their number of in-links.However this ranking

technique is susceptible to link spamming and can overlook important pages with only

a few in-links. Through the necessity to overcome this limitation, PageRank emerged

from social network analysis into an iterative ranking process over the entire web graph.

The hypothesis underlying the PageRank algorithm is that a page with a large number

of in-links or a link from an important page should be deemed important. Using the

50

PageRank paradigm, if a page A links to page B the importance conferred on B by A, is

proportional to the importance of A and inversely proportional to the number of pages

pointed to by A.

PageRank Algorithm:

Pr (i) = (1 − D) + D
∑

j∈Ai

Pr (j) /out-links(j) (4.1)

The PageRank (Pr) of a pagei, is the sum of the PageRank (Pr) of its in-linksAi,

divided by the number of corresponding out-links.D is the damping factor (typically

0.85) and ensures every page receives a minimum ranking of(1 − D).

The PageRank algorithm can be described using the ‘random surfer’ analogy, where

the behaviour of a archetypical person browsing the web is modeled. Starting from a

random page, the surfer will choose to follow one of the page out-links with equal prob-

ability, occasionally getting bored and jumping to anotherpage completely at random.

The algorithm propagates index linkage information, represented in a non-negative ad-

jacency matrix with row sums equal to one or zero, often called the Google matrix. The

resulting PageRank vector is used to optimize the layout of the inverted-index struc-

ture accordingly and while PageRank is query independent and computed offline, it is

typically aggregated with other content-based scores.

4.1.2 PageRank Implementation

One important issue to address before implementing PageRank, is dangling-node man-

agement. A dangling node occurs when a page is linked to, but has no out-link and a

dangling link refers to a link pointing to one of these pages.Considering that no search

engine indexes more than approximately 16% of the web [LG00], it is not surprising

51

to find that many links on a page are dangling, and can be due to anumber of reasons.

Possible reasons for this is that there may be restricted access to the page or due to the

majority of PDF and Postscript pages having no embedded links, to name but a couple.

In most datasets the number of dangling links greatly outnumber the crawled links,

with numerous methods available to counterbalance their effect [EMT04]. Simple re-

moval of the dangling links will skew the results, as the number of out-links associated

with non-dangling links will have to be adjusted accordingly. Instead of completely

removing these pages, one can simulate a random-surfer jumpto a random node with

probability 1, by adding a link from the dangling page to every other page, or re-

move the dangling links and reinsert them for the last few iterations [KHMG03, Hav99,

BMPW98].

Once the dangling links issue is resolved PageRank computations begin with an

iterative process over the non-negative square adjacency matrix A. Initially every page

is assigned a PageRank value of1 or 1 divided by the total number of pages in the

dataset, with initial values not affecting the final values and only affecting the conver-

gence rate [GL83]. If a pagej links to pagei thenAij = 1/Nj, otherwiseAij = 0.

The PageRank vector is computed by repeatedly multiplying matrix A, with the vector

of the current estimate of page importance until the estimate is stable, and is equivalent

to extracting the principal eigenvector from the Markov Matrix A.

The PageRank of a page is therefore acquired through an iterative fixed point com-

putation, with the Power method [FKS03] used to perform the computation in most

instances. Using the Power Method, the number of iterationsrequired to achieve con-

vergence grows with the damping factor, requiring increased numerical precision as D

gets closer to1.

Single precision computations are sufficient for the majority of PageRank imple-

mentations, but across an index on the scale of modern-day search engines (i.e. Google,

Yahoo and MSN), double precision becomes necessary [EMT04]. The PageRank com-

52

putation terminates in logarithmic time (time logarithmicin the size of the graph [?])

with potential for the reduction of total computation timesavailable through improved

I/O management [Hav99, CGS].

4.1.3 Damping Factor

The web is modeled using a directed graph and the assumption is that it is strongly

connected, meaning every page can be reached by following links from any other page.

In reality this is not the case and as a result a damping factorD is incorporated in the

PageRank equation. In terms of the random surfer analogy, this can be viewed as the

occasion when the surfer gets bored and jumps to a page withinthe dataset completely

at random. The damping factor is described by L. Page and S. Brin [PBMW98] as

“a vector over the Web pages which is used as a source of rank tomake up for the

rank sinks such as cycles with no outedges”. This rank sink effect is exhibited during

iteration when PageRank gets concentrated in recurrent states, namely loops of pages

accumulating rank but never distributing any. The value selected forD can be any

value in the range0 ≤ D ≤ 1, although as the damping factor goes to1, the rank of all

important nodes goes to0. A value of0.85 suggested by L. Page and S. Brin is more

commonly used, striking a balance between achieving rapid convergence with minimal

perturbation to the rankings.

The damping factor limits the effects of rank sink, ensuringthe web graph is

strongly connected and consequently guarantees convergence. As the damping factor

corresponds to the distribution of web pages jumped to periodically by a web surfer, it

results in the assignment of a PageRank value of(1 − D) uniformly to all pages, sim-

ply because they exist. The rank is passed from each page through the out-links, with

one common form of link spamming involving the passing of this rank to a single page,

therefore leading to an inflated PageRank value. The dampingfactor can be used to to

increase or decrease a site’s PageRank value, perhaps to punish a suspected link-farmer

53

or to reward a favored client. Instead of the random surfer occasionally jumping to a

page completely at random, personalization PageRank may beimplemented. In this

case, using the ‘random surfer’ analogy the jump may be to a particular page such as

an individual’s home page or with equal probability to a pagefrom a set of topic-related

pages [BMPW98, Hav02].

4.1.4 Convergence

PageRank convergence is guaranteed provided the web graph is irreducible and ape-

riodic [Hav99], with the latter guaranteed for the web and the former true with the

introduction of the previously discussed damping factor.

Numerous factors influence the rate of convergence, not least of which are the

damping factor and the matrix size. An increase in damping value decreases the con-

vergence rate with a low damping value providing the opportunity for spam pages to

accumulate an excessive PageRank value. The rate of convergence can be measured

through examination of the PageRank-induced orderings, using the Kendall tau dis-

tance [Ram98], or through the more traditional L1 norm method [KHG03, KHMG03,

KHMG].

The rate of convergence and overall implementation times are critical for PageR-

ank implementations on web datasets where regular updates are required, due to the

inherent dynamic nature of the web. Using the Power Method the rate of convergence

for individual pages is nonuniform, with many pages converging quickly and a few

pages taking much longer to converge. On a dataset of280, 000 nodes and3 million

links, Sepandar D. Kamvar et al. [KHG03] observe that the majority of pages con-

verge within15 iterations, with a few (those with higher PageRank values) requiring

over40 iterations and exploit this observation to decrease the PageRank computational

overhead by up to30%.

Using Quadratic Extrapolation, Sepandar D. Kamvar et al. [KHMG03] again speed

54

up PageRank computations by between25 and300% and introduce their BlockRank

algorithm in [KHMG], to exploit host structures. A local PageRank vector is computed

for each host, giving the relative importance of pages within a host, and is then used to

provide an approximation of the standard PageRank vector, with most hosts converging

to an L1 residual <10−1 in less than12 iterations. No correlation between the con-

vergence of a host and the host’s size is observed and hosts with strong nested block

structures appear slower to converge, when compared to those with a more random

connectivity pattern.

4.1.5 PageRank Merits and Demerits

One of the main benefits of PageRank is its resistance to link spamming. This is due to

the fact that it is very difficult for a web page author to obtain a link from an important

page, unless the page contains information of interest to the important page author.

Through the introduction of link farms and reciprocal link programs, PageRank is not

immune to spamming. The query independent nature of PageRank however, combined

with the fact that the PageRank vector is computed over the entire web graph makes

the algorithm less susceptible to localized link spam than other link analysis ranking

algorithms such as HITS.

Another benefit of the PageRank algorithm is that the dampingfactor is not fixed

and may be used to bias the algorithm to a particular page or pages related to a particular

topic (Personalization PageRank). For example, as previously mentioned, the damping

factor may be set to a user home page or bookmark list to bias the algorithm towards

pages of a similar topic [Hav02, JW03]. However the drawbackof such an implemen-

tation is the computation time involved in generating the multiple PageRank vectors,

that correspond to various teleportation vectors for different topics [KHMG03].

Overall, the main weakness of the PageRank algorithm is its inability to differ-

entiate between pages that are authoritive in general and pages that are authoritive in

55

relation to a particular query. As a result, a page with a highPageRank value that con-

tains a query word, but is not relevant to the user query, may be returned in a prominent

result-set position. This is due to the fact that the PageRank algorithm is query inde-

pendent and therefore not influenced by the user query.

For example consider a hypothetical situation involving two web pages and the

query word ‘Jaguar’. Examination of the page contents reveals that both the Yahoo

homepage and Jaguar.com contain the query word. In this casethe Yahoo home-

page occupies a more central position in the web graph than the Jaguar homepage,

and will therefore be returned in a more prominent result-set position for the query

word ‘Jaguar’. From figure 4.1 we can see that the Yahoo site has over twice as many

links as the Jaguar site and is more likely to obtain a higher PageRank value. This is

due to the fact that PageRank is assigned based on global importance, rather than local

importance and as a result the Yahoo site will obtain a higherPageRank value. It is

suggested, however that the Jaguar page is more relevant to the query due to the fact

that it’s inlinks are all topic related. In an attempt to reduce this effect the PageRank

score is usually combined with a content score (and additional scores) at runtime.

Yahoo

TVNatureSport

News History

Movies

Music

Lada

BMWFerrari

Jaguar

Figure 4.1: Example of Global Importance Vs. Local Importance

56

No bias towards topic-related links exists for the PageRankalgorithm and it is

suggested that a link from a topic-related page should carrymore weight. This intuition

is based on the idea that a link to a page from one of its peer authors, should be viewed

as more important than a link from an author whose page is unrelated to the topic of

the page in question. This is the fundamental principal behind the QD-PageRank and

subsequently the EQD-Rank algorithm.

4.1.6 PageRank Example

To demonstrate the computations involved in a PageRank implementation, we calcu-

late the PageRank vector for the web graph consisting of twelve nodes and twenty eight

links, displayed below:

A

B C

D E F G

K LJIH

Figure 4.2: Sample Dataset Graph for PageRank

The square adjacency matrixA is thus created, based on the connectivity infor-

mation displayed in figure 4.2. Row0 of the matrix corresponds to the pageA, row

57

11 corresponds to pageL, with all intermediate rows representing the pages fromB

to K sequentially. Instead of creating a sparse bit matrix, witheach row entry (Aij)

represented by either a0 or 1 divided by the number of out-links, only out-links are

represented, divided by the total number of out-links.

A =









































































2

0/3 2/3 3/3 4/3

0/3 5

1/3 4/3 7/3

1/4 5/4 8/4 9/4

1/4 2/4 4/4 6/4

2/3 11/3 12/3

3

3/2 4/2

4/2 5/2

5

10









































































From the matrixA above we can see that the out-links for each page are repre-

sented in rows0 to 11, divided by the total number of out-links for that row. Taking

pageE as an example we can see that its four out-links, pagesB, F, I, andJ are all

represented in row four, divided by the total number of out-links associated with page

E. In its current state matrixA is stochastic, due to the fact that each node has at least

one out-link. However, consider a situation where a page with no out-links is intro-

duced and represented by row13. This would result inA becoming non-stochastic and

would result in the necessity for every zero entry in row13 being replaced with1/13.

