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Abstract. We present the toolbox ClimateLearn to tackle problems in climate prediction using machine

learning techniques and climate network analysis. The package allows basic operations of data mining, i.e. read-

ing, merging, and cleaning data, and running machine learning algorithms such as multilayer artificial neural

networks and symbolic regression with genetic programming. Because spatial-temporal information on climate

variability can be efficiently represented by complex network measures, such data are considered here as input to5

the machine-learning algorithms. As an example, the toolbox is applied to the prediction of the occurrence and

the development of El Niño in the equatorial Pacific, first concentrating on the occurrence of El Niño events one

year ahead and second on the evolution of sea surface temperature anomalies with a lead time of three months.

1 Introduction

Machine learning is a branch of computer science concerned with automated recognition of (spatio-temporal)10

patterns from data (Mitchell, 1997). It has been increasingly employed in the study of “big data” with the aim

to investigate data syntactically and semantically. In essence, this means an automated search for a best model,

given a certain task and corresponding data. A large number of algorithms have been designed for different tasks

in which the approach is borrowed from bio-inspired investigations on artificial intelligence (in older times a

synonym of machine learning). Given a task, a human learns what to do and -hopefully- optimizes the working15

schedule according to the given side conditions. This is how machines learn from data: a task is formulated and

then a learning process starts, which consists in building statistical models (in terms of probability distributions) or

functional models. Eventually, optimality criteria and discriminant functions are used to evaluate the performance

of such a model given new data.

The algorithms are divided roughly into three different categories: supervised learning, unsupervised learning20
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and reinforcement learning (Bishop, 2006). Supervised learning comprises techniques that predict the value of a

target variable y given an input variable x, where x and y might be vectors. A training set of many (x,y) pairs is

used to supervise the learning process and to build a model, which is subsequently used to find the target values

corresponding to new data points (xnew,ynew). In unsupervised learning the dataset is not labelled, i.e. there is

no target variable y, and the aim is to find patterns in the data such that target variables are identified, e.g. using25

clustering methods. Finally, in reinforcement learning, a certain goal is pursued in a dynamic environment without

knowing explicitly whether the approach converges to the goal or not, and the learning process is driven by the

feedbacks from the environment.

Machine learning has shown to be very efficient in prediction, for example in solar energy prediction for solar

power plants (Sharma et al., 2011). This forecasting task can be reduced to learning how the solar plant reacts30

to the environmental conditions, and forecasting the future response of the plant using reliable weather data. As

such, the methodology can in principle also be directly applied to climate prediction problems (Slingo and Palmer,

2011), such as the prediction of El Niño events (Chen et al., 2004) and of interannual variations of the path of the

Kuroshio Current in the North Pacific Ocean (Qiu and Chen, 2005). In particular the occurrence of an El Niño

event has large impacts on the weather around the Pacific (Reilly, 2009). It is therefore crucial to develop precise35

and reliable predictions of such events with considerable lead time and, if so, provide information on how the

events could develop in time.

Since the 1990s, both dynamical models and statistical models have been used to predict El Niño events (Latif

and Barnett, 1994; Fedorov et al., 2003; Chen et al., 2004; Yeh et al., 2009). Although about 20 models cur-

rently provide El Niño forecasts routinely, all reliable forecasts are generally limited to a 6 months ahead hori-40

zon. The reason is the so-called Spring Predictability Barrier: during spring errors are greatly amplified due to

the coupled feedbacks in the equatorial ocean-atmosphere system (Goddard et al., 2001; Duan and Wei, 2013).

Moreover, the prediction skill for the development of El Niño events is still disappointing for the current models

as can be seen by following the 2015 El Niño development at http://www.cpc.ncep.noaa.gov/products/ analy-

sis monitoring/enso advisory/ensodisc.html.45

Recently, approaches from complex network theory have been applied to problems in climate dynamics and

shown that spatial-temporal information on climate variability can be efficiently represented by network measures

(Tsonis and Roebber, 2004; Steinhaeuser et al., 2011; Tantet and Dijkstra, 2014; Fountalis et al., 2015). The

central two elements of this approach are Climate Network (CN) reconstruction and subsequent network analysis

(Tsonis and Swanson, 2006; Yamasaki et al., 2008; Donges et al., 2009). A notion of connectedness (defining a50

‘link’ in the network) between time series at different locations (the ‘nodes’ in the network) can be obtained by

considering their Pearson correlation. Software packages, such pyunicorn (Donges et al., 2015) and Par@graph

(Ihshaish et al., 2015), are now available for efficient climate network reconstruction and analysis.

