
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Reuse of Retired Mobile Devices in Cyber-Physical Systems

Permalink
https://escholarship.org/uc/item/8cp0h66g

Author
Ambrose, Timothy

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cp0h66g
https://escholarship.org
http://www.cdlib.org/

Reuse of Retired Mobile Devices in Cyber-Physical Systems

By

TIM AMBROSE

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Rajeevan Amirtharajah, Chair

Venkatesh Akella

John Owens

Committee in charge

December 12, 2023

 i

Abstract

Cyber-physical systems continue to be increasingly important to global society because of automation,

miniaturization of electronics, and the Internet of Things. More smartphones and tablets are being

manufactured and discarded or recycled every year. This research presents a design and characterization of

a system that gives retired mobile devices further use within cyber-physical systems beyond their typical

end-of-life. The contributions include an experimental characterization of wireless communication protocols

for embedded systems involving wide-area networks using query vehicles, a design of an app-based

distributed computing architecture named Cluster made from retired smartphones and tablets,

implementation of four distributed computing tasks, and a characterization of the performance, energy

consumption, and network utilization of Cluster and each of the four compute tasks. This research analyzes

the potential and performance of retired, but still functional, mobile devices to be used as nodes in a

distributed computer for applications such as image pre-processing, dependent parallel calculations,

server-heavy coordinated computing efforts, and a distributed data store based on a key-value data store

implemented on a “Fast Array of Wimpy Nodes”. The results of this research demonstrate that Cluster is a

viable distributed computer with some expected reliability concerns from reusing retired computing

resources, comparable compute performance, lower power, greater physical space efficiency, and lower

monetary costs than most other alternative distributed computing architectures.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Cyber-Physical Systems and Reused Mobile Devices . 3

1.2.1 Robot Arm Kinematics . 5

1.2.2 Bioacoustic Monitoring . 6

1.3 Distributed Computing and Reused Mobile Devices . 7

1.4 Contributions . 9

1.5 Organization of Dissertation . 9

1.6 Definitions . 10

2 Query Vehicle Transaction Characterization 11

2.1 Summary . 11

2.2 Definitions . 12

2.3 Introduction . 12

2.4 Experimental Setup . 14

2.4.1 Program Flow and Physical Layout . 14

2.4.2 Wi-Fi . 15

2.4.3 Bluetooth . 16

2.4.4 Gaussian Frequency Shift Keying (GFSK) RF . 16

2.4.5 LoRa . 17

2.4.6 ZigBee . 17

2.5 Transaction Characterization Experiment Results . 18

iii

2.6 Discussion . 20

2.6.1 Radio Characteristics . 22

2.6.2 Metrics . 23

2.6.3 Analysis . 28

2.7 Related Work . 29

2.7.1 Data Mule Applications . 30

2.7.2 Data Mule Scheduling . 31

2.7.3 Data Mule Path Planning . 31

2.7.4 Wake Up Signals . 32

2.7.5 Wireless Protocol Characterization . 32

2.7.6 Data Mule-Specific Wireless Networking . 33

2.8 Conclusion . 34

2.9 Future Work . 35

3 Cluster: A Distributed Computing System Using Retired Mobile Devices 37

3.1 Motivation . 37

3.2 Limitations . 40

3.3 Research Questions . 41

3.4 Software Design . 42

3.5 Performance Metrics . 43

3.6 Cluster Packet Header Design . 44

3.7 Cluster Packet Types . 46

3.8 Structure of the Cluster Software . 51

3.9 Multi-Process Python Cluster Server Program . 56

3.10 Software Metrics . 58

3.11 Hardware Selection . 59

4 Cluster Characterization Task Implementation 61

4.1 Cluster Cyber-Physical System Tasks . 61

4.1.1 Image Preparation Task . 62

4.1.2 FAWN Key-Value Data Store Task . 66

iv

4.2 Cluster Synthetic Tasks . 69

4.2.1 Server-Prepared Data Task . 69

4.2.2 Dependent Calculations Task . 71

5 Cluster Characterization Results 78

5.1 Image Preparation Task . 78

5.2 Task Completion Time Scaling with Number of Devices . 84

5.2.1 ImagePrep Task . 86

5.2.2 Server-Prepared Data Task . 87

5.2.3 Dependent Calculations Task . 89

5.3 FAWN Task . 89

5.3.1 Comparison to the Original FAWN Work . 89

5.4 Network Statistics . 90

5.5 Power . 94

5.5.1 Computational Carbon Intensity . 97

5.6 Faraday Cage Experiments . 101

5.7 Idle Time and Performance . 104

5.8 Related Work . 105

5.8.1 Distributed Sensing . 105

5.8.2 Distributed Computing and Data Storage . 105

6 Conclusions and Future Work 109

6.1 Distributed Sensing . 109

6.2 Distributed Computing and Data Storage . 110

6.3 Future Work . 112

A Links and Acknowledgments 116

A.1 Experimental Data . 116

A.2 Acknowledgments . 116

A.2.1 Donors . 117

v

List of Figures

1.1 Near-term forecast number of mobile devices worldwide [1]. 2

1.2 Near-term forecast number of mobile subscriptions worldwide [2]. 3

1.3 Near-term projected electronic waste worldwide [3]. 4

1.4 Block Diagram of a Cyber-Physical System . 4

1.5 AR3 Robot Arm . 5

1.6 Robot Arm Operation Block Diagram . 5

2.1 Program flow diagram for the client node software. 14

2.2 Diagram of room during TC experiment. 15

2.3 nRF24L01+ Radio . 17

2.4 Measured Mean Total Transaction Time vs. Data Size. Semilog plot shown to highlight

differences in transaction time between radio schemes for small data sizes. 18

2.5 Standard Deviation of Measured Total Transaction Time vs. Data Size 19

2.6 Measured Transaction Time - Coefficient of Variation vs. Data Size 19

2.7 Measured Connection Time vs. Data Size . 21

2.8 Measured Standard Deviation of Connection Time vs. Data Size 21

2.9 Measured Connection Time - Coefficient of Variation vs. Data Size 22

2.10 Measured Transmission Time vs. Data Size. Semilog plot shown to highlight differences in

transaction time between radio schemes for small data sizes. 24

2.11 Measured Standard Deviation of Transmission Time vs. Data Size 24

2.12 Measured Transmission Time - Coefficient of Variation vs. Data Size 25

2.13 Wi-Fi 60 kB measured transaction time histogram of all trials. 26

vi

2.14 Bluetooth 60 kB measured transaction time histogram of all trials. 27

2.15 GFSK RF 40 kB measured transaction time histogram of all trials. 27

2.16 LoRa 40 kB measured transaction time histogram of all trials. 28

2.17 ZigBee 20 kB measured transaction time histogram of all trials. 30

2.18 ZigBee 60 kB measured transaction time histogram of all trials. 30

2.19 ZigBee Mean Measured Transmission Time vs. Data Size . 31

3.1 Smartphone one-year depreciation rates for models launched in 2020 [4]. 38

3.2 Worldwide market share of mobile operating systems [5]. 39

3.3 Cluster Network Block Diagram . 41

3.4 Cluster OSI Stack . 45

3.5 Cluster Packet Header . 46

3.6 Cluster Server Class Hierarchy . 51

3.7 Cluster Task Hierarchy . 52

3.8 Cluster Server Program Flow . 54

3.9 Cluster Node Program Flow . 55

3.10 Multi-Process Cluster Server Class Hierarchy . 57

3.11 Multi-Process Cluster Server Program Structure . 58

4.1 (a) Original image. (b) Processed image. 63

4.2 Simple Direct Message Passing Between Nodes . 72

4.3 Path of Shared Data in a Dependent Task with a Single-Process Server Program 74

4.4 Path of Shared Data in a Dependent Task with a Multi-Process Server Program 75

5.1 Measured ImagePrep Task Mean Completion Time vs. Number of Devices. Threads refers to

the single-process version of the Cluster server program while Proc refers to the multi-process

version. Wi-Fi and Wired refer to the type of connection between the server and the wireless

router. 79

5.2 Measured ImagePrep Task (Multi-Process Server Program) Mean Completion Time vs. Num-

ber of Devices . 80

5.3 Histogram of the file size of all 2000 images in the ImagePrep data set. 81

vii

5.4 Histogram of the number of pixels for each of the 2000 Images in the ImagePrep data set. . . . 81

5.5 Measured ImagePrep Task Standard Deviation of Completion Time vs. Number of Devices.

Threads refers to the single-process version of the Cluster server program while Proc refers to

the multi-process version. Wi-Fi and Wired refer to the type of connection between the server

and the wireless router. 82

5.6 Measured ImagePrep Task Completion Time Coefficient of Variation vs. Number of Devices.

Threads refers to the single-process version of the Cluster server program while Proc refers to

the multi-process version. Wi-Fi and Wired refer to the type of connection between the server

and the wireless router. 83

5.7 Measured Completion Time vs. Number of Devices for All Tasks 85

5.8 Measured Mean Completion Time vs. Number of Devices for All Tasks (Log-Log Scale) 86

5.9 Measured Completion Time Standard Deviation vs. Number of Devices for All Tasks 88

5.10 Measured Coefficient of Variation of Completion Time vs. Number of Devices for All Tasks . . 88

5.11 Transmitted Data / Total Task Data vs. Number of Devices . 91

5.12 Transmitted Data / Total Data for DependentCalc Task vs. Number of Devices 92

5.13 Coefficient of Variation of Transmitted Data / Total Task Data vs. Number of Devices 92

5.14 Measured Power per Task vs. Number of devices. The number of Android devices is denoted

by “a” and the number of iOS devices is denoted by “i”. 95

5.15 Measured Power vs. Number of iOS Devices . 96

5.16 Measured Power vs. Number of Android Devices . 97

5.17 Measured Task Power Per Device . 98

5.18 Measured Charging Power vs. Number of Devices . 98

5.19 Measured Task Completion Time for Faraday Cage Deployment 103

viii

List of Tables

2.1 Approximate Transaction Statistics from Measurements . 20

3.1 Packet Type . 47

3.2 Packet Subtype 1: Ping Commands . 47

3.3 Packet Subtype 1: Task Data Packets . 47

3.4 Packet Subtype 1: Acknowledgments . 48

3.5 Packet Subtype 1: Distribution Updates Commands . 48

3.6 Packet Subtype 1: Cluster Update Commands . 48

3.7 Packet Subtype 2: File Packets . 49

3.8 Packet Subtype 2: Numerical Data Types . 49

3.9 Packet Subtype 2: Task Commands . 49

3.10 Packet Subtype 2: Database Commands . 50

3.11 Packet Subtype 3: Database Store Commands . 50

3.12 Packet Subtype 2 & 3: Task ID . 50

3.13 App and Server Program Metrics . 59

3.14 List of Mobile Devices Available for Use in Cluster . 60

5.1 Average Network Data Traffic per Task . 91

ix

Chapter 1

Introduction

Mobile devices have transformed many aspects of society by placing tremendous computational and

communication power in the hands and pockets of billions of people. Despite decades of exponential growth,

mobile devices are projected to continue increasing in number and sophistication. Figure 1.1 shows that by

the year 2025 the number of mobile devices worldwide is expected to increase by 30% compared to the year

2020 to over 18 billion devices [1]. Figure 1.2 shows that the number of mobile network subscriptions is

rapidly approaching the population of the planet [2]. All of these devices represent a truly vast pool of

computational resources distributed across the globe.

1.1 Motivation

The growth of mobile devices and the fast pace of innovation in their capabaility has a downside, namely the

rapid retirement and disposal of electronics that are likely still functional. In 2013, Americans replaced their

mobile phones every 22 months [6]. In their more recent study, Cordella et al. [7] assert that most

smartphones are retired after only 2 years of use, although this can be extended to 4.5 – 5.6 years if the

phone is passed to a second consumer who then retires the device. Even an extended lifetime would result in

millions of phones being retired each year. The production and usage of mobile devices has many impacts

on sustainability, of which two primary ones are (1) contributions to global warming potential (GWP)

through greenhouse gas (GHG) emissions (also known as the carbon footprint or CF) and (2) use of

hazardous materials that affect the environment and human health.

1

Figure 1.1: Near-term forecast number of mobile devices worldwide [1].

In their life cycle analysis, Ercan et al. [8] calculate the GWP of a smartphone to be 57 kg CO2,eq over a

three year usage cycle, dominated by the production of the smartphone, which is in turn dominated by the

production of the integrated circuits (ICs). This result is consistent with other studies that show the energy

of IC production often greatly exceeds the energy used by the IC over its lifetime [9]. Cordella et al. report

a range of 26.7 – 70.4 kg CO2,eq for the manufacturing of one device. Both studies note that the carbon

footprint of networking equipment, data centers, and other infrastructure supporting smartphone services

also contribute significantly to the carbon footprint, however addressing this issue is outside the scope of the

present work.

Discarded mobile devices contribute significantly to electronic waste (e-waste), which is projected to reach

approximately 75 million metric tonnes (Figure 1.3) by the year 2030 [3]. Ilankoon et al. [10] report that

only 15% – 20% of e-waste was formally collected and treated and that much of the collected waste is

transferred from the developed world to the developing world, where cheap disposal facilities and lax

environmental standards and laws expose the local environment and population to a range of hazardous

chemicals. While some of this material is potentially recyclable, the procedures for recycling electronics also

uses hazardous chemicals to reclaim precious metals while producing carbon emissions and additional

chemical waste. It is estimated that if the entire device or its components are in good working condition,

reuse of electronic equipment is up to 20 times more environmentally beneficial than recycling it [10].

2

Figure 1.2: Near-term forecast number of mobile subscriptions worldwide [2].

The key insight to lessen the negative environmental impacts of mobile electronics and to make the mobile

electronics economy sustainable is to displace the production of new devices elsewhere in the information

and communication technology ecosystem [11]. While reusing mobile device components and subsystems has

been proposed, this requires redesigning the device to be modular and upgradeable [12]. The failure of

initiatives like Google’s Project Ara [13] indicates that reusing the entire device, as studied in the present

work, is a more viable approach.

1.2 Cyber-Physical Systems and Reused Mobile Devices

Cyber-physical systems (CPS) are systems with inputs or sensors, outputs or actuators, and some form of

computation or control connecting the inputs to the outputs. The block diagram in Figure 1.4 shows the

general form of a distributed cyber-physical system. Because a CPS requires a diverse set of capabilities

from its components (sensing, computing, data storage, actuation), there are multiple opportunities for

reusing mobile devices in a CPS. In fact, a retired mobile device could have multiple roles in a single CPS,

and therefore be used repeatedly until ultimately recycled for its raw materials. For example, a new device

will have a first life as a consumer information appliance, where primary tasks include interpersonal

communication, social and mass media, and entertainment. Today’s mobile devices typically have a range of

sensors (multiple cameras, microphones, GPS, compass, accelerometer, etc.), which can support a second life

3

Figure 1.3: Near-term projected electronic waste worldwide [3].

Figure 1.4: Block Diagram of a Cyber-Physical System

as a sensing node (Section 1.2.2). A mobile device’s multiple communication interfaces (Wi-Fi, Bluetooth)

can support a third life as an IoT gateway [14, 15] and its multiple processors could support an additional

life as a compute node (see Chapter 3).

The three green blocks in Figure 1.4 (Distributed Sensing, Distributed Computing, and Data Storage) are

the parts of a cyber-physical system where the present work contributes to an understanding of the role a

reused mobile device can play. Distributed sensors require data collection; this may be in the form of a

query vehicle (data mule) or a wireless network connecting all sensors together. Once the data is collected,

it needs to be stored and analyzed. Commonly, analysis is done by machine learning for pattern recognition

or data classification; such computations are often sped up through distributed or parallel computing. Once

4

the data is analyzed, the system may decide to output the results or actuate some peripherals (e.g. motors,

radios, lights). The following two sections describe scenarios in which reused mobile devices can be

incorporated into a cyber-physical system.

1.2.1 Robot Arm Kinematics

Figure 1.5: AR3 Robot Arm

Figure 1.6: Robot Arm Operation Block Diagram

Figure 1.5 shows a commercially-available robot arm — which was assembled, programmed, and calibrated

by Tim Ambrose over the course of 3 months — that is currently being integrated into research projects in

agricultural robotics at UC Davis. The arm is an example of a localized (non-spatially distributed)

cyber-physical system. Figure 1.6 shows a block diagram of the robot arm system. Because the arm relies

5

on specialized sensors and actuators that interface directly to an Arduino Mega microcontroller, there is

limited opportunity to reuse mobile devices in sensing and actuation. However, controlling the robot arm

and moving its tool center requires at least 7 matrix operations per millimeter of movement (blue box). The

software for the AR3 robot arm is free and open source and therefore could be preprogrammed to outsource

it’s matrix operations to a distributed computer. Some work has already been done to customize that

software as part of this present research.

DroidCluster [16] demonstrated that a cluster of six LG P500 Android phones (each with a Qualcomm

MSM7227 CPU containing a 600 MHz ARM11 core) was able to achieve 26 MFLOPs using a wireless LAN

network and 29 MFLOPs using a USB hub to connect to a PC on the LINPACK linear algebra benchmark.

The LINPACK implementation was based on the Message-Passing Interface library and required the

Android operating systems on the phones to be augmented with a Debian Linux OS that runs under the

same kernel. This arrangement allows the Android OS to function normally, which is a requirement for

phones still be used by consumers, but is not necessary for retired phones. Despite the complexity of the

implementation, the floating-point performance of the 6-node DroidCluster is more than sufficient to support

the real-time computation needed to move the robot arm. Indeed, a set of several arms could plausibly be

supported by the same collection of mobile phones. The DroidCluster work shows a proof-of-concept that

small clusters of mobile phones can deliver sufficient computational power to support cyber-physical systems.

1.2.2 Bioacoustic Monitoring

The Rainforest Connection (https://rfcx.org/) is a non-profit organization working to preserve rainforests

using bioacoustic monitoring to track illegal extractive activities such as logging, mining, and oil and gas

exploration. Starting in 2016, the group installed treetop acoustic monitoring units implemented with used

cellphones powered by solar panels to upload approximately 200 MB of audio data every 24 hours [17]. The

audio data is processed in the cloud to detect the sound of chain saws or other equipment linked to illegal

logging. The natural rainforest sounds are also analyzed to monitor different species or study biodiversity.

Deichmann et al. [18] in a 2017 study used a network of 10 LG L70 cellular phones as autonomous audio

recorders to study the impact of natural gas exploration on tropical forest biodiversity. Both of these are

examples of spatially-distributed cyber-physical systems where used mobile phones are utilized in

distributed sensing and data collection (as network gateways) roles. Other examples include the proposed

reuse of smartphones as camera traps [19].

6

As technology evolves, retired mobile phones may be replaced by custom hardware. In the case of the

Rainforest Connection’s Guardian platform, the need for satellite communications connectivity drove the

development of a new acoustic monitoring system to replace the phones [20]. However, this transition

highlights another use case for retired mobile devices in cyber-physical systems: as prototyping platforms for

distributed sensing. Because the software ecosystem of mobile devices enables rapid app development,

retired devices can be repurposed primarily through software to accomplish distributed sensing or other

functions while optimized, custom hardware is developed to replace it.

1.3 Distributed Computing and Reused Mobile Devices

Distributed computing refers to a very broad range of computing architectures that involve using multiple

computers working together to achieve a goal. The computers could be located near each other as in a data

center or distributed across the globe. The computations executing on the computers could be

tightly-coupled, requiring close coordination between the computing nodes, or loosely-coupled, with each

machine working largely independently of the others. Bal et al. [21] distinguish parallel computers (vector

processors, dataflow machines, multiprocessors/multicore processors) from distributed computers by

specifying that in a parallel computer, the processors share a common memory, while in a distributed

computer, the processors exchange data by message-passing over a network. Multiple individual computers

or workstations working together and communicating over a local area network (LAN) or wide area network

(WAN) meets their definition of a distributed computer. For Bal et al., a distributed computer architecture

where the computing nodes are physically close to each other and communication is fast and reliable is

closely-coupled, while an architecture where the nodes are physically dispersed and communication is slow

and unreliable is loosely-coupled.

The growth of the Internet and the emergence of the Internet of Things (IoT) has motivated the

development of several variations on the workstation-WAN distributed computing architecture. Grid

computing involves connecting organizationally-owned and managed computing resources (e.g.,

supercomputers or workstation clusters) to address scientific supercomputing applications, while

public-resource computing attempts to utilize individually-owned personal computers for the same

application space [22]. For example, projects supported by the Berkeley Open Infrastructure for Network

Computing (BOINC) such as SETI@home used idle cycles on personal computers to advance their

7

research [22]. Büsching et al. propose utilizing a similar approach to create ad-hoc distributed computing

systems out of collections of physically co-located personal mobile phones, e.g. using all of the personal

phones of passengers on a train to compute a local weather forecast [16].

Cloud computing is a computing model that enables convenient, on-demand, network-based access to a

shared pool of configurable computing resources [23]. The major infrastructure component supporting cloud

computing is the data center, which is typically an organization-owned and managed pool of servers,

storage, networking equipment, etc., located physically together, in an architecture analogous to the

workstation-LAN distributed computing model. For some IoT applications, the centralization of computing

hardware at the data center can introduce significant communication delays that negatively impact latency

and application performance. To address this challenge, researchers have proposed spreading computational

resources through a hierarchical model of IoT computing that incorporates fog computing, mist computing,

and edge computing [24]. Edge computing, at the lowest level of the hierarchy, utilizes the sensors or

end-user devices at the edge of the IoT for computing tasks, e.g. performing data compression before the

data is uploaded to the cloud. Fog computing locates some computational resources physically near the edge

nodes, to reduce latency. Some of these fog nodes may be scaled-down versions of cloud computing

infrastructure, or cloudlets. Mist computing places lightweight computational resources even closer to the

edge nodes. For example, mist nodes may be microcontrollers or microcomputers that aggregate and process

data from the edge devices before passing it to the more powerful fog nodes.

Several research groups have explored how retired mobile devices can be given roles in the IoT computing

hierarchy. Shahrad and Wentzlaff [25] explored how deploying decommissioned mobile phones in

Infrastructure-as-a-Service (IaaS) cloud data centers could affect the total cost of ownership (TCO)

compared to conventional servers. Switzer at al. demonstrated that a collection of ten three-year-old

smartphones could provide good performance on IaaS cloud microservice benchmarks [26]. The Renée

project demonstrated that a bank of four retired phones managed by a single central computer could

function as a small-scale data center (cloudlet) or fog node to provide Function-as-a-Service

(FaaS)/Platform-as-a-Service (PaaS) capabilities [27]. The present work is distinct from these prior efforts

and the contributions of this research are outlined in Section 1.4.

8

1.4 Contributions

The research presented in this dissertation contributes to the literature in the field of mobile device reuse in

cyber-physical systems in the following areas:

� Experimental characterization and analysis of the most commonly used wireless interfaces available on

mobile devices and embedded systems when exchanging data with a query vehicle/data mule.

� Design and development of software on multiple mobile operating systems that supports tasks typical

of CPS, for example image data preprocessing and local data storage. Development of software for

desktop and server computers to coordinate the efforts of the mobile devices.

� Experimental characterization of a distributed computer consisting of a cluster of heterogeneous

mobile devices networked by a wireless LAN. The characterization includes performance analysis on

application tasks, measurements of power consumption, and computational carbon intensity (CCI).

� Experimental characterization of application performance of the cluster when isolated from external

wireless interference.

1.5 Organization of Dissertation

Chapter 1 presents the motivation for this work and an overview of prior work on reusing retired mobile

devices in cyber-physical systems. Chapter 2 presents an experimental characterization of different wireless

interface transactions that transfer data from mobile devices to a query vehicle or data mule. These

transfers could support the distributed sensing function of a CPS while the query vehicle implements the

data collection function when the sensing devices are deployed outside the range of a wireless network

(Figure 1.4). Chapter 3 describes the design of Cluster, the distributed computing system implemented in

the present work. Chapter 4 presents the implementation of the tasks used to characterize the performance

of the cluster. Chapter 5 presents the results of the task characterization experiments. Finally, Chapter 6

presents conclusions from this work and describes future work.

9

1.6 Definitions

Multi-Process Program: A program that occupies multiple processes and multiple processor cores when

it runs. A typical program may have multiple threads running concurrently, which allows several algorithms

to execute at the same time, but such programs do not run each of these threads simultaneously. Instead

the processor switches rapidly between threads, giving approximately the same effect as if the threads were

executing truly simultaneously, much like a person dividing their attention to multiple tasks, one at a time.