Matrix A is however reducible and results in the introduction of the damping factorD.

As a result, matrixA is now stochastic and irreducible and following iteration of the

PageRank algorithm (equation4.1), we obtain the following PageRank vector:

58

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2 4 6 8 10 12

P
ag

eR
an

k

Page No.

PageRank vector

PageRank

Figure 4.3: PageRank Vector

The result is a PageRank vector with values ranging from a maximum of 2.07 to

a minimun of0.32. In this case pageC received the maximum value with pagesF

andE next in order. This can be attributed to their central location within the web

graph. PageL receives the lowest ranking and can be attributed to the solitary link

from ‘unimportant’ pageG.

4.2 Query Dependent PageRank

The fundamental premise underlying link analysis ranking algorithms is that a link

from page A to page B, is a recommendation of page B, by the author of A. Therefore

should page A be considered query relevant, intuitively thelink from page A should

be weighted more heavily than a link from a query-irrelevantpage. A query-dependent

ranking algorithm can focus specifically on the topic community and disregard irrel-

evant links. As a result, a page deemed important within thistopic community and

thus by its peers, is more relevant than a page deemed important across the entire web.

Consequently, M. Richardson and P. Domingos [RD02] introduce the user query to the

previously query independent PageRank algorithm. The hypothesis underlying Query

Dependent PageRank (QD-PageRank) is that a page with numerous in-links or a link

from an important page within the topic community, is more important than a page

59

with numerous in-links or a link from an important page within the entire web. The

QD-PageRank algorithm is therefore an augmentation of standard PageRank.

QD-PageRank algorithm:

QD-PR(i) = (1 − D) + D
∑

j∈Ai

QD-PR(j) /Outlinks(j) (4.2)

The QD-PageRank (QD-PR) of pagei is the sum of the Query Dependent PageRank

(QD-PR) of its in-linksAi, where both i and j are query relevant, divided by the

number of their corresponding out-links. The damping factor D is typically 0.85 en-

suring every query-related page receives a minimum rankingof 0.15.

Using the ’random surfer’ analogy, when the random surfer ischoosing from multi-

ple page out-links, only those deemed query relevant are considered. When the surfer

makes a random jump, it is random only within the set of query-relevant pages. Query

irrelevant pages therefore exert no influence over the final ranking values and are as-

signed a ranking of zero.

4.2.1 Implementation

A preprocessing stage to determine page relevance is required before QD-PageRank

can be implemented. Every page in the index is assigned a relevance score based on the

user query, with numerous ranking metrics available to determine this relevance (e.g.

TFIDF [SL68], Latent Semantic Indexing [DFL+88], or Probabilistic Latent Semantic

Indexing [Hof99]. Pages with a relevance score above some predetermined threshold

are included in the subgraph, through which the QD-PageRankalgorithm will iterate.

Every relevant page is assigned an initial QD-PageRank value of1, with all other pages

assigned a value of0. Therefore in the square adjacency matrixA representation of the

subgraph, if a pagej links to pagei, and both are relevant thenAij = 1, otherwise

60

Aij = 0.

The issue of dangling nodes must be addressed for the subgraph, with a link from

the dangling node to every other node introduced. Also to ensure that the matrix is

irreducible and to prevent rank sink, the damping factor is applied. The QD-PageRank

values are computed next by simulating the repeated multiplication of the adjacency

matrix for the query-related subgraph, with the vector of the current estimate of page

importance, until the estimate is stable and is equivalent to extracting the principal

eigenvector from matrix A.

Each QD-PageRank value is computed through an iterative fixed point computa-

tion using the Power method [GL83], with the number of iterations required to achieve

convergence dependent on query broadness and subsequentlythe size of the subgraph.

Single-precision computations are sufficient for the computation of the QD-PageRank

vector for all words in our lexicon. The computations terminate in logarithmic time

(time logarithmic in the size of the graph) with potential for the reduction of com-

putation times available through various algorithmic speed-up techniques [KHG03,

KHMG03, KHMG, Hav99].

4.2.2 Strengths & Weaknesses

The primary benefit of QD-PageRank is that pages that are irrelevant but authorita-

tive in general no longer dominate. However, as typical search engine users are pre-

pared to wait at most between10 and20 seconds, calculation of the ranking values

for pages in the query-related subgraph is not feasible within this time bound. M.

Richardson and P. Domingos suggest the computation and storage of QD-PageRank

values “a-priori”, with computation and storage requirements stated as requiring ap-

proximately100 times that of standard PageRank. Despite the somewhat conservative

nature of these figures, the infinite number of possible wordsacross the different lan-

guages means QD-PageRank cannot be implemented by modern search engines. One

61

possible method to address this shortcoming is the computation of QD-PageRank val-

ues for a limited number of popular queries, in a similar manner adopted for the Hilltop

algorithm [BM01].

When the user query is very specific the resulting topic community may be sparse

and the ranking algorithm becomes less effective. For such asparse community the

algorithm will be highly susceptible to localized link spam, resulting in a preference

for a standard PageRank implementation.

The main drawback of a QD-PageRank implementation is the computation time.

These times, however are minimized through the fact that only query-relevant pages

need to be considered and results in a decrease in the QD-PageRank computations. The

number of query relevant pages can be reduced through the constraint that if the word

does not appear in the document, the document is automatically deemed irrelevant and

through a threshold on the content-based retrieval score.

The overall computation times are proportional to the number of documents in the

subgraph. The overall time will require, a factor ofS/N times the computation of the

query independent PageRank vector, withS defined as the number of relevant pages

andN defined as the number of corpus pages. On average the QD-Rank computations

require0.75 ∗S/N , with potential for further improvements arising through the ability

of some of the smaller sub graphs to now fit into memory, eliminating costly disk seeks.

4.2.3 QD-PageRank Example

To demonstrate the computations involved in a QD-PageRank implementation, the QD-

PageRank vector is computed for the web graph consisting of twelve nodes and twenty

eight links, displayed below:

62

A

B C

D E F G

K LJIH

Figure 4.4: Sample Dataset Graph for QD-PageRank

This is the same as the web graph from the PageRank example (figure 4.2) with

the addition of node-relevance classification. In figure 4.4nodesA, B, C, E, andF

are deemed relevant, with interconnectivity displayed using black arrows. All other

links are extraneous, therefore excluded, and representedusing white arrows. Once the

relevant nodes and links are identified, the next stage involves the creation of a square

adjacency matrix for the sub graph. The matrixA therefore consists of five rows:

A =

























2

0/3 2/3 3/3

0/2 4/2

1/2 4/2

1/3 2/3 3/3

























From matrixA we can see that each row displays the out-links associated with

each query-relevant page divided by the number of out-links. Again for this example,

63

if a hypothetical sixth row existed containing no out-links, every zero entry in the row

would be replaced by1/6. As with the standard PageRank example the damping factor

of D = 0.85 is introduced, eliminating reducibility. The matrixA is stochastic and

irreducible and QD-Pagerank algorithm (equation 4.2) implementation results in the

following QD-PageRank vector:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12

P
ag

eR
an

k

Page No.

QD-PageRank vector

QD-PageRank

Figure 4.5: QD-PageRank Vector

The result is a QD-PageRank distribution ranging from a maximum rank value of

0.84 to a minimum value of0.348. In this case only five pages are deemed relevant

to the query and as a result all other seven pages have a rank value of zero. PagesB

andE obtain the minimum ranking value in this instance, with pageC obtaining the

maximum value, attributed to the fact that three out of it’s original four in-links are

query relevant.

4.3 Estimated Query Dependent PageRank

4.3.1 Introduction

The problem with QD-PageRank is its inability to be performed at runtime, due to

the necessity of creation of the query-related subgraph. Toreturn an estimation of

the QD-PageRank vector and a similar rank ordering, we introduce a result-set post-

64

ranking refinement, based on local graph-traversal. EQD-Rank avoids the creation

of the query-related subgraph through a manipulation of thePageRank values. The

difference between QD-PageRank and EQD-Rank is that the ranking vector is created

at runtime instead of“a-priori ”, with experimentation revealing an average relevance

increase of 21.26%.

As discussed previously, the PageRank of a page is based on the number and impor-

tance of the pages linking to it. QD-PageRank is assigned in asimilar manner, with the

additional constraint that pages are also query relevant. The PageRank vector is there-

fore representative of the PageRank contributions (The PageRank value divided by the

number of out-links, with the result multiplied by0.85) of relevant and non-relevant in-

links. Through EQD-Rank a type of PageRank reverse-engineering is suggested, with

the PageRank contribution of non-relevant in-links removed, providing an estimation

of the QD-PageRank values at runtime. The EQD-Rank algorithm is therefore:

EQD-PR Algorithm:

EQD-PR(i) = PR(i) − D
∑

j /∈Ai

PR(j) /Outlinks(j) (4.3)

WhereAi is the set of relevant pages, the EQD-PR of a pagei is the PageRank (PR)

of pagei minus the PageRank contribution of non relevant pagesj, with the damping

factor(D) applied.

Implementation

The EQD-PageRank process begins with the computation of thePageRank vector “a-

priori ”. Subsequently a query-relevance vector is computed through a content-based

retrieval metric such as TFIDF, Latent Semantic Indexing, or Probabilistic Latent Se-

mantic Indexing.

All pages falling below some relevance threshold are assigned an EQD-Rank of0,

requiring no further processing. A non-zero EQD-Rank valueis then assigned exclu-

65

sively to all relevant pages, based on a traversal of the local graph associated with each

page. The depth to which this local graph is traversed is arbitrary and dependent on the

maximum time a user is prepared to wait for result-set compilation (between10 and20

seconds).

The EQD-Rank (equation 4.3) is implemented across the set ofquery-related pages.

Computation of the EQD-Rank score begins with an examination of the immediate in-

links to a page. For example, consider a dataset with the three nodesA, B andC.

A B

C

Figure 4.6: A Simple 3 Node Graph

In figure 4.6, black arrows link relevant-pages and white arrows symbolize a link

either to or from a non-relevant page. When determining an EQD-PageRank score for

pageB we examine it’s in-links, pagesA andC. From the graph it is therefore evident

that in-linkC is relevant andA is irrelevant. As a result the PageRank contribution of

pageA (0.85 (Pr(A)/Outlinks (A))) is removed from the PageRank of pageB. As

C is also query relevant it’s rank contribution is not removedfrom pageB.

In the event that all in-links to a page are relevant, the EQD-Rank and standard

PageRank value will be equivalent. At the other extreme, a page with no query-relevant

in-link will obtain an EQD-PageRank of(1 − D). A page with only query-relevant in-

links, may however have EQD-Rank and QD-PageRank values that differ significantly.

This occurs when the PageRank value of an in-link is composedfrom the rank contri-

bution of a majority of non-relevant pages. This prompts further examination of the

66

relevance of the pages linking to each in-link, to increase estimation accuracy.

N-Depth Traversal

Each time the in-links to a page are examined, the depth of thetraversal is increased by

1. Therefore when the initial in-links of a page are examined,as with the example from

figure 4.6, the depth of the traversal(N) is one. To increase the accuracy achieved, fur-

ther in-links may also be examined. When computing the EQD-Rank of pageB, the

inlinks of pagesA andC may also be examined, resulting in a traversal with a depth

of two.