Complex-network based indicators of El Niño occurrences have been developed using climate networks for

example reconstructed from atmosphere surface temperature observations (Yamasaki et al., 2008; Gozolchiani55

et al., 2011). These studies have shown that links based on the spatial correlations of the temperature anomalies

tend to weaken significantly during El Niño events. A large-scale cooperative mode, linking the El Niño basin

and the rest of the Pacific climate system builds up one calendar year before the warming event (Ludescher et al.,
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2013). Based on such findings on the temporal evolution of the CN, Ludescher et al. (2014) developed a forecasting

scheme for El Niño events. They suggest that a threshold on the average link weight in the reconstructed CN can60

reliably forecast an El Niño event one year ahead.

When machine-learning techniques are applied to the prediction of climate variability using data from CNs, one

typical task is to infer or ‘learn’ the dynamics of the climate system from past states and predict its future states.

In this paper, we present a machine-learning approach for climate forecasting using the measures of CNs. The

originality and advantage of this approach is that the temporal information is already contained in the measures of65

the CNs, so the machine-learning techniques will take those into account when making predictions of the future

states of the system. This is a big advantage that is not that common in most of the applications where machine

learning is used for prediction. In section 2, we start with an explanation on how the data for the machine-learning

approach is obtained from complex network analysis. The machine-learning methodology itself is described in

section 3 and subsequently applied in section 4 to the prediction of El Niño events. A summary and discussion are70

given in section 5.

2 Climate Networks

Climate scientists have been long interested in studying the statistical correlations between observables for gaining

a good understanding of the large-scale development of the climate system. By investigating the correlation

structures of global or regional fields, such as surface air temperature and geopotential height, much insight is75

gained into the patterns of climate variability. For example, through such analyses, the Southern Oscillation was

discovered by Sir Gilbert Walker and also its relation with the equatorial Tropical sea surface variability, i.e. El

Niño, was clarified (Katz, 2002).

Suppose that a certain climate system observable indicated by O below, such as sea surface temperature (SST)

or surface atmospheric temperature (SAT), is available at fixed measurement stations, certain predefined re-80

gions, or at grid cells (e.g. from observations, proxy reconstructions, reanalysis, or model simulations). The

corresponding data can be represented by an n×N matrix F , ordered in such a way that each column vector

Oi = (Oi(t1),···,Oi(tn))T at each grid point i (i= 1,...,N ) contains a time series of length n.

As mentioned above, one way to define the links in the climate network is to use the Pearson Correlation,

defining a PCCN, or the Mutual Information, defining a MICN (Feng and Dijkstra, 2014). To reconstruct a PCCN,85

first the linear Pearson correlation coefficient between the time series at two grid points i and j is determined. The

elements RP
ij of the correlation matrix RP are given by

RP
ij =

∑n
k=1Oi(tk)Oj(tk)√

(
∑n

k=1O
2
i (tk))(

∑n
k=1O

2
j (tk)))

. (1)

To reconstruct a MICN , the correlation between the time series of two grid points i and j is determined by the

nonlinear mutual information coefficient, giving90

RM
ij =

∑

x∈Oi

∑

y∈Oj

p(x,y) log(
p(x,y)
p(x)p(y)

), (2)
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where p(x,y) is the joint probability density function of events x and y and p(x) and p(y) are the marginal

probability density functions.

We consider that two nodes i and j have an unweighted link, if the absolute value of their correlation coefficient

RX
ij (either P =X or X =M ) is larger than a certain threshold value τ . All links are then represented by an95

N×N adjacency matrix A, which can be determined from the correlation matrix RX according to

Aij =H(|RX
ij |−τ), (3)

where H is the Heaviside function. The threshold τ is in most cases based on statistical significance (say above

the 95% level) of the correlations between the time series (Donges et al., 2015).