A multi-threaded program typically runs on only one process of the operating system and therefore on only

one processor core. A multi-process program does accomplish several algorithms running simultaneously by

splitting the program across multiple processes, each of which may occupy a different processor core, in

which case those parts will be executed truly simultaneously with the parts running on the other processor

cores.

Distributed Computer: The definition of a distributed computer in this work is similar to

workstation-LAN architecture definition of Bal et al. [21], namely a collection of distinct computers working

together to solve a computational problem or provide a collection of services to an outside agent.

Cluster: The primary design and characterization effort of this research, a system of retired smartphones

and tablets that acts as a distributed computer. See Chapter 3.

FAWN: Fast Array of Wimpy Nodes, a network of low-power compute or storage nodes with a specific

implementation, designed by Andersen et al. [28, 29] See Section 4.1.2.

Cyber-Physical System Task: A compute task designed for Cluster which is a full implementation of an

example application for a distributed computer. The tasks targeted by Cluster support services typically

required in cyber-physical systems. See Section 4.1.

Synthetic Task: A compute task designed for Cluster which is not an application implementation, but

rather designed to simulate a compute task with specific computational or network behavior or

characteristics. See Section 4.2.

Query Vehicle: Data mule vehicle (UAV or ground robot) that physically moves around an array of sensor

nodes and collects data wirelessly as it passes them by. See Chapter 2.

10

Chapter 2

Query Vehicle Transaction

Characterization

This chapter is based on a paper in preparation [30] written about the transaction characterization

experiments (TC experiments) done to explore the use of mobile robot query vehicles to collect data from

retired mobile devices reused as distributed sensors. This work is complementary to the Cluster research

that studies how heterogeneous retired mobile devices can be reused as a distributed computer as it analyzes

the best transmission protocols and radios to use in a query vehicle system. One related application is the

Rainforest Connection’s project to detect illegal logging in Indonesia using old cell phones [17], see Section

5.8.1. The devices in that application could have their data harvested by a query vehicle that traverses the

area over which the sensors are deployed, such as the vehicles discussed in this chapter. For further

discussion of that application, see Section 1.2.2.

2.1 Summary

Query vehicle or data mule sensor network designs are dependent on the maximum navigation speed of the

vehicle. To minimize the total transaction time between the (on-vehicle) server and client sensor node, the

experiment described in this chapter characterizes five different radios in the 2.4 GHz and 915 MHz ISM

bands and corresponding transmission protocols specifically for query vehicle applications. An ESP32 client

11

and Raspberry Pi server were fitted with each radio one at a time and tested repeatedly in identical

circumstances for all five radios. The experiment showed a consistent transmission rate for each radio

scheme, a wide range of connection and setup times for each radio, and established trendlines for major

characteristics such as transmission time, connection time, total transaction time, and standard deviation

for each of those characteristics. Under the tested conditions, Wi-Fi has the smallest transaction times for

data mule networks needing to transmit more than 30 kB per transaction and Gaussian Frequency Shift

Keying (GFSK) RF is the fastest for 30 kB or less.

2.2 Definitions

Query Vehicle: Vehicle (UAV or ground robot) used as a data mule that physically moves around an array

of sensor nodes and collects data wirelessly as it passes them by.

Transaction: The entire interaction between query vehicle and sensor node including wake up,

initializations, connection/handshake (unless using a connectionless protocol), transmission of the data

stored on sensor node to query vehicle, any acknowledgment (ACK) or completion (DONE) signals, and

disconnection including teardown (unless using a connectionless protocol).

Connection Time: The time it takes to wake a sensor node and get set up for transmitting the collected

data to the query vehicle, including connecting to the query vehicle if the protocol is not connectionless.

Transmission Time: The time only during the transmit phase of the transaction, not including

setup/connect time and teardown/disconnect time.

Radio Scheme: One of the following protocols (and corresponding radio) used to transmit data from

sensor node to query vehicle: 2.4 GHz Wi-Fi, 2.4 GHz Classic Bluetooth 3.0, 2.4 GHz GFSK RF, 915 MHz

LoRa, and 2.4 GHz ZigBee.

TC Experiment: The transaction characterization experiments that this chapter is presenting.

2.3 Introduction

Arrays of sensor nodes are a common system architecture for monitoring a field, rainforest, or any large

spatially-dispersed group of many similar things. Examples include fields of crops with sensors placed

throughout to monitor plant health or environmental conditions, warehouses and factories with equipment or

12

food that needs monitoring, and smart cities containing grids of outdoor sensors throughout the public areas.

A common problem in such sensor arrays is how to get the data from the sensor nodes to a central server

that collects and analyzes the information. Often these arrays of sensors are far enough apart and far

enough away from the central server that having the nodes in direct communication with each other

becomes impractical. Data mules, such as a Linux machine running on a query vehicle (ground robot or

aerial vehicle) that physically pass near the sensor nodes, are one solution to such challenges.

The experiments described in this chapter characterize five different radio modules that are typically found

on wireless sensor nodes and retired mobile devices reused as sensor nodes and their corresponding protocols

in an environment typical of query vehicle networks to measure their performance as it would be in the

following scenario: the query vehicle wakes up the sensor node when it gets within transmission range of the

node and receives the sensor data the node has stored.

There are several aspects of such query vehicle or data mule networks that are active areas of research to

improve the efficiency, viability, and latency of the network. See Section 2.7 for a comparison of several

papers researching data mules and how they relate to this experiment.

The main issues associated with query vehicle sensor networks are vehicle path planning, vehicle deployment

(and subsequent data collection) scheduling, and latency of the sensor data from creation until upload to a

central server or database. Path planning and scheduling are the topic of many papers on data mule theory.

This work focuses on latency. Specifically, it focuses on minimizing the total transaction time between query

vehicle and client node by characterizing five common radio schemes in an experimental setup that mimics

the conditions of a real query vehicle coming into proximity of a sensor node and attempting to collect data

from the node in as little time as possible.

In Section 2.4, the physical layout of the experiment, the program flow of the server and client node

software, and the specifications of each radio and protocol used in the TC experiment are described. Section

2.5 shows the data from the experiment and Section 2.6 discusses the results, the radio characteristics, and

the metrics that the TC experiment affects. In Section 2.6.3, an analysis of the results and the implications

of them are discussed. Section 2.7 describes related research to this work, Section 2.8 shows the conclusions

drawn from this work, and Section 2.9 presents future work that could be done to add to the data from this

work to better inform designs involving query vehicle networks.

13

2.4 Experimental Setup

The transaction characterization experiment consisted of a fixed client node and fixed server under strictly

controlled conditions for fair comparisons of the five radio schemes.

2.4.1 Program Flow and Physical Layout

Wake

Setup
radio

Prepare
data

Send size of
total payload

Transmit 1
packet

Receive ACK from server

Print times

Wait for
ACK

Sleep for
random duration

Figure 2.1: Program flow diagram for the client node software.

The client and server radios were placed 5.2 meters apart in a room with 2 cubicle walls obstructing the

line-of-sight. The room area is 62 square meters. The radios were exactly the same distance apart for each

tested radio scheme. The server acting as the query vehicle in this experiment was a Raspberry Pi 3 B+

running Raspian Jessie. The client acting as a node in a field of sensor nodes, was an Espressif

ESP32-WROOM-32D with a 160 MHz Xtensa® 32-bit LX6 CPU (MCU).

The client node programs written (in C++) for each radio scheme of the TC experiment follow the program

flow shown in Figure 2.1 with some variation in the yellow “Transmit 1 packet” step for Wi-Fi and

14

ESP32 Client

RPi Server

8.84 m

7.01 m

5.18 m

Cubicle walls
1.83 m high

62.0 m2 room with
3.05 m high ceiling

Figure 2.2: Diagram of room during TC experiment.

Bluetooth. The program assumes that the server is in range and is responsible for waking the node. First,

the node wakes up from a random sleep duration by a timer interrupt. Then the radio is configured and the

data is prepared for sending. A single packet goes out to the server (Raspberry Pi with matching radio)

containing only an integer representing the data size in bytes. After acknowledgment that the server

received that information, the data is transmitted 1 packet at a time, waiting for the ACK each time before

the next one is sent, retransmitting when needed. After all packets are confirmed received, the results are

recorded. The times for setup (including connection time if applicable) and transmission of the payload are

timed using C library timing functions invoked on the client node.

2.4.2 Wi-Fi

The Raspberry Pi and ESP32 both have built in Wi-Fi 802.11n. The ESP32 specification is 150 Mbps for

the on-board Wi-Fi. In this experiment, the Raspberry Pi broadcast a Wi-Fi network as would be needed in

the field in order for the nodes to be able to connect to the query vehicle using Wi-Fi.

For Wi-Fi, TCP sockets were opened and the data was sent as fast as the TCP stack would allow. The TCP

implementation inside the ESP32-WROOM-32D chip handled the selective reject and windowing protocol so

the ACK packets for every transmitted payload packet were not manually implemented.

15

2.4.3 Bluetooth

While the Raspberry Pi and ESP32 both support Bluetooth 4.2 (Bluetooth Low Energy), it was impractical

to use BLE for transmitting one large burst of data as fast as possible because BLE is not designed for this.

BLE is designed for periodic updates of specific “characteristics” known by both devices in a BLE

connection. Unlike Classic Bluetooth 3.0, BLE does not support socket-like connections and therefore there

is no simple approach to connect, transmit limited data, and disconnect using BLE.

For these reasons, the RFCOMM protocol of Bluetooth 3.0 was most appropriate and required very few

code changes on the server side from the Wi-Fi experiment since socket programming in C is independent of

whether the device is using a Bluetooth RFCOMM socket or a TCP socket over Wi-Fi. However, there were

major changes to the code on the client side because, in order to use Bluetooth sockets with the ESP32, the

whole state machine must be set up that interprets the headers of all incoming packets from the Bluetooth

service and decides what to do with each packet. It was the most complicated program of all the radio

schemes used for this experiment.

There was a potentially easier alternative implementation using the Bluetooth UART interface for ESP32

that allows sending packets of data serially using the .print interface, much like printing text to a UART.

The reason the Bluetooth interface was done using sockets instead of using the Bluetooth serial print

functions is that the serial interface has no windowing at all: the packets are sent and confirmed with ACKs

one at a time and therefore do not represent the best possible performance of the radios in this scheme. By

sending the packets as soon as the RFCOMM CAN SEND NOW event occurs, it is assured that this is the

best possible performance of this particular embedded Bluetooth radio. The TCP requirements, including

ACKs and retransmissions, are handled automatically.

2.4.4 Gaussian Frequency Shift Keying (GFSK) RF

The nRF24L01+ is the chip used for the GFSK RF scheme. This is the first radio scheme that is not built

into the Raspberry Pi or the ESP32, so the radio had to be attached to the client and server

microcontrollers using a 4-wire SPI interface. The client node program is essentially the same for Wi-Fi and

GFSK RF except that there is no socket connection. As shown in Figure 2.1, as soon as the ESP32 woke up

and initialized the radio, the transaction began with first sending the prepared data’s size in bytes that

would later be sent over the whole interaction. The radio module used in this work is shown in Figure 2.3.

16

Figure 2.3: nRF24L01+ Radio

2.4.5 LoRa

The RFM69HCW is the radio used for the LoRa scheme. This is also connected to the server and client

devices with SPI. The program is the same as the GFSK RF program. For LoRa and GFSK RF, there is a

setup time where the radio initializes and is configured for the transmission, but no connect-and-accept

exchange as there is with TCP for Wi-Fi and Bluetooth.

2.4.6 ZigBee

The XBee S2C is the radio used for the ZigBee scheme. This is connected via 2-wire UART to the server

and client devices. The program is the same as the GFSK RF program except that there is no radio setup.

The settings of the radio are stored in non-volatile memory. As soon as the radio is powered on, it is ready

to send to any other XBee configured to listen to the same channel the client node will be broadcasting on.

As soon as a byte is written to the UART, i.e. the XBee radio, from the ESP32, the packet is immediately

transmitted.

All three of the connectionless schemes using non-embedded radios require some time before the

transmission actually starts because there are typically some number of retries of transmitting the first

payload size packet sent to the server before the radios become completely in sync and acknowledge each

other. Therefore there is a non-zero setup time that is comparable to the connection time for two connected

17

schemes. The graphs of the results of the TC experiment show a connection time for all five schemes, with

GFSK RF, LoRa, and ZigBee’s setup time being used for the reported connection time.

2.5 Transaction Characterization Experiment Results

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

0 20 40 60 80 100 120 140 160

T
O
TA

L
TR

A
N
SA

C
TI
O
N
 T
IM

E
[S
EC

]

DATA SIZE [KB]

Transaction Time vs. Data Size

BT 2.4 GHz

WiFi 2.4 GHz

RF 2.4 GHz

ZigBee 2.4 GHz

LoRa 915 MHz

Figure 2.4: Measured Mean Total Transaction Time vs. Data Size. Semilog plot shown to highlight differences
in transaction time between radio schemes for small data sizes.

18

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

ST
D
 D
EV

 [
SE
C
]

DATA SIZE [KB]

Transaction Time Standard Dev vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.5: Standard Deviation of Measured Total Transaction Time vs. Data Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160

ST
D
 D
E
V
 /
 M

EA
N

DATA SIZE [KB]

Transaction Time Std Dev / Mean vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.6: Measured Transaction Time - Coefficient of Variation vs. Data Size

19

Wi-Fi Bluetooth GFSK RF ZigBee LoRa
Total Transaction

Time
4.41 s +
7.1 ms/kB

5.66 s +
8.1 ms/kB

1.28 s +
114 ms/kB

0.968 s +
312 ms/kB

0.596 s +
1.75 s/kB

Transaction Time
Std Dev

0.33 s 4.20 s 1.33 s 0.052 ms/kB 0.216 s

Connection Time 4.36 s 5.25 s 1.48 s 0.169 s 0.465 s
Connection Time

Std Dev
0.223 s 4.25 s 1.41 s 0.088 s 0.184 s

Transmission Rate 147.1 kB/s 73.5 kB/s 8.81 kB/s 3.2 kB/s 0.572 kB/s
Transmission Time

Std Dev
0.40 s 0.50 s 0.41 s 0.052 ms/kB 0.065 s

Approximate
Simultaneous
Connections

20 – 50 < 10 1 1 1

Table 2.1: Approximate Transaction Statistics from Measurements

Figure 2.4 shows the graph of the mean measured total transaction time for increasing data size. This

represents the most important results of this experiment for determining which radio scheme is the best

choice for a query vehicle network for minimizing the total transaction time. The mean was taken over 1000

data points for each data size and each radio scheme. The total transaction time is the sum of the

connection time and the transmission time. Figure 2.5 shows the standard deviation of the 1000 data points

for each test from the experiment. Figure 2.6 shows the coefficient of variation CV (ratio of standard

deviation σ to mean µ, a measure of the spread of a statistical distribution) for the total transaction time.

Table 2.1 shows the approximate statistics and derived linear relationship between transaction time and

data size that the experiment revealed about the behavior of each radio scheme.

Graphs of the connection time, transmission time, the standard deviation of the those two times, and the

coefficient of variation of the two times are shown in Figures 2.7 – 2.12. Representative histograms of the

measured total transaction time for 1000 trials per data size for each radio scheme are shown in

Figures 2.13 – 2.18. One representative transmission time graph is shown in Figure 2.19.

2.6 Discussion

There are several things to consider when selecting a radio for a particular query vehicle network

implementation. The kind of characteristics a radio, and associated transmission protocol, can contribute to

the system directly affect the metrics of average transaction time, transaction time variance, and

20

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

C
O
N
N
EC

TI
O
N
 T
IM

E
[S
EC

]

DATA SIZE [KB]

Connection Time vs. Data Size

BT 2.4 GHz

WiFi 2.4 GHz

RF 2.4 GHz

ZigBee 2.4 GHz

LoRa 915 MHz

Figure 2.7: Measured Connection Time vs. Data Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80 100 120 140 160

ST
D
 D
EV

 [
SE
C
]

DATA SIZE [KB]

Connection Time Standard Dev vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.8: Measured Standard Deviation of Connection Time vs. Data Size

implementation reliability.

21

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160

ST
D
 D
EV

 /
 M

EA
N

DATA SIZE [KB]

Connection Time Std Dev / Mean vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.9: Measured Connection Time - Coefficient of Variation vs. Data Size

2.6.1 Radio Characteristics

The first characteristic to consider is whether the radio scheme is connectionless or connected. In theory, the

connectionless protocols (GFSK RF, LoRa, ZigBee) should have lower transaction times than the connected

ones (Wi-Fi, Bluetooth) because there is very little time between the client node waking and transmitting.

However, the data rates during transmission would have to be equal for this theory to hold. Radio

initialization time is another factor that contributes to the performance. ZigBee radios have nonvolatile

memory for storing the configuration settings so that the radio is ready to go as soon as it powers on. This

is why the results in Table 2.1 show ZigBee to have the fastest connection time. For GFSK RF and LoRa,

the protocols are connectionless, but the radios still have to be configured every time the ESP32 wakes up

because the radio is powered off when the ESP32 is asleep. Wi-Fi and Bluetooth both have setup times on

the same order as GFSK RF and LoRa, but the connection time, since they are connected protocols, makes

the total time from wake up to the start of the transmission phase four times greater than the setup time of

GFSK RF and LoRa. The frequency of all the radios was 2.4 GHz except for the LoRa radio, which

operated in the 915 MHz band. Because of this, the LoRa radio scheme has the largest range of all the

radios tested in this experiment. A LoRa-enabled server and client node could be 10 km apart and still

22

communicate [31]. The range of each of the other four radio schemes is ∼ 30 m.

Simultaneous client connections to the query vehicle are a big factor in choosing the right radio scheme for a

particular network as well. The server program forks a new process for each client node that connects to it.

For Wi-Fi and Bluetooth, the TCP/IP stack abstracts away the routing of the packets to the intended

recipient. For the other three radio schemes, additional code is required to change which client is being

listened to or transmitted to. For the three connectionless protocols, it is impractical for the server radio to

receive data from more than one client node simultaneously since it requires the server to signal its radio to

switch which channel or client it is listening to every time a process in the server program tries to use the

shared radio resource. For Bluetooth radios, the theoretical limit is 60 [32] simultaneous connections; in

practice, however, the number of simultaneous connections should be limited to less than ∼ 7− 10 because

Bluetooth is not designed to support downloading files from many connected devices simultaneously. The

theoretical limit for simultaneous Wi-Fi connected devices is 255. For Wi-Fi, in practice, it is possible to

download from more than twice as many connected devices as Bluetooth simultaneously because the IEEE

802.11 standards were designed to be able to do this. The TC experiment did not characterize the effect of

simultaneously connected client nodes, but future work to study this effect should be done. Table 2.1 shows

the recommended approximate limits of simultaneously connected client nodes for query vehicle networks.

Transmission rate is the third characteristic that impacts transaction time. The transmission rate of the five

radio schemes tested ranges from 0.572 kB/s to 147.1 kB/s. The order of increasing transmission rate is

LoRa, ZigBee, GFSK RF, Bluetooth, and Wi-Fi. Bluetooth and Wi-Fi have similar connection times of

about 4.5 seconds on average, the standard deviation of Bluetooth’s connection time being much higher, and

the transmission rate of Wi-Fi being at least twice as fast as Bluetooth.

2.6.2 Metrics

The metrics that the TC experiment evaluated for each radio scheme are connection time, transmission

time, total transaction time, and variance in connection time and transmission rate.

Mean transmission time is shown in Figure 2.10 and Table 2.1. The mean transmission time for each radio is

predictable and linear, as seen in the representative linear-linear plot of the ZigBee transmission time results

in Figure 2.19. The R2 values for the data in Figure 2.10 ranges from 0.956 (for Wi-Fi) to 0.980 (for GFSK

RF), and ≥ 0.993 for the other three radio schemes. The graphs of average transmission time do not

23

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

0 20 40 60 80 100 120 140 160

TR
A
N
SM

IS
SI
O
N
 T
IM

E
[S
EC

]

DATA SIZE [KB]

Transmit Time vs. Data Size

BT 2.4 GHz

WiFi 2.4 GHz

RF 2.4 GHz

ZigBee 2.4 GHz

LoRa 915 MHz

Figure 2.10: Measured Transmission Time vs. Data Size. Semilog plot shown to highlight differences in
transaction time between radio schemes for small data sizes.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

ST
D
 D
EV

 [
SE
C
]

DATA SIZE [KB]

Transmit Time Standard Dev vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.11: Measured Standard Deviation of Transmission Time vs. Data Size

24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100 120 140 160

ST
D
 D
EV

 /
 M

EA
N

DATA SIZE [KB]

Transmit Time Std Dev / Mean vs. Data Size

BT 2.4 GHz WiFi 2.4 GHz RF 2.4 GHz ZigBee 2.4 GHz LoRa 915 MHz

Figure 2.12: Measured Transmission Time - Coefficient of Variation vs. Data Size

intersect each other in Figure 2.10. This indicates that each radio scheme has a distinct and nearly constant

transmission rate. ZigBee’s transmission time, however, has 2 modes, a fast mode and a slower mode. In the

fast mode, the data packets are transmitted and acknowledged about twice as fast between ZigBee radios.

The radios will switch from one mode to the other every few minutes as part of the protocol they use to talk

to each other and this is not under the control of the ESP32, which is writing to the ZigBee’s UART. The

effect on standard deviation is discussed below.

Connection time is shown in Figure 2.7 and Table 2.1. This is the time from ESP32 wake up to the start of

the transmit phase when the Raspberry Pi server has acknowledged the client’s first packet (containing data

size). The ZigBee has the shortest setup time because all the configuration settings are stored in nonvolatile

memory, unlike the other radios. The Bluetooth and Wi-Fi connection times are the longest because they

both use a connected protocol with TCP sockets to communicate.

Mean total transaction time is shown in Figure 2.4 and Table 2.1. Being the sum of connection time and

transmission time, it also exhibits a linear trend with a predictable y-intercept at the connection time and a

slope the same as the slope of the transmission time graph. Section 2.6.3 discusses this trend and its

implications.

25

The variation in connection time and transmission rate as measured using the standard deviation is an

important metric as well. The standard deviation of all the metrics are shown in Figures 2.5, 2.8, and 2.11

and Table 2.1. The standard deviation of connection time shown in Figure 2.8 is independent of data size

and roughly constant. The value of the horizontal best-fit trendline for each of those roughly constant

graphs is shown in the “Connection Time Std Dev” row of Table 2.1. Bluetooth has a very high standard

deviation, 4.25 s, for its connection time, meaning although it takes on average 5.25 seconds to connect to

the server, it can often take as long as 9.5 s and sometimes as long as 18 s.

Figure 2.13: Wi-Fi 60 kB measured transaction time histogram of all trials.

ZigBee’s standard deviation for total transaction time increases with data size. Because there are two

different modes the radio will switch between two transmission rates. It can be seen from Figure 2.11 that

the ZigBee transmission time has increasing standard deviation proportional to data size. This is because

the longer the total transaction takes, the more likely the radio will switch to the other mode with a

different transmission rate in the middle of the transaction. Therefore some of the 1000 trials of each data

size use the faster rate, some use the lower rate, and some use both because the radio made the transition

during the trial. The standard deviation of transmission rate shouldn’t continue to increase indefinitely at

higher data sizes however, because if the transaction is several minutes long (longer than the period the

ZigBee radio stays in one mode), it is then guaranteed that both modes will occur within the same trial and

the variance of the total transmission time should plateau.

Figures 2.9, 2.12, and 2.6 show that for most of the radio schemes evaluated in this study, the distributions

of connection time, transmission time, and total transaction time vary somewhat in their spread. Total

transaction time (Figure 2.6) is fairly narrowly distributed (CV < 0.2) for all radio schemes except GFSK

RF and Bluetooth. CV for both these radio schemes decreases with increasing data size as the most highly

variable portion of the entire transaction (connection time as shown in Figure 2.9) becomes smaller relative

26

to the transmission time. The high variability shown by Wi-Fi transmission time (Figure 2.12) is due to its

high data rate making transmission time very small (less than 2 s on average for all data sizes), so variations

that are small in an absolute sense will be large relative to the transmission time.

Transaction Time [sec]

[2.20, 3.70]

(3.70, 5.20]

(5.20, 6.70]

(6.70, 8.20]

(8.20, 9.70]

(9.70, 11.20]

(11.20, 12.70]

(12.70, 14.20]

(14.20, 15.70]

(15.70, 17.20]

(17.20, 18.70]

Co
un

t

0
10
20
30
40
50
60
70
80
90

BT 60 kB

Figure 2.14: Bluetooth 60 kB measured transaction time histogram of all trials.