A B

C

D E

F

G

Figure 4.7: Example of N-Depth Traversal

From figure 4.7 we can see that pageA is linked to by pagesD, E, andC and

that pageC is linked to byB, F andG. As pageA is deemed irrelevant there is no

need to examine it’s in-links, due to the fact that the total PageRank contribution of

A is removed fromB. PageC is deemed relevant therefore withN = 2, the in-links

of C are also examined. In this case pagesB andG are relevant, withF classified as

irrelevant. Therefore the PageRank contribution ofF is removed from the PageRank

of C, and subsequently leads to the removal of further rank from pageB.

67

Therefore whenN = 2, not only the relevance of the in-links to a page, but also

the relevance of the in-links to the in-links, affect the EQD-Rank of a page. The re-

sulting distance between the EQD-Rank and QD-PageRank vectors is reduced. This

is due to the fact that the local-graph traversed is closer insize to the query-relevant

subgraph used to calculate the QD-PageRank vector. The depth of the traversal can

continually be increased in this manner until the EQD-Rank vector is composed ex-

clusively from the PageRank contribution of relevant pages. It is therefore suggested

thatN be increased until a sufficient level of accuracy is achieved, within a reasonable

time-bound.

4.3.2 Characteristics

EDQ-Rank exploits the large number of community structurespresent in the global

haphazard structure of the web. The connectivity information within these communi-

ties is currently not fully exploited by the PageRank algorithm, due to the equal treat-

ment of query relevant and irrelevant links. To demonstratethis notion it is therefore

suggested that if a page is related to science, examination of the link structure between

the science community pages will return a better measure of page importance, than

examination of the science page in relation to the global structure.

The effectiveness of EQD-Rank is dependent on the breadth ofthe user query and

therefore on the size of the subgraph. The accuracy of the estimation does not decrease

for a more specific query, but if the query is too specific, the size of the relevant sub-

graph can be very small and potentially result in the inclusion of less relevant pages

in the result set. When the query is highly specific, EQD-Rankis also susceptible to

localised link spamming. For example if a webmaster createsa set of web pages, all

related to a specific topic, and points all out-links to one relevant page, using QD-

PageRank and subsequently EQD-Rank, the page receives an over-inflated value. This

effect is present also for standard PageRank but is not as prevalent due to the global

68

nature of the algorithm. To counterbalance this effect, it is suggested that when the

number of relevant pages falls below a predefined threshold,the standard PageRank

algorithm be implemented.

A strength of EQD-Rank is that the closer the traversal depthto one, the greater

the affect of the in-link examination. In other words, the difference between the rank

orderings at a depth of five and four will be much less significant than the difference

achieved at depths of one and two. This characteristic is significant, due to the fact

that the computational cost increases considerably with each further layer of inlinks

examined.

4.3.3 EQD-Rank Example

The calculation of the EQD-Rank vector is best described through an example. For

consistency we select the same web graph used in the PageRankand QD-PageRank

examples. The graph therefore consists of twelve nodes ranging from A to L and

twenty eight links.

69

A

B C

D E F G

K LJIH

Figure 4.8: Sample Dataset Graph for EQD-Rank

After a user query is input and some relevance technique is implemented, we state

that the pagesA, B, C, E andF are relevant and that pagesD, G, I, J , K andL

are irrelevant. Once more, links to relevant pages are displayed using black arrows and

links to or from non-relevant pages are displayed using white arrows. Initially the set of

irrelevant pages are automatically given an EQD-Rank of0. The PageRank values for

each relevant page are then manipulated using the EQD-Rank paradigm, estimating the

query-dependent values, and therefore avoiding creation of the topic-related subgraph.

From the standard PageRank example in section 4.1.6, we knowthat the PageRank

vector is:

70

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2 4 6 8 10 12

P
ag

eR
an

k

Page No.

PageRank vector

PageRank

Figure 4.9: PageRank Vector

Using EQD-Rank forN = 1 with a depth traversal of1, the relevance of the in-

links of pagesA , B, C, E, andF are examined. Taking pageA as the example the

relevance of in-linksB andC are examined. In this case both pages are relevant and

therefore no further computation is required. Therefore the EQD-Rank value for page

A, with N = 1, is the same as the standard PageRank value. With the depth equal to

one the EQD-Rank vector is:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12

E
Q

D
-R

an
k

Page No.

EQD-Rank Vector for depth=1

EQD-Rank

Figure 4.10: EQD-Rank at a Depth of One

For N = 2, again inlinks of pagesA, B, C, E, andF are examined, with the

additional constraint that the inlinks of their inlinks arealso examined. Taking pageA

as the example again, the relevance of inlinksB andC is examined. Both in-links are

71

deemed relevant and therefore the relevance of the in-linksto both these pages is also

examined.

PageB has an in-link from pagesD, E, andF . In this instance pagesE andF are

relevant and pageD is irrelevant. Therefore the PageRank contribution of pageD is

removed from pageB. The ranking contribution removed is0.85 (0.962/3) resulting

in a total removal of0.2725 from the PageRank ofB. This drop in rank of pageB

will in turn be passed on to pageA. To determine the total rank to be removed fromA

we divide this drop in rank by the number of out-links associated withB and multiply

the result by0.85 to take into account the damping factor. This results the removal of

0.0579 from the rank ofA.

Next the in-links of pageC are examined, namely pageF and pageG. In this case

pageF is relevant and pageG is irrelevant. Therefore the PageRank contribution of

pageG will be removed from pageC. In this instance the contribution to be removed is

0.85 (0.590/3), resulting in the removal of0.167 from the PageRank value of pageC.

Therefore this drop in rank will in turn be passed on to pageA. To determine the total

rank to be removed fromA, we divide this drop in rank by the number of out-links

associated withC and multiply the result by0.85 to take into account the damping

factor. This results in a total removal of0.071 from A.

The result of a depth 2 traversal for pageA, is that a total of0.0579+0.071 must

be removed from its PageRank value resulting in an EQD-Rank value of1.1722. The

resulting EQD-Rank vector is displayed in figure 4.11:

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12

E
Q

D
-R

an
k

Page No.

EQD-Rank Vector for depth=2

EQD-Rank

Figure 4.11: EQD-Rank at a Depth of Two

73

Chapter 5

Experimental Analysis

5.1 Introduction

The distribution of rank within the dataset for the three link analysis ranking algo-

rithms is examined in this chapter, along with a justification for rank accumulation

within certain areas of the dataset graph. Convergence rates are the subject of the first

section, focusing on the PageRank and QD-PageRank algorithms, and the relationship

between the convergence rate and the number of dataset pages. Also examined are the

EQD-Rank computation speeds and the potential tradeoff between the accuracy of the

induced orderings and the computation time.

In the second section the distribution of PageRank as the number of dataset pages

increases is analyzed, along with the global dataset-distribution. Also observed is the

effect a hierarchical structure has on the distribution of PageRank within an individual

host.

The rank distribution induced using the QD-PageRank and EQD-Rank algorithms

is considered in the third section. For QD-PageRank we examine if the self-similarity

of the web [DKM+01] is exhibited in the dataset and also measure the correlation

74

between PageRank and the In-Degree. The distribution of rank generated using EQD-

Rank within the dataset, the affect cohesive-community interconnectivity has on the

amount of rank removed, and the correlation between the rankremoved and the depth

of the EQD-Rank traversal, are also analyzed.

The different content-based document selection metrics available to assign a rele-

vance ranking, such as TF*IDF and Latent Semantic Indexing (LSI), are highlighted

in section four with a discussion of the merits and demerits of both. The final section

presents a discussion of the rank-ordering similarity measure selected to compare the

induced result-sets.

5.2 Rates of Convergence

The rate of convergence for PageRank is ascertained within subgraphs, cohesive com-

munities, and on a global scale in the following section, with the following test for

convergence:

|X
(k+1)
i − X

(k)
i |/|Xi|

(k) < 10−3

The total rank in the dataset is measured following each iteration and a comparison

is made with the total rank from the previous iteration, withconvergence achieved

when the difference is less than three significant decimal points.

5.2.1 PageRank Convergence

The global PageRank vector is computed in25 iterations, a graph of which is displayed

below:

75

 100000

 1e+06

 1 10 100

P
ag

eR
an

k

No. of Iterations

Rate of Convergence for Entire Dataset

Total PageRank

Figure 5.1: PageRank Convergence

Analysis reveals that after 12 iterations the majority of pages have converged and

that following 18 iterations rank ordering is established.The last seven iterations do

not effect the rank orderings and it is therefore suggested that an optimal test for con-

vergence would measure the rank orderings (Kendall Tau), instead of the rank values.

The rate of convergence achieved is comparable with that of Brin and Page [BP98],

where convergence on a 322 million page dataset is achieved within 52 iterations.

5.2.2 QD-Rank Convergence

The rates of convergence within cohesive communities, generated for queries rang-

ing from broad to narrow specificity, are also evaluated. Theconvergence rates are

highlighted for the communities generated using the queries ‘shopping’, ‘football’ and

‘physics’. The number of iterations required is small in comparison to the number re-

quired to achieve convergence across the entire dataset, due to the decreased intercon-

nectivity. The rate of convergence for these three queries is displayed in the following

three successive graphs:

76

 9250

 9300

 9350

 9400

 9450

 9500

 9550

 9600

 9650

 9700

 9750

 0 1 2 3 4 5 6

Q
D

-P
ag

eR
an

k

No. of Iterations

Rate of QD-PageRank Convergence for ’shopping’ community

Total QD-PageRank

Figure 5.2: QD-PageRank Convergence for ‘shopping’ community

 4620

 4640

 4660

 4680

 4700

 4720

 4740

 0 0.5 1 1.5 2 2.5 3 3.5 4

Q
D

-P
ag

eR
an

k

No. of Iterations

Rate of QD-PageRank Convergence for ’fooball’ community

Total QD-PageRank

Figure 5.3: QD-PageRank Convergence for ‘football’ community

 2006

 2008

 2010

 2012

 2014

 2016

 2018

 2020

 2022

 2024

 2026

 0 0.5 1 1.5 2 2.5 3

Q
D

-P
ag

eR
an

k

No. of Iterations

Rate of QD-PageRank Convergence for ’physics’ community

Total QD-PageRank

Figure 5.4: QD-PageRank convergence for ‘Physics’ community

77

The rate of convergence within the ’shopping’ community is displayed in figure

5.2 and illustrates that the final QD-PageRank vector is computed within six iterations.

This expeditious rate of convergence, for a community containing60, 886 pages, can be

attributed to the fact that a relatively moderate amount of links are present, totaling of

69, 781. As the specificity of the query increases the rate of convergence also increases,

as illustrated in figures 5.3 and 5.4. The convergence withinthe ’football’ and ’shop-

ping’ communities is achieved within four and three iterations respectively and can be

attributed to the low level of interconnectivity within these cohesive communities.

5.2.3 EQD-Rank Computation times

The “Achilles heel” of the QD-PageRank algorithm is the inability to compute the QD-

PageRank vector within real-time, following the obtainment of the user query. Subse-

quently the EQD-Rank approximation algorithm is introduced, providing the relevance

obtainable using QD-PageRank within real time speeds. It isa common consensus that

a typical search engine user is prepared to wait at most between 10 and 20 seconds for

the result set and therefore EQD-Rank must be implementablewithin this time span.