Another way to define a link between nodes i and j was presented in Gozolchiani et al. (2011) and also used in100

Ludescher et al. (2014). First, the cross-correlation function Cij(∆t) between the time series at locations i and j

is calculated, where ∆t is a positive time lag and Cij(∆t) =Cji(−∆t). Next, the time lag ∆t∗ at which Cij(∆t)

is maximal (or minimal) is determined. Finally, weights (W±ij ) for positive and negative links are defined as:

W+
ij =

MAX(Cij)−MEAN(Cij)
STD(Cij)

, (4)

and105

W−ij =
MIN(Cij)−MEAN(Cij)

STD(Cij)
, (5)

where MAX and MIN are the maximum and minimum values and MEAN, STD are the mean and standard

deviation, respectively. In this way, a weighted and directed link between nodes i and j is obtained (Gozolchiani

et al., 2011; Wang et al., 2013).

There are many other ways to reconstruct climate CNs and an overview is given in Donges et al. (2015). By110

reconstructing CNs, the correlations in time series of observables at different locations is represented with a graph,

defined by its adjacency matrix A. Subsequently, many topological properties of this graph are analysed, such as

the degree di of each node i, given by

di =
N∑

j=1

Aij (6)

which is the total number of links that a node possesses. Next step is to use the properties of such a CN as the115

input of machine-learning techniques. Besides the statistical properties of the CN, such as those of the correlation

matrices, also the topological properties of the graph can be used.

3 Machine learning approach

In ClimateLearn, supervised learning approaches are implemented for the prediction of climate variability.

Specifically we focus on multilayer artificial neural networks (ANN) and symbolic regression with genetic pro-120

gramming (GP), both explained in this subsection. The approaches follow the typical outline of machine learning:

the algorithms are trained or ‘learn’ a certain behavior from the data This results in a model that is evaluated using

test data, which are different from the ones used for training.
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3.1 Artificial neural networks

Artificial neural networks are a class of statistical learning models inspired by the physiology of biological neural125

networks. They consists of a network of computing units, the neurons, which process input information transform-

ing it in an output signal whose form depends on the network internal state. Their importance has increased due

to recent availability of software capable to efficiently train the network and allow to use these methods for a large

variety of problems, from speech and image recognition up to the forecasting of time series and high-dimensional

clustering. Many neural network topologies have been proposed in the literature, as specific problems require130

specific topologies to be solved efficiently. Here, we concentrate on a specific configuration known as multilayer

perceptron or multilayer neural network. In Fig. 1a the typical structure of a multilayer perceptron is shown: the

inputs enter the network and are processed by one or more hidden layers and exit at an output layer. Therefore

the computation can be seen as a mapping operation from a n-dimensional input vector to a m-dimensional out-

put vector. In a multilayer perceptron, information travels from the input to the output layer because the neuron135

connections are chosen to be unidirectional. When all neurons of one layer are connected to all the following we

speak about a fully connected multilayer perceptron.

Each neuron performs a specific kind of computation and Fig. 1b shows the functionality of the Rosenblatt

perceptron. First, a weighted sum of the input variables and the bias term b is built, with the result being then

processed by an activation function f(t). Once the single neuron operation is specified, one can easily calculate140

the network outputs given an input vector by evaluating the output of each layer by forward input propagation.

The result is a function of the network configuration, i.e. its topology and the value of the connection weights. It

will be the job of the training phase to learn the weights in order to induce the desired computation; training and

learning are used here as synonymous.

Since the advent of neural networks, the training phase has been considered a computationally demanding145

problem mainly because of the absence of efficient algorithms relative to the available computing power. This has

been overcome by the back-propagation algorithm (Bishop, 2006), nowadays widely applied in training multilayer

perceptrons. Given a supervised training set {xi,ti : i= 1...N} with xi input variables and ti target variables,

we denote by yi the correspondent output computed by the network when xi is fed forward. In general we have

ti 6= yi. A global error on the training set can be then defined as a quadratic function of the form150

E(w) =
1

2N

∑

i

||ti−yi||2 (7)

and can be seen as a function of the network weights w. Other error definitions are possible, for example by

choosing a different norm. The idea behind back propagation is to minimize this error by updating the weights

using the gradient descend method (with k as iteration index), i.e.

w
(k)
ij →w

(k)
ij −α

∂E(w)

∂w
(k)
ij

(8)155

The calculation of the partial derivatives is thus crucial for the algorithm. It is done by using directly the depen-

dence of the error function on the training set instances. When all the instances have been used, one ‘epoch’ of

training is completed. Usually many epochs of training are needed in order for the error function to converge to a

local, or global minimum, resulting in longer training periods.
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Fig. 1: (a) Schematics of a fully connected multilayer perceptron with three input variables x1,x2 and x3 and two

output variables y1 and y2, with two hidden layers. (b) The Rosenblatt perceptron, with three inputs and a bias

unit. The weighted input sum is added to the bias term and then enters as argument of the activation function f

which generates the neuron output.