Reliability is not measured directly by this experiment, but is hinted at by the performance of the radio

schemes during the experimental trials. The RF modules were very reliable at syncing and beginning the

transmission during the experiment. Large outliers for Wi-Fi, Bluetooth, and GFSK RF experiments, where

the modules got into a bad state and never connected at all, were discarded from the shown results. This

condition happened rarely with Bluetooth and Wi-Fi, but more often with the RF modules, most likely

because the radios were not designed to transmit many kilobytes of data 1000 times in a relatively short

period of time and they needed time to cool down or idle between large bursts of usage. When this

occurred, the server timed out on the transaction after 1 minute and the client was programmatically

restarted to try again. These connection failures were not included as part of the measured transactions.

Transaction Time [sec]

[4.28, 4.78]

(4.78, 5.28]

(5.28, 5.78]

(5.78, 6.28]

(6.28, 6.78]

(6.78, 7.28]

(7.28, 7.78]

(7.78, 8.28]

(8.28, 8.78]

(8.78, 9.28]

(9.28, 9.78]

Co
un

t

0

5

10

15

20

25

30

35

RF 40 kB

Figure 2.15: GFSK RF 40 kB measured transaction time histogram of all trials.

27

2.6.3 Analysis

Representative selections of the distributions of measured transaction time from repeated trials of each radio

scheme’s characterization are shown in Figures 2.13, 2.14, 2.15, 2.16, 2.17, and 2.18. These histograms show

all the data points for total transaction time from one of the tested data sizes. Although not all experiments

were run to 1000 data points, each radio scheme was tested for at least one data size at 1000 trials. Most of

the tests only needed to be run to 160 data points to show a clear trend and for the distribution of the data

to converge. For the 1000-point trials, the histogram peaks showed the same distribution as the 160-point

trials (but with more data points in each bin proportionally) with the same standard deviation and average.

Figure 2.13 shows that Wi-Fi had a vast majority of the transaction time results falling in one bin of width

0.2 seconds with only a few trials (<200) falling outside that bin. Figure 2.16 shows that LoRa is even more

predictable with less than 10 trials falling outside a bin of width 0.5 seconds, which is quite tightly packed

considering that LoRa’s transaction times were much greater than all other tested radio schemes due to its

low transmission rate. Figure 2.14 shows that Bluetooth’s results are much less predictable, with a majority

of the transactions falling on one bin of width 1.4 seconds but many falling outside that range in a long tail.

This illustrates the much larger standard deviation of the Bluetooth results caused by the highly varying

connection time. Figure 2.15 shows that GFSK RF has very little predictability about how long the

transaction will take within the bounds of possible times. The specific results in Figure 2.15 show that for

40 kB, the GFSK RF transaction will take between 4.28 and 9.78 seconds, but no discernable pattern as to

which time in that range is most likely to occur.

Transaction Time [sec]

[70.27, 70.57] (70.57, 70.87] (70.87, 71.17] (71.17, 71.47] (71.47, 71.77] (71.77, 72.07]

Co
un

t

0

10

20

30

40

50

60

70

80

90

LoRa 40 kB

Figure 2.16: LoRa 40 kB measured transaction time histogram of all trials.

Two sets of results are shown for ZigBee in Figures 2.17 and 2.18 to illustrate that the standard deviation

increases proportionally with data size. In both experiments, there are two large peaks in the resulting

28

histogram, with many data points in bins of shorter time. This is again caused by the two modes of ZigBee’s

transmission phase. Very few trials had a high proportion of the transmission phase using the fast

transmission rate, and most of the trials had a large proportion of the transmission phase that used the

slower transmission rate. The protocol that the XBee S2C radios use switches between the fast and slow

transmission rate without the host microcontroller being able to control the transmission rate or when to

switch between the modes. Figure 2.19 shows more clearly than the semilog plot of transmission time shown

in Figure 2.10 that the transmission phase duration vs. data size is linear, not just for ZigBee, but for all

tested radio schemes.

The most important results of this experiment for selecting a radio scheme for minimizing the total

transaction time in a query vehicle network are shown in Figure 2.4. Wi-Fi is the radio scheme that yields

the shortest transaction time for client nodes that need to transmit more than 30 kB each time the query

vehicle passes by. GFSK RF gives the shortest transaction time for >5 kB and ≤ 30 kB. ZigBee is faster

than GFSK RF for 5 kB or less. However, unless a query vehicle is guaranteed to only need to receive 5 kB

or less for almost all transactions for the lifetime of the network, GFSK RF can be a better choice

considering that it is the fastest radio scheme for 30 kB or less and only half a second slower for the 5 kB

range in which ZigBee is faster.

Most retired mobile devices will only have Wi-Fi and Bluetooth in addition to their cellular radios, so the

results of this work indicate that Wi-Fi would be the better choice for query vehicle data harvesting from

distributed sensors made by reusing mobile devices. This is largely due to the higher connection time and

and higher connection time variance. While the absolute difference in mean total transaction time may not

impact significantly the data upload latency for a ground-based query vehicle, the difference is likely to be

significant for a much faster UAV query vehicle. The long tail of the transaction time distribution for

Bluetooth (Figure 2.14) suggests that the worst-case upload latency for Bluetooth will be approximately 3×

worst than for Wi-Fi, which may be unacceptable for some applications.

2.7 Related Work

A majority of papers researching data mule topics focus on 1) applications for data mules, 2) network

topology in systems that contain query vehicles, nodes, and servers, 3) scheduling the deployment of the

vehicles or mobile nodes, and 4) path planning for most efficiently traversing the array of nodes using one or

29

Transaction Time [sec]

[3.73, 4.23]
(4.23, 4.73]

(4.73, 5.23]
(5.23, 5.73]

(5.73, 6.23]
(6.23, 6.73]

(6.73, 7.23]
(7.23, 7.73]

(7.73, 8.23]
(8.23, 8.73]

Co
un

t

0

100

200

300

400

500

600

ZigBee 20 kB (bin 0.5s)

Figure 2.17: ZigBee 20 kB measured transaction time histogram of all trials.

Transaction Time [sec]

[9
.1

4,
 9

.6
4]

(9
.6

4,
 1

0.
14

]
(1

0.
14

, 1
0.

64
]

(1
0.

64
, 1

1.
14

]
(1

1.
14

, 1
1.

64
]

(1
1.

64
, 1

2.
14

]
(1

2.
14

, 1
2.

64
]

(1
2.

64
, 1

3.
14

]
(1

3.
14

, 1
3.

64
]

(1
3.

64
, 1

4.
14

]
(1

4.
14

, 1
4.

64
]

(1
4.

64
, 1

5.
14

]
(1

5.
14

, 1
5.

64
]

(1
5.

64
, 1

6.
14

]
(1

6.
14

, 1
6.

64
]

(1
6.

64
, 1

7.
14

]
(1

7.
14

, 1
7.

64
]

(1
7.

64
, 1

8.
14

]
(1

8.
14

, 1
8.

64
]

(1
8.

64
, 1

9.
14

]
(1

9.
14

, 1
9.

64
]

(1
9.

64
, 2

0.
14

]
(2

0.
14

, 2
0.

64
]

(2
0.

64
, 2

1.
14

]
(2

1.
14

, 2
1.

64
]

(2
1.

64
, 2

2.
14

]
(2

2.
14

, 2
2.

64
]

Co
un

t

0

100

200

300

400

500

600

ZigBee 60 kB (bin 0.5s)

Figure 2.18: ZigBee 60 kB measured transaction time histogram of all trials.

more query vehicles. Much of this work is orthogonal to the wireless network transaction characterization

presented here.

2.7.1 Data Mule Applications

Among the many data mule relate papers, a popular topic of discussion is the usefulness of such networks

and specific applications where a query vehicle setup might be ideal. A proof of concept for a system of

query vehicles that demonstrates the reduction in energy consumption at the sensor nodes in a field of such

nodes is presented by Tekdas et al. [33]. Another experiment, presented by Palma et al. [34], provides a set

of measurements for transferring data between sensor nodes on a ship and an aerial drone. This experiment

used Wi-Fi and four different file transfer protocols to show that the file transfer protocol does matter, the

DTN2 protocol being the best for their setup. Even more important than the protocol, the trajectory of the

drone had the greatest impact on the success of the file transfers. In their paper about hiding the location

and securing the data of wireless sensor nodes, Raj et al. [35] simulate and analyze a theoretical data mule

30

system that they show can make the sensor nodes’ locations anonymous at the cost of adding latency to the

collection of the data. Coutinho et al. [36] present a system of boats in the Amazon region of Brazil that

have regular routes throughout the area and carry data between a central server at the state capital and

various nodes along its route. These locations along the route don’t have internet access and rely on the

boats for transmitting important medical data. To address link or communication failures in a

normally-connected large-area network of sensor nodes, Crowcroft et al. [37] present a data mule solution for

visiting the neighborhoods of such failed network nodes and recovering or delivering the data with mobile

nodes until the network has been repaired. Their paper is a mathematical analysis of a simulated solution to

such problems. All of these works demonstrate the promise of query vehiclenetworks to complement

traditional wireless networks and therefore motivate strongly the present work.

y = 0.3121x + 0.7988
R² = 0.9974

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

Tr
an

sm
is

si
on

 T
im

e
[s

ec
]

Data Size [kB]

Transmission Time Linearity

Figure 2.19: ZigBee Mean Measured Transmission Time vs. Data Size

2.7.2 Data Mule Scheduling

Another very common paper topic for data mule research is scheduling the deployment of the query vehicles

or mobile nodes, the collection of data from the static nodes, and the delivery of that data to the central

server that needs it [38, 39, 40, 41]. The transaction times studied in the present work can be incorporated

into the scheduling of query vehicles to further optimize the overall performance of the system.

2.7.3 Data Mule Path Planning

More than any other topic, the research that is most often published about data mule networks explores

path planning. It is a very complex problem to plan the optimal path for one or more query vehicles to

travel in order to most efficiently traverse all nodes in the array and deliver the data to a central server. All

31

of this must also happen while avoiding collisions with other query vehicles or obstacles while not

redundantly visiting any nodes more than once [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. The

study presented here is orthogonal to the line of research on path planning.

2.7.4 Wake Up Signals

Several papers study and present solutions to waking sensor nodes that spend most of their time in very low

power states of processor sleep, from a wireless signal that a query vehicle might broadcast to the client

nodes. There are many protocols proposed for how the wake-up transmission should work, many designs of

the circuit responsible for listening for the signal and waking the node, a general agreement that the radio

should listen with a 10 – 50% duty cycle and not constantly, and many analyses of the low power

theoretically achieved by such systems [56, 57, 58, 59, 60]. Wake-up time would directly add to the total

transaction times characterized in this study, but the related work suggests the additional latency would not

be significant. The additional waking time if using the protocols determined in those works is 0.5 – 5 ms.

Assuming the worst case of 5 ms, this time is between 0.002% and 0.1% of the total transaction time in

98.6% of the tested combinations of radio schemes and data sizes, and under 0.8% total time in all cases.

2.7.5 Wireless Protocol Characterization

There are many works on characterizing wireless protocols. Most of those characterize new radios or the

physical channel itself, many analyze custom selective retransmit or error correcting protocols, and many

characterize specific attributes or environments for common protocols like TCP over Wi-Fi. Corvaja et

al. [61] measured quality of service for Wi-Fi/Bluetooth overlay networks where the devices in a star

network are using Bluetooth to communicate small distances to peripherals and Wi-Fi to connect to the

bigger nodes higher up in the star hierarchy. Several papers present and compare the specifications and

theoretical performance of several popular wireless protocols with no experimental data [62], but with

models and graphs of the behavior in typical use. One in particular presents a graph of the theoretical

transaction time for ZigBee, Bluetooth, and Wi-Fi [63]. The paper predicts that Wi-Fi is the fastest for

overall transaction time, Bluetooth is 50 times slower, and ZigBee is 3 times slower than Bluetooth. The TC

experiment’s results are in agreement with those rankings, but show that low power Wi-Fi modules, like

what would be on a sensor node in a query vehicle network, are not 50 times faster than Bluetooth 3.0, but

only about 2 times faster, with ZigBee being 24 times slower than Bluetooth. Duarte et al. characterized a

32

specific narrowband full-duplex protocol that they implemented. Their analysis focuses on the protocol’s

ability to compensate for noise and errors caused by the physical channel [64]. None of the previous works

focus on what the present TC experiment attempts to characterize: the differences in total transaction time,

transmission time, and connect/setup time under real experimental conditions with the radios in each test

setup with the same environment and layout for fair comparison.

2.7.6 Data Mule-Specific Wireless Networking

Jain et al. [65] discussed the mathematical relationship between these parameters: properties of the sensor

nodes, query vehicles, and radios used for communications between sensor node, query vehicle, and server

(or “access point”). The metrics that these parameters affect are power, effectiveness of data delivery, and

latency from node to server. The mathematical analysis and proofs in their paper show the energy savings

that using a query vehicle can achieve and the stability conditions for a network of nodes and “MULEs”

operating at known data generation rate and collection frequency. This kind of stable data mule network is

dependent on the interaction between nodes and the MULEs being as brief as possible in order to enable the

MULEs to pass by without stopping and simultaneously collect data, which is why finding an ideal radio

scheme, as studied in the present work, for such a functioning network is so important.

Anastasi et el. [66] modeled a flyby scenario similar to the one described in the present work and proposed a

protocol, ADT, that attempts to minimize energy consumption of the client node by minimizing the

transmission time. ADT predicts when the query vehicle will be the optimal distance from the client node

to start transmission such that the fewest packets are corrupted or lost. Their analysis shows that a “naive

protocol” that transmits as soon as it is woken by the query vehicle, as assumed in the TC experiment

presented here, is not as energy efficient as a protocol like ADT that waits until the transmission distance is

more ideal, but “may be more robust” because of having more time to transmit to the passing vehicle. ADT

involves the sensor node predicting the optimal time to transmit the data based on how big the data is, and

data it recorded from past interactions with the MULE about “contact time” (how long it was in

communications range during those interactions). The transmission happens in the middle of the contact

time range to minimize the average distance between MULE and sensor node during transmission. Although

their paper [66] is a purely theoretical analysis, the authors use data from another paper of theirs in their

mathematical model of ADT’s performance [67]. This experimental data is taken on real sensor nodes in an

urban environment with a MULE collecting data at two different velocities. The paper shows that packet

33

loss is roughly proportional to distance as the MULE is passing by the sensor node [67]. The TC experiment

in this paper does feature the client node transmitting as soon as the radio and processor are woken and

ready to transmit. The TC experiment did not attempt to find an ideal strategy for when to transmit after

the node wakes, but rather what kind of protocol and radio scheme should be used to minimize the total

transaction time. This would affect the “steady phase” of ADT if the radio scheme chosen from the results

of the TC experiment were used with ADT.

Anastasi et el. [68] also wrote about the “data transfer phase”, which corresponds to the transaction being

characterized in the TC experiment. They simulated the transactions, taking into account the packet loss

expected from a passing query vehicle. Their paper presents a mathematical model of the “data transfer

phase” with parameters for “Contact time”, “Waiting time”, and “Discovery time”, showing how they affect

the energy consumption per byte for transactions in such a network. Their simulated experiment assumes a

Chipcon CC1000 radio with bit rate of 2.4 kB/s during the transmit phase. Anastasi et al. show in their

paper that a window size ≥ 5 packets (12 packets for the radio they chose) is ideal for reducing the total

transaction time. They also show that having the sensor nodes only listening for the MULE 10% of the time

(10% duty cycle) reduces energy consumption by a factor of 11, but is not improved by further reducing this

duty cycle. The windowing is very important in a radio scheme. Two of the radio schemes (Bluetooth and

Wi-Fi) characterized by the TC experiment presented here use TCP, which contains a windowing protocol.

The total transaction time of the other three schemes investigated would be improved slightly by adding a

windowing protocol to the transmission phase of the transaction, but ultimately the slower transmission rate

will always prevent those three schemes from having a shorter transaction time than Bluetooth and Wi-Fi

for larger packet sizes.

2.8 Conclusion

This experiment has shown for at least the tested radio schemes that Wi-Fi is the fastest option for

transferring >30 kB of data in a single pass of the query vehicle, GFSK RF is most suitable for >5 kB and

≤ 30 kB payloads, and ZigBee for 5 kB or less. For query vehicle networks with a similar topology to that

simulated by the TC experiment, Wi-Fi is the best choice of radio scheme for many reasons, with the first

being speed. The transmission rate is faster than the other radio schemes and the total transaction time is

shorter for more than 30 kB of data. Second is cost, with Wi-Fi radios being available for $4 or less and

34

many microcontroller modules like the ESP32 having Wi-Fi built-in. Effectively all retired mobile devices

that can be reused for distributed sensing incorporate Wi-Fi. Third is multiple simultaneous connections,

since Wi-Fi is specifically designed to be able to stream data from multiple connected devices, much more so

than other radio schemes studied here.

Even though LoRa is by far the slowest radio scheme in terms of total transaction time, because it has a

theoretical range of approximately 10 km, it is possible to construct a query vehicle network with LoRa

radios where the query vehicle doesn’t have to pass nearby the client nodes. The vehicle (ground or aerial)

could park near the center of the array and collect data from all nodes without moving. If the area of the

whole array of sensor nodes is small enough, there doesn’t need to be a query vehicle at all; the central

server connected to a LoRa radio could query the client nodes whenever needed. However, this construction

is very likely to run into problems with waking the nodes because the technology of waking sensor nodes

wirelessly, discussed in Section 2.7, does not work from a distance of one kilometer.

2.9 Future Work

The present work established that there is significant variation in transaction time for communicating data

from a single sensor node to a query vehicle in a controlled environment. The next steps would be to (1) get

more data about the proposed radio schemes for use in a query vehicle sensor network in a deployment such

as a network of multiple sensors in a field of crops or a warehouse containing sensors, (2) reading from

multiple sensor nodes simultaneously, and (3) adding a windowing protocol to each of the three

connectionless radio schemes. A field experiment would be a good environment in which to test interference

from reflections and obstacles between server and client radios. Doing both a field of crops and a warehouse

would give insight about which kind of radio scheme would be best for specific environments. Having the

query vehicle read from multiple sensor nodes at the same time would be required in a full implementation,

and would reveal even more about how each radio scheme could be used. It is likely that Wi-Fi would win

out over the other proposed radio schemes in a test of simultaneous clients, followed by Bluetooth, because

Wi-Fi and Bluetooth radios are designed to have simultaneous independent connections in a star network

topology with the server at the center. It is quite simple to fork a new process within the C++ server

program for each socket connection for these two radios and have the server deal independently with each

one in parallel processes (see Section 3.9 for an application of this proposed server software architecture to a

35

distributed computing system). It is nontrivial to do so with the other three radios studied in this work. A

windowing protocol allows multiple packets to be sent one after the other without stopping to wait for the

acknowlegments (ACKs) until a certain number of packets (the window size) have been sent with no ACK

response. Windowing is one of the reasons Wi-Fi and Bluetooth had better transaction time performance

compared to the others, because windowing is a standard part of TCP and the selective reject protocol.

36

Chapter 3

Cluster: A Distributed Computing

System Using Retired Mobile Devices

This chapter explains the Cluster project design and operation in detail. Cluster development involves

designing, implementing, and characterizing a distributed computing system composed of a heterogeneous

collection of retired smartphones and tablets. These are devices that are used, at the typical end of their

consumer lifespan (retired), but are still functional, and would otherwise be recycled for their raw materials.

3.1 Motivation

The first major reason to consider building a distributed computer out of mobile devices is the

environmental impact. Repurposing used devices avoids the carbon footprint of manufacturing new ones

and reduces e-waste, as discussed in Section 1.1. Section 5.5.1 presents quantitative estimates of Cluster’s

carbon footprint based on the Computational Carbon Intensity metric defined by Switzer et al. [26].

The second motivation for this project is that retired smartphones and tablets are very cheap and often very

compute-capable, low-power computers. This motivation is similar to the insight that motivated the

“pile-of-PCs” architecture for Beowulf scientific computing clusters: mass production of consumer-grade

37

Figure 3.1: Smartphone one-year depreciation rates for models launched in 2020 [4].

personal computers and integrated circuit performance scaling through Moore’s Law had made PC-based

workstation-LAN distributed computing clusters competitive from a price-performance standpoint with

conventional supercomputers [69]. Similar efforts have utilized Raspberry Pi boards [70]. While Raspberry

Pi and PC-based Beowulf clusters tend to be homogeneous in both hardware and software and are

constructed from new computers, Cluster takes the price-performance insight a step further by using a

heterogeneous collection of retired mobile devices. Performance and power consumption are important

considerations also. Smartphones and tablets cost between $500 and $1200 when new because they are

powerful computers with modern CPUs and GPUs. They are designed specifically to be low-power

computers capable of running a wide variety of games and programs (apps) while being powered by a

battery for a whole day. However, smartphones depreciate quickly, as shown in the infographic in Figure 3.1,

with annual depreciation rates between 32% and 86%. Devices that are at least 5 years old are of little

38

perceived monetary value, typically under $50 [71, 72], and as such people are often willing to donate their

devices since they have no other use at the end of their typical lifetime of 2 – 4 years. Many of the devices

utilized in Cluster-related research were donated, see Sections 3.11 and A.2.

Privacy is also a major concern for many users of distributed computing applications. There are many

entities including companies, non-profit organizations, and communities with common interests that, if it

were affordable, would buy their own compute resources to have their data completely contained within

either an offline system or a private network, one that is not dependent on the large commercial cloud

services companies. A cloudlet made from retired mobile devices would be a low power distributed computer

with minimal cooling requirements. Since there is no extra hardware required for cooling and each compute

node consumes only 65 – 200 square centimeters of area depending on how much space between nodes is

chosen for the design, the system would also be a very small-area implementation.

Figure 3.2: Worldwide market share of mobile operating systems [5].

Because there are so many different types and brands of mobile devices, initially there were concerns about

software compatibility. Several other works have investigated installing a Linux operating system on a

limited number of Android device models that are able to run it. This approach does not work for iOS

devices at all since Apple does not allow direct access to the hardware or reprogramming of the operating

system. Excluding iOS devices from a reuse strategy substantially reduces the number of devices that can

be reused, limiting the impact on reducing e-waste and carbon footprint. The Cluster approach uses an app

39

installed on the devices and therefore any Android or iOS device newer than 2012 (more details in Section

3.4) is compatible. This approach therefore accounts for 99% of all smartphones in 2023 as shown in

Figure 3.2 [5].

3.2 Limitations

In addition to the reasons above advocating for a system like Cluster over traditional distributed computer

architectures, there are also limitations to such a design. The limitations of Cluster are those of Wi-Fi

power, bandwidth, scalability, reliability of the devices, and the effort of rewriting any program for the

Cluster platform. First, smartphones and tablets do not have wired networking capability, they typically

have only Wi-Fi or cellular data and wireless transmission uses more power than wired transmission of the

same data [73, 74]. Using cellular data would introduce the possibly of the devices not needing to be on the

same LAN, but also introduces more network delay and more power to transmit and receive packets over the

network. It also would require a redesign of the socket interface for the client software to be able to locate

the server node and connect to it. The proposed implementation of Cluster utilizes Wi-Fi only. Shahrad and

Wentzlaff [25] proposed using a wired network of USB cables and hubs for their smartphone-based server

and this option for Cluster could be explored as future work.

Second, by the very nature of these retired devices being at the end of their typical user lifetimes, the

hardware will never be as reliable as new mobile devices or computers. The client nodes of Cluster would

have to be replaced more often, but this is somewhat compensated by the relatively low or zero price of the

used devices.

Third, unlike a network of Raspberry Pi devices or server-grade computers, mobile devices which are

running the Cluster app are limited, in the current implementation, by what the app is programmed to do.

This means Cluster cannot be used to run an existing parallel computing program, all programs that it runs

must be ported to Python, Swift, and Kotlin / Java in order for Cluster to execute it. While this does not

restrict what kinds of programs the cluster can run, it does introduce significant effort for rewriting any

existing program to function on the cluster. The focus of the present work is on tasks that would support

cyber-physical systems, so the restriction to only tasks specifically programmed for Cluster is appropriate to

this application domain.

40

3.3 Research Questions

Figure 3.3: Cluster Network Block Diagram

Cluster is a local area network (LAN) distributed computer made of retired mobile devices, which use Wi-Fi

to connect to a wireless LAN router and a server computer wired to the router. This is shown in Figure 3.3.