The current average computation times for thirty query words are displayed in the table

below:

Algorithm QD-PR EQD-L1 EQD-L2 EQD-L3
Computation Time (seconds) 217 24 30 36

Table 5.1: Computation Times Using EQD-Rank

From the graph above it can be observed that an 83 % decrease inthe average com-

putation time is introduced using EQD-Rank at a depth of three with the figure increas-

ing to 89 % at a depth equal to one. The average computation times currently range

between 24 and 36 seconds, using a naive implementation strategy. It is suggested that

the implementation of algorithmic optimization techniques would reduced these figures

drastically. A refinement of the number of pages qualifying for cohesive-community

78

selection could be introduced, using a threshold based on the content-based relevance

score (see section 5.4) and consequently lead to a further reduction in the computation

speeds. This is an area of future research and it is suggestedthat using the techniques

discussed above, real-time computation speeds can be achieved.

5.3 Rank Distributions

5.3.1 PageRank Distribution

In this section we evaluate the change in PageRank distribution as dataset variables are

varied. Initially the number of dataset pages is varied to facilitate the characterization

of the degree of distribution change. Individual host distributions are also analyzed to

ascertain if any abnormal deviation is introduced.

PageRank Distribution within Corpus Subsets

A subset containing 10,000 pages is examined initially, to evaluate the PageRank dis-

tribution. Construction of the subset involves the selection of one out of every hundred

dataset pages, therefore preventing the presence of a cluster of pages from one partic-

ular site or host. The inherent distribution is displayed below:

 1

 10

 100

 1000

 10000

 0.1 1 10

N
o.

 o
f p

ag
es

PageRank

PageRank Distribution for subset of 10000 pages

PageRank

Figure 5.5: PageRank Distribution for 10,000 Pages

79

This subset contains an interconnectivity of2426 links, with only659 of the pages

receiving an inlink and therefore explaining the small range in the distribution of

PageRank. Despite this low interconnectivity the distribution is power law with an

exponent of 2.1, with the vast majority of pages receiving a small PageRank value and

a few receiving a high value (with respect to the majority). This distribution is symp-

tomatic of power-law scaling and can be attributed to a “richget richer” mechanism

called preferential attachment. As the graph grows the probability that a node will

receive an increase in PageRank is proportional to the amount of PageRank it already

has. In order to examine if the distribution pattern is consistent across datasets of varied

size we, also analyze the PageRank distribution within a subset of100, 000 pages.

The subset of pages is generated by selecting one out of everyten pages to minimize

the influence of one or two individual hosts. The distribution within this dataset is

displayed below:

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

PageRank

PageRank Distribution for subset of 100000 pages

PageRank

Figure 5.6: PageRank Distribution for 100,000 Pages

The interconnectivity in this instance is significantly greater, consisting of130, 984

links. From figure 5.6 it can be observed that the distribution is power law with best fit

exhibited for an exponent of2.1 once more and is due to the “rich get richer” behaviour.

80

Global Distribution

The global PageRank distribution within the total dataset consisting of1, 023, 285

pages and12, 496, 560 links is displayed in the log-log plot below:

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100

N
o.

 o
f P

ag
es

PageRank

PageRank Distribution for Entire DataSet

PageRank

Figure 5.7: PageRank Distribution for Entire DataSet

Analysis of figure 5.7 reveals that the the distribution of rank ranges from a mini-

mum of0.15 to a maximum of39.13, with the minimum value representative of pages

not linked to from other pages within the dataset. Using the ‘random surfer’ analogy,

these are the pages that the random surfer can reach through arandom jump, but not

by following the page out-links. The power law tail illustrated in this graph charac-

terizes not only the PageRank distribution but also the connectivity of many naturally

occurring network distributions, research paper citations, movie actor collaborations,

and United States power grid connections [PFL+02]. The distribution of PageRank is

once more power law with best fit exhibited for an exponent of2.1.

We therefore conjecture that irrespective of the dataset size, the PageRank distribu-

tion is very well approximated by the functionp(PR(x) = k)) ∝ k−2.1.

PageRank Distribution within a particular Host

To examine the influence of a hierarchical structure on the PageRank distribution, the

distribution among pages downloaded fromamazon.comis measured. The dataset

81

consists of9092 pages and figure 5.8 shows a significant deviation from the global

PageRank distribution. This is due to a structure that is prevalent with many internet

websites. The structure is comprised of a home page that is heavily linked to and sub-

sequent pages that are linked to less heavily as the depth of the site increases. In the

case ofamazon.com,the interconnectivity consists of273, 544 links with an average of

30 links per page. PageRank values range between0.15 and5.83, with the maximum

value assigned to acontact uspage that receives a total of937 inlinks. Considering the

relatively small dataset size, the diversity among the rankvalues is significant, and is

affiliated with the large amount of interconnectivity and toa larger extent the hierarchi-

cal structure of the site. The PageRank distribution in thisinstance is power law and

concurs with [PFL+02], where it is suggested that within competing pages of thesame

type, this rich get richer distribution is not as prevalent.

java/hostDistribution.ps not found!

Figure 5.8: PageRank Distribution within subset of Amazon.com

5.3.2 Inlink Distribution

The dynamics of link accumulation can strongly influence competition on the web and

therefore leads to the necessity of global dataset In-Degree characterization. The In-

Degree distribution is therefore computed and displayed below in a log-log plot:

82

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

N
o.

 o
f P

ag
es

No. of Inlinks

Inlink Distribution for Entire DataSet

Inlinks

Figure 5.9: IN-Degree Distribution for the Entire DataSet

This distribution is in strong agreement with previous web analysis experimentation

[KRRT99, BM01, Hav02] and similar to PageRank distribution, is very well approx-

imated by the functionp(In-Degree(x) = k)) ∝ k−2.1. This distribution is another

example of the “rich get richer” mechanism, with the majority of pages receiving a

few inlinks and a small percentage of pages receiving the majority, enough to skew the

mean well above the median. The number of inlinks to a page, while being insufficient

as a measure of relevance due to a high susceptibility to linkspamming, can be used as

an indication of page importance.

5.3.3 QD-PageRank

In this section we analyze the distribution of PageRank within cohesive communities

of web pages as opposed to the global distribution across a number of pages related to

a diverse set of topics. Initially the distribution is examined for six queries of varied

specificity to provide a cross section of the PageRank distribution. The distribution

of In-Degree is also examined in the following section. Thenin the third section the

correlation between PageRank and In-Degree is evaluated. In the final section we look

at the amount of PageRank obtained by the top k percent, as it may have implications

for the compression of the inverted index.

83

QD-PageRank Distribution

Cohesive collections of web pages (query-related subgraphs) are examined in this sec-

tion, for numerous queries ranging from broad to narrow specificity. The communities

induced for two queries of broad, medium and narrow specificity are analyzed in this

instance. Various community attributes are also examined and we attempt to ascertain

if cohesive-collection PageRank distributions mirror theglobal distribution.

Induced distributions for queries of broad specificity are examined initially with the

query words ‘shopping’ and ‘games’ selected. The corresponding PageRank distribu-

tions are displayed below:

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’shopping’

QD-PageRank

Figure 5.10: QD-PageRank Distribution for the ‘shopping’ Community

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’games’

QD-PageRank

Figure 5.11: QD-PageRank Distribution for the ‘games’ Community

84

The distribution of QD-PageRank for a ‘shopping’ cohesive community consisting

of 60, 886 pages, is displayed in figure 5.10. The community represents5.95% of the

dataset pages and contains an interconnectivity of69, 781 links. The total amount of

QD-PageRank distributed within this community is9285.94 with values ranging from

a minimum of0.15 to a maximum of0.979. The distribution of QD-Rank within

the ‘games’ cohesive community is displayed within Figure 5.11, with the number of

community pages in this instance equal to52, 023 and the number of intercommunity

links equals40, 237. The distribution of QD-PageRank is power law with exponent2.1

for both queries of broad specificity.

A significant reduction in the community interconnectivityis introduced through

queries of medium specificity to evaluate if the power law distribution is preserved.

The query words selected in this instance are ‘footaball’ and ‘computers’ with the

respective distributions displayed below:

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’football’

QD-PageRank

Figure 5.12: QD-PageRank Distribution for the ‘football’ Community

85

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’computers’

QD-PageRank

Figure 5.13: QD-PageRank Distribution for the ‘computers’Community

For the ‘football’ and ‘computers’ communities it can be observed that the distribu-

tion remains consistent, although on a somewhat smaller scale. The community sizes

in this instance are30, 622 and32, 440 with inter-connectivities of18, 229 and21, 712

respectively. This distribution is again power law with exponent2.1 despite a reduc-

tion in the community size of an average of over 44%. It is therefore suggested that the

PageRank distribution is immune to query specificity and subsequently community-

interconnectivity.

To reinforce this hypothesis we evaluate the distribution within cohesive commu-

nities of low connectivity. The communities are generated with the narrow specificity

query words ‘physics’ and ‘biology’, with the PageRank distributions displayed below

in the log-log plots:

86

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’physics’

QD-PageRank

Figure 5.14: QD-PageRank Distribution for the ‘physics’ community

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

N
o.

 o
f p

ag
es

QD-PageRank

QD-PageRank Distribution for query word ’biology’

QD-PageRank

Figure 5.15: QD-PageRank Distribution for the ‘biology’ community

The ‘physics’ and ‘biology’ communities in this case, consists of 13, 329 and

11, 382 pages and4, 582 and3, 165 links respectively. In these cases the connectivity

is extremely low with a large proportion of the nodes isolated, receiving no inlink and

therefore receiving a PageRank value of0.15. The tail in these distributions is steeper

than with previous distributions and it is conjectured thatthis is related to the signifi-

cant decrease in the number of community in-links, althoughthe correlation between

the number of inlinks and the QD-PageRank of a page has yet to be assessed.

PageRank distribution analysis within cohesive communities of web pages of vary-

ing size, results in the following premise. Within communities of varied interconnec-

tivity the distribution can be characterized though the function p(QD-PR(x) = k))

87

∝ k−2.1. In extremely low connectivity cohesive communities a slight deviation from

this premise is experienced and the rich get richer effect isnot as prevalent.

Distribution of IN-Degree

The distribution of In-Degree within cohesive communitiesis evaluated in this section.

Suggested by [DKM+01] is that global dataset properties are preserved at community

level and we ascertain if this is the case for In-Degree distribution. The global distri-

bution of In-Degree is power law with best fit exhibited for anexponent of2.1. If the

self-similarity premise applies at community level, the inherent distributions should

follow the same distribution pattern. The cohesive communities that we focus on are

the two broad, narrow and specific query communities from theprevious experimenta-

tion, the In-Degree graphs of which are displayed below:

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’shopping’

Inlinks

Figure 5.16: In-Degree for the ‘shopping’ Community

88

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’games’

Inlinks

Figure 5.17: In-Degree for the ‘games’ Community

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’football’

Inlinks

Figure 5.18: In-Degree for the ‘football’ community

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’computers’

Inlinks

Figure 5.19: In-Degree for the ‘computers’ community

89

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’physics’

Inlinks

Figure 5.20: In-Degree for the ‘physics’ community

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
o.

 o
f p

ag
es

Inlinks

Inlink Distribution for query word ’biology’

Inlinks

Figure 5.21: In-Degree for the ‘biology’ community

Analysis of figures 5.16 to 5.21 reveals that the In-Degree distribution at commu-

nity level is equivalent to the global distribution and is therefore best characterized as

power law with an exponent of 2.1. Slight deviations from power law scaling are ex-

hibited for the narrow queries ‘physics’ and ‘biology’, although overall we conjecture

the self-similarity premise is maintained within cohesivecommunity-structures of the

web dataset. These results conflict slightly with those of Pennock et al. [PFL+02],

where it is suggested that the In-Degree distribution for sub categories of pages such

as university home pages deviate from power law scaling, with the magnitude of the

deviation varying depending on the community category.