Once training is completed, the model is tested by checking the error on a test set. One main concern in160

this procedure is to avoid overfitting of data, i.e. a model that adapts too much on the training data and may

not generalize well when new data are used. In order to minimize the risk of overfitting one can employ cross-

validation methods, which consist in providing several bi-partitions of the training set, a training partition and a

validation partition. The network is then trained on the training partition and tested on the validation partition.

Once this process has been performed on several cross-validation partitions and the statistics of the training and165

validation errors are examined, the quality of the model can be established. If no signs of overfitting are detected,

the training is considered successful and the network can be employed for generalization.

3.2 Genetic programming

Genetic programming and genetic algorithms are a class of evolutionary based algorithms whose principles are

based on Charles Darwin’s Theory of Evolution (Darwin, 1959). In this masterpiece, Darwin explains that, given a170
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population of individuals living within an environment, only a subset of them are properly fitted and therefore have

higher chances of survival and reproduction. New generations may inherit these favourable genetic characteristics

and they will end up being dominant inside the population. Variations in the individual characteristics can be clas-

sified in three categories. In the first category are variations that are damageable for the individual. To the second

belong the beneficial ones and in the third category, the variations have no effective influence. Natural selection175

consists in the preservation of beneficial characteristics and their transmittance to the next generation, since those

fitted individuals live longer and most of the time are better able to beat the competition for reproduction.

Given a problem P to be solved, we imagine to have an ensemble of solutions S to this problem. According to

its efficiency in solving P , each solution can be considered as an individual for which the degree of adaptation to its

environment can be measured in terms of a fitness value. Genetic Programming (GP) is a particular case where the180

evolved individuals are computer programs (Koza, 1993). The aim is to appropriately evolve computer programs

by creating new generations, evaluating their fitness value and finally selecting the best program that solves the

problem at hand. Here, we restrict such programs to functions f(x1,...,xn) of a given number of variables xi,i=

1,...n and we aim at finding a given function that approximates the solution to our problem accurately enough.

Therefore our application is nothing more than a symbolic regression achieved through genetic programming185

algorithms. The fitness values can be represented mathematically by a real valued functional F [f(x1,...,xn)],

mapping the space of possible solutions onto the real axis. In GP, the programs are typically represented as trees,

where each tree represents an expression of a potential solution to a problem (cf. examples in Fig. 2).

To implement the variations in genetic programming, two operators are commonly used: mutation and

crossover. Their behaviour is very similar to the biological mutation and crossover concepts. In a mutation190

step, a random node in the tree that represents the individual is selected and the corresponding subtree is replaced

randomly by another one (Fig. 2a). Mutation is very important to keep diversity inside the population, and diver-

sity helps the algorithm to explore all the search space and preventing encounters of local maxima of the fitness

functional. Crossover is based on the exchange of characteristics among two individuals. In GP, this is imple-

mented by selecting randomly a node in two trees that represent two individuals and exchange the two subtrees195

attached to two those nodes (Fig. 2b). In this way, the two individuals inherit characteristics of both parent trees.

In a so-called symbolic regression scheme, an initial random population of individuals is generated randomly

using elementary functions taken from a function set (e.g. sinx,exp x,max[x1,x2]) and combined using a certain

algebraical or functional operations (e.g. +,−,∗) in an operation set, whose choice depends on the problem at

hand. The initial population is then evaluated according to a fitness function. The genetic operations mutation and200

crossover are then applied on the population in order to create a second generation which is as well evaluated. This

process continues until a prescribed termination condition, for example when the maximum number of generations

has been reached, or an individual of high enough fitness is found (e.g. when the absolute value of the functional

F is smaller than a certain tolerance).
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Fig. 2: (a) Example of mutation operation: a branch of the tree on the left is changed (mutated) by substitution

with another compatible branch determined randomly. (b) Example of crossover: two individuals are selected

from the population and a new individual is created by mixing the highlighted branches.