The research questions this work is meant to investigate are the following:

1. Where is the computing bottleneck in Cluster: the server program, the compute capabilities of the

client nodes, the Wi-Fi router, or the Wi-Fi module on the server computer?

A series of experiments and synthetic compute tasks were designed and implemented to investigate

how the cluster performs under the constraint of these various performance bottlenecks.

2. Does using multiple processes instead of a single multi-threaded process on the server program

improve the program’s scalability and how does it affect overall performance?

Two versions of the server program were designed and implemented to test the hypothesis that

compute tasks would finish more quickly on Cluster if the program occupied multiple cores of the

server computer’s processor instead of just multiple threads on a single core.

3. What is the limit of how many devices can operate in Cluster until performance no longer improves?

41

And does this limit depend on what kind of task is being performed?

To answer this question, many experiments were run to test the performance of each of the four

compute tasks implemented for Cluster and the execution time and network usage data were tracked

for each run and for an increasing number of connected mobile devices. The experiments were run at

least 20 times for each quantity of connected devices.

4. How is the performance of Cluster affected by changing the wireless environment from an open space

to a shielded space (i.e., enclosing Cluster in a metal Faraday cage)?

Two sets of experiments were run in a large industrial metal Faraday cage in the basement of a

university research building. These experiments were set up to have identical conditions to all other

characterization experiments with the only change being the room they were run in.

In addition to these questions about Cluster itself is the question of how Cluster compares to other

distributed computers of similar architectures. Thus, this work is compared to related work in Section 5.8.

3.4 Software Design

Distributed computing systems typically involve many computers housed in the same room on the same

wired LAN. A common way to write a program that runs on many machines concurrently on the same LAN

is using the Message Passing Interface (MPI) [75]. The MPI library is available in many common

programming languages like C++ and Python. However, it is not available for iOS or Android apps as of

September 2023. It does make sense that it is not implemented for mobile platforms since the proposed

Cluster is one of only a few LAN-based distributed computer implementations for mobile devices and other

implementations have replaced the native mobile OSes with Linux. Any distributed computer that uses

retired mobile devices would likely dedicate all the devices to the computation task in order to maintain the

cluster’s connectivity and guarantee processor availability during the task.

Since using MPI was not an option without implementing the protocol from scratch for mobile OS

platforms, a custom protocol was implemented to suit the applications targeted by Cluster. A custom

packet header, shown in Figure 3.5, was designed alongside the program flow for server-client interaction

that governs all the mobile devices. The packet header’s design is discussed in detail in Section 3.6.

42

The proposed device cluster consists of a network of iOS and Android smartphones and tablets, each with

the Cluster app installed, governed by the Cluster Server program installed on a single sufficiently powerful

computer to handle managing many threads or processes for all the connected devices. The goal was to be

able to demonstrate several distributed computing tasks running on the cluster and compare their

performance to a common inexpensive cluster computing implementation, i.e. a wired network of Raspberry

Pi computers. The computing experiments for this research are described in Chapter 4 and inspired

primarily by tasks associated with cyber-physical systems applications.

The Cluster app is written in Swift 5 (https://swift.org/) for iOS and Kotlin (https://kotlinlang.org/) for

Android. The multi-threaded server program is written in C# for Windows only

(https://learn.microsoft.com/en-us/dotnet/csharp/). C# is a popular language for writing multi-threaded

programs with a graphical user interface (GUI). The multi-process cross-platform server program is written

in Python (https://www.python.org/). Performance of the Python version of the Cluster server, where a

new process is spawned for each device connecting to the server, is discussed in Chapter 4 and the operation

is discussed in Section 3.9.

There are two main types of parallel computing tasks evaluated on Cluster, independent and dependent.

Independent tasks do not require any collaboration between the cluster node devices. The computing nodes

are given their part of the task and can work on it until they are finished without requiring any data from

any other nodes to finish, only communication with the coordinator (or server) to receive more work and to

return the finished work. Dependent tasks require passing data between the nodes themselves. In this case,

the inputs to the programs running on a node are at least somewhat dependent on work being done by other

nodes.

3.5 Performance Metrics

The metrics for measuring the performance of the Cluster network of devices are those that can be readily

compared to an equivalent cluster of Raspberry Pi or other devices achieving the same task.

The metrics are:

� Time to completion: elapsed time to complete a specific task

43

� Mean time to failure (MTTF) / mean time between failures (MTBF): of a device in the

network, usually the app crashing or the TCP connection becoming inoperable

� Cost: of the devices involved, including server and networking hardware

� Energy Consumption: of all devices and the server node during completion of a task and idle mode

(resting)

� Speedup vs. number of devices: relationship between speedup of a task and number of active

computing nodes, may continue to increase in some circumstances for an increasing number of devices

� Task throughput: quantity of work (e.g. number of images processed) completed per unit time for

specific tasks

� Scalability: how many nodes can the system be scaled to before performance saturates? How close

can the proposed architecture approach the level of performance of other architectures?

� Computational Carbon Intensity (CCI): the CO2-equivalent released per unit of computation

work

3.6 Cluster Packet Header Design

When writing code for passing data across a network between two computers, the protocol of choice is often

the Transmission Control Protocol (TCP) for simple and easy interactions. The standard TCP libraries are

well-understood and well-used for a variety of applications and are supported on general-purpose and moble

OSes, but there are some disadvantages as to how the data is received and organized in the queue of packets

that come in on a TCP socket on any network-enabled device. The payload is the data that needs to get

from one device to the other and the headers are extra bits that are added onto the data packets that allow

the packet to be organized and labeled and transported accurately to its destination. When a packet is

recieved on a TCP socket, all the headers are removed by the network hardware before any program sees the

packet. The abstraction that happens with TCP libraries means that only the payloads are stored in the

TCP socket queue, without any boundaries between one TCP packet’s payload and the next. Because there

is no indication from an application level of how big the packets were when they arrived, what kind of data

the packet contains, or what the purpose of the packet is, extra data needs to be included in the payload of

44

all packets sent to and from the devices to keep track of this information. The Cluster packet header was

designed for this purpose and its structure is shown in Figure 3.5.

The structure of the packets that will be sent across the network is crucial to the operation of the network.

Packets in a computer network are organized by the OSI stack, a standard of metadata that gets added onto

the payload before it can be sent out on the network. The metadata is organized into a hierarchy of headers

added at each level of the stack as the packet leaves the application on the devices and is sent to various

networking hardware. The network switches and routers are responsible for getting the packet to its

destination, tracking its progress and origin, and verifying its validity since the data can be corrupted in

transit.

Figure 3.4: Cluster OSI Stack

The five required layers of the OSI stack for all computer networks are shown in Figure 3.4. Once a program

tells the network hardware of its host machine to send the data, the TCP header is added to allow data

verification, network speed control, and organization of multi-packet file transfer. Then the Internet

Protocol (IP) header is added to mark the IP addresses of the source and destination. Finally the Ethernet

header is added to identify the hardware that sent the data and that will receive it so things like Ethernet

switches can optimize the packet’s path through the network. The addition of the Cluster header is done in

the application layer by the Cluster program, both mobile and server.

A Cluster packet, diagrammed in Figure 3.5, is any packet of data sent between devices in the Cluster

network, including the server. A Cluster packet must have the Cluster header added in its application layer

before the payload bytes. The program checks the validity of each packet’s Cluster header before

45

Figure 3.5: Cluster Packet Header

interpreting what to do with it.

The Cluster header starts with three bytes that are always the same series of bits containing both ones and

zeros in a specific order that are unlikely to occur by accident in this specific grouping; the bits in

hexadecimal (hex) are 0xCDABEF. The next two bytes (four 4-bit fields, bits 24 – 39) identify what type of

Cluster packet it is, meaning what kind of data or command it contains. This is broken down into 4

subtypes which are discussed in section 3.7. The next three bytes (bits 40 – 63) contain space for a 24-bit

number, typically used to number the packets involved in a file transfer so the receiving program knows that

all file fragments arrived in order. The last two bytes (bits 64 – 79) are a 16-bit integer specifying how many

bytes the payload is. The payload may be up to 1400 bytes (the limit of an Ethernet packet).

3.7 Cluster Packet Types

Tables 3.1 – 3.12 show the defined values for each of the subtype fields in the Cluster Header, see Figure 3.5

for the byte structure of the Cluster Header. The client and server programs reject any packet whose type

fields contain invalid values or combinations of subtypes.

46

Packet Type Bits Packet Type
0x0 Ping
0x1 Task Data
0x2 ACK
0x8 Distribution Update
0xA Cluster Update

Table 3.1: Packet Type

Table 3.1 shows the possible valid values of the Type field for the Cluster Header. The ping type is for

confirming that the device is still connected and running the Cluster app (see Table 3.2). Task Data

indicates a packet whose payload includes data specific to the current computation task (see Table 3.3).

ACK is an acknowledgment that the previous packet was received and may indicate success or failure (see

Table 3.4). A Distribution Update is a change in the number of devices, the indexing of the devices, or other

event that affects how the computation load will be distributed (see Table 3.5). A Cluster Update contains a

command that changes the task running, changes the state of a task, or another command related to the

running task (see Table 3.6).

Ping Bits (S1) Ping Type
0x0 Hi (Ping)
0x1 Task Running
0x2 Task Paused

Table 3.2: Packet Subtype 1: Ping Commands

Subtype 1 breaks down the packet type into more specific instructions. Table 3.2 shows the possible

subtypes for the Ping type. The “Hi” ping is what the server sends to the devices. The response from the

device indicates whether the task is still running.

Task Data Bits (S1) Task Data Type
0x0 Generic
0x1 Large File
0x2 Text (ASCII)
0x3 Numeric
0x8 Request
0xA Shared

Table 3.3: Packet Subtype 1: Task Data Packets

Table 3.3 shows the possible subtypes for the Task Data type. The Large File type is for transferring whole

files over multiple packets, this uses the Sequence bits shown in Figure 3.5. The Text type is for generic text

47

encoded as ASCII. The numeric type is for storing numbers either as text or actual integers and floating

point numbers stored as a predictable representation according to IEEE standards. The Request type is for

requesting data, the payload of which may contain more details about the request. The Shared type is for

transferring data that is to be shared with other devices, such as for a dependent calculation, see Section

4.2.2.

ACK Bits (S1) Ack Type
0x1 Acknowledged
0x2 Acknowledged and Completed
0x3 Completed
0xF Error Condition

Table 3.4: Packet Subtype 1: Acknowledgments

Table 3.4 shows the possible subtypes for the ACK type. The ACK type is subdivided into 4 conditions that

indicate (in order): (1) a general acknowledgement, (2) ACK and completed (success), (3) completed, a

success condition that can be sent asynchronously after the initial ACK if the action may take time to

complete, and (4) negative ACK that indicates an error state.

Distribution Update Bits (S1) Distribution Update Type
0x0 Client Event
0x3 Client Command
0x6 New Number of Devices
0xF New Index

Table 3.5: Packet Subtype 1: Distribution Updates Commands

Table 3.5 shows the possible subtypes for the Distribution Update type. A client event may be any general

announcement from the devices, such as overheating, a need to enter idle (rest) mode, or other errors. Client

commands are commands sent by a mobile device for other client nodes or the server node. The other two

update commands are for telling the client nodes that there are now a different number of devices or there is

a change in the numbering of the devices or the distribution of the work.

Cluster Update Bits (S1) Cluster Update Type
0x0 Task Command
0x5 Update GUI
0xD Database Command
0xF Task Change

Table 3.6: Packet Subtype 1: Cluster Update Commands

48

Table 3.6 shows the possible subtypes for the Cluster Update command. This includes general task

commands (see Table 3.9), a request to update the app’s GUI (graphical user interface), a database-specific

command (see Table 3.10), or a change in which task the cluster is working on (see Table 3.9).

File Packet Bits (S2) File Packet Type
0x1 File Data
0x2 File Metadata

Table 3.7: Packet Subtype 2: File Packets

Table 3.7 shows the possible subtypes for the File type packets. This is either file metadata, which is sent

first before the contents of the file during a large file transfer, or the data itself divided into fragments and

organized (ordered) using the Sequence bytes in the Cluster packet header.

Numeric Task Data Bits (S2) Numeric Type
0x1 Integer
0x2 Floating Point
0x4 Integer Text
0x7 Floating Point Text
0x9 Generic Text

Table 3.8: Packet Subtype 2: Numerical Data Types

Table 3.8 shows the possible numerical data types that the receiving device should expect when reading a

Task Data packet. These include integers and floating-point numbers encoded in 32-bit or 64-bit groups as

defined by IEEE standards. This would be a more efficient way of encoding lots of numeric data if

neccessary, or the numbers could be simply ASCII text representations of decimals or integers.

Task Command Bits (S2) Command
0x1 Start
0x2 Stop
0x5 Change Stage

Table 3.9: Packet Subtype 2: Task Commands

Table 3.9 shows the possible task commands. These include starting the task, pausing or starting the task,

or changing the stage of the task currently running. The stage change applies to only those tasks that have

multiple stages; only one has been implemented so far, the FAWN key-value data store (Section 4.1.2).

49

Database Command Bits (S2) Database Command
0x1 Clear All
0x2 Clear Data

Table 3.10: Packet Subtype 2: Database Commands

Table 3.10 shows the possible database commands for the FAWN database. See Section 4.1.2. Clear All

erases all data and keys in the database. A Clear Data command clears only the actual data stored at each

of the keys in the database, but does not erase any of the keys.

Database Store Command Bits (S3) Store Command
0x01 Store
0x02 Fetch

Table 3.11: Packet Subtype 3: Database Store Commands

Table 3.11 shows the possible database store commands. This is the only subtype so far to occupy the

Subtype3 field, except for the Task ID (or Task Change) subtype, which occupies both the Subtype 2 and 3

fields together. The store commands are only used for the FAWN data store task and tell the device to

either store data along with an accompanying key or to retrieve data with a certain key.

Task Change Bits (S2:S3) Task Type
0x00 Nothing
0x01 Python Script
0x02 OpenCV Script
0xC1 Synthetic: Server Prep
0xC1 Synthetic: Dependent Calc
0xE0 HPC Demo: Digits of Pi
0xE1 CPS Demo: Image Prep
0xE2 CPS Demo: Matrix Math

0xE3
CPS Demo: Inverse

Kinematics
0xE4 CPS Demo: FAWN

Table 3.12: Packet Subtype 2 & 3: Task ID

Table 3.12 shows the possible tasks implemented in the Cluster app. The Task ID types show all the

currently implemented tasks and a few planned tasks to be designed and implemented in the future. The

application tasks are examples of tasks that might be used in an actual user implementation of the Cluster

network, for demonstrating how common computing tasks for cyber-physical systems (CPS) or

general-purpose high-performance computing (HPC) might be accomplished with a group of retired smart

50

devices. The synthetic tasks were designed and programmed to characterize how certain types of tasks would

perform in the Cluster without implementing a real-world algorithm such as Monte Carlo simulations or

physics models, but instead are carefully controlled to behave a particular way, such as creating a compute

bottleneck at the server compute (see Section 4.2.1), or enforcing that the client nodes depend on data from

partial calculations done by the neighboring nodes in order to continue their calculations (see Section 4.2.2).

3.8 Structure of the Cluster Software

ClientHandler
Members

ViewModel
Members

View
Members

Socket
(listener)

ClusterServer
Members

DeviceCommunicator
Members

ClusterTask
Members

...

Socket
(client)

Services
(Singleton shared

resource)

Members

ImageService
Members

PacketService
Members

Constants
Members

n copies

FawnService
Members

DataService
Members

Figure 3.6: Cluster Server Class Hierarchy

The classes within the Cluster program on both mobile device and server were designed in a hierarchy so

that the resources allocated for this program, as the number of clients grows, would include a minimal

number of class instances. Not all classes need to have a new instance per connected device. This is

particularly important on the server node where the the amount of work the processor is doing grows with

the number of devices it is managing. The class hierarchy for the server program, written in C#, is shown in

Figure 3.6. The server program conforms to the Model View ViewModel (MVVM) structure of agile

software development. This allows for organization, abstraction of which classes can access which resources,

and ease of reuse since the layers of the hierarchy are not bound to each other and the designed classes can

be used as-is for other projects without rewriting them.

The only classes that need to have a new instance per connected device are shown in red in Figure 3.6. The

ClientHandler class keeps track of which task is being done, and information about the connected device and

the socket connection to the device. This socket is governed by the DeviceCommunicator class which is the

51

only class allowed to talk to the device and which also handles adding on the Cluster header before data is

sent and interpreting all data recieved from the client device. Finally the ClusterTask class is an abstract

class which has several subclasses for specific tasks that the device cluster can do. This class handles

gathering resources and passing messages that one particular device will need to do its work.

Services are shared classes and libraries that are accessible globally within the the server program. The Data

Service prepares arrays of synthetic data on demand at run-time using random number generation. This is

especially useful for the synthetic tasks to simulate intensive computations or the collecting of data from

sensors or databases, but is also used by the FAWN task. The Packet Service is a library of functions that

help standardize Cluster packets of all types and append the cluster header. The Constants service is a

collection of global constants for organization and easier updating during code redesign or reuse. The Image

Service is used by the ImagePrep task to fetch and track the status of images from the server computer’s

hard drive. The FAWN Service is used by the FAWN task to generate and track each of the key-value pairs

sent and later queried from the client nodes.

A Cluster task can be one of several types of operations, from just maintaining the client connections with a

simple pinging operation to other more complicated computing tasks. The structure of the Cluster task

hierarchy is shown in Figure 3.7.

Cyber-Physical
Systems Task

Digits of
Pi

Prepping Images
for Neural
Network

Forward and
Inverse

Kinematics

High-Performance
Computing Task

Quantized
OpenCV Image

Alteration

Cluster Task

RAID
Storage

Nothing
(no-op)Synthetic Task

FAWN Dependent
Calculation

Server Data
Prepare

Generic
Python

Program

Figure 3.7: Cluster Task Hierarchy

52

Five of the tasks, shown in green, that are depicted in the hierarchy were implemented as part of this work:

two of the CPS tasks (ImagePrep and FAWN), both of the synthetic tasks, and the Nothing (no-op) task.

The CPS tasks demonstrate preparing images for a neural network or implementing the FAWN data store to

test read and write speed of a FAWN implementation (see Section 4.1.2). The synthetic tasks were designed

to identify bottlenecks in the scalability of the Cluster network by simulating large workloads in various

places such as on the server computer or during the wait time when other dependent nodes are preparing

and passing on their contributions to partially-completed calculations.

The other tasks were theorized and will likely be implemented and characterized in future work. The Digits

of Pi task would be an implementaion of the classic parallel processing algorithm for calculating digits of pi,

an application similar in profile to the synthetic DependentCalc task. The Forward and Reverse Kinematics

task would implement the linear algebra used by the robot arm discussed in Section 1.2.1. The RAID

Storage task would implement the RAID storage architecture of redundant and interleaved data backups,

similar to the FAWN data store, but much more generic; the RAID task would be able to store files and

even whole filesystems instead of individual values associated with keys. The Generic Python Program is a

theoretical applicaton for Cluster where the client nodes may be able to run any Python program meeting

certain criteria and perform parallel processing using techniques similar to MPI or even using an MPI

library. The Generic Python Program task would support a Function-as-a-Service (FaaS) model for the

cluster similar to Renée [27] (see Section 5.8). The Quantized OpenCV Image Alteration task would be

similar to the ImagePrep task and would accept an image and a set of commands that translate to OpenCV

operations to be performed to alter the image before sending it back.

The program flow of the Cluster Server program is illustrated in Figure 3.8. The C# server program has

3 + 2n threads: the main thread to handle incoming connection requests and spawn new threads for each of

them, a thread that responds to commands from the user interface, a thread to update the GUI with the

latest status from the server object, and two threads per connected device. The first of these two handles all

incoming packets from the device (DeviceCommunicator thread) and either routes them to a packet queue

or deals with them immediately if the packet payload is a command from the server not directly related to

the task being run. Incoming packets from the connected devices are validated and queued in this dedicated

thread, consumed only when the task’s main thread needs them. Incoming file fragments (identified by part

of the Cluster packet header) are stored in their own queue for easier access by the task’s MainThread.

53

Some incoming packets are status pings or other special packets that are handled by the

DeviceCommunicator thread and not queued. The second of those connected device threads is the

ClusterTask’s MainThread() to manage the different steps of the task itself and cooperate with the client

node assigned to that thread to accomplish the task.

Figure 3.8: Cluster Server Program Flow

The program flow of the Cluster app, which runs on each node, is illustrated in Figure 3.9. The app has five

54

Figure 3.9: Cluster Node Program Flow

threads: the main thread that responds to commands from the user interface, a thread to update the

graphical user interface (GUI) with the latest status and image (if applicable) from the task, a thread to

automatically attempt to reconnect to the server if the socket becomes disconnected, one to handle all

incoming packets from the server (Listener thread), and the ClusterTask’s MainThread() to complete the

various steps of the task itself and send out incremental or finished results. Incoming packets from the server

are validated and queued in exactly the same way as with the server program with some additional special

packets. Upon receiving a ping, the app responds with another ping and the status of the current task.

Upon receiving special commands for starting, stopping, pausing, or switching the task, those packets are

55

dealt with immediately and not queued.

3.9 Multi-Process Python Cluster Server Program

To test research question number 2 (Section 3.3) regarding a multi-process approach to the server program,

a second version of the program was created. This version is written in Python because C# and Visual

Studio have very little support for multi-process programs. Python has convenient stable libraries for

multi-process programming and communication between processes, which is also possible in C#, but with

considerably more work required for the programmer. A Python program also has the added benefit of

being cross-platform, so it can run on almost any modern computer. Note that while the Python program

has been confirmed to run on MacOS and Linux operating systems, it has not been thoroughly tested or

measured on those operating systems.

The Python version of the program is multi-processed in addition to multi-threaded. Multi-threaded

programs can use only one processor core of the computer they run on. All of the memory and processor

resources are limited to what a single process is allowed to have. Multi-process programs divide work among

several processes, which means the processor can actually work on the task in several cores simultaneously.

Large programs that need to do many simultaneous tasks, like Google Chrome [76], use multi-process design.

Each process has its own allocated memory space on the processor. However, a multi-process design takes

significant time to create all the processes, but is equal to a multi-threaded approach in terms of context

switching time within one core after the processes are running. This equality is because all threads running

on a single core function exactly the same as typical multi-threaded programs of only one process [77, 78, 79].

56

ClientHandler
Members

ClientHandler
Members

ViewModel
Members

View
Members

Socket
(listener)

ClusterServer
Members

DeviceCommunicator
Members

ClusterTask
Members

...

Socket
(client)

toProccessQ

fromProccessQ

n copies
Services

(Singleton shared
resource)

Members

ImageService
Members

PacketService
Members

Constants
Members

FawnService
Members

DataService
Members

Figure 3.10: Multi-Process Cluster Server Class Hierarchy

The structure of the Python implementation of the Cluster server is identical to the C# version in many

aspects, with a few differences related to how computer resources are shared, and how the program is

divided when new devices connect, and how global information about the state of the task is communicated

between threads. Threads within a process all share one memory space and therefore can access global data

structures that track the state of the running task. However, processes, even those belonging to a single

program, all have their own distinct memory space that is not shared. In order for all processes of a

multi-process program to stay up to date about the state of the task, messages must be passed between

processes through pipes. This is similar to how nodes of a distributed computer would pass messages using

MPI. First, Figure 3.10 shows the class hierarchy in which the client handler instances fork a new process

and then creates the ClusterTask and DeviceCommunicator instances only on the new process.

The program flow for the Python server is illustrated in Figure 3.11. There are 3 + n threads on the main

process, and n additional processes each with their own three threads. The n threads on the main process

are very light weight compared to the 2n threads on the C# server. They only wait for a process to request

a shared resource and provide it when requested. The three threads within the individual processes are

responsible for listening for messages from the main process, listening for data from the mobile device (client

node), and the MainThread() which coordinates with the task being done on the client node.

57

Figure 3.11: Multi-Process Cluster Server Program Structure

3.10 Software Metrics

With two versions of the Cluster server program and two versions of the Cluster app, comparing the size of

each of the pieces of Cluster software is an important metric in terms of resources needed for each choice of

implementation. Table 3.13 shows the size of the code base of each program as well as the size of the

executables.