90

Examination of the Correlation between QD-PageRank and theIn-Degree

If a page has a high PageRank value does it also have a high In-Degree or are they

unrelated?. Intuitively one might expect that a page with a high In-Degree will have

a high PageRank value and vica versa. The correlation coefficient between the two is

therefore assessed in order to measure the validity of the previous hypothesis and is

displayed below for the six queries of varied specificity.

word shopping games football computers physics biology
correl. 0.297 0.181 0.219 0.177 0.239 0.316

Table 5.2: Correlation Between PageRank and In-Degree

From the results above we perceive a weak correlation between the two, while

observing that the strongest relationship exists within the ’biology’ community. We

conjecture that the reason for the relatively high correlation in this instance is the low

PageRank values resulting from a sparsely-connected community graph. These find-

ings are in strong agreement with [PRU02, CRL+03], where a weak correlation is also

reported. It is therefore conjectured that a PageRank valueis largely independent of

the In-Degree of a page, although it may be weakly indicativeof the value.

Examination of the Percentage of QD-PageRank obtained by the Top k percent of

Pages

The percentage of PageRank obtained by the top k percent of pages merits further

analysis, as it can have implications for the compression ofthe inverted index and for

optimization of the available storage. In this case the PageRank obtained by the top ten

percent is highlighted, within the communities generated from the six queries of varied

specificity, with the results illustrated below:

91

word shopping games football computers physics biology
% obtained 12.85 12.27 12.07 12.06 11.17 11.29

Table 5.3: The Percentage of Total PageRank Obtained by Top 10% of Pages

The figures displayed in table 5.2 above exhibit the percentage of PageRank ob-

tained by the top 10 percent of pages, within each of the six cohesive communities.

These figures are below the expected values and it is conjectured that the reason for

this is the relatively low interconnectivity and smaller range of distribution within these

communities. From the table above it can also be observed that the greater the speci-

ficity of the query word, the lower the percentage of Pagerankobtained by the top ten

percent. We therefore postulate that the greater the interconnectivity within a dataset

of webpages the greater the percentage of PageRank.

To measure the validity of this premise, the top ten percent within the global dis-

tribution is assessed. In this instance the PageRank obtained by the top ten percent

of pages is29.97 % and is symptomatic of a power law distribution. This culminates

in the supposition that given the number of nodes and level ofinterconnectivity, the

percentage of rank obtained by the top k percent of pages could be accurately approxi-

mated.

5.3.4 EQD-Rank

The main focus of this section is to validate EDQ-Rank as an optimal algorithmic im-

plementation for the estimation of the QD-PageRank vector while providing numerous

indications to fortify this premise. Experimental analysis evolves around the evalua-

tion of cohesive-communities generated using thirty queries of diverse specificity. The

distribution of EQD-Rank within a selection of cohesive communities is initially exam-

ined. The relationship between the rank removed and the cohesive community query

type is examined in section two, to determine if a bias towards communities of a cer-

tain specificity exists. In the final section the amount of rank removed using EQD-Rank

92

at a depth ranging from one to three is appraised to measure the affinity between the

EQD-Rank and QD-PageRank vectors.

EQD-Rank Distribution

The EQD-Rank algorithm is a QD-PageRank vector approximation and it is conjec-

tured that the similarity between the QD-PageRank and EQD-Rank distributions will

provide an indication of the approximation effectiveness.Six queries of varied speci-

ficity are therefore focused upon with the resulting EQD-Rank distributions at a depth

equal to two displayed in the figures below:

java/content/EQDRESULTS/shopping_EQD.ps not found!

Figure 5.22: EQD-Rank Distribution for the ‘shopping’ community

java/content/EQDRESULTS/games_EQD.ps not found!

Figure 5.23: EQD-Rank Distribution for the ‘games’ community

java/content/EQDRESULTS/football_EQD.ps not found!

Figure 5.24: EQD-Rank Distribution for the ‘football’ community

java/content/EQDRESULTS/computers_EQD.ps not found!

Figure 5.25: EQD-Rank Distribution for the ‘computers’ community

93

java/content/EQDRESULTS/biology_EQD.ps not found!

Figure 5.26: EQD-Rank Distribution for the ‘biology’ community

java/content/EQDRESULTS/physics_EQD.ps not found!

Figure 5.27: EQD-Rank Distribution for the ‘physics’ community

Comparison between the figures displayed above and the correspondingQD-PageRank

distributions in figures 5.10 to 5.16 reveal that the EDQ-Rank distribution mirrors that

of the QD-PageRank vector albeit on a comparatively larger scale. The distributions

are power law with best fit exhibited for an exponent of 2.1 anda slight deviation ex-

perienced within the cohesive communities induced for query words of narrow speci-

ficity. The distributions within these communities are somewhat skewed and may be

attributed to the existence of low community-interconnectivity. Overall the average

correlation coefficient between the EQD-Rank and QD-PageRank distribution is 0.986.

As a result of this high correlation-coefficient and the graphically illustrated similarity

between the distributions, it is suggested that EQD-Rank provides a very close approx-

imation of the QD-PageRank values, with further evidence provided in latter sections.

The relationship between the cohesive community connectivity and Rank Re-

moval

The total amount of PageRank removed from each community, using EQD-Rank at

a depth of two, is highlighted in this section to ascertain ifthere is a bias towards

communities generated using a query of a certain specificity. Cohesive communities

of web pages may contain QD-PageRank and PageRank differingsignificantly and we

94

therefore measure the rank removed as a percentage of the total PageRank, to assess the

relationship between the rank removed and the number of community pages. The rank

removed for each of the thirty queries used in the analysis ofEQD-Rank is displayed

in the table below:

Word Size PR QD-PR EQD-PR %

abortion 4122 871.04 619.05 619.06 28.93
alcoholism 1094 232.17 164.13 164.13 29.31
architecture 14647 3250.72 2205.69 2205.85 32.14

bank 24333 5341.89 3673.73 3674.66 31.21
bicycling 874 178.84 131.11 131.11 26.69
biology 11382 2466.39 1712.09 1712.42 30.57
cheese 6334 1364.18 951.91 951.98 30.22

chemistry 8683 1846.21 1305.05 1305.10 29.31
complexity 4608 978.69 691.86 691.86 29.31
computers 32440 7042.37 4909.90 4912.67 30.24

cruises 2628 554.91 394.48 394.48 28.91
energy 35291 7742.69 5345.46 5347.32 30.94
fitness 18635 3982.99 2809.37 2809.57 29.46
football 30622 6758.18 4634.44 4635.86 31.40
games 52023 11055.85 7898.77 7902.55 28.52
golf 17388 3861.64 2621.90 2622.41 32.09
hiv 5474 1182.04 822.79 822.83 30.39

holiday 16291 3554.14 2454.24 2454.58 30.94
jaguar 1717 364.13 257.76 257.77 29.21
java 15134 3264.89 2279.15 2279.50 30.18
law 61877 13533.23 9440.94 9449.21 30.23

nutrition 17725 3781.94 2670.94 2671.21 29.37
physics 13329 2892.97 2006.49 2006.66 30.64

recreation 9367 1992.74 1407.92 1408.00 29.34
shakespeare 2430 530.12 364.71 364.71 31.20

shopping 60886 13268.12 9285.95 9296.09 29.94
sushi 901 198.99 135.17 135.19 32.07

terrorism 30622 1694.53 1113.65 1113.72 34.28
volcano 32440 568.35 395.74 395.75 30.37

workplace 7418 1610.75 1115.60 1115.68 30.74

Table 5.4: The Percentage of PageRank Removed Within Each Cohesive Community

In the table above the initial column displays the word from which the cohesive

community is created. The column labelled ‘size’ indicatesthe number of pages within

95

the cohesive community, the proceeding three columns indicate the amount of rank

within the community for each of the three ranking methods, and the final column

displays the percentage of rank removed, using EQD-Rank, asa percentage of the total

PageRank.

Examination of table 5.3 reveals that the removal of PageRank from communi-

ties of varied type is consistent when viewed as a percentageof the total community

PageRank. As the size of the cohesive community varies, the percentage of PageRank

removed remains relatively consistent with the total removal ranging between 26.69

and 34.28 percent for each of the queries tested. As a result we postulate that on aver-

age 30.27 percent of a page’s PageRank value will be removed during the EQD-Rank

calculations for a depth equal to two.

The amount of Rank removed in relation to the number of layersexamined

As the depth of inlinks examined increases, using EQD-Rank,the accuracy of the esti-

mation increases also, and therefore so too does the amount of PageRank removed from

the community pages. In this section we examine the amount ofPageRank removed

in relation to the number of number of layers examined and measure the result with

the QD-PageRank values. In table 5.5 we display the average amount of rank within a

community using the PageRank and QD-PageRank algorithms and EDQ-Rank using a

depth from one to three.

Pr QD-PR EQD-PR EQD-D2 EQD-D3
3120.69 2169.41 2186.94 2170.36 2169.93

Table 5.5: Total Rank assigned using each Algorithm

From table 5.5 above it can be seen that the average amount of QD-Rank (column

2) is 69.51 percent of the total induced using PageRank (column 1). The next three

columns show the average amount of rank achieved using EQD-Rank starting a depth

of one and arriving at a depth equal to three. It can be observed that as the depth of

96

inlinks examined increases so to does the affinity between the average QD-PageRank

and EDQ-Rank values. As a result we conjecture that the amount of rank removed is

inversely proportional to the number of layers examined. Itis also suggested that the

close approximation of the average QD-PageRank vector, using EQD-Rank at a depth

of two and three, is a further indication of the degree of accuracy obtainable using

EQD-Rank.

5.4 Content-Based Document Selection Techniques

In order to determine the relevance of a document in relationto a user query, it is

necessary to implement a content-based document selectiontechnique. The methods

available typically provide a content-based representation of a document, based on

the term frequency within a document, with the user query finally compared with the

document score.

One simplistic approach involves representing a document as a 1 or a 0 and is

referred to asbinary judgement. Using this method a document is represented through

a boolean vector, with a1 indicating term presence and a0 non-presence. This is exact

match text filtering and results in an unranked set of documents. Two other content-

based models are theprobabilistic retrieval modeland thevector space model. With

the former, documents are ranked based on the probability oftheir relevance in relation

to a user query and often rely on term weighting schemes to estimate the relevance.

The later technique involves representing every document as a vector of terms and is

examined further.

5.4.1 TF*IDF

The Vector-Space Model (VSM) [SWY71] represents every document as a vector of

terms, with associated weights describing a term’s value asa label for a document.

The vector-space effectiveness is improved considerably by transforming the term-

97

frequency vector, to augment the influence of words occurring often in the document,

but rarely within the entire document collection. The VSM procedure involves ex-

tracting terms representative of the document, weighting the terms, and finally ranking

the documents based on a similarity measure (e.g the cosine of the angle between two

vectors).

In the VSM term vectors are constructed using a term-selection matrix, measuring

the importance of terms within the document. The term frequency of corpus documents

is generally used as the weights for the document vector. Forour experimentation how-

ever, we implement the TF*IDF [SB88] term selection metric and assign a weighting

to each page, for every word in the lexicon. This weight is then used at runtime to

determine relevant pages and can be combined with a link context-based score (e.g

EDQ-Rank) at runtime, to provide a final ranking value.