4 Application: El Niño variability205

As an example of the application of ClimateLearn, we consider the forecasting of El Niño events using two

different approaches. First, we focus on the forecasting of the occurrence of events, i.e. the presence (or not)

of an El Niño in a given interval of time regardless of the intensity of the phenomenon. This problem can be

considered as a classification problem, where a set of discrete classes is the output of the model (section 4.1). The

second approach is the forecasting of the time evolution of a scalar characteristic of El Niño, where we aim at the210

prediction of a real-valued time series by regression. The results in this case will give information on both the

presence and intensity of the event (section 4.2). In section 4.3, we provide specific results for the occurrence and

development of the El Niño conditions in the year 2014.
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4.1 Results: Occurrence of El Niño events

Just as in Ludescher et al. (2014), the data consist of atmospheric surface temperature anomalies over the May 1949215

- March 2014 from the NCEP Reanalysis project (Kalnay et al., 1996). From this dataset, a directed, weighted

network was reconstructed (Gozolchiani et al., 2011; Ludescher et al., 2014) using the methodology presented

in section 2. Several measures xi,i= 1,...,N of this network are used as the attributes in the machine-learning

approach and for each quantity a time series (x1
i ,...,x

T
i ) is available. We use a time interval of 10 days (which

gives T = 2365) and choose eight measures (with time included, N = 9). These eight measures are the maximum220

correlation MAX(Cij), the minimum correlation MIN(Cij), the maximum delay MAX(∆t∗), the minimum delay

MIN(∆t∗), the maximum link weight MAX(Wij), the minimum link weight MIN(Wij), the standard deviation

of the correlation STD(Cij), and the mean correlation MEAN(Cij) (see section 2).

The target variable is discrete valued and distinguishes the presence or absence of an event. Operationally

(http://www.cpc.ncep.noaa.gov/), an El Niño event is said to occur when the sea surface temperature anomaly225

over the region 120◦W-170◦W × 5◦S-5◦N, the so-called NINO3.4 index (the SST anomaly averaged over the

region [120◦W-170◦W]×[5◦S-5◦N]), is above the threshold of +0.5◦C for at least 5 consecutive months. Hence,

we put y= 0 (no event) when it belongs to a interval of time where El Niño is not present, and y= 1 when it is

present. Here we do not want to smooth the data and hence we flag an El Niño event when NINO3.4 values are

continuously above the threshold of +0.4◦C for five months. Regarding the build of the training and test sets, the230

condition ttest
1 >ttrain

T has to be satisfied. This means that the instances in the test set happen after the one in the

training set, since we are only interested in a chronological prediction for the El Niño event.

The method we choose for the supervised learning is an artificial neural network (ANN) with a 3×3 layer

structure (3 neurons per layer). The training set is from May 1949 to June 2001 (80% of T ), the test set is from

June 2001 to March 2014 (20% of T ). Similar to Ludescher et al. (2014), the prediction lead time τ is 12 months.235

Fig. 3a shows the classification results on the test set, where 1 stands for the occurrence of an El Niño event and

0 means absence. The result is then filtered by eliminating the isolated and transient events, and by batching the

adjacent events together. Fig. 3b then shows that our forecasting scheme gives accurate alarms 12 months ahead

for the El Niño events in 2002, 2006 and 2009, and no alarm in 2004. Compared with the results in Ludescher

et al. (2014), the machine-learning toolbox enables us to give a better prediction for the occurrence of El Niño240

events when using more measures of the same CN.