58

Program Lines of Code Size of Executable
iOS Cluster App 6974 6.6 – 8.1 MB

Android Cluster App 3564 34.85 – 37.93 MB
Python Multi-Process Server Program 3683 13.781 MB

C# Threaded Server Program 6075 398.01 kB

Table 3.13: App and Server Program Metrics

For time reasons, after the initial ImagePrep experiments comparing threaded vs. multi-process, see Section

5.1, the implementation effort of the server program were focused on the Python program for the potential

benefits of its parallel processing. Although the multi-process Python server program has more features

than the C# program, the Python program has only 60.6% of the lines of code of the C# program, while

the executable is 34.6 times larger. However, the size of the Python executable is irrelevant to this research

as the experiments were only run with the Python interpreted in real-time and not compiled.

The iOS app similarly has one more feature than the Android app, specifically the FAWN data store

implementation, and yet is 1.96 times the size of the Android app in terms of lines of code, and 20.2% the

size of the Android app on a smart device’s hard drive on average.

3.11 Hardware Selection

Because Cluster is designed to function with any iOS or Android mobile device, the implementation was

tested with a variety of different makes and models. This heterogeneity is one important distinguishing

characteristic of Cluster compared to related works. A wide range of devices was acquired for characterizing

the implementation of Cluster. A total of 25 used phones and tablets were donated to the cause (not all of

which ended up being used), see section A.2.1, and six used devices were purchased from eBay. The device

model introduction years range from 2012 to 2017. Below is a list of all available devices used in various

experiments throughout this work.

59

Model Year Operating System Processor Storage Memory

1 iPhone XS 2017 iOS 16.5
2-core 2.5 GHz Vortex +
4-core 1.6 GHz Tempest

64 GB 4 GB

7 iPhone 6s 2015 iOS 15.7 2-core 1.84 GHz Twister 16 – 64 GB 2 GB
1 iPhone 6 2014 iOS 12.5.6 2-core 1.4 GHz Typhoon 64 GB 1 GB
1 iPhone 5s 2013 iOS 12.5.6 2-core 1.3 GHz Cyclone 16 GB 1 GB
4 iPhone 5c 2013 iOS 10.3.3 2-core 1.3 GHz Swift 16 GB 1 GB
1 iPad mini 2 2013 iOS 12.5.6 2-core 1.3 GHz Cyclone 16 GB 1 GB
2 iPad 4 2012 iOS 10.3.3 2-core 1.4 GHz Swift 16 GB 1 GB

(a) iOS

Model Year Operating System Processor Storage Memory

1 Galaxy S8 2017 Android 9.0 Pie
4-core 2.35 GHz Kryo +
4-core 1.9 GHz Kryo

64 GB 4 GB

1 Galaxy S6 2015 Android 7.0 Oreo
4-core 2.1 GHz Cortex +
4-core 1.5 GHz Cortex

32 GB 3 GB

1 Nexus 5x 2015 Android 8.1 Oreo
4-core 1.4 GHz Cortex +
2-core 1.8 GHz Cortex

32 GB 2 GB

5 Galaxy S5 2014 Android 6.0 Marsh. 4-core 2.5 GHz Krait 400 16 GB 2 GB
1 Nexus 5 2013 Android 6.0 Marsh. 4-core 2.3 GHz Krait 400 16 GB 2 GB

1 Galaxy Tab E 2016 Android 7.1 Nougat
4-core 1.3 GHz
Cortex-A53

16 GB 1.5 GB

(b) Android

Table 3.14: List of Mobile Devices Available for Use in Cluster

Other hardware selected for the experiments in this research are as follows:

1. The server computer: an ASUS ROG GL752V gaming laptop, Windows 10, 1 TB Samsung Evo SSD,

16 GB RAM

2. The Wi-Fi router (for the first three experiments comparing ImagePrep performance for different

server types): a NETGEAR N300 EX2700 Wi-Fi repeater

3. The Wi-Fi router (for all other experiments): a Rockspace AC750 Wi-Fi repeater

4. The network switch (which connected the Wi-Fi router to the server computer): TP-Link TL-SG105,

5-Port Gigabit Ethernet Switch

5. CAT6-rated Ethernet cables for connecting all wired network equipment

For all experiments, the server computer’s Wi-Fi was switched off and the private network that the

experiments were run on was isolated from the internet. The Wi-Fi network operated exclusively on the

2.4 GHz band for all experiments.

60

Chapter 4

Cluster Characterization Task

Implementation

This chapter discusses implementations of the four tasks that were used to characterize how well Cluster

performs at various types of computations. To characterize the performance of the device cluster, many

experiments needed to be done, recording the metrics for completing certain computing tasks. The

environment for the characterization experiments was set up as follows: For each experiment the mobile

devices were laid out on 2 inches of corrugated cardboard sitting on top of 4 inches of cushion foam. That

assembly was elevated 20 centimeters off the floor by rigid, hollow, rectangular, cardboard brackets. The

mobile devices were all plugged into power via their charging cables at all times and 3 centimeters of

clearance was maintained such that no device and no cable were within 3 cm of another device. The use of

non-conductive materials and spacing of devices was intended to establish a baseline wireless environment

for characterizing the Cluster network performance.

4.1 Cluster Cyber-Physical System Tasks

Cyber-Physical System tasks are fully-implemented computation tasks that are important to realizing

specific applications for cyber-physical systems. Two such tasks were implemented so far out of many that

were theorized to be possibly suitable for Cluster. These include pre-processing images for a neural network

and implementing the FAWN key-value data store to compare read and write speed of a FAWN

61

implementation on retired mobile devices to the original paper’s cluster of “wimpy nodes”

performance [28, 29].

4.1.1 Image Preparation Task

The ImagePrep task was designed to be an independent task in which the client nodes receive an image

from the server, perform several operations on the image, and send it back. This the simplest possible type

of non-trivial task since there is no dependency between nodes and the distribution of work is not critical;

any image can be assigned to any node for processing or reassigned at any time. This also means that each

client node is completely hot-swappable, i.e. can be removed from the network or added to the network at

any time, including while the task is in-progress.

4.1.1.1 Motivation

There has been significant research done and many papers published [80, 81, 82] on the benefits of

pre-processing images either as a top layer in a convolutional neural network or as a computation task

applied before the neural network receives the pre-processed images as input data. The idea of doing the

pre-processing before the neural network receives the images is that the layered network could be simplified,

and therefore process image data faster and with lower power, if the neural network doesn’t need to do the

pre-processing work itself.

While this task for Cluster does not reproduce the exact pre-processing algorithm from any published work,

it performs many of the same operations and serves as a proof-of-concept for how an image pre-processing

task would perform on Cluster. This type of task has applications beyond neural networks as well. Any CPS

application that requires many images to be collected and then stored, such as analyzing images from space

telescopes [83, 84, 85], could use a task like this to standardize the images before they are stored or used in

further steps of the application. Beyond image pre-processing, other “embarassingly parallel” tasks, such as

processing the 1.25 GB of data that is created every second at the ALICE project of the Large Hadron

Collider [86], are expected to have similar performance.

4.1.1.2 Operation

On startup of the server program, before any nodes have connected, the server locates all images available in

a predetermined directory (a test data set of 2000 images of varying size and aspect ratio were used in these

62

experiments) and stores the paths in an array. Then, after the client nodes connect and the task begins,

each client node requests an image to process. The server sends the file in fragments, tracking each fragment

using the sequence number in the Cluster header (Figure 3.5), and re-sending any packets that were

corrupted or missing. The client acknowledges the successful transfer of the file, performs the alterations on

the image, and sends the image back with similar file fragmentation and confirmation of file transfer.

(a) (b)

Figure 4.1: (a) Original image. (b) Processed image.

The operations are typical of pre-processing that might be done to images to be inferred by a neural

network that was also trained on similarly prepared images. This kind of neural network can have reduced

complexity in its architecture because the image resizing and other operations don’t need to be done by the

network itself. The full list of operations done on each image for this task is shown below:

63

1. Resize image to 500 × 500 pixels, stretching as needed, not cropping.

2. Reduce color saturation to half of original levels.

3. Apply Sobel edge detection (dx=1, dy=0).

4. Apply Gaussian blur to entire image (0.5 radius).

The criteria for task completion is when all 2000 images have been successfully returned to the server in an

altered state and verified as a valid PNG file. An example of an image used in this task is shown to scale in

Figures 4.1a (before processing) and 4.1b (after processing).

4.1.1.3 Characterization

Every task is characterized by measuring its running time, network traffic, and power usage. Each

characterization experiment was run at least 20 times per data point. So each recorded data point includes

the mean and standard deviation of 20 trials of the experiment. Additional task-specific parameters for each

run are recorded during the characterization experiments as well. The data points are taken for an

increasing number of connected devices to understand how Cluster’s performance on this highly parallel task

scales. The parameters and statistics recorded for each individual trial of the ImagePrep experiments are

listed below:

1. Timestamp

2. Number of client nodes

3. Total number of images processed (2000 for the experimental data set)

4. NetworkReceived: total kilobytes received from the client nodes

5. NetworkSent: total kilobytes sent to the client nodes

6. TaskData: total kilobytes of images to be processed

7. MainThread loop delay (100 ms)

8. Measured elapsed time to complete the task

64

Note that the network data sent and received statistics include all traffic including acknowledgments and

task commands, and not just the image file fragment packets. These metrics were recorded to be able to

measure how much network traffic is required compared to the size of the data set.

The MainThread loop delay is how much idle time the server node waits for one particular client connection

between receiving the processed image and sending another. The delay was added to give the client nodes a

chance to idle or service background tasks run by the mobile OS and synchronize with the corresponding

server thread that is also transmitting files. It was observed during system development that the Cluster app

crashed more often and the ImagePrep task took much longer to finish without any delay between processing

one image and the next. The cause is twofold. First, traditional mobile CPU throttling (clock frequency

reduction) techniques that aim to maximize utilization of the available thermal headroom can cause the

mobile device to initially heat up from too much continuous processing; the subsequent reduction in clock

frequency to compensate for heating leads to an overall increase in execution time as shown by Sahin and

Coskun [87]. Sahin and Coskun propose reducing the maximum allowable clock frequency or idling cores on

a mobile multicore processor to increase the time duration that performance is sustained by the mobile

device. The added delay in the Cluster server program achieves a similar function, namely load balancing

for the client nodes to maintain sustained performance on the Cluster tasks. Note that operating a device at

elevated temperature can also cause errors in the execution of any program due to transient hardware faults

induced by thermal noise, timing violations due to circuit delay variations, and power supply voltage droop.

Second, errors occur while transmitting data wirelessly across a network and occasionally the Cluster server

does not receive the acknowledgment from the client node that the end of the file was received. When this

happens, the server node is stuck waiting for the acknowledgment to arrive even though the image

processing proceeds on the client side. It is difficult to synchronize two programs on two different computers

that are each sending and receiving a large of amount of data repeatedly at various stages of the program.

Despite a complex algorithmic design that relies on acknowledgments to move on to the next stage of the

program, when errors in transmission occur, the programs can become unsynchronized and therefore some

packets are sent across the network that are ignored by the receiving program, which is expecting a packet

with a different payload. Without the added delay, the transmitter and receiver have no chance to recover

from these misalignments or take significantly longer to re-synchronize. The MainThread loop delay is

currently programmed as 100 milliseconds for the ImagePrep task. Further study on the effects of the server

65

delay and client node idle time on system performance is planned for the future, see Section 6.3.

The ImagePrep task was the first task implemented as part of this research and it has been the most

thoroughly characterized and implemented in several variants to test the performance effects of varying the

electromagnetic environment, the multi-process vs. purely multi-threaded approaches to server program

implementation, and the difference between an entirely Wi-Fi connected system of nodes and one where the

server computer is wired to the network. Results of the ImagePrep characterization experiments are shown

and discussed in Section 5.1.

4.1.2 FAWN Key-Value Data Store Task

Andersen et al. designed, implemented, and characterized the Fast Array of Wimpy Nodes (FAWN) [28, 29],

an architecture for a network of low-power, inexpensive nodes of relatively little computing power that can

be used for data collection, storage, and retrieval. This architecture was designed specifically to be an

inexpensive implementation with low power consumption and to be optimized for solid-state data storage.

Andersen et al. advocate for this design because higher-computing-power designs with more expensive

higher-performance components are unnecessary for many applications in data centers.

Because retired mobile phones are also an example of inexpensive low-power nodes with limited computing

capability and solid-state data storage, the FAWN paper was one of the primary related works that Cluster

was compared against. To make a fair comparison between this work and the FAWN paper, a full

implementation of the FAWN key-value data store was programmed in the Cluster server program and

Cluster node app and characterized on the Cluster hardware.

4.1.2.1 Operation of FAWN Key-Value Data Store

The hardware chosen in Andersen et al.’s original work features 21 PCEngine Alix 3c2 devices, with

500 MHz AMD processor, 256 MB DDR SDRAM (400 MHz), 100 Mbit/s Ethernet, and 4 GB

CompactFlash data storage. Each FAWN node consumed 3 W when idle and a maximum of 6 W when

deliberately using 100% CPU, network, and flash memory.

The FAWN key-value data store algorithm was implemented in Cluster exactly as described in the original

paper. The algorithm generates 160-bit keys for each 50 – 1380 byte data block it needs to store, and uses

an in-memory hash table to store 16-bit fragments of the 160-bit keys. For a fetch operation, it looks up the

66

key fragment in memory, attempts to find the relevant block of data in storage from the fragment, retrieves

the full key from the returned block, checks for the matching of the full key, and returns the referenced data.

Although the original FAWN work contains details about how the memory is laid out on the flash storage

and how the entries in the hash table are interleaved and searched, this part of the implementation was the

only detail that was not possible to replicate. This difference was unavoidable because iOS and Android offer

developers almost no control over exactly how data is organized in memory. This is common in almost all

file systems as well; there is always an interface for storing data with an associated file path and file name,

and an interface for retrieving the data by name, but no control over specifically where the data is stored in

the large array of flash memory. This discrepancy is an acceptable difference that should not affect the

fairness of the comparison in performance between Cluster’s implementation and the original FAWN design.

The FAWN data store differs from the common Redundant Array of Independent Disks (RAID) storage

method in that it is a much simpler implementation comparable to a large hash table written to flash

storage rather than a full file system one might find on a hard drive. RAID storage is another possible

application for Cluster that would theoretically be quite well-suited to its architecture. Further study on the

Cluster implementation of various level of RAID storage is planned for the future, see Section 6.3.

4.1.2.2 Characterization

The relevant metrics Andersen et al. reported for their FAWN research include read and write speed to the

flash memory and energy consumption. The Cluster experiments were designed to measure those metrics as

well as network traffic and data size ratios. The statistics recorded for each single run of the FAWN

experiments for Cluster are listed below:

1. Timestamp

2. Number of client nodes

3. NetworkReceived: total kilobytes received from the client nodes

4. NetworkSent: total kilobytes sent to the client nodes

5. TaskData: total kilobytes of task-specific data to be processed

6. Number of key-value points to be stored (1600 for the experimental data set)

67

7. Stage number

8. MainThread loop delay (0 ms)

9. Measured elapsed time to complete the task

The amount of data to be stored was determined based on how much time it takes to complete a single run

of the experiment and the amount of memory available on the server computer. Because the four main

characterization tasks implemented for Cluster are too functionally different for directly comparing their

completion time to each other to be meaningful, the amount of data to be used for each task was adjusted

so that each trial of all experiments fell within ≈ 1 – 2 minutes for 10 connected devices. This constraint

allowed repeatable measurement of the task execution time. The number of data points per trial of the

FAWN experiment is fixed at 1600. The FAWN characterization task is the only task implemented so far

that has multiple distinct stages during its execution: (1) a generate and Store stage, (2) a waiting stage to

synchronize all client nodes when they are all finished with stage 1, and (3) a Fetch stage. The Cluster node

app is of course not perfect and the FAWN experiment was the last task to be implemented as time was

running out to finish this research. Because of this, the FAWN task crashes the Cluster app about 1 in every

20 runs, due to memory leaks or memory access violations that have not yet been able to be eliminated, but

significant improvements in the stability of the task were made from the initial implementation that was not

stable enough for any meaningful characterization experiments. In order for a trial to be considered valid

and be counted towards the collected statistics, all the devices that were connected at the beginning of the

run must still be running and connected at the end of the run, i.e. each node must finish the final Fetch

portion of the three-stage run.

In Stage 1, the randomly generated 160-bit key and 50 – 1380 byte data payload are sent together to the

client node for storage; 1380 bytes is the maximum Ethernet packet payload size of 1400 bytes minus the

key size of 20 bytes. In Stage 2, all nodes that are finished with Stage 1 wait for the others to be ready to

move on to Stage 3. The server computer keeps a copy of all keys and the payload data generated for each

client so that it can verify the data in Stage 3. In the final stage, all the data (all keys established in Stage

1) is queried in random order. Using the hash table memory lookup of the partial key and the data fetched

from the clients, the key and payload are verified and acknowledged by the server.

Because of time constraints on finishing this research, the FAWN task was only implemented for iOS (16

iOS devices were available for testing) and not Android. The Android implementation is planned for future

68

work. In the Cluster node app, there is a persistent database of key-value pairs; the iOS CoreData

architecture is similar to how the original FAWN flash storage memory is laid out, fragmented, and

queried [88]. The database is stored on the solid-state disk (flash memory) of the iOS phone or tablet.

Similar to how the original FAWN architecture retrieves 16-bit key fragments that may match many possible

entries in the entire data store and how paging and caching are done for complex file systems on hard drives

to improve data latency, blocks of data are retrieved all at once from the slower flash storage, not just the

part of the data block that contains the one specific key requested. This block is then cached in memory on

the client node so that it doesn’t have to be retrieved from the hard drive again the next time any of the

keys in that block are asked for. The oldest blocks are discarded when memory is full. The blocks are not a

fixed size, they are groupings of key-value pairs whose keys share the same key fragment, i.e. the first 16

bits. While there is a maximum quantity of 1000 key-value data pairs for a block, the CoreData interface

makes it possible to only retrieve those keys that exist, not a fixed block of memory that would occupy

1000× 1380 bytes = 1.38 MB.

Results of the Cluster FAWN key-value data store characterization experiments are shown and discussed in

Section 5.3.

4.2 Cluster Synthetic Tasks

Synthetic tasks were designed not to evaluate Cluster on a fully-implemented application, but instead to test

where performance bottlenecks may occur, for certain kinds of tasks, such as on the server or waiting for

dependent nodes to pass on the results of their partial calculations to other Cluster nodes.

4.2.1 Server-Prepared Data Task

The ServerPrep task was designed to observe the bottleneck that occurs when a task requires the server to

bear an unusually high percentage of the total computation for a distributed task. This task uses thread

sleeping and random number generation to achieve this effect. Similar to the ImagePrep and FAWN tasks

described earlier, the client nodes are completely independent and do not require data from their neighbors

to complete their calculations. Also, similar to the ImagePrep task, the client nodes are hot-swappable in

the implementation of the ServerPrep task.

69

4.2.1.1 Motivation

Normally, the server should only coordinate Cluster node activity and delegate almost all computation work

to the client nodes. However, it is possible that acquiring data and pre-processing data on the server

machine before it is sent out to the client nodes might take a significant amount of time and processing

power. This may occur because the data is being collected in real-time from sensors, retrieved from a hard

drive or far-away network resource, or the data is not suitable to be sent to the client node without some

initial pre-processing.

4.2.1.2 Operation

The operation of the ServerPrep task is similar to the ImagePrep task, the main differences being the size of

the data being passed to the client nodes (and thus the amount of network utilization), and the distribution

of work between the server and client nodes. First, the data is prepared on the child processes of the server

computer, with each of the n processes spending about 5 seconds in equal parts generating random numbers

and sleeping. The two activities are interleaved over the 5 second period, switching between sleeping and

generating random numbers between each of 50 generated floating-point data points per client, to simulate

wait time for retrieving data and pre-processing the data.

The client nodes are sitting idle during this data generation period. When the data is ready, it is sent to the

client nodes as ASCII encoded text in the Cluster packets’ payload. When received, the client nodes alter

the data with many floating-point multiply, add, and divide operations. This process takes ∼ 1− 3 seconds

depending on the model of the client mobile device.

The server prepares more data while client nodes are working. The clients send the altered data to the

server node and wait for the next set of data to be generated and sent. Each node works asynchronously and

independently and does not have to not wait for others to complete their work before they can continue.

4.2.1.3 Characterization

As with the other tasks, the common metrics to be characterized are energy consumption, the trend of

completion time vs. number of devices, and the ratio of network traffic to data size. The task runs until 80

data points have been generated, processed, and returned to the server. The statistics recorded for each

single run of the ServerPrep experiments are listed below:

70

1. Timestamp

2. Number of client nodes

3. Number of data points generated for this task (80)

4. NetworkReceived: total kilobytes received from the client nodes

5. NetworkSent: total kilobytes sent to the client nodes

6. TaskData: total kilobytes of task-specific data generated for this run

7. MainThread loop delay (100 ms)

8. Measured elapsed time to complete the task

As this task was designed to do, even with the processor able to devote compute time to the non-idle

threads during the sleep operations, and even with multiple processes spread across multiple processor cores,

the task of generating numbers quickly becomes a bottleneck for server processor time that cannot be

compensated by utilizing multiple server cores or the wait time at the Cluster client nodes. The scope of

this research only includes two sets of experiments for the ServerPrep characterization task; one in a typical

drywall room, and one in an electromagnetically-shielded room (Faraday cage). Both of these experiments

use the same parameters so that the only variable was the wireless environment.

While both of the synthetic tasks described in this chapter have been implemented and confirmed functional

in both the single-process C# version of the server program and the multi-process Python version of the

server program, time constraints led to only the multi-process implementation being thoroughly

characterized. All data collected for the two synthetic tasks and the FAWN data store task are from the

multi-process version of the server, which should theoretically perform equal to or better than the

single-process version. The results of the ServerPrep characterization task experiments are discussed in

Section 5.2.2. Further study is needed and planned to confirm the relative performance of the single-process

and multi-process versions of the server program, see Section 6.3.

4.2.2 Dependent Calculations Task

The DependentCalc task was designed to test the performance of a distributed computation task where the

Cluster client nodes are dependent on each other to accomplish the work. Many parallel computing tasks

71

operate this way with varying degrees of dependency between the computations associated with the task.

The DependentCalc task was designed to simulate that behavior with precise control over how far the

calculation can progress before more data is needed from the neighbor nodes and how many neighbors’ data

are required by each Cluster node.

4.2.2.1 Motivation

Many computationally-intense tasks have been the subject of research for how to parallelize them to speed

up the computation, and many such tasks have at least some dependency between the parallel

nodes [89, 90, 91]. Some examples of this are Monte Carlo simulations [92, 93] and calculating the digits of

pi [94, 95]. Dependency between nodes is impossible to avoid in some computing tasks, so it is important to

characterize how a distributed computer architecture based on retired mobile devices performs on these

tasks and what bottlenecks appear because of nodes waiting for their neighbors to pass their data.

Ti
m
e

DeviceDevice Device Device Device

DeviceDevice Device Device Device

.
.
.

Figure 4.2: Simple Direct Message Passing Between Nodes

In a typical computer network for distributed computers, the nodes are generally arranged in a star or tree

formation with a network switch or multiple layers of network hardware in the center and the compute

72

nodes at the leaves of the tree. For computers that use MPI or similar protocols for coordinating parallel

tasks, the nodes can simply pass data directly to the nodes that need it without the help of a coordinating

server node, as illustrated in Figure 4.2. Cluster certainly could be programmed to do this as well, but it

would require an implementation of the MPI library for Swift (iOS) and Kotlin or Java (the languages

Android apps are written in) that is supported by the relevant mobile operating systems. While these MPI

implementations do exist in Swift [96, 97] and Java [98, 99, 100], they are only supported by Linux and

Unix-based operating systems, not for mobile operating systems such as iOS and Android.

Additionally, there have been very few published works on making MPI run on Android mobile

devices [101, 102], but even those were not as simple as installing an app on the native operating system.

Those implementations required special super-user authority or installation of a Linux operating system on

the devices. This approach is contrary to one of the main goals of Cluster, i.e. to be as generically

compatible as possible so that any iOS or Android device can run the Cluster app and have the reliability

and full features of the native operating system behind it, therefore maximizing the variety and number of

retired devices that can be incorporated into Cluster.

4.2.2.2 Operation

The DependentCalc task begins the same as the ServerPrep task, with the server generating 50 random data

points to be sent to the client devices. However, this task does not intentionally stress the processor for

∼ 2.5 seconds and instead generates the 50 random numbers once, taking less than one millisecond to do so.