Using the TF*IDF metric, the importance of a word in a document is based on

the number of occurrences of the word within the document andthe number of occur-

rences within all indexed documents. TF (Term Frequency) implies that terms used

more frequently are more important and IDF (Inverse Document Frequency) works on

the hypothesis that words occurring rarely in the index are highly discriminative.

TF*IDF equation:

wij = tfij* log2
N
n

where:

wij= weight of TermTj in DocumentDj

fij= frequency of TermT j in DocumentDj

N = number of documents in the collection

n = number of documents where TermTj occurs at least once

TF*IDF works well for large datasets. However in the case of small text docu-

98

ments there may be insufficient data for a statistical evaluation of the descriptive value

of terms. Term weights may also be normalized due to long documents generally

having a larger term set than short documents, making largerdocuments more likely

to contain increased occurrences of a word than short documents. The advantage of

TF*IDF is that computation is simple and therefore fast to compute. However on the

downside TF*IDF does not allow for synonymy, polysemy and noise in documents. To

counteract these constraints we therefore suggest that future experiments incorporate

Latent Semantic Indexing or Probabilistic Latent SemanticIndexing.

5.4.2 Further Document Selection Techniques

To counteract these problems we could exploit the fact that words with similar meaning

tend to occur together and use Latent Semantic Indexing (LSI) to represent documents

and queries, not by terms but by the underlying concepts referred to by terms. The

objective of LSI is to provide information well beyond the lexical level and reveal rela-

tions between the entities of interest. Using singular value decomposition (SVD), LSI

transforms a matrix of word vectors, computed using the Vector Space Model (VSM),

to discover the semantics of the words and documents present. A high-dimensional

word vector is transformed into a lower dimensional space. By reducing the multi-

dimensional term space to a small number of dimensions, semantically close keywords

get squeezed together. During this collapse noise is lost and information and content

words are superimposed on one another. According to [DDL+90], LSI is 30% more

effective than other word-matching methods at helping users find relevant information.

LSI considers documents which have many words in common to besemantically close

even if they do not share a particular word. This way documents that are relevant and

do not contain the keyword may be returned.

Other methods could also be introduced taking into account various page properties

such as anchor text, text size, page title meta tags, capitalisation bit, font size, and

99

position in document [BP98].

Another method that could be used to improve upon LSI is Probabilistic Latent

Semantic Indexing (PLSI) and is based on a mixture decomposition derived from a

statistical latent class model. This results in a more principled approach which has

a solid foundation in statistics. It is based on the likelihood principle and defines a

proper generative model of the data. PLSI can be used to achieve increased recall and

precision and works well in cases were LSI fails completely [Hof99].

5.5 Rank Ordering Similarity

As a means of evaluating the algorithms, we measure the degree of result-set similarity.

To do this we select a correlation coefficient. A correlationcoefficient is intended to

measure the strength of a relationship, with different correlation coefficients measuring

the strength of the relationship in different ways. The ‘strength’ discussed in this in-

stance refers to the tendency of the variables to move in the same or opposite direction.

Some correlation coefficients available are theproduct moment coefficient of correla-

tion, the spearman coefficient,and theKendall Tau coefficient. For our experimentation

we select the Kendall Tau metric to determine the strength inrelationship between the

rank-orderings induced using the PageRank, QD-PageRank, and the EQD-Rank algo-

rithms.

5.5.1 Kendall Tau Algorithm

To evaluate the rank orderings induced and gauge the strength of the relationships we

implement the Kendall Tau correlation coefficient [Ken38],as suggested in [EMT04].

Kendall’s Tau is a non-parametric measure of the agreement between two rankings,

essentially measuring the strength of the relationship between two paired observa-

tions. The values are initially ordered and numbered for each variable separately, with

the Kendall Tau coefficient finally applied. Consider the observations(Xi, Yi) and

100

(Xj , Yj). If Xj − Xi andYj − Yi have the same sign, the pair is described as con-

cordant, otherwise if they have opposite signs the pair is referred to as discordant. For

a sample ofn observations we can formn(n − 1)/2 pairs corresponding to choices

1 ≤ i < j ≤ n. The Kendall Tau coefficient is therefore:

The Kendall Tau coefficient:

τa =

∑

sign(Xi−Xj) sign(Yj−Yi)

n(n − 1)/2

The numerator is defined as the sum of the concordant pairs
∑

C minus the sum of

the discordant pairs
∑

D with the denominator defining the total number of pairs.

Hence, the statistic is the proportion of concordances to the total number of relations.

A positive correlation indicates that the ranks of the two variables increase together

and a negative correlation indicates that as the rank of one variable increases, the other

one decreases. In the case where alln(n−1)/2 pairs are concordant a maximum value

of 1 is obtained. Correspondingly the minimum value of−1 is achieved if all the pairs

are discordant. Using the Kendall Tau coefficient the odds ratio of Pc/PD, wherec

andd are the number of concordant and discordant pairs, is equal to (1 + t)/(1 − t).

Therefore if the tau value is1/3 the set of observations(Xi, Yi)and(Xj , Yj) are twice

as likely to be concordant as discordant.

101

Chapter 6

Conclusions and Future Study

6.1 Experimental Results Analysis

In this section we further justify EQD-Rank as a means of estimating the QD-PageRank

vector. Initially the query word selection process is discussed. Following this, a

measure of the degree of accuracy achieved with EDQ-Rank in estimating the QD-

PageRank vector is provided, with the subsequent level of result-set relevance analyzed

through a user study.

Discussion of Query selection

A justification for the selection of the queries used during experimentation is provided

in this section, along with reasons for their inclusion. Thequery set comprising thirty

words is displayed below:

abortion, alcoholism, architecture, bank, bicycling, biology, cheese, chemistry, com-

plexity, computers, cruises, energy, fitness, football, games, golf, hiv, holiday, jaguar,

java, law, nutrition, physics, recreation, shakespeare, shopping, sushi, terrorism, vol-

102

cano, workplace.

The queries are predominantly selected to provide a diverserange in query specificity.

At one end of the spectrum, narrow specificity queries such asthe query words ‘sushi’

and ‘cheese’ are introduced. For these query words the number of relevant pages is

small and there may be comparitively little interconnectivity. At the other end of

the spectrum, query words such as ‘shopping’ and ‘computers’ are introduced, with

it suggested that the number of relevant pages will be significant, therefore providing

cohesive communities large in size, with the potential for alarge amount of intercon-

nectivity. A number of queries fall between these two query types and are referred to

as medium-specificity queries. These queries have a number of relevant pages closer

to the average and therefore an intermediate cohesive-community size, with ‘football’

and ‘computers’ examples of two such queries.

Other query words containing unique characteristics are selected to provide a com-

prehensive evaluation of the link analysis ranking algorithms. One such characteris-

tic is polysemy, a difficulty that must be surmounted by search engines and therefore

meriting inclusion in the query-word set. Polysemy refers to a word with multiple

meanings, an example of which is the word ‘Jaguar’. In this instance the word may

be referring to the animal or to the car. The result of such a query is that the co-

hesive community will consist of both types of pages, therefore providing a unique

link-structure. Another example is the word ‘bank’ where the reference may be to a

reliance on somebody or something, a place to store savings,or the side of a river. A

bi-polar query is also selected and occurs when the set of query-related pages have a

biased stance in relation to the query. An example is the query word ‘abortion’, where

the set of query-related pages will predominantly consist of pages that are either pro or

anti abortion.

103

6.1.1 Ranking Similarities

Initially, we compare the PageRank and QD-PageRank orderings to obtain a Kendall-

Tau value representative of result-set similarity. For each query, the QD-PageRank

orderings are then compared with the result-set induced using EQD-Rank at a depth of

one, two and three. Each result set examined is formed using aword from the lexicon,

discussed in the previous section, with the similarity measure applied to the top one

hundred results for each query. The Kendall-Tau values range from−1 to 1, with a

value of−1 indicating no rank ordering similarity and a value of1 signifying identical

orderings.

104

Query Word PR EQD-D1 EQD-D2 EQD-D3

abortion 0.1811 0.6040 0.9810 0.9828
alcoholism 0.3777 0.6888 1.0000 1.0000
architecture 0.3194 0.6636 0.9848 0.9873

bank 0.4141 0.7662 0.9821 0.9884
bicycling 0.3349 0.8000 0.8000 0.8000
biology 0.2325 0.6563 0.9852 0.9882
cheese 0.1824 0.6276 0.9839 0.9878

chemistry 0.2222 0.6871 0.9877 0.9925
complexity 0.2199 0.5950 0.9854 0.9871
computers 0.4672 0.7311 0.9808 0.9891

cruises 0.1015 0.6172 0.9821 0.9901
energy 0.4560 0.7484 0.9820 0.9906
fitness 0.3586 0.7260 0.9863 0.9921

football 0.4452 0.7435 0.9820 0.9911
games 0.4784 0.7689 0.9816 0.9926
golf 0.3844 0.7076 0.9836 0.9906
hiv 0.1961 0.6259 0.9870 0.9885

holiday 0.3491 0.6883 0.9859 0.9910
jaguar 0.6618 0.7256 0.9807 0.9862
java 0.3169 0.6720 0.9821 0.9874
law 0.5184 0.7666 0.9774 0.9916

nutrition 0.3733 0.7001 0.9858 0.9914
physics 0.3432 0.6923 0.9856 0.9902

recreation 0.2896 0.6668 0.9879 0.9116
shakespeare 0.3040 0.6260 0.9831 0.9864

shopping 0.5334 0.7830 0.9784 0.9897
sushi 0.4286 0.3571 1.0000 1.0000

terrorism 0.2775 0.6102 0.9851 0.9897
volcano 0.1196 0.6099 0.9731 0.9873

workplace 0.2846 0.6796 0.9863 0.9883
Mean: 0.3333 0.6777 0.9783 0.9837

Table 6.1: The Kendall-Tau Correlation between the Result Sets

From table 6.1, little similarity between QD-PageRank and PageRank orderings

(column 2) can be observed. For the majority of queries the Kendall-Tau value is less

than0.5, with an average value of0.33, revealing a large amount of dissimilarly in the

rank orderings. Comparison between EQD-Rank at a depth of one and QD-PageRank

(column 3) reveals an increased similarity in rank orderings of on average112.5%.

105

However, an average Kendall-Tau value of0.677, reveals that a reasonable degree of

dissimilarity between the two rank orders, still exists.

This dissimilarity is to a large extent eradicated with EQD-Rank at a depth of two,

where the average Kendall Tau value is0.978. For EQD-Rank at a depth of three, a

further increase in the accuracy of the estimation is revealed, with the orderings near

identical or identical in all cases and an average Kendall-Tau value of0.984.

Analysis revealed that the greater the depth of in-links examined, the greater the

estimation accuracy. However, as the number of layers examined increases, so does the

computational cost and we therefore hypothesis that EQD-Rank at a depth equal to two

provides a sufficient level of accuracy, without an extensive computational overhead.

6.1.2 User Study

To compare the relevance achieved using PageRank and EQD-Rank at a depth of two,

we perform a user study involving six volunteers. Each volunteer is presented a results

set containing the URLs of 20 web pages, composed from the topten results achieved

using these two algorithms, with the results randomly mixed. To return a result-set

representative of each algorithm, a combination of contextand content scores is used.