One advantage of using supervised learning for prediction is that the predictor model is constructed automat-

ically from the training set without subjective decisions like the choice of thresholds. However, because the

available data for prediction as well as the amount of instances is limited, (for example, only a few El Niño events

occurred between May 1949 and March 2014), the accuracy of the prediction will mostly depend on the length245

of the training set. Consequently we need to choose proper proportions of the available data as the training/test

set to avoid ‘under training’. To demonstrate that the current proportion for the test set (20% of T ) gives the

best performance, we conduct a Receiver Operating Characteristic (ROC)- type analysis by varying the proportion

from 16% to 30% of T as the test set. With a proportion between 16% and 20%, the averaged hit rate D= 0.90

and the averaged false-alarm rate α= 0.10. For 21% to 25%, we find D= 0.71 and α= 0.29, and for 26% to250

30%, D= 0.21 and α= 0.79. Thus, to have a higher hit rate and a lower false-alarm rate, the best proportion for
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Fig. 3: Prediction results on the test set from June 2001 to March 2014 (a) without filtering and (b) with filtering,

using an artificial neural network (ANN) with a 3×3 layer structure (3 neurons per layer) for a 12 months lead

time prediction for the occurrence of El Niño events. The red dashed lines are the actual nominal quantity of the

NINO3.4 index (1 stands for the occurrence of an El Niño event where NINO3.4 values are continuously above

the threshold of +0.4◦C for five months, and 0 for the absence of such an event), and the blue solid lines indicate

the predicted ones.

the test set is ≤ 20%. Of course, we should also maximize the length of the test set to incorporate more El Niño

events for testing, and this motivated our choice of 20% (Fig. 3).

4.2 Results: NINO3.4 index development

Predictions for the development of the NINO3.4 index are more difficult than those for the occurrence of El Niño255

events. For example, consider the results of the CFS version 2 (CFSv2) model developed by the Environmental

Modeling Center at National Centers for Environmental Prediction (NCEP). This is a fully coupled model repre-

senting the interaction between the Earth’s atmosphere, oceans, land and sea ice (Saha et al., 2014). In August

2014 this model predicted that the NINO3.4 index would go over +1.0◦C in October 2014 but the actual value in

October 2014 was just around +0.5◦C. Hence even for short term predictions (up to few months) a good skill of260

the NINO3.4 index development is still hard to achieve by this model.

Short-term development of the NINO3.4 index is strongly related to the stability of the Pacific background state

and the occurrence of westerly wind bursts (WWBs) near the dateline. In Feng and Dijkstra (2015), PCCNs were

reconstructed using sea surface temperature data from the HadISST dataset Rayner (2003) using the methodology

presented in section 2. As a measure of the coherence in the PCCN, they determine the number of links of each265

node, i.e. the degree of the node. As a measure of the stability of the Pacific climate, they use the skewness Sd

of the degree distribution of the PCCN. In addition to Sd, also the time series of the second principal component

(PC2) of the wind stress residual (the signal due to SST variability is filtered out) is used as a measure the WWB

strength (Feng and Dijkstra, 2015).
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Next, we use the machine-learning toolbox to investigate the importance of Sd and PC2 for the NINO3.4270

index development by supervised learning regression. The attributes are therefore the background stability index

x1 = Sd, the westerly wind burst measure x2 = PC2 and the time x3 = t from November 1961 to October 2014

with a time interval of one month (i.e., T = 636 and N = 3). Given the data set we again have to choose a training

and a test set. In the case of regression we can randomly choose a given percentage of the instances to belong to a

training set and the rest to a test set. Since we do not possess a large amount of data, it is however important that275

these two dataset are as homogeneous as possible in order to avoid overfitting issues.

The training set chosen is from November 1961 to April 2004 (80% of T ) and the test set is from May 2004 to

October 2014 (20% of T ). The quality of the predicted results in the test set is measured by the normalized root

mean squared error (NRMSE) defined as

NRMSE(yA,yP ) =
1

max(yA)−min(yA)

√√√√
∑

ttest
1 ≤tk≤ttest

n

(yk
A−yk

P )2

n
, (9)280

where yk
A is the actual time series of NINO3.4 index, the predicted is indicated by yk

P ,n and n is the number of

points in the test set.

We first employ an ANN with a 2×1 layer structure (2 neurons in the first layer and 1 neuron in the second

one) to do the regression. Since we do not know the optimal prediction time τ which would give a reasonable

prediction y(t+ τ) at time t+ τ , we vary τ from 1 month up to 12 months. Fig. 4 shows the regression results285

on the test set for the 2-4 months lead time NINO3.4 forecasts. The best prediction, with the smallest value of

NRMSE=0.18, is given at τ = 3 months (Fig. 4b).