Just as the other synthetic task, the data is sent encoded as ASCII text and the app performs ∼ 1 second of

floating-point operations between the checkpoints where a device must receive data from its neighbor.

Figure 4.2 shows the circular path of data dependency in this task. A checkpoint is an event of passing data

between nodes so that the computation can proceed. Each node passes its partial calculation results to one

neighbor and receives data from a different neighbor. Then the calculation continues for a time until the

next checkpoint and this process repeats until the task is finished. The figure does not show how the data

must pass through not only the Wi-Fi router, but also the server computer as well.

While it is possible to implement a dependent task for Cluster such that the client nodes can send their data

directly to their neighbors through the router and not the server node, that would be a significantly more

complex implementation that is outside the scope of this research. That approach would require a partial

73

MPI implementation to be programmed into the app. That design would also make the hot-swappable

feature of the task implementation much more difficult to achieve. While hot-swappability is not critical to

most distributed computing applications, the stability concerns of an app-based cluster of retired mobile

devices makes this a very useful feature since apps may crash and therefore the device will temporarily leave

the cluster until they can restart the app and reconnect to the server. Another effort to undertake in the

future is to make the app able to automatically restart when it crashes.

ClientHandler
Child Thread

Device
Communicator

Ti
m

e

...

Send Results

Device

Retrieve Results

Send to Waiting
Device

Access
Communicator

Churn

Run Calculations

Send Results

Send Initial Data

Prepare Data

Prepare Data

ClientHandler
Parent ThreadClusterServer

Figure 4.3: Path of Shared Data in a Dependent Task with a Single-Process Server Program

For the single-process multi-threaded C# version of the server program, it is simple to track and coordinate

the shared data between nodes. Figure 4.3 shows the path the data takes from device to device through the

server program. The data is received by the DeviceCommunicator class, the only thread allowed to receive

data from the client node. Then only one level higher in the class hierarchy is needed because the

ClientHandler child thread, like all threads within a single process, has access to the same static data

structures where the requests for data are stored as they come in. So the ClientHandler can directly send

the intermediate data it receives to the node that needs it.

74

ClientHandler
Child Process

Device
Communicator

Ti
m

e

...

Send Intermediate
Data

DeviceClientHandler
Parent ProcessClusterServer

Store and Notify
Send to Parent

ProcessTell Server who
this is going to

Give to Correct Handler

Send to Waiting
Device

Access
Communicator

Send to Child
Process

Continue
Calculation

Work on
calculation until

more data needed

Send Intermediate
Data

Send Initial Data

Figure 4.4: Path of Shared Data in a Dependent Task with a Multi-Process Server Program

For the multi-process version of the server, sharing and coordinating between dependent compute nodes is

much more difficult as processes do not share memory. The parent process does not have access to the

objects that hold the TCP socket connection to the client nodes. Also, in order for the server program to

know where to send the data or to access a packet from the process that received it from the client, the data

must pass between processes through pipes (communication channels that can pass messages and packaged

objects between child and parent processes). Figure 4.4 illustrates that path; it is two layers deeper than the

path for the single-process server.

The child processes cannot talk to each other, they can only talk to the parent process. It is also possible to

set up pipes between child processes instead of the star network of pipes from the parent to the child

processes, but this requires significantly more overhead during the initial connection of the child node and

creation of the new process. It also requires exponentially more pipes. The number of pipes for any child

process to be able to send messages to any other is equal to the number of edges in a fully-connected graph,

n(n−1)
2 , where n is the number of client nodes plus 1 (for the server node).

75

Another possible design is to open a pipe from every child to the parent and create a ring of pipes that

connect all child processes to each other through one single path. This approach requires some overhead

when the processes are created, but much less than the fully-connected topology. The ring configuration

works well for tasks where each node only needs to send data to its adjacent neighbor, but would requires

more complex coordination for any other task as data would have to travel through each node to get to it’s

destination. A fixed configuration of any kind except a simple star shape would also be unsuitable for any

task where the destination that each node needed to send data to was not constant, but instead changed

from checkpoint to checkpoint.

Unlike the other three implemented characterization tasks, the server does not generate more data after the

task has begun. All of the work is done by the client nodes. The server is idle except for receiving the

intermediate data during checkpoints and passing it on to the correct client node.

4.2.2.3 Characterization

As with the other tasks, the common metrics to be characterized are energy consumption, the trend of task

completion time vs. number of devices, and the ratio of network traffic to data size. This synthetic task was

designed to have adjustable parameters for how many floating-point operations the Cluster app performs

between each checkpoint and how many neighbors it must receive data from in order to proceed. Within the

scope of this research, there was only enough time to characterize the task with one fixed set of values for

these variables. The experiments were set to have exactly one neighbor’s data be required between

checkpoints, as illustrated by Figure 4.2.

To determine when to stop the experiment, the task runs until 240 data points have passed through the

server node. The statistics recorded for each single trial of the DependentCalc experiments are listed below:

1. Timestamp

2. Number of client nodes

3. Number of data points generated for this run (240)

4. NetworkReceived: total kilobytes received from the client nodes

5. NetworkSent: total kilobytes sent to the client nodes

76

6. TaskData: total kilobytes of task-specific data generated for this run

7. MainThread loop delay (100 ms)

8. Number of neighbors which a single node depends on for their data (1)

9. Measured elapsed time to complete the task

There are many more experiments that could be run to test the viability of Cluster to run dependent tasks

under different parameters, variables, and configurations. The scope of this research only includes two sets

of experiments for the DependentCalc task; one in a typical drywall room, and one in an

electromagnetically-shielded room (Faraday cage). The results of the DependentCalc characterization task

experiments are discussed in Section 5.2.3.

77

Chapter 5

Cluster Characterization Results

This chapter describes the results of various characterization experiments for each of the implemented tasks

described in Chapter 4, both in a regular drywall room environment and inside an

electromagnetically-shielded metal-wall Faraday cage. These results are also compared against related works

with similar distributed computer architecture implementations.

5.1 Image Preparation Task

Since the ImagePrep task was the first task implemented and is representative of many highly-parallelizable

computations, many of the experiments involving changing the design of the server and the network were

performed using ImagePrep as a benchmark, with the intention of identifying performance bottlenecks

associated with the server computer and Cluster server program. As the number of devices increases in the

completion time experiments, the convention for choosing which devices out of all available ones will be

participating is that the newest devices are chosen first, presuming that they are the most reliable and have

the fastest processors. Therefore the single iPhone XS in the collection was always used when the number of

devices connected was equal to 1. Then, once the 1-device experiment was run at least 20 times, the devices

were allowed to idle for at least 15 minutes and the second newest device was added, and so on. When an

experiment needed n connected devices, the same n devices were always used for consistency. The

completion time shown in all figures includes the MainThread loop delay on the server node.

Completion time is the primary performance metric of interest since many cyber-physical system tasks are

78

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
EA

N
 T
O
TA

L
TA

SK
 T
IM

E
[S
EC

]

DEVICES

Total Task Time vs. Number of Devices

Threads Wi‐Fi Threads Wired Proc Wired

Figure 5.1: Measured ImagePrep Task Mean Completion Time vs. Number of Devices. Threads refers to the
single-process version of the Cluster server program while Proc refers to the multi-process version. Wi-Fi and
Wired refer to the type of connection between the server and the wireless router.

latency-sensitive and rely on batch processing of periodic uploads of recently-acquired data. For example, in

their bioacoustic monitoring research Deichmann et al. [18] programmed 10 audio recorders to capture 1

minute of audio sampled at 44.1 kHz every 10 minutes for 144 recordings per instrument per day. For

uncompressed monoaural audio stored in Waveform Audio File Format (WAV), this corresponds to about

5 MB of sound data per recording. Real-time processing of this data would require 50 MB of data to be

processed within 600 s, before the acquisition of the next set of recordings.

Figure 5.1 shows the results of three different experiments involving the ImagePrep task. The parameters of

the ImagePrep computing task were held constant between experiments: one data set of 2000 images, client

node programmed idle time of 100 milliseconds between each image request, the same group of mobile

devices, and the same environment and arrangement of devices within the room. The first experiment

(shown in blue) uses the first Cluster system design which features all devices, including the server,

connected to the network via Wi-Fi and the single-process server program written in C#. The second

79

experiment (shown in orange) is identical but the server computer was wired to the Wi-Fi router with a

CAT6 Ethernet cable. The third experiment (shown in gray) features the multi-process server program

written in Python, which has an exactly identical algorithmic design, and also a wired server computer.

It is clear from the figure that wiring the server computer to the wireless router eliminated one of the

bottlenecks, as changing only that connection reduced the completion time by an average of 54 seconds,

regardless of the number of client devices. The graph also shows no discernible difference in completion time

between the multi-process and the single-process server programs using the wired server-router connection.

This suggests that the bottleneck observed at between approximately 11 and 13 devices, where the

completion time settles towards an asymptote for the two wired experiments even when more devices are

helping to accomplish the task, was caused by the server program being limited by an underlying hardware

constraint as it attempts to coordinate the ImagePrep task across an increasing number of client nodes.

y = 650.13x-0.824
R² = 0.993

y = 1.0684x + 74.834
R² = 0.5327

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20 22

Ta
sk

 T
im

e
[s

ec
]

Number of Devices

Total Task Time (Multi-Process Server) vs. Number of Devices

Figure 5.2: Measured ImagePrep Task (Multi-Process Server Program) Mean Completion Time vs. Number
of Devices

Figure 5.2 examines the results from only the multi-process server running the ImagePrep task. The error

bars shown are one standard deviation from the 20+ runs that represent each data point. The minimum

average completion time of 84.2 s occurs for 11 client devices. Two trendlines are shown in the figure,

calculated from 1 to 11 devices and then when the trendline becomes more linear from 11 to 22 devices. The

80

Figure 5.3: Histogram of the file size of all 2000 images in the ImagePrep data set.

Figure 5.4: Histogram of the number of pixels for each of the 2000 Images in the ImagePrep data set.

right half of this graph shows the saturation of the Wi-Fi router. The older network hardware used for these

initial three ImagePrep experiments (NETGEAR N300 EX2700 router, see Section 3.11) was rated for

3.75× 107 bytes/s and the server computer’s network card (capable of supporting 10/100/1000 Ethernet)

had a measured effective bandwidth for this experiment of 5.179× 106 bytes/s on average.

As Figures 5.1 and 5.2 show, the relationship between total task completion time (the time to process all

2000 images) and number of devices is proportional to n−0.8 where n is the number of connected client

devices, for approximately n ≤ 11. This is an inversely proportional relationship, roughly K
n , where K is the

81

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ST
D
 D
EV

 [
SE
C
]

DEVICES

Total Task Time Standard Dev vs. Number of Devices

Threads Wi‐Fi Threads Wired Proc Wired

Figure 5.5: Measured ImagePrep Task Standard Deviation of Completion Time vs. Number of Devices.
Threads refers to the single-process version of the Cluster server program while Proc refers to the multi-
process version. Wi-Fi and Wired refer to the type of connection between the server and the wireless router.

time for one device to process all 2000 images, which is experimentally 704.322± 68.7 seconds. The results

show that even one reused mobile device node can provide sufficient performance for batch processing of

image data every 12 minutes, which should be adequate for many CPS applications. For more than 11

devices, the task completion time appears to increase slowly with additional client nodes (approximately

1.07 s added per each additional device). Since the performance saturates at around 11 client nodes, the

results argue for utilizing small clusters of reused mobile devices as fog computing nodes or cloudlets located

physically close to sensors and edge devices to minimize data transmission latency.

Figure 5.3 shows the file size distribution of all 2000 images used as the data set for the ImagePrep task.

The mean file size is 158 kB with a standard deviation of 69.6 kB. Figure 5.4 shows the dimension

distribution of all 2000 images used for the ImagePrep task, expressed as the total number of pixels for each

image. The mean number of pixels is 298,800 with a standard deviation of 150,310 pixels. The coefficient of

variation CV = σ/µ, where σ is the standard deviation of a distribution and µ is its mean, is a quantitative

82

0.00

0.05

0.10

0.15

0.20

0.25

1 3 5 7 9 11 13 15 17 19 21

ST
D
 D
EV

 /
 M

EA
N

DEVICES

Coeff icient of Variation of Total Task Time vs. Number of Devices

Threads Wi‐Fi Threads Wired Proc Wired

Figure 5.6: Measured ImagePrep Task Completion Time Coefficient of Variation vs. Number of Devices.
Threads refers to the single-process version of the Cluster server program while Proc refers to the multi-
process version. Wi-Fi and Wired refer to the type of connection between the server and the wireless router.

indicator of the spread (width) of the distribution. CV = 0.44 for the file size and CV = 0.50 for the number

of pixels in the ImagePrep data set.

Variation in performance is also an important parameter for cyber-physical systems with real-time or near

real-time constraints. Figure 5.5 shows the standard deviation associated with each of the mean task

completion time data points shown in Figure 5.1. The absolute standard deviation is much higher when only

1 – 3 client devices are connected. Even assuming the standard deviation of each single device’s performance

is independent of how many other devices are connected, when many devices are connected, the overall

performance of the whole cluster has less variation because each node operates independently and

asynchronously on the ImagePrep task. Therefore even if one device is experiencing slowdowns from

corrupted or missing packets or other misalignments in the synchronization with the server node, the other

devices compensate for this and take on more of the work until the task is completed.

The first data point with only one device connected has by far the largest standard deviation because of how

long a single device is required to continuously work with minimal idle time and no assistance from other

83

devices. One pattern of behavior observed, but not extensively studied during this research, is that the

performance is less predictable (i.e., the variance of the completion time is much higher and the app

becomes significantly more likely to crash) the longer the app has been continuously running in a non-idle

state. This is a very important characteristic of the Cluster app with significant implications for system

reliability and will be studied further in the future, see Section 6.3. Once the number of client nodes reaches

four, the absolute standard deviation is consistently below 20 s for both the multithreaded and multiprocess

versions of the Cluster server program with a wired server connection to the router. For the multithreaded

server program connected wirelessly to the router, eight or more client nodes must be employed in the

cluster, indicating that the Wi-Fi traffic between the server computer and router negatively impacts the

variation in the task completion latency as well as the total task completion latency.

Figure 5.6 shows the coefficient of variation CV for each of the data points in Figure 5.1. The observed

scaling of completion time and the standard deviation of completion time inversely with the number of client

devices is generally consistent with what queueing theory would predict, as is the relatively small and

consistent CV [103]. The distributions of completion time at a given number of client nodes do not follow

the same shape as the image size or image pixel count distributions shown in Figure 5.3 and Figure 5.4,

respectively, and the coefficient of variation of completion time is about 2× smaller than that of the image

distributions. These differences indicate that the image data is not the single determining factor for the

variation observed in completion time, and other factors such as network performance are important

contributors.

5.2 Task Completion Time Scaling with Number of Devices

As the design of Cluster progressed and characterization tasks were finished being implemented, the network

hardware was also updated (Rockspace AC750 router, see Section 3.11). As the implementation of all four

main characterization tasks was completed, more experiments were run to compare completion times, data

transmission statistics (see Section 5.4), energy consumption (see Section 5.5), and the effects of operating

the cluster in an electromagnetically-shielded room (see Section 5.6). Although the ImagePrep,

DependentCalc, and ServerPrep tasks have been implemented in both the C# and Python version of the

server program, all experimental results other than those shown in Section 5.1 were obtained using the

multi-process Python server, which theoretically has equal or better performance than the C# server

84

program.

Figure 5.7 shows the average time to complete each of the four tasks for an increasing number of connected

devices. Each data point is the average of at least 20 runs of the experiment. The standard deviation for

each of those data points is shown in Figure 5.9 and the coefficient of variation is shown in Figure 5.10. The

expected relationship between time and and number of devices is inverse proportionality, K
n , where n is the

number of devices and K is the amount of time for one retired mobile device to complete the task on its

own. The general trend of each of these plots shows the expected inverse relationship. The trend is more

clearly seen in the log-log plot of Figure 5.8. Three of the tasks, DependentCalc, FAWN Store, and FAWN

Fetch, exhibit near-ideal scaling with the number of client nodes. The trend appears independent of the

node heterogeneity, where the oldest devices are added last to the Cluster client node pool, indicating that

the performance of even ten-year-old retired mobile devices may not limit overall Cluster performance on

some tasks. The ImagePrep and ServerPrep tasks exhibit limited scaling at approximately 18 nodes and 10

nodes, respectively. Reasons for this will be discussed below. The results for the FAWN data store task will

be discussed in Section 5.3.

0

100

200

300

400

500

2 4 6 8 10 12 14 16 18 20

M
EA

N
 T
O
TA

L
TA

SK
 T
IM

E
[S
EC

]

DEVICES

Total Task Time vs. Number of Devices

Image Prep DepenentCalc ServerPrep FAWN Store FAWN Fetch

Figure 5.7: Measured Completion Time vs. Number of Devices for All Tasks

85

10

100

1000

2 4 8 16

M
EA

N
 T
O
T
A
L
TA

SK
 T
IM

E
 [
SE
C
]

DEVICES

Total Task Time vs. Number of Devices

Image Prep

DependentCalc

ServerPrep

FAWN Store

FAWN Fetch

Figure 5.8: Measured Mean Completion Time vs. Number of Devices for All Tasks (Log-Log Scale)

5.2.1 ImagePrep Task

For this set of experiments, the Wi-Fi router used (Rockspace, Section 3.11) was also rated for

3.75× 107 bytes/s and the server computer’s network card, which has sockets open to all connected devices,

was communicating at a measured maximum rate of 5.471× 106 bytes/s on average during the most

network-intensive task, ImagePrep. This means that the router was not saturated during the ImagePrep

task or any other task. For the ImagePrep task, the amount of time spent transmitting the images to and

from the server is significantly more than the amount of time spent on computation (altering the images),

specifically 2 to 10 times larger depending on the size of the image. Thus the bottleneck most likely is with

the network card on the server computer. Twenty or more devices communicating with one server computer

that has a limited number of multicore processors is likely to encounter a communication bottleneck at some

point as the network is scaled up, because the Cluster server program is servicing requests for each client

device. A high-performance server with sufficient parallelism to support enough client nodes to saturate the

Wi-Fi router would likely be better used to compute the application tasks directly on its own. Therefore, for

86

network-intensive tasks, a different Cluster design would be required to move past this asymptote, such as

using multiple low-performance server computers to coordinate the efforts of the client nodes.

Note that any comparison of completion time between different tasks has no meaning since the tasks have

many parameters that could be adjusted that would affect the total time for finishing the task, i.e. number

of data points, amount of client idle time, size of the data set, and more. Additionally the tasks are each

quite different, with too many variables to make comparing their completion time performance meaningful

in any way. However, some metrics do have meaningful comparisons between tasks, such as the point where

asymptotes occur as the number of client nodes increases, energy consumption, and network statistics.

Another thing to note about the data in Figures 5.9 – 5.10 is that the ImagePrep task is the only task to

have non-constant standard deviation for an increasing number of connected devices and has also

consistently the largest standard deviation. That task also has the highest coefficient of variation of any

task. This is most likely because it is difficult to synchronize the sending of a large file in fragments from

one device to another and to have it reassembled in the right order at the receiving node. TCP has a

well-established protocol for doing this for file downloads, but socket libraries for user-level programming

don’t have functions for sending entire files with confirmation, just simple send and receive functions, and

these were used to implement the lightweight file transfer protocol in Cluster. A queueing theory analysis of

these results is beyond the scope of the present work, but is suggested as a topic for future research.

5.2.2 Server-Prepared Data Task

The ServerPrep task was designed to induce a computation bottleneck at the server node. This behavior can

be observed in Figures 5.7 and 5.8 that show the ServerPrep task becoming approximately a constant time

with 10 or more devices connected. The ImagePrep task is the only other task observed to have an

asymptote of completion time for under 20 connected devices, shown in Figures 5.1, 5.2, 5.7, and 5.8. Since

the ServerPrep task performance stops scaling at fewer devices than the ImagePrep task, the network

performance does not limit ServerPrep task performance. As described in Section 4.2.1.2, the ratio of server

pre-processing time per client node to client node execution time ranges from about 1.67 to 5 for this

synthetic task, depending on the client node. Depending on the hardware chosen for the server, an

application with this type of skewed workload characteristic would not fully utilize a cluster with more than

a few client devices.

87

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20

ST
D
 D
EV

 [
SE
C
]

DEVICES

Total Task Time Standard Dev vs. Number of Devices

Image Prep DepenentCalc ServerPrep FAWN Store FAWN Fetch

Figure 5.9: Measured Completion Time Standard Deviation vs. Number of Devices for All Tasks

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

2 4 6 8 10 12 14 16 18 20

ST
D
 D
EV

 /
 M

EA
N

DEVICES

Coefficient of Variation of Total Task Time vs. Number of Devices

Image Prep DepenentCalc ServerPrep FAWN Store FAWN Fetch

Figure 5.10: Measured Coefficient of Variation of Completion Time vs. Number of Devices for All Tasks

88

5.2.3 Dependent Calculations Task

Figure 5.8 shows that the DependentCalc synthetic task can continue scaling beyond 20 client nodes, despite

the potential bottleneck created at the server, which is responsible for passing messages between the client

nodes. The synchronization barriers occur at approximately 1 second intervals as the arbitrary computation

included in the version of the DependentCalc task studied in this work does not exercise any significant

differences in the computational throughput of the client nodes. In an implementation with a larger age

distribution of reused devices or a workload that requires significant computation time, the oldest devices

with the least performance are likely to limit the overall performance of tasks with data dependency.

Further study of this is suggested as future work.

5.3 FAWN Task

As shown in Figures 5.7 – 5.10, the FAWN task was only characterized up to 16 devices because of time

constraints on the implementation. The FAWN implementation needed to be precise and so to maximize

available time, the FAWN task was only implemented on the iOS Cluster app, not the Android Cluster app.

Thus the data for the FAWN task is all from a Cluster built using iPhones and iPads. Further study of

Cluster as a FAWN implementation may be needed in the future, and if so, the Android app will feature this

task. It is possible that an Android implementation may perform better than the iOS realization as Android

has a completely different interface for accessing the non-volatile flash storage on the mobile devices.

The FAWN task was characterized in two stages, Store and Fetch, to be able to compare the read and write

speeds to the original work. The Fetch portion of the task attempts to fetch all key-value pairs that were

written to the app’s database in the Store stage in random order. The execution time of both stages can be

observed to be identical from Figures 5.7 and 5.8.

5.3.1 Comparison to the Original FAWN Work

In their paper [28, 29], Andersen et al. achieved a random read rate of 1424 queries per second (qps) and a

write rate of 110 qps for a 3.5 GB dataset. Their reported speeds were significantly faster with a comparable

size dataset to the one tested with Cluster (250MB), 6824 qps for random reads. Random writes were not

reported for this dataset size.

89

The Cluster implementation achieved FAWN data store rates, for 1 kB entries, of 67.65± 1.76 qps

(52.06 kB/s) for random reads and 74.14± 15.14 qps (52.06 kB/s) for random writes. This seems

significantly slower than the original FAWN work, but it is important to note that the Cluster

implementation has the additional overhead of having to send the data over a network before it can be

written to the database. Similarly for the fetch operation, the data must be sent to the server node after it’s

retrieved from the database. FAWN originally targeted data center applications; the performance achieved

by Cluster is adequate for cyber-physical systems applications that likely involve relatively small data sets

and a limited number of simultaneous queries.

This overhead certainly constitutes more than half of the total time consumed during the characterization

task. Therefore the rate reported here is the rate at which data could be stored in real time from the

perspective of the server if it sent the data as fast as possible to the connected devices, which is not the same

metric as the original FAWN paper reported. Additionally, this was the fastest store and fetch rate with 16

client nodes and no asymptote of task completion time was observed for the FAWN implementation up to 16

devices, so the maximum rate is likely even faster than what could be measured in these experiments.

A new experiment is needed to characterize how fast the data can be added to the database or fetched from

the database without interacting with the server node. This experiment would not interleave the server

interaction with the reads and writes and would do all database interactions all at once and measure that

time separately from getting or sending data to the server before or after the bulk read and writes. This

experiment is planned for the future, see Section 6.3.

Andersen et al. also reported the rate in MB/s of sequential reads and writes. This statistic is currently not

possible to measure with Cluster’s implementation of FAWN because the iOS CoreData interface doesn’t

provide an interface for reading all of the stored data in sequential order. However, there is an interface for

getting all data in a particular table of the database which may provide the fastest possible read speed

comparable to sequential reads. That characterization and a similar one for maximum write speed are

planned for the future.