Pagerank and EQD-Rank values are combined with TF*IDF scores and ranked accord-

ingly. The merging of context and content based scores is an area of research on which

little has been published to date. As this paper is, in many ways, a successor of [RD02],

we scale each vector to have the same average value in the top ten terms, before adding

the two vectors. Following composition of the URL set, volunteers are asked to assign

a page rating, ranging from1 to 4, with 1 signifying no relevance,2 some relevance,

but not a sufficient level,3 signifying good relevance, and four signifying a very good

level of relevance. The scores for each query are displayed in the table below:

106

Query Word PR EQD-PR Query Word PR EQD-PR

abortion 141 152 golf 202 220
alcoholism 182 190 hiv 109 136
architecture 190 227 holiday 123 139

bank 201 229 jaguar 117 109
bicycling 169 182 java 211 232
biology 176 231 law 147 172
cheese 178 210 nutrition 141 181

chemistry 179 213 physics 202 231
complexity 195 176 recreation 112 162
computers 188 229 shakespeare 116 91

cruises 206 198 shopping 201 226
energy 161 223 sushi 116 105
fitness 189 205 terrorism 195 227

football 207 233 volcano 145 186
games 179 228 workplace 139 156

Average 156.66 189.66

Table 6.2: User Study Results

From the data above, it can be observed that, on average, every user found EQD-

Rank results more relevant for 25 out of the 30 queries. Overall, EQD-Rank led to

an increase in relevance of21.26%. On the few occasions PageRank performed better

than EQD-Rank, it should be noted that the induced topic-communities were small in

size, with little interconnectivity. In a real world implementation, when the induced

community falls below a predefined threshold, it is suggested the standard PageRank

values be applied, optionally with intercommunity links assigned more weight.

6.2 Conclusions

During this thesis numerous research areas are covered, leading to the formulation

of a number of conclusions. The creation of a webpage corpus through a ‘crawler’

is initially examined. The numerous challenges in system design, I/O and network

efficiency, and robustness and manageability imposed during the downloading over

a million pages, are highlighted. Difficulties such as crawler traps, hosts containing

107

multiple links to the same page, host-name aliases, and mirror web sites must also be

overcome and are discussed. We then demonstrate that these difficulties are surmount-

able through the extensible and scalable ViperBot crawler and the resulting obtainment

of a dataset in excess of one million pages.

Creation and storage of the transpose matrix is the second area of research exam-

ined. The dataset graph is represented as a very sparse bit-matrix, resulting in two

problems. The naive representation of the matrix requiresO(n)2 amount of memory,

with n the number of pages in the dataset. The resulting memory-requirement is a a

terabit of storage space, resulting in the necessity of an alternate representation. In the

area of inverted-index representation, case folding, stemming, and stop words are all

considered. The storage of the resulting document IDs and word occurrences are also

discussed, along with compression techniques such as Golumb coding.

A discussion of the PageRank, Query Dependent PageRank, andEQD-Rank en-

sues, highlighting various algorithmic traits and implementation details. As a result

a number of important conclusions are reached and discussed. It is conjectured that

that the distribution of PageRank and the In-Degree can be characterized as power law,

with best fit exhibited for an exponent of 2.1. Despite the fact PageRank and In-Degree

distributions exhibit a power law distribution, with an identical exponent, we postulate

that a high In-Degree is not indicative of a high PageRank value and vica versa, with

experiments revealing a correlation coefficient of0.29. Also revealed, having implica-

tions for inverted index compression and available storageoptimization, is that within

the entire dataset30% of the PageRank is obtained by the top10 percent of pages,

despite deviation at community level.

EQD-Rank is based on the premise that QD-PageRank provides an increase in

result-set relevant when compared with PageRank, with it suggested in [RD02], that

a relevancy increase of up to34% is obtainable. It is demonstrated that EQD-Rank at a

depth of two provides an extremely close approximation of the QD-PageRank vector,

108

with a Kendall-Tau value of on average0.98. The increase in relevance is also verified

through a user study, with the increase greater than20%.

6.3 Future Study

A rich body of potential research is uncovered during this thesis. The creation of an

industrial strength crawling application, using ViperBotas a platform, is one area of

future research. Issues to be addressed in this instance involve the bottleneck of host

name resolution, the improvement of duplicate-page detection, the introduction of a

load monitor, and the storage of URL queue buffers within memory. ViperBot could

also be transformed into a distributed crawler with the repository spread over a number

of storage servers.

In the area of transpose matrix and inverted-index storage,a number of modifica-

tions could also be introduced. With regards to the transpose matrix, delta encoding

could be introduced storing the gaps between the inlink numbers, instead of the inlinks

themselves. A compression technique based on Golumb codingcould also be imple-

mented to compress the inverted index to between10 and15% of the uncompressed

index.

The current EQD-Rank implementation speed is another area of potential refine-

ment, with much scope for increased speeds currently available through improved I/O

and efficient datastructure implementation techniques. Asa result it is anticipated that

the computation speeds could be reduced to below five seconds, for a typical user query.

The culmination of these optimization techniques would pave the way for a full-

scale web search engine. One billion plus pages would initially be downloaded using

the new industrial-strength ViperBot. Offline processing would then ensue, through

the calculation of the PageRank vector, along with the creation and storage of the com-

pressed inverted index and transpose matrix. In realtime speeds the EQD-Rank algo-

rithm would then be implemented, returning a result-set capable of competing with,

109

and improving upon, the relevance achieved by the leading search engines.

6.4 Final Remarks

During this thesis numerous search-engine techniques are adopted, to facilitate the

analysis of the EDQ-Rank result-set post-ranking refinement. The refinement, based

on local graph-traversal provides an approximation of the query dependent PageRank

vector, while avoiding the computational strain involved in the creation of the query-

related subgraph. We therefore conjecture that EQD-Rank could be easily incorporated

into the ranking process of a modern search engine and used toreturn result-sets, with

relevance increases in excess of20%.

110

Bibliography

[Ada99] Lada A. Adamic,The small world web, Proc. 3rd European Conf. Re-

search and Advanced Technology for Digital Libraries, ECDL(S. Abite-

boul and A.-M. Vercoustre, eds.), no. 1696, Springer-Verlag, 1999,

pp. 443–452.

[BA99] Albert-Laszlo Barabasi and Reka Albert,Emergence of scaling in ran-

dom networks, Science286(1999), 509.

[BBH+98] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and

Suresh Venkatasubramanian,The connectivity server: fast access to

linkage information on the web, WWW7: Proceedings of the seventh in-

ternational conference on World Wide Web 7 (Amsterdam, The Nether-

lands), Elsevier Science Publishers B. V., 1998, pp. 469–477.

[BCSV02] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,Ubicrawler: A scal-

able fully distributed web crawler, In Proc. AusWeb02. The Eighth Aus-

tralian World Wide Web Conference, 2002.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey

Zweig, Syntactic clustering of the web, Selected papers from the sixth

international conference on World Wide Web (Essex, UK), Elsevier Sci-

ence Publishers Ltd., 1997, pp. 1157–1166.

111

[BH98] Krishna Bharat and Monika R. Henzinger,Improved algorithms for topic

distillation in a hyperlinked environment, Proceedings of SIGIR-98, 21st

ACM International Conference on Research and Development in Infor-

mation Retrieval (Melbourne, AU), 1998, pp. 104–111.

[BKM +00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,

Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener,

Graph structure in the Web, Proceedings of the 9th international World

Wide Web conference on Computer networks : the international jour-

nal of computer and telecommunications netowrking (Amsterdam, The

Netherlands), North-Holland Publishing Co., 2000, pp. 309–320.

[BM01] Krishna Bharat and George A. Mihaila,When experts agree: using

non-affiliated experts to rank popular topics, World Wide Web, 2001,

pp. 597–602.

[BMPW98] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd,

What can you do with a Web in your Pocket?, Data Engineering Bul-

letin 21 (1998), no. 2, 37–47.

[BP98] Sergey Brin and Lawrence Page,The anatomy of a large-scale hyper-

textual Web search engine, Computer Networks and ISDN Systems30

(1998), no. 1–7, 107–117.

[BRRT01] Alan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis

Tsaparas,Finding authorities and hubs from link structures on the World

Wide Web, World Wide Web, 2001, pp. 415–429.

[Bur97] M. Burner,Crawling towards eternity - building an archive of the world

wide web, Web Techniques, 1997, p. 2(5).

112

[Bus45] Vannevar Bush,As we may think, The Atlantic Monthly176 (1945),

no. 1, 101–108.

[BV03a] P. Boldi and S. Vigna,The WebGraph framework I: Compression tech-

niques, Technical Report 293-03, Universit di Milano, Dipartimento di

Scienze dell’Informazione, 2003., 2003.

[BV03b] Paolo Boldi and Sebastiano Vigna,The webgraph framework ii: Codes

for the world wide web, Technical Report 294-03, Universit di Milano,

Dipartimento di Scienze dell’Informazione, 2003., 2003.

[BWB02] Michael W. Berry, P. Wang, and J. Bownas,Website query analysis:

trend and behaviour detection, Second SIAM conference on Data Min-

ing, 2002.

[BYCMR05] Ricardo Baeza-Yates, Carlos Castillo, MauricioMarin, and Andrea Ro-

driguez,Crawling a country: better strategies than breadth-first for web

page ordering, WWW ’05: Special interest tracks and posters of the 14th

international conference on World Wide Web (New York, NY, USA),

ACM Press, 2005, pp. 864–872.

[CC00] David Cohn and Huan Chang,Learning to Probabilistically Identify

Authoritative Documents, Proc. 17th International Conf. on Machine

Learning, Morgan Kaufmann, San Francisco, CA, 2000, pp. 167–174.

[CDR+98] Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridhar Ra-

jagopalan, David Gibson, and Jon Kleinberg,Automatic resource com-

pilation by analyzing hyperlink structure and associated text, WWW7:

Proceedings of the seventh international conference on World Wide Web

7 (Amsterdam, The Netherlands, The Netherlands), ElsevierScience

Publishers B. V., 1998, pp. 65–74.

113

[CGM00] Junghoo Cho and Hector Garcia-Molina,The Evolution of the Web and

Implications for an Incremental Crawler, Proceedings of the Twenty-

sixth International Conference on Very Large Databases, 2000.

[CGMP98] Junghoo Cho, Hector García-Molina, and Lawrence Page, Efficient

crawling through URL ordering, Computer Networks and ISDN Sys-

tems30 (1998), no. 1–7, 161–172.

[CGS] Yen-Yu Chen, Qingqing Gan, and Torsten Suel,I/O-Efficient Techniques

for Computing Pagerank, In Proc. of the 11th International Conf. on

Information and Knowledge Management, pp. 549–557.

[Cle97] Cyril Cleverdon,The cranfield tests on index language devices, Read-

ings in information retrieval (San Francisco, CA, USA), Morgan Kauf-

mann Publishers Inc., 1997, pp. 47–59.

[CP90] Doug Cutting and Jan Pedersen,Optimizations for dynamic inverted in-

dex maintenance, Proceedings of the 13th International ACM SIGIR

Conference on Research and Development in Information Retrieval,

1990, pp. 405–411.

[CPKT92] Douglass R. Cutting, Jan O. Pedersen, David Karger, and John W. Tukey,

Scatter/Gather: A Cluster-based Approach to Browsing Large Doc-

ument Collections, Proceedings of the Fifteenth Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, 1992, pp. 318–329.