To test the robustness of the regression result for the three months lead time NINO3.4 index forecast (Fig. 4b),

we perform a series of cross-validations by keeping specific percentage splits between training set and test set

(70-30, 75-25, 80-20, and 85-15), but randomly choosing 200 initial times ttest
1 of the test set from November290

1961 to October 2014 for each percentage split. From Fig. 5, one can see that the peak values of the NRMSE

remain near 0.17, independent of the choices of the percentage splits and ttest
1 . Therefore the regression result in

Fig. 4b is considered robust.

Due to the irregular behavior of the PC2 representing the WWBs (cf. Figure 3 in Feng and Dijkstra (2015)),

the predicted NINO3.4 indices in Fig. 4 show more fluctuations than the actual one. When a 3-month running295

mean is applied to the predicted NINO3.4 index (three months lead time, Fig. 4b) as well as the actual one, the

forecast has a better skill (NRMSE=0.14) as shown in Fig. 6a. To further demonstrate that the result in Fig. 6a is

robust and independent of the choices of the ANN layer structures and the methods for the supervised learning,

we perform the same regression task with an ensemble of 49 ANNs with different binary layer structures and up

to 7 neurons per layer and an ensemble of 50 GP runs. The averaged result of the best 10 ANNs (with the smallest300

NRMSE values) is shown in Fig. 6b with NRMSE=0.15. The averaged result of the best 10 GP runs (having the

smallest regression error) is shown in Fig. 6c with NRMSE=0.17, which are both similar to the one obtained by

the ANN with a 2 × 1 layer structure in Fig. 6a.

305

11

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-273, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 11 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

2

time (years)

N
IN

O
3.

4 
/ o C

 

 

actual
predicted

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

2

time (years)

N
IN

O
3.

4 
/ o C

 

 
actual
predicted

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

2

time (years)

N
IN

O
3.

4 
/ o C

 

 
actual
predicted

(a) (b) 

(c) 

Fig. 4: Regression results on the test set from May 2004 to October 2014 using an ANN with a 2×1 layer structure

(2 neurons in the first layer and 1 neuron in the second one) for the prediction of the NINO3.4 index with a lead

time of (a) 2 months (NRMSE=0.23), (b) 3 months (NRMSE=0.18), and (c) 4 months (NRMSE=0.22). The red

dashed lines are the actual values of NINO3.4 index, and the blue solid lines indicate the predicted ones.

4.3 Results: El Niño development in 2014

In the previous sections we have seen that by using the measures of the CNs from Ludescher et al. (2014) and

Feng and Dijkstra (2015), the machine-learning toolbox ClimateLearn can give robust predictions on the

occurrence of El Niño events one year ahead and the development of NINO3.4 index with a lead time of three310

months, respectively. We now apply these techniques to the occurrence and development of the situation in 2014.

First, we consider the occurrence of an El Niño event up to March 2015, by using the same data used in section

4.1 till March 2014. The prediction results on El Niño occurrence in 2014 are shown in Fig. 7a, by employing

an ensemble of 36 ANNs with different binary layer structures and up to 6 neurons per layer. Like the event in

2012 in Fig. 3b, our forecast scheme tends to ignore the ENSO-neutral favored events or the weak El Niño events.315

Hence, no El Niño event between January 2014 to March 2015 is predicted one year ahead (Fig. 7a).
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Fig. 5: Cross-validation results of NINO3.4 index forecast on the test set by keeping certain percentage splits

between training set and test set (70-30, 75-25, 80-20, and 85-15), but randomly choosing 200 initial times of

the test set ttest
i from November 1961 to October 2014 for each percentage split. The blue dashed curve is the

NRMSE distribution of 70-30 split (70% of T as the training sets and 30% of T as test sets), the green solid line

for a 75-25 split, the red solid curve for a 80-20 split and the cyan solid curve for a 85-15 split.