5.4 Network Statistics

Another important metric for Cluster tasks is the amount of data required to be sent across the network

throughout the execution of tasks. Table 5.1 shows how much total data each task requires to be passed

90

between client and server.

Task Sent to Clients Received from Clients Task Data
ImagePrep 319458.266± 3100 kB 146651.266± 8500 kB 316173.561± 0.0 kB
FAWN Store 1219.770± 13.702 kB 0.0± 0.0 kB 1203.008± 13.664 kB
FAWN Fetch 545.063± 124.096 kB 1023.630± 193.976 kB 1203.008± 13.664 kB
ServerPrep 240.586± 37.346 kB 241.464± 36.601 kB 238.581± 36.220 kB
Dependent
Calculation

173.41± 78.19 kB
device 154.59± 63.25 kB

device 0.974± 0.124 kB
device

Table 5.1: Average Network Data Traffic per Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6 8 10 12 14 16 18 20

TO
TA

L
TR

A
N
SM

IT
TE
D
 D
A
TA

 /
 S
IZ
E
O
F
D
A
TA

SE
T

DEVICES

Total Transmitted Data / Size of Dataset

Image Prep Received

Image Prep Sent

ServerPrep Received

ServerPrep Sent

FAWN Str Received

FAWN Str Sent

FAWN Ftc Received

FAWN Ftc Sent

Figure 5.11: Transmitted Data / Total Task Data vs. Number of Devices

The data in Table 5.1 is constant for any number of connected devices, except for the DependentCalc task

which generates unique data only at the start of the task and never again, and the amount of generated data

is proportional to how many devices there are. The tasks implemented to characterize Cluster were designed

to have a fixed amount of data that needs to be processed to complete the task. For most tasks, this results

in a constant amount of network traffic regardless of how many devices are connected. This can be observed

in Figure 5.11.

91

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

2 4 6 8 10 12 14 16 18 20

T
O
TA

L
T
R
A
N
SM

IT
T
ED

 D
A
TA

 /
 S
IZ
E
O
F
D
A
T
A
SE
T

DEVICES

Total Transmitted Data / Size of Dataset

DepenentCalc Received

DepenentCalc Sent

Figure 5.12: Transmitted Data / Total Data for DependentCalc Task vs. Number of Devices

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2 4 6 8 10 12 14 16 18 20

ST
D
 D
EV

 /
 M

EA
N

DEVICES

Coefficient of Variation of Transmitted Data / Total Task Data vs. Number of
Devices

Image Prep Received

Image Prep Sent

DepenentCalc Received

DepenentCalc Sent

ServerPrep Received

ServerPrep Sent

FAWN Str Received

FAWN Str Sent

FAWN Ftc Received

FAWN Ftc Sent

Figure 5.13: Coefficient of Variation of Transmitted Data / Total Task Data vs. Number of Devices

92

In terms of network activity, another metric than can be measured from knowing how much data is sent

across the network and the size of the initial dataset is the ratio of data transmitted divided by dataset size.

This ratio, called the ratio of network data propagation for the purposes of discussion, describes how much

network traffic is needed for a particular task compared to how much data there is to process. This can be

an important metric to measure for Cluster and similar distributed computer architectures because it may

help determine how suitable a task is for Cluster, which uses Wi-Fi connectivity and retired devices

compared to more powerful compute nodes with gigabit wired connectivity.

Tasks that require large amounts of network traffic will run slowly and be less efficient on Cluster than on

traditional distributed computers because of the limitations of Wi-Fi and a single coordinating server node

through which all data passes. The lack of an asymptote in completion time for the DependentCalc and the

FAWN tasks for the experiments presented here indicate those types of tasks are more scalable on Cluster

than other task types and are therefore the most appropriate types for this kind of architecture to be able to

run efficiently.

Note there are four overlapping lines in Figure 5.11 that hover just above a network data propagation ratio

of 1.0. This indicates that for ServerPrep (both sending and receiving), FAWN (sending), and ImagePrep

(sending), the amount of data required to be sent across the network is almost equal to the amount of data

there is to process. The small amount that the ratio exceeds 1.0 is because of packets that needed to be

re-transmitted and the extra packets that do not contain data, but rather commands required to coordinate

the task execution.

The total amount of network traffic is still double the size of the dataset in cases where the ratio is 1.0

because the data needs to be sent to the client nodes and then sent back. In some cases, the amount of data

received at the server is smaller than the total that was sent to the client nodes. This is the case for FAWN

(data received during the Store stage is 0), ImagePrep (image files come back smaller after processing), and

erroneously for both sent and received metrics for the FAWN Fetch stage. The way the network traffic is

measured is, at the server node, every byte sent and received from each open socket is added to a global

accumulating sum. The reason the FAWN Fetch statistics have such a high standard deviation in Figure

5.11 is that the FAWN task is the least stable of all implemented tasks due to memory access bugs and

errors that were not able to be fixed in time for these experiments. Therefore, in almost every run of the

experiments (less so with only 2 or 4 connected devices), some devices would experience app crashes

93

between the first and third stages (Store and Fetch with a synchronizing stage in between) of the FAWN

task characterization experiment. This app failure resulted in the data being unavailable for those devices

during those runs, which meant the total amount of data transmitted across the network was less than the

total size of the dataset for all devices. Theoretically, the ratio should be 1.0 for the FAWN Fetch stage as

well if there are no app crashes. This can be seen from the data points for 2 connected devices where the

app rarely crashed.

The ratio for DependentCalc is beyond the y-axis scale of Figure 5.11, so that data is shown in Figure 5.12.

The ratio is very high compared to other tasks because a small amount of data (∼ 1 kB per device) is

generated at the start of the task and no new data is generated for the rest of the task’s operation, but data

is still continuously passed between client nodes through the task execution. This is similar to how many

parallel scientific computing applications like calculation of the digits of pi would work: an initial seed of

data would be given to each device and then the calculation would proceed at the client without needing

any more information from the server, each client only needing intermediate results from neighboring client

nodes to proceed.

Ignoring the data for the FAWN Fetch task due to Cluster app instability during its characterization, as

discussed above, Figure 5.13 shows that for most tasks, the total transmitted data to total task data has a

narrow distribution, with CV < 0.1 for all tasks except DependentCalc once the number of client nodes is

four or more. The distribution (variation) for DependentCalc is generally higher but still relatively narrow

(CV < 0.25). For the tasks studied in the present work, the main conclusion is that network traffic does not

vary widely as the number of client nodes increases.

5.5 Power

Energy consumption is a critical metric for any distributed computer. Data centers and supercomputers

consume 100 – 200 times more energy than a typical office building [104, 105]. The majority of that

electricity cost is the cooling system (about 50%) with only about 36% of total energy consumed by the

computers and network hardware [106, 107].

To measure Cluster’s energy consumption, a Poniie PN2000 Electricity Monitor was used to measure the

total energy consumed by performing many runs of each task individually over several hours until the energy

consumption reported by the meter constituted at least 2 significant figures. The client nodes each have a

94

0

10

20

30

40

50

60
8 Devices (5i3a) ‐ Power per Task

Android

iOS

Po
w

er
 (W

)
Po

w
er

 (W
)

16.0 13.1 18.3 7.1 1.07 8.6 52

(a)

0

10

20

30

40

50

60

70

80

12 Devices (8i4a) ‐ Power per Task

Android

iOS

Po
w

er
 (W

)

21 17.8 24 10.9 1.83 14.0 72

(b)

0

10

20

30

40

50

60

70

80

90

16 Devices (10i6a) ‐ Power per Task

Android

iOS

Po
w

er
 (W

)

27 24 32 14.5 3.4 19.1 90

(c)

0

20

40

60

80

100

120

140

25 Devices (16i9a) ‐ Power per Task

Android

iOS

Po
w

er
 (W

)

43 42 46 26 5.2 32 129

(d)

Figure 5.14: Measured Power per Task vs. Number of devices. The number of Android devices is denoted by
“a” and the number of iOS devices is denoted by “i”.

battery, but Cluster was designed for all the mobile devices to remain powered by the charging cable at all

times. Therefore the power measurements and all other experiments were performed with the batteries

100% charged so that all electricity consumed would be from the wall outlets. Devices were plugged into

AILKIN 4-Port USB Brick adapters that each had four USB charging ports. The results of the power

measurement experiments are shown in Figure 5.14. The data is also represented as linear plots in

Figures 5.15, 5.16, and 5.18, with different operating systems on separate graphs. The title of each chart

indicates how many Android devices and how many iOS devices (“a” corresponds to Android, “i”

corresponds to iOS) were used for each of those data points, with colors also indicating the proportion of the

95

y = 1.7449x + 0.5416
R² = 0.9889

y = 1.9486x ‐ 2.4226
R² = 0.9858

y = 1.8757x + 4.258
R² = 0.9906

y = 1.7386x ‐ 2.2394
R² = 0.9893

y = 0.1909x ‐ 0.3277
R² = 0.996

y = 1.5715x ‐ 2.663
R² = 0.9993

0

5

10

15

20

25

30

35

5 6 7 8 9 10 11 12 13 14 15 16

M
E
A
N
 T
A
SK
 P
O
W
E
R
 [
W
]

DEVICES

Task Power vs. Number of iOS Devices

ImagePrep

ServerPrep

DependentCalc

FAWN

Sleep

App Running Idle

Figure 5.15: Measured Power vs. Number of iOS Devices

total power per operating system.

The original FAWN implementation [28, 29] consumed 3.9 watts per node when idle, 4.3 W/node on storing

data, and 4.7 W/node on fetching data. Cluster consumes 1.29 W/node when the app is running and idle,

and 1.63 W/node when running any stage of the FAWN task. The nodes use even less power when the

device is asleep (while still plugged into wall power); only 0.21 W/node. The other tasks use only slightly

more energy then the FAWN task, a maximum of 1.88 W/node for the DependentCalc task, which

dissipates 45.8 W when all 25 devices are running that task.

Another system of used mobile devices, created and benchmarked by Switzer at al. [26] constructed an

architecture similar to Cluster out of Google Nexus 4 and Nexus 5 devices running Ubuntu Touch instead of

the native Android operating system; further discussion of this work appears in Section 5.8.2. Their system

consumed 0.9 W/node when idle and 2.8 W/node when actively computing. In both cases, Cluster operates

96

with lower energy per node when actively computing and when idle. This is likely due to the low-power

design of mobile devices and the native operating system being more optimized for energy efficiency than a

third-party Linux OS.

Figure 5.17 shows the average power per device for iOS and Android for each task. Here it can be seen that

the iOS devices tested consume more power than Android devices in almost all instances except for sleep

mode, and it is unknown for the FAWN task since the FAWN task was not yet implemented for Android.

y = 1.4363x + 1.4726
R² = 0.999

y = 1.2712x + 0.6564
R² = 0.999

y = 1.2235x + 0.5143
R² = 0.9974

y = 0.3574x ‐ 0.6344
R² = 0.9727

y = 1.0728x ‐ 0.0616
R² = 0.9993

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9

M
EA

N
 T
A
SK

 P
O
W
ER

 [
W
]

DEVICES

Task Power vs. Number of Android Devices

ImagePrep

ServerPrep

DependentCalc

Sleep

App Running Idle

Figure 5.16: Measured Power vs. Number of Android Devices

5.5.1 Computational Carbon Intensity

Switzer et al. [26] established the metric Computational Carbon Intensity (CCI) to evaluate the

CO2-equivalent (CO2e) released per unit of computation work across the entire lifespan of the compute

nodes in a distributed computer made up of used mobile devices and compare it to alternate

97

0.00

1.00

2.00

3.00

4.00

5.00

6.00

ImagePrep ServerPrep DependentCalc FAWN Sleep App Running
Idle

Charging

Po
w
er
 [
W
]

Task

Task Power Per Device

iOS

Android

Figure 5.17: Measured Task Power Per Device

y = 4.6077x + 12.725
R² = 0.9978

y = 4.3786x + 4.0429
R² = 1

10

20

30

40

50

60

70

80

90

3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
EA

N
 T
A
SK

 P
O
W
ER

 [
W
]

DEVICES

Charging Power vs. Number of Devices

iOS Charging

Android Charging

Figure 5.18: Measured Charging Power vs. Number of Devices

implementations using conventional data center servers. The equation for CCI proposed by Switzer et al. is:

CCI =

∑
lifetime

CO2e∑
lifetime

ops
=

CM + CC + CN∑
lifetime

ops
(5.1)

98

The quantity ops in this case is the number of Operations Per Second, which varies depending on the task,

but is generally equal or proportional to either (1) flops, floating-point operations per second, a common

measurement of processor work, or (2) bytes per second, a measure of how much data is being processed for

a task and how quickly.

CM is the carbon emissions from manufacturing the device originally. It is a one-time cost and is assumed to

be zero for the purposes of this work because the devices are reused and thus already manufactured. Switzer

at al. also assumed this value to be 0 for their implementation with additional carbon cost associated with

replacing the devices’ batteries about every 2 years. The Cluster implementation does not require batteries

to be replaced. The devices may have defective batteries and it makes no difference since the devices are

wired to power at all times. However, as Switzer et al. state, batteries can provide a backup feature by

serving as an uninterruptible power supply (UPS) that may be important for a cyber-physical system.

CC is the carbon associated with the energy of compute. This is the carbon footprint of the energy

generated and transmitted on the power grid. This metric varies depending on how the energy was

generated and may even be 0 if the energy is clean renewable energy. Similarly, CN is the carbon associated

with the energy consumed by the networking hardware, including Wi-Fi routers and the Wi-Fi antennas in

the mobile devices and the server computer’s network card. The power consumption of networking and

compute for Cluster were measured together since the energy of the Wi-Fi hardware on the mobile devices

could not be measured separately in these experiments.

Below is presented the calculation of CCI for two different scenarios of Cluster running the ImagePrep task

in order to compare the carbon intensity against the system presented by Switzer et al. Because the

performance of the ImagePrep task saturates at 18 devices, the two scenarios will assume 18 devices running

the ImagePrep task at 2 different duty cycles for a period of one month (31 days). The scenario corresponds

to a limited-duration cyber-physical system task such as an image-based biodiversity or environmental

monitoring study. For example, the study in Deichmann et al. [18] consisted of a 14 day first study period

followed by a second 17 day period.

Scenario 1 consists of a very small compute task duty cycle of one run of the ImagePrep task per day, which

at 2000 images processed per run yields a total of 62,000 images processed in the 31-day lifetime of the

study. This scenario corresponds to a daily upload of images captured by remote sensing nodes. Since the

Switzer et al. paper presents one of their studies in terms of mgCO2-e/Mpixel (milligrams of carbon

99

dioxide-equivalent per megapixel), it is relevant to mention that the 2000 images in the tested dataset

contain in total 597.5996 Mpixels. This is a task duty cycle of 0.139% for Scenario 1.

Scenario 2 has approximately the highest possible duty cycle for the ImagePrep task. Instead of running the

task once per day, the task is run once every 90 seconds. Since the task takes 87 seconds to complete on

average for 18 devices, this is a duty cycle of 96.67%. The equation for CCI for both scenarios is shown

below.

CCI =
CM + CC+N∑

lifetime ops
=

CM +CIsolar × Lifetime× (Fracactive × Poweractive + Fracsleep × Powersleep)∑
lifetime ops

(5.2)

The parameters used in the CCI calculations are as follows:

� CIsolar is the carbon intensity of solar power as stated by Switzer et al., 48 gCO2-e/kWh. In addition

to providing a lower bound on CCI since solar energy has the lowest carbon emissions of the electricity

sources identified by Switzer et al., in remote locations solar panels may be the only realistic power

source for Cluster.

� Lifetime is 31d× 24h
d = 744 hours.

� Fracactive is the fraction of the total time that the ImagePrep task is running.

� Fracsleep is the fraction of time the mobile devices are sleeping (for Scenario 1) or the app is idle (for

Scenario 2) when the rest time between runs is too short for the mobile devices to go to sleep and wake

up again in time for the next run. For example, Figure 2.7 shows that the connection time for Wi-Fi is

over 4 s, so in Scenario 2 the Cluster app must go into idle mode to maintain the Wi-Fi connnection.

� Poweractive is the power consumed while the ImagePrep task is running with 18 devices, 30.71 W,

interpolated from the sum of both Android and iOS measurements at 16 and 25 devices, see Figure

5.14.

� Powersleep is the power consumption of 18 average mobile devices in sleep mode for Scenario 1, 3.77

W, and the power of 18 devices running the app, but in an idle state for Scenario 2, 22.04 W.

� The sum of lifetime operations for Scenario 1 is 597.6Mpixels
run × 31 runs = 18525.5 Mpixels.

100

� The sum of lifetime operations for Scenario 2 is 597.6Mpixels
run × 31d× 62400 s

d/90
s

run = 12844407.4

Mpixels.

The calculated CCI values for both scenarios are shown below.

CCI1 =
135.82 gCO2-e

18525.5 Mpixels
= 7.331 mgCO2-e/Mpixel

CCI2 =
1086.43 gCO2-e

12844407.4 Mpixels
= 0.0846 mgCO2-e/Mpixel

Per device, this is CCI1 = 0.407 mgCO2-e/Mpixel and CCI2 = 0.00470 mgCO2-e/Mpixel. This is compared

to the results from Switzer et al. where CCI was equal to 0.012 mgCO2-e/Mpixel (per Pixel 3A device) and

0.041 mgCO2-e/Mpixel (per Nexus 4 device) for their PDF rendering benchmark. The computations in the

ImagePrep task and the PDF rendering benchmark chosen by Switzer et al. are not equivalent, so the CCI

calculations for Cluster are simply indications that Cluster has a carbon footprint within an order of

magnitude greater (Scenario 1) or smaller (Scenario 2) than the system implemented by Switzer et al. The

CCI numbers indicate that Cluster should be more carbon-efficient than utilizing a conventional data center

for the same tasks, however this preliminary result must be followed up by more extensive comparative

studies to draw significant conclusions.

5.6 Faraday Cage Experiments

Using Wi-Fi to network the Cluster client nodes to the server introduces two issues. First, interference from

other devices and wireless LAN transmitters outside the cluster can reduce network performance. Second,

hackers could obtain access to the Cluster packets to steal information or sabotage operation, which could

have serious consequences if Cluster is employed in a cyber-physical system. While encryption could

improve security, the additional overhead could further degrade performance. Isolating the cluster from

outside interference and hackers can be accomplished by electromagnetically shielding the wireless network.

In addition, one possible use case for Cluster with improved sustainability is to fill a large used metal

shipping container with shelves of used mobile devices to create a private database, distributed computer, or

other Cluster application. In order to test Cluster’s performance in this kind of environment and quantify

the effects of shielding the network of devices from the electromagnetic noise of the world, a series of task

101

characterization experiments were run in a large, sealed, walk-in Faraday cage in the basement of a

university research building.

The Faraday cage is 1.82 m deep × 1.90 m wide × 2.93 m tall and made of 15-centimeter-thick riveted

aluminum and steel walls filled with an electromagnetic (EM) radiation absorbing material. The small room

is built to building code with a fire sprinkler, active ventilation, electric lights and outlets, and a large metal

door similar to a walk-in refrigerator, but the door slips into copper brackets that make the room almost

air-tight (if it weren’t for the ventilation system) and completely shielded against a large range of EM

radiation from radio waves to Wi-Fi and more.

The experiments in the cage were primarily focused on the best location for the Wi-Fi antenna of the router

to be located. Three sets of experiment runs were performed on the three tasks that were implemented at

the time, ImagePrep, ServerPrep, and DependentCalc. For each experiment, the mobile devices were laid

out on 2 inches of corrugated cardboard sitting on top of 4 inches of cushion foam. That setup, the server

computer, and the Wi-Fi router were elevated 1.22 meters off the floor using two plastic folding tables. The

table with all the mobile devices was placed against one wall so some devices were 3 cm from the wall and

some were as far as 60 cm from the wall.

The three locations tested for the Wi-Fi antenna were in the center of the room, against the opposite wall as

the devices (4 centimeter clearance to the wall), and in one corner of the room (4 centimeter clearance to

both walls). The results of these experiments are shown, along with data of the corresponding tasks from

the other timed experiments not in the Faraday cage, in Figure 5.19.

The general results of the experiments in the Faraday cage are that tasks with a high amount of network

traffic perform worse in the large metal box than in a more typical wood and drywall room, and tasks that

have relatively little network traffic perform equal to the drywall room environment, but with a higher

standard deviation in the completion time.

The DependentCalc results are less conclusive, but generally agree with this result. The issues that were

most likely responsible for the inconsistent results of the DependentCalc experiments were Cluster app

stability, lack of accessibility to the experimental setup, and newness of the DependentCalc task

implementation. The DependentCalc task tested in the cage was an early version of the task with less

consistent results than the improved version tested later for the timed experiments described in Section

4.2.2. Also, the large metal door to the cage is heavy and requires significant strength and body weight to

102

0

40

80

120

160

200

240

280

ImagePrep
Drywall Room

ImagePrep 11 ImagePrep 21 ServerPrep
Drywall Room

DependentCalc 11 DependentCalc 22

M
ea

n
Ta

sk
 T

im
e

[s
ec

on
ds

]

Task and Number of Devices

Total Task Time vs. Location

Center WallCenter Corner

11, 21

11, 21

11, 21

Drywall Room

ServerPrep 11 ServerPrep 22 DependentCalc
Drywall Room

Figure 5.19: Measured Task Completion Time for Faraday Cage Deployment

push the lever down that latches it closed. For this reason, the tasks were left to run unattended for two

hours at a time to minimize the operation of the door. This lack of supervision, and the fact that the

Cluster app crashed more often in the version that existed when the Faraday cage experiemnts were run, are

likely causes of error and variance in the results.

However, the ImagePrep and ServerPrep results are quite clear. The antenna location matters for high

network traffic tasks like ImagePrep and doesn’t matter for other tasks. The metal walls of the room are

highly reflective to EM waves like Wi-Fi and so there is significantly more interference generated by

multipath effects during a high wireless traffic task. It can be observed that moving the antenna away from

the walls is sufficient to make the Faraday cage a viable location for even a high-traffic task, but the

standard deviation is significantly higher in a small metal-enclosed space for such tasks because of corrupted

packets and interference. The average completion time is about equal for all tasks in the Faraday cage,

particularly if the router antenna is not too close to the metal walls. If there is any benefit to blocking out

the EM radiation present in normal office rooms, it seems to be mitigated by the high amount of signal

reflections from sheet-metal walls. Further study is needed to see if an anechoic chamber, where there are no

reflections off the walls and no outside interference from EM radiation either, might offer some benefit to the

higher-traffic tasks or any other task.

103

5.7 Idle Time and Performance

Although the effects of idle time on the performance of the system were not extensively studied in this

research, some observations have been made on the subject as a result of running experiments for 10 – 20

consecutive hours during some weeks. Often the most anomalous results were observed when the mobile

devices and the server computer had been running experiments for more than 15 hours without being

restarted or allowed to enter sleep mode.

The Cluster app ensures that the mobile devices cannot enter sleep mode while the app is running,

regardless of whether a task is running or not. This is to ensure the TCP socket stays connected so that the

app can be sent commands at any time from the server. Though the device cannot lock (i.e., enter sleep

mode), the Cluster app does allow the screen to display all black, but the screen is not powered-off, even

while a task is running. The app was designed to be opened once and then never need user interaction again

unless it crashes. The server commands all other actions for the app to take and the app automatically

searches for and connects to the server if it is running.

As a result of this design, the mobile device’s internal temperature rises after 15 hours of non-sleep

operation. The devices were not running tasks continuously during these longer durations of non-sleep, but

the devices still shows signs of needing to idle or restart after about 15 hours of being active. The tasks

often run slower as a result of the device’s processor running at elevated temperature, a result consistent

with the literature [87]. Additionally it is well known that software is not perfect and many hours of

operation without restart leads to worsening performance because of memory leaks and other small

implementation errors. Often, the data collected during this period of continuous Cluster operation was

observed to be significantly higher in standard deviation and the tasks would take 200% – 400% longer to

complete. Those results were excluded from the data shown in this dissertation. In every instance, the

devices were restarted and the results became much more consistent afterwards. Further study of the effect

of idle time and thermal management of devices on the performance of a retired-mobile-device-based system

is planned for the future.

104

5.8 Related Work

Chapter 1 presented an overview of how the present work fits in the context of past and current research

related to reusing mobile devices. In this section, related work to the research presented in this dissertation

is discussed in more detail.

5.8.1 Distributed Sensing

Several research projects have explored ways of reusing mobile devices directly for distributed sensing or as

gateways for sensors. For example, the Rainforest Connection organization [17] and Deichmann et al. [18]

employed used cellphones to upload audio data from passive bioacoustic monitoring to detect illegal logging

and study the impact of natural gas exploration on tropical forest biodiversity, respectively. Maker et al.

developed an app that allowed a Nokia N80 smartphone to be used as a camera trap, however they did not

deploy and characterize their repurposed devices in the field [19]. Zink et al. characterized a mobile phone

repurposed as an in-car parking meter to perform a comparative life cycle assessment of reuse versus

refurbishing the phone [11]. The present work focused specifically on characterizing how the different

wireless interfaces supported on mobile devices can be used for data transfer, and is therefore

complementary to research on repurposing mobile devices as sensors.

Employing retired mobile devices to serve as gateways between IoT devices and the cloud has been proposed

by several research groups. The mobile device short-range wireless interfaces (Wi-Fi, Bluetooth Low

Energy) would be used to collect data from IoT nodes and the mobile devices would then use their cellular

interface (GSM, 5G) to upload data to the cloud. For example, Klugman et al. [14, 15] studied using

Android phones as cellular gateways in Zanzibar, Tanzania, to upload AC power measurement data from a

commercial off-the-shelf plug-load power meter. The present work focuses instead on how reused mobile

devices can use their wireless interfaces to exchange small amounts of data with a query vehicle or data

mule, that would then connect to a gateway at a different location. Therefore, the results presented here

complement prior work on reusing mobile devices directly as network gateways.

5.8.2 Distributed Computing and Data Storage

Despite initial promise, the concept of building mobile devices out of modular components that could be

upgraded and reused has produced disappointing results [12, 13]. Consequently, several publications have

105

explored how entire mobile devices can be reused in public-resource computing, cloud computing, and fog

computing. As an example appliction in public-resource computing, Büsching et al. proposed creating

ad-hoc distributed computing systems out of collections of physically co-located personal mobile phones, e.g.

using all of the personal phones of passengers on a train to compute a local weather forecast [16]. They

implemented DroidCluster, a cluster of six LG P500 Android phones with Linux installed alongside

Android, and characterized DroidCluster’s performance on the LINPACK benchmark running on the MPI

library. In contrast, Cluster, the distributed computer presented here, uses a heterogeneous collection of

Android and iOS devices, and uses a custom communication protocol instead of MPI between the Cluster

nodes. In addition, Cluster was characterized on a variety of tasks related to supporting cyber-physical

systems and not just scientific computing. DroidCluster examined performance scaling up to only 6 devices,

while the present work studied scaling to 16 to 22 devices, depending on the task.

Shahrad and Wentzlaff [25] propose a server consisting of 84 decommissioned mobile devices, a network

router, three rows of fans for cooling, and a power supply, all fitting in the same dimensions as a standard

19-inch 2U rack-mounted server. The proposed server would fit into a data center supporting an

Infrastructure-as-a-Service (IaaS) cloud. They proposed interconnecting the decommissioned mobile devices

(Samsung Galaxy Note 4) with USB cables and hubs. They also completed a total cost of ownership (TCO)

analysis that compares their proposed server with a standard rack-mounted server with similar performance.

However, they did not construct or experimentally characterized their proposed server. The present work

instead built and experimentally characterized a cluster of wirelessly-connected heterogeneous devices with

an emphasis on supporting small workloads characteristic of cyber-physical systems rather than generic

workloads supported in IaaS clouds. Switzer et al., in a project they call Junkyard Computing,

demonstrated that a collection of ten three-year-old smartphones could provide good performance on IaaS

cloud microservice benchmarks and quantified how reusing mobile devices as cloud infrastructure could

reduce the carbon footprint of the mobile devices [26]. Their testbed consisted of 10 Google Pixel 3A and

Pixel 3A XL phones connected using Wi-Fi similar to the network connectivity of Cluster. However,

Switzer et al. replaced the native Android OS with Ubuntu Touch, an open-source mobile OS that supports

a desktop-like user experience, and added kernel modifications to support Docker, which was needed to run

instances of the cloud benchmarks they used to compare their performance to Amazon Web Services EC2

C5 instances. A significant limitation of this approach is that Ubuntu Touch supports only 63 different

device models as of September 2023 (https://devices.ubuntu-touch.io/), including no support for Apple

106

devices. The Cluster software presented here, built as an app on top of the mobile device’s native OS, can

be run on a vast number of different mobile device models with no user modifications other than

downloading and installing the app. The Cluster tasks differ from the Junkyard Computing applications in

that the Cluster tasks are smaller-scale and target the cyber-physical systems domain, rather than consumer

cloud microservices. The Cluster hardware scaled to 16 to 22 devices, exceeding the 10 devices used in the

Switzer et al. implementation [26].

From the viewpoint of a distributed computing architecture based on reused mobile devices, the Renée

project is the most closely-related prior work to the present research [27]. Renée demonstrated that a bank

of four retired phones (Google Nexus 4) connected by Wi-Fi and managed by a single central computer

could function as a small-scale data center (cloudlet) or fog node to provide Function-as-a-Service

(FaaS)/Platform-as-a-Service (PaaS) capabilities. Similar to Switzer et al. [26], the native Android OS was

replaced with Ubuntu Touch with a modified kernel. Users submit jobs to Renée’s central manager

computer (a Raspberry Pi), which then distributes the job to one of the mobile devices. The format of the

jobs is a zipped Linux folder containing an executable shell script and associated programs and data, similar

to the format required by Amazon Lambda instances. The performance of Renée was characterized on four

microbenchmarks that include numerical computation, data analytics, image processing, and machine

learning on a small data set. A major difference between Renée and Cluster is Renée’s reliance on a

homogeneous set of mobile devices. Unlike their system, Cluster was designed to use any iOS device that

runs iOS 10.0.0 or higher (iPhone 5 or newer, iPad 4th gen or newer) or any Android phone or tablet that

runs Android 5.0 Lollipop (API 21) or newer (e.g. Nexus 5 or newer). The Cluster hardware scaled to 16 to

22 mobile devices, exceeding the 4 devices used in the Renée implementation. In contrast to both Junkyard

Computing [26] and Renée [27], Cluster’s wireless network performance was studied in both open and

shielded electromagnetic environments.

The FAWN project [28, 29] inspired much later work exploring how coupling low-power processors with

solid-state data storage could be used to create energy-efficient data center computing. FAWN constructed a

system using 21 commodity single-board computers with flash-based storage and designed a custom data

store and key-value lookup system optimized for flash. In the present work, the FAWN data store and

lookup architecture was ported to Cluster, whose “wimpy” nodes consist of heterogeneous retired mobile

devices and their built-in solid-state storage, and its performance was characterized. Cluster is the only

107

implementation of a distributed data store on reused mobile devices that the author is aware of.

108

Chapter 6

Conclusions and Future Work

This chapter discusses conclusions that can be drawn at this time from the presented research and plans to

expand and continue this research in the future. The field of distributed sensing and distributed computing

with retired mobile devices is fairly new and is already providing exciting results.

6.1 Distributed Sensing

As discussed in Chapter 1, retired mobile devices have been reused as distributed sensors for bioacoustic

monitoring and as network gateways for IoT applications; in both of those previous works, the devices’

cellular connections were used to communicate sensor data. The present work explores how five different

wireless interfaces besides the cellular interface can be used to communicate data from a mobile device

reused as a sensor to a query vehicleor data mule. For query vehicle networks with a similar topology to that

studied in this work, Wi-Fi is the best choice of radio scheme. The transmission rate is faster than the other

radio schemes and the total transaction time is shorter for more than 30 kB of data. With Wi-Fi radios

being available for $4 or less and many microcontroller modules like the ESP32 used in this work having

Wi-Fi built-in, the cost of adding Wi-Fi connectivity if necessary is very low. Effectively all retired mobile

devices that can be reused for distributed sensing already incorporate Wi-Fi, so application in a query

vehiclewireless sensor network is another use case that motivates the reuse of mobile devices. Last, Wi-Fi is

specifically designed to be able to stream data from multiple connected devices, much more so than other

radio schemes studied here, and enabling multiple simultaneous connections between the query vehicleand

109

the distributed sensors will make query vehiclepath planning and scheduling significantly more efficient.

6.2 Distributed Computing and Data Storage

To explore the reuse of retired mobile devices in cyber-physical systems for distributed computing and data

storage, the present work developed Cluster: a distributed computing system composed of a heterogeneous

collection of retired smartphones and tablets. These are mobile devices that are used, at the typical end of

their consumer lifespan (retired), but are still functional, and would otherwise be recycled for their raw

materials. The abstracted design of the Cluster software is intended to simplify the process of adding new

tasks to the library of applications Cluster is capable of running. As the implementation of four tasks for

this research were finished, this design proved to be successful at those intentions. Each layer of the

software’s structure is separate enough to allow new tasks to be added without becoming entangled in the

existing code or affecting the performance of any existing task. This design makes it possible for virtually

any task and any number of tasks to be added to the Cluster software in the future in a modular way.

With the design of the Cluster server and Cluster app software successful in its goals of modularity and

abstraction, the Cluster characterization experiments were able to proceed quickly enough to draw some

early conclusions about the nature of a system like Cluster. First, the limitations of an architecture like

Cluster became clear. Devices in the cluster rely on Wi-Fi as the sole means of communicating with the rest

of the network. This is different from how data centers, supercomputers, parallel multicore processors, and

most desktop-based distributed computers operate in that they have wired connections between compute

nodes. Wi-Fi uses more power and has more limited data rates than a wired connection. Wi-Fi also

becomes less reliable as more devices are communicating in a space at the same time because of collisions

between multiple Wi-Fi transmitters sharing the same wireless channel. Interference from Wi-Fi users that

are not part of the cluster is also possible.

While enclosing Cluster in a electromagnetically-shielded space (i.e. within a metal Faraday cage), such as a

used shipping container, does not show any improvement in the performance of any specific task, it may still

be possible to negate some of the effects of increasing amounts of wireless interference as the number of

devices grows by using a less reflective Faraday cage such as an anechoic chamber. At the very least, the

performance of low-network-traffic tasks is not hindered by the environment of a solid metal Faraday cage

and would provide isolation from possible outside interference or hacking by malicious actors without

110

suffering any performance losses.

Additional limitations evident from conducting the Cluster characterization experiments are the lack of

compatibility with any existing programs for doing parallel or distributed computing. Existing applications

must be rewritten (ported) to be compatible with Cluster. This does not make the architecture any less

viable as a computing resource, but does limit how fast any application can be deployed on the cluster.

Previous work has uniformly focused on replacing the native mobile OS on reused devices with a Linux

operating system and then installing Linux applications. While this approach reduces the barrier to running

different applications on a cluster of reused mobile devices, it severely limits the number of devices that could

be successfully reused since very few models are supported by available mobile Linux operating systems.

Finally, the scalability of the Cluster design is limited to ∼ 20 – 200 devices depending on the network

utilization and the server CPU utilization demanded of the task being run. This scalability limit can be

overcome with a redesign of the system to allow multiple servers, multiple Wi-Fi routers, and the ability for

client nodes to send data directly to other client nodes instead of going through a central server node.

Despite the limitations, Cluster’s performance on tasks such as batch pre-processing of images and

implementing a key-value data store is sufficient to support many functions of a cyber-physical system, and

there are some applications where Cluster excels over alternatives. This can be determined from the power

experiments alone. The fact that Cluster uses less power than almost any other distributed computer,

because the manufacturer prioritized low-power and small size in the design of these mobile devices, implies

that there are some applications in which Cluster will accomplish the same computation with less energy

cost than any other system. Similarly, the small size of the Cluster network, which requires only one Wi-Fi

router per ∼ 50 devices, and one server node per ∼ 20 – 200 client nodes depending on the task, and no

other networking or cooling hardware implies that Cluster is also more space-efficient than almost any other

distributed computer. The limited number of Cluster nodes is still sufficient for supporting fog computing

and moving some data center functions closer to the edge nodes of a cyber-physical system to reduce

latency. Furthermore, the compute nodes cost from $0 to $30 on average because they are retired devices

with low perceived value, and can be obtained from the used electronics market or donated to a particular

Cluster implementation.

In addition to these advantages, the environmental benefits of reusing the hardware of the mobile devices,

up to 20 times more beneficial than recycling the materials, and the saved environmental and financial cost

111

of manufacturing new devices, makes Cluster a more environmentally-friendly alternative to almost any

other computing system. These factors are enough to conclude that an important component of the future

of affordable and efficient distributed computing, data storage, and embedded-systems-based sensing is

undoubtedly retired mobile devices. Smartphone manufacturers designed the devices to be powerful

low-power computers. The benefits of using these devices after their intended consumer lifetime would be

even greater if they were also designed to accept a Linux operating system that has full access to all

computing resources and is capable of establishing a socket connection through the charging cable instead of

the Wi-Fi interface. Then the major limitations, stability concerns of apps crashing and being limited in

their capabilities when the app is not in the foreground of the operating system in addition to the slow,

non-scalable, and high-power nature of Wi-Fi, would be eliminated.

6.3 Future Work

Section 2.9 describes future work related to extending the wireless network transaction characterization

study. This section will focus on future work related to Cluster.

After extensive efforts on researching and implementing the Cluster distributed computer architecture, there

are still many more research questions to be answered and experiments to follow up on. The research

questions to investigate in the future, with suggested or planned experiments to answer them, are as follows:

1. Is the performance and energy consumption of the mobile device cluster comparable to a conventional

implementation of inexpensive and simple cluster computing, a network of Raspberry Pi computers?

How does the Computational Carbon Intensity (CCI) compare for identical computational tasks?

Implement the same computing tasks on a cluster of Raspberry Pi computers and benchmark it using

the same standards on which Cluster has been evaluated so far.

2. Does using multiple processes instead of a single multithreaded process on the server program improve

the scalability and how does it affect performance?

This has been partially studied, but not thoroughly investigated. The multithreaded C# version of the

server program must be updated with the latest task implementation improvements from the Python

version. Each task must be characterized with both versions using multiple processes vs. a single

process to investigate the benefits of using multiple processes. Additionally it is planned to compare

112

the performance of running the Python server program as an executable instead of interpreted in real

time.

3. What is the limit of how many devices can operate in Cluster until performance no longer improves?

This does depend on what kind of task is being performed, but in general the scalability of the system

is limited to about 25 – 30 devices with the current design. Wi-Fi routers are not designed to handle

more than 100 – 200 devices (the number of IP addresses that they will assign is limited to 255 per

wireless LAN). Larger LANs do exist for offices and universities, so using a system like those used in

larger networks would address scalability in terms of the network hardware. However, being able to

coordinate that many devices would require a re-design as a single server computer could not handle

communications with more than about 30 devices as the present Cluster research shows. A system

where client nodes can send data directly to each other (similar to how MPI works, but still using an

app-based approach) and multiple server nodes share the coordination effort would be necessary to

scale beyond 200 reused mobile devices.

4. What is the reliability (mean time to failure, e.g. due to Cluster app crashes) of a system built on

running an app on devices that are not designed to run a single app for more than a couple of hours?

One suggested approach to estimating the mean time to failure is to run each of the tasks for a whole

day or longer, with the server logging which nodes disconnect and when, until time is up or all apps

have crashed.

5. Can the mean time to failure be compensated for by programming the Cluster app to automatically be

restarted when it crashes?

There is a special developer tool from Apple called Apple Configurator that can install apps to

multiple managed devices simultaneously and put devices into “kiosk mode”, a state where an iOS

device is locked into running one or two apps from the instant kiosk mode is entered until the device is

taken out of kiosk mode. This mode could be used to automatically restart the app that crashes and

keep manual maintenance of each device to a minimum. Android devices have a similar kiosk mode

meant for display or public demonstration purposes.

6. How is the performance affected by letting each device idle periodically while performing

computationally-intense or network-intense tasks?

113

It is suggested to change the MainLoopDelay built into each task and measure the performance again.

This may also affect the mean time to failure, so that experiment should also be re-run. Another

suggestion is to build in a timer in the Cluster app that periodically disconnects the app from the

server and then reconnects after a minute of idle time. This simple disconnect should also clear up

quite a few memory leaks as many threads in the app will be closed as a result of disconnecting from

the server.

7. How is the performance of Cluster affected by further changing its environment?

Repeating the Faraday cage experiment in a typical wood frame and drywall room, but varying the

size of the room, the surface the devices are sitting on, the distance devices are placed from each other,

and the distance from the walls. Also, it is suggested to repeat the characterization experiments in an

anechoic chamber, which is hypothesized to reduce the multipath interference compared to reflective

walls in the room where the cluster is placed.

8. How does Cluster perform as a RAID storage implementation compared to other published works on

RAID?

The performance of Cluster on the FAWN key-value data store suggests that Cluster could also

perform well as a solid-state disk array. A suggested study is to implement at least the three most

common levels of the RAID protocol with each mobile device emulating one “hard drive”. The study

should test read and write speed and test error correcting in the same manner as RAID

implementations are typically evaluated.

9. What is the maximum read and write speed for a FAWN or RAID implementation?

For testing read speed, this experiment would utilize the ability to fetch all data in the database of a

mobile app as fast as possible and then report those statistics back to the server instead of sending

each entry as they are fetched. For write speed, the app itself would generate a large amount of data

first and then store it all at once instead of waiting for each entry to arrive from the server node before

storing it.

10. For dependent calculations, how is performance affected by increasing the number and widening the

age distribution of neighboring nodes which a client node must get data from in order to continue?

114

It is likely that a new bottleneck exists when a higher percentage of the network traffic and client idle

time is from an increase in the dependent data being passed between nodes. This may happen in two

ways: either the computation requires passing data more often, i.e. the period between checkpoints is

shorter, or by increasing the number of neighbors required for each checkpoint exchange. In addition,

older, slower devices are likely to emerge as bottlenecks as newer, faster devices wait on their results.

An additional improvement to the synthetic dependent calculation task is to make the client nodes

send their data directly to their neighbors instead of going through the server node. Ultimately, the

synthetic task should be complemented by a task relevant to a real cyber-physical system.

11. How can a model with predictive power of systems utilizing retired mobile devices like Cluster be

developed to aid system designers in constructing and provisioning these systems for use in various

applications?

Queuing theory shows promise as an approach to developing a quantitative performance model for

Cluster and similar systems, as it has been used in previous work to model performance for cloud

infrastructure [108]. It is suggested to first develop a queuing theoretic model for Cluster and calibrate

it with the results of the Cluster characterization experiments presented in this work. The next step

would be to validate the model against experimental data derived from characterizing alternative

Cluster implementations with different numbers and types of devices.

The capabilities and benefits of distributed computing systems made from retired mobile devices are evident

from this research, and yet it is also clear that there is much more to be learned, characterized, and

improved about such systems.

115

Appendix A

Links and Acknowledgments

A.1 Experimental Data

The raw data collected for the experiments in this research can be found at the following links:

Transaction Characterization data: https://ucdavis.box.com/s/cpb23khvz3v7znnllmjxcqp2flq7ucg1

Cluster data: https://ucdavis.box.com/s/f53fg0vr5dne2lsuhbmk8pv5m6ov2jjy

A.2 Acknowledgments

Below is a list of acknowledgments and special recognition.

� Professor Raj Amirtharajah for years of help with difficult engineering problems and writing, and for

close advising every step of the way.

� The Qualifying Exam committee for much helpful advice about focusing this research into a

manageable and ultimately successful plan: Venkatesh Akella, Raj Amirtharajah, Stavros G.

Vougioukas, Hooman Rashtian, Isaya Kisekka

� Professor William Putnam for making the Faraday cage available for six full days of experiments.

� The Dissertation committee for advice about the final writing for this document.

116

A.2.1 Donors

Tim Ambrose used some of his own retired devices for this work. Special thanks to those who donated their

used devices to the Cluster project:

Matt Ambrose, Brooke Ambrose, Denise Monahan, Annika Peterson, Afton Geil, Raj Amirtharajah, John

Squires, and Bob Hodash

117

Bibliography

[1] The Radicati Group, “Forecast number of mobile devices worldwide from 2020 to 2025 (in billions)

[Graph].” https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/,

April 7, 2021. [Online]. Accessed August 28, 2023.

[2] Ericsson, “Number of smartphone mobile network subscriptions worldwide from 2016 to 2022, with

forecasts from 2023 to 2028 (in millions) [Graph].”

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/, June 1, 2023.

[Online]. Accessed August 28, 2023.

[3] World Economic Forum, “Projected electronic waste generation worldwide from 2019 to 2030 (in

million metric tons) [Graph].”

https://www.statista.com/statistics/1067081/generation-electronic-waste-globally-forecast/, July 1,

2020. [Online]. Accessed August 30, 2023.

[4] F. Richter, “Smartphones: Aging like wine or milk? [Digital Image].”

https://www.statista.com/chart/26687/smartphone-price-depreciation/, January 26, 2022. [Online].

Accessed September 5, 2023.

[5] StatCounter, “Mobile operating systemsḿarket share worldwide from 1st quarter 2009 to 2nd quarter

2023 [Graph].” https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-

operating-systems-since-2009/, July 1, 2023. [Online]. Accessed August 28, 2023.

[6] L. Acaroglu, “Where do old cellphones go to die?,” The New York Times, May 5, 2013.

118

[7] M. Cordella, F. Alfieri, and J. Sanfelix, “Reducing the carbon footprint of ICT products through

material efficiency strategies: A life cycle analysis of smartphones,” Journal of Industrial Ecology,

vol. 25, no. 2, pp. 448–464, 2021.

[8] M. Ercan, J. Malmodin, P. Bergmark, E. Kimfalk, and E. Nilsson, “Life cycle assessment of a

smartphone,” in Proceedings of ICT for Sustainability 2016, pp. 124–133, Atlantis Press, 2016/08.

[9] J. Y. Oliver, R. Amirtharajah, V. Akella, R. Geyer, and F. T. Chong, “Life cycle aware computing:

Reusing silicon technology,” Computer, vol. 40, no. 12, pp. 56–61, 2007.

[10] I. Ilankoon, Y. Ghorbani, M. N. Chong, G. Herath, T. Moyo, and J. Petersen, “E-waste in the

international context – a review of trade flows, regulations, hazards, waste management strategies and

technologies for value recovery,” Waste Management, vol. 82, pp. 258–275, 2018.

[11] T. Zink, F. Maker, R. Geyer, R. Amirtharajah, and V. Akella, “Comparative life cycle assessment of

smartphone reuse: Repurposing vs. refurbishment,” The International Journal of Life Cycle

Assessment, vol. 19, no. 5, pp. 1099–1109, 2014.

[12] M. Brannon, P. Graeter, D. Schwartz, and J. R. Santos, “Reducing electronic waste through the

development of an adaptable mobile device,” in 2014 Systems and Information Engineering Design

Symposium (SIEDS), pp. 57–62, 2014.

[13] S. Byford, “Google reportedly cancels Project Ara modular smartphone plans,” The Verge, September

1, 2016.

[14] N. Klugman, M. Clark, P. Pannuto, and P. Dutta, “Android resists liberation from its primary use

case,” in Proceedings of the 24th Annual International Conference on Mobile Computing and

Networking, MobiCom ’18, (New York, NY, USA), p. 849–851, Association for Computing Machinery,

2018.

[15] N. Klugman, V. Jacome, M. Clark, M. Podolsky, P. Pannuto, N. Jackson, A. S. Nassor, C. Wolfram,

D. Callaway, J. Taneja, and P. Dutta, “Experience: Android resists liberation from its primary use

case,” in Proceedings of the 24th Annual International Conference on Mobile Computing and

Networking, MobiCom ’18, (New York, NY, USA), p. 545–556, Association for Computing Machinery,

2018.

119

[16] F. Büsching, S. Schildt, and L. Wolf, “Droidcluster: Towards smartphone cluster computing – the

streets are paved with potential computer clusters,” in 2012 32nd International Conference on

Distributed Computing Systems Workshops, pp. 114–117, 2012.

[17] M. Ives, “Using old cellphones to listen for illegal loggers,” The New York Times, 2019.

[18] J. L. Deichmann, A. Hernández-Serna, J. A. Delgado C., M. Campos-Cerqueira, and T. M. Aide,

“Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on

biodiversity in a tropical forest,” Ecological Indicators, vol. 74, pp. 39–48, 2017.

[19] F. Maker, R. Amirtharajah, and V. Akella, “Runtime adaptation of applications using design of

experiments: A smartphone-based case study,” IEEE Embedded Systems Letters, vol. 6, no. 2,

pp. 25–28, 2014.

[20] The RainforestConnection, “The Rainforest Connection Guardian Platform