[CRL+03] G. Caldarelli, P. De Los Rios, L. Laura, S. Leonardi, and S. Millozzi,

A study of stochastic models for the Web, Tech. report, dipartimento di

Informatica e Sistemistica, Universita’ di Roma, Technical Report, 2003.

114

[CvdBD99] Soumen Chakrabarti, Martin van den Berg, and Byron Dom, Fo-

cused crawling: a new approach to topic-specific Web resource discov-

ery, Computer Networks (Amsterdam, Netherlands: 1999)31 (1999),

no. 11–16, 1623–1640.

[Dav00] Brian D. Davison,Topical locality in the web, SIGIR ’00: Proceedings

of the 23rd annual international ACM SIGIR conference on Research

and development in information retrieval (New York, NY, USA), ACM

Press, 2000, pp. 272–279.

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.

Furnas, and Richard A. Harshman,Indexing by Latent Semantic Analy-

sis, Journal of the American Society of Information Science41 (1990),

no. 6, 391–407.

[DFL+88] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester,and

R. Harshman,Using latent semantic analysis to improve access to tex-

tual information, CHI ’88: Proceedings of the SIGCHI conference on

Human factors in computing systems (New York, NY, USA), ACM

Press, 1988, pp. 281–285.

[DKM +01] Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan,

D. Sivakumar, and Andrew Tomkins,Self-similarity in the Web, The

VLDB Journal, 2001, pp. 69–78.

[EM] Nadav Eiron and Kevin S. Mccurley,Locality, Hierarchy, and Bidirec-

tionality in the Web, In Workshop on Algorithms and Models for the

Web Graph, Budapest.

[EMT04] N. Eiron, K. McCurley, and J. Tomlin,Ranking the web frontier, In Pro-

ceedings of the 13th conference on World Wide Web, 2004, pp. 309–

318.

115

[FKS03] R. Fagin, R. Kumar, and D. Sivakumar,Comparing top k lists, In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms., 2003.

[FLGC02] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Co-

etzee,Self-Organization and Identification of Web Communities, Com-

puter35 (2002), no. 3, 66–71.

[FMN03] D. Fetterly, M. Manasse, and M. Najork,The Evolution of Clusters of

Near-Duplicate Web Pages, In 1st Latin American Web Congress, Nov.

2003., 2003.

[Fos82] A. C. Foskett,The subject approach to information (4th ed.), Facet Pub-

lishing, 1982.

[GL83] G. H. Golub and C. F. Van Loan,Matrix computations, Johns Hopkins

University Press, Baltimore, Maryland, 1983.

[GS05] A. Gulli and A. Signorini,The Indexable Web is More than 11.5 Billion

Pages, 2005.

[Har93] Donna Harman,Overview of the first trec conference, SIGIR ’93: Pro-

ceedings of the 16th annual international ACM SIGIR conference on Re-

search and development in information retrieval (New York,NY, USA),

ACM Press, 1993, pp. 36–47.

[Hav99] Taher Haveliwala,Efficient Computation of PageRank, Tech. report,

Stanford University Technical Report, 1999.

[Hav02] T. Haveliwala,Topic-Sensitive PageRank, Proceedings of the Eleventh

International World Wide Web Conference, Honolulu, Hawaii, 2002.

[Hen03] M. Henzinger,Hyperlink analysis on the web, 2003, available online at

http://www-cad.eecs.berkeley.edu/ tah/170/Notes/170-google.ppt.

116

[HHMN99] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc

Najork,Measuring index quality using random walks on the Web, Com-

puter Networks (Amsterdam, Netherlands: 1999)31 (1999), no. 11–16,

1291–1303.

[HN99] Allan Heydon and Marc Najork,Mercator: A scalable, extensible web

crawler, World Wide Web2 (1999), no. 4, 219–229.

[HN00] , Performance limitations of the Java core libraries, Concur-

rency: Practice and Experience12 (2000), no. 6, 363–373.

[Hof99] Thomas Hofmann,Probabilistic Latent Semantic Analysis, Proc. of Un-

certainty in Artificial Intelligence, UAI’99 (Stockholm),1999.

[Jon72] K. S. Jones,A statistical interpretation of term specificity and its appli-

cation in retrieval, Journal of Documentation, 1972, pp. 28:11–21.

[JW03] Glen Jeh and Jennifer Widom,Scaling personalized web search, WWW

’03: Proceedings of the 12th international conference on World Wide

Web (New York, NY, USA), ACM Press, 2003, pp. 271–279.

[Ken38] Maurice G. Kendall,A new measure of rank correlation, Biometrika,

1938, pp. 30(1–2):81–93.

[KHG03] S. Kamvar, T. Haveliwala, and G. Golub,Adaptive methods for the com-

putation of pagerank, Tech. report, Stanford University Technical re-

port., 2003.

[KHMG] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub,Extrapolation

methods for accelerating PageRank computations.

[KHMG03] , Exploiting the block structure of the web for computing PageR-

ank, Tech. report, Stanford University Technical Report, 2003., 2003.

117

[Kle99] Jon M. Kleinberg,Authoritative sources in a hyperlinked environment,

Journal of the ACM46 (1999), no. 5, 604–632.

[Kos] M. Koster, Guidelines for robot writers, available online at

http://www.robotstxt.org/wc/guidelines.html.

[KRRT99] S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew

Tomkins, Extracting large-scale knowledge bases from the web, The

VLDB Journal, 1999, pp. 639–650.

[LG00] Steve Lawrence and C. Lee Giles,Accessibility of information on the

web, Intelligence11 (2000), no. 1, 32–39.

[LM00] R. Lempel and S. Moran,The stochastic approach for link-structure

analysis (SALSA) and the TKC effect, Proceedings of the 9th interna-

tional World Wide Web conference on Computer networks : the inter-

national journal of computer and telecommunications networking (Am-

sterdam, The Netherlands, The Netherlands), North-Holland Publishing

Co., 2000, pp. 387–401.

[Luh57] H. P. Luhn,A statistical approach to mechanized encoding and search-

ing of literary information, IBM Journal of Research and Development,

1957.

[MB98] Robert C. Miller and Krishna Bharat,Sphinx: a framework for creating

personal, site-specific web crawlers, WWW7: Proceedings of the sev-

enth international conference on World Wide Web 7 (Amsterdam, The

Netherlands), Elsevier Science Publishers B. V., 1998, pp.119–130.

[McB94] O. A. McBryan,Genvl and wwww: Tools for taming the web, In First

International Conference on the World Wide Web, 1994, pp. 313–323.

118

[Men02] F. Menczer,Growing and navigating the small world web by local

content, Proceedings of the National Academy of Sciences, 2002,

pp. 99(22):14014–14019.

[MK60] M.E. Maron and J.L. Kuhns,On relevance, probabilistic indexing and

information retrieval, Journal of the ACM, 1960, pp. 216–244.

[NCO04] A. Ntoulus, J. Cho, and C. Olston,What’s new on the web? the evolu-

tion of the web from a search engine perspective, In Proceedings of the

Thirteenth International World Wide Web Conference, 2004.

[NW01] Marc Najork and Janet L. Wiener,Breadth-first crawling yields high-

quality pages, WWW ’01: Proceedings of the 10th international con-

ference on World Wide Web (New York, NY, USA), ACM Press, 2001,

pp. 114–118.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd,The

PageRank Citation Ranking: Bringing Order to the Web, Tech. report,

Stanford Digital Library Technologies Project, 1998.

[PFL+02] D. Pennock, G. Flake, S. Lawrence, E. Glover, and C. Giles, Winners

Don’t Take All: Characterizing the Competition for Links onthe Web,

Proceedings of the National Academy of Sciences99 (2002), no. 8,

5207–5211.

[Pie98] V. Piek,Introduction to eurowordnet, Computers and the Humanities,

1998, pp. 32(2–3):73–89.

[Por] M. F. Porter,An algorithm for suffix stripping, Program: Automated

Library and Information Systems.

119

[PRU02] Gopal Pandurangan, Prabhakara Raghavan, and Eli Upfal, Using PageR-

ank to Characterize Web Structure, 8th Annual International Computing

and Combinatorics Conference (COCOON), 2002.

[Rab81] M. O. Rabin,Fingerprinting by random polynomials, Harvard Univer-

sity Technical Report TR-15-81, 1981.

[Ram98] R. Ramakrishnan,Database management systems, MxGraw-Hill, 1998.

[Ran49] Rankdex,The Rankdex search engine, 1949, available online at

http://rankdex.gari.com/.

[RD02] Mathew Richardson and Pedro Domingos,The Intelligent Surfer: Prob-

abilistic Combination of Link and Content Information in PageRank,

Advances in Neural Information Processing Systems 14, MIT Press,

2002.

[RK58] J. Rees and A. Kent,Mechanised searching experiments using the wru

seacrhing selector, American Documentation, 1958, pp. 9(4):277–303.

[RM] Davood Rafiei and Alberto Mendelzon,What is this Page Known for?

Computing Web Page Reputations, In Proc. 9th World Wide Web Con-

ference, Amsterdam.

[Rob75] S. E. Robertson,The probabilistic ranking pronciple in ir, Journal of

Documentation, 1975, pp. 33:294–304.

[Roc71] J. J. Roccio,Relevance feedback in information retrieval, In G. Salton,

editor, The SMART Retrieval System: Experiments in Automatic Doc-

ument Processing, 1971, pp. 313–323.

[RSWW01] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener, The link

database: Fast access to graphs of the Web, Research Report 175, Com-

paq Systems Research Center, Palo Alto, CA, 2001., 2001.

120

[SB88] Gerard Salton and Chris Buckley,Term-weighting approaches in au-

tomatic text retrieval, Information Processing and Management, 1988,

pp. 24(5):5133–523.

[See49] J. R. Seely,The net of reciprocal influence. a problem in treating socio-

metric data, Canadian Jornal of Psychology, 1949, pp. 3:234–240.

[SHMM98] Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael

Moricz, Analysis of a very large altavista query log, Tech. Report 1998-

014, Digital SRC, 1998.

[SL68] G. Salton and M. E. Lesk,Computer evaluation of indexing and text

processing, J. ACM15 (1968), no. 1, 8–36.

[SS02] Vladislav Shkapenyuk and Torsten Suel,Design and Implementation

of a High-Performance Distributed Web Crawler, In Proceedings of

the IEEE International Conference on Data Engineering,February 2002,

2002.

[SWY71] Gerard Salton, A. Wong, and C. S. Yang,A vector space model for au-

tomatic indexing, Communications of the ACM, 1971, pp. 18(11):613–

620.

[SWYZ02] F. Scholer, H. Williams, J. Yiannis, and J. Zobel,Compression of in-

verted indexes for fast query evaluation, ACM SIGIR conference on re-

search and development in information retrieval, 2002, pp.222–229.

[SY01] Torsten Suel and Jun Yuan,Compressing the Graph Structure of the Web,

Data Compression Conference, 2001, pp. 213–222.

[Wan] Ziyang Wang,Improved Link-Based Algorithms for Ranking Web Pages,

citeseer.ist.psu.edu/651305.html.

121

[Wan03] Z. Wang,Improved link-based algorithms for ranking web pages, NYU

Computer Science Technical Report TR2003-846, 2003.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell,Managing giga-

bytes (2nd ed.): compressing and indexing documents and images, Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[Zip49] G. K. Zipf, Human behavior and the principle of least-effort, 1949.

122