Second, we consider the development of the NINO3.4 index from January 2014 till January 2015 using the

same data used in section 4.2 till October 2014. The accuracy of the predicted NINO3.4 index over 2014 with a

lead time of three months (Fig. 7b) is quite good (NRMSE=0.19) for example compared with the one given by

CFSv2 model over that period (NRMSE=0.34).320

5 Summary and discussion

In this paper, we have presented the machine-learning toolbox ClimateLearn for climate prediction problems,

based on climate data obtained from complex network reconstruction and analysis. Besides handing multivariate

data from these networks and other sources, another advantage of using this machine-learning toolbox for climate

variability prediction is that the development of predictor models is dynamic and data-driven (Bishop, 2006).325

Using machine-learning techniques with the measures from reconstructed Climate Networks (CNs), we have

provided novel prediction schemes for the occurrence of an El Niño event (with a lead time of one year) and for

the development of the NINO3.4 index (with a lead time of three months).

By using measures of a directed and weighted CN (Ludescher et al., 2014) and supervised learning classifi-
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Fig. 6: Results for a 3-month running mean regression on the test set from May 2004 to October 2014 using (a) an

ANN with a 2×1 layer structure (2 neurons in the first layer and 1 neuron in the second one, NRMSE=0.14), (b)

an ensemble of 49 ANNs with different binary layer structures and up to 7 neurons per layer (only the ensemble

mean of the best 10 is showed, NRMSE=0.15) and (c) an ensemble of genetic programmings (only the ensemble

mean of the best 10 is showed, NRMSE=0.17) for the three months ahead prediction for the development of the

NINO3.4 index. The red dashed curves are the actual values of NINO3.4 index, and the blue solid curves indicate

the predicted ones.
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Fig. 7: Prediction results on ENSO variability in 2014 using an ensemble of 36 ANNs with different binary layer

structures and up to 6 neurons per layer. (a) The occurrence of the El Niño event given one year ahead, and (b) the

development of NINO3.4 index with a three months a lead time (only the ensemble mean is shown, NRMSE=0.19).

The red dashed lines are the actual nominal quantity/actual values of NINO3.4 index, the blue solid lines indicate

the predicted ones, and the black solid line indicates the predicted one by CFSv2 model (only the ensemble mean

is shown, estimated from http://www.cpc.ncep.noaa.gov/products/people/wwang/cfsv2 fcst history/ ).

cation, we developed a forecast scheme in predicting the occurrence of an El Niño event one year ahead. This330

scheme apparently does not seem to suffer from the ‘spring predictability barrier’ (Goddard et al., 2001). This is

probably due to the fact that the network measures adequately capture the changes of spatial patterns one calendar

year before the warming event (Ludescher et al., 2013). Apparently, the prediction schemes can well represent the

nonlinear relationships among the attributes and give an objective prediction. For example, in the forecast scheme

proposed by Ludescher et al. (2014), the prediction may be sensitive to the choice of the decision threshold θ.335

Moreover, the false alarms and the misses (the El Niño events in 2006 and 2009 are not detected) show the limita-

tions of their scheme. These deficiencies may be caused by the fact that this forecast scheme is based only on one

single measure of the CN. The supervised learning method in our forecast scheme does not have these problems.

In addition, by using measures of an undirected and unweighted CN (Feng and Dijkstra, 2015) that monitor

the stability of the Pacific climate state and a measure of the atmospheric wind-stress noise in combination with340

supervised learning regression, we provided reasonable forecasts of the development of the NINO3.4 index three

months ahead. A lead time of three months is of course too short to make this forecast scheme outcompete existing

ones. However, comparing these forecast results with those from much more sophisticated models like the CFSv2

model indeed confirm that the quantities Sd and PC2 are important factors in the development of El Niño events.

The software package ClimateLearn is written in python 2.7, and it makes full use of the open source pack-345

ages Weka (available at http:/www.cs.waikato.ac.nz/ml/weka/) and ECJ (available at https://cs.gmu.edu/∼eclab/

projects/ecj/). The package ClimateLearn allows basic operations of data mining, i.e. reading, merging, and

cleaning data, and running machine learning algorithms. Building on the success of complex network approaches

to investigate aspects of climate variability, ClimateLearn provides an innovative and convenient way to pre-
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dict the occurrence and development of El Niño events. It can also be directly applied to the prediction of other350

climate variability phenomena.

Code availability

ClimateLearn is available through github at https://github.com/Ambrosys/climatelearn. The package is still in

a raw version and we plan however to refine it by a full python implementation using other open source third-party

libraries (e.g. Deap and Pybrain) in the near future.355
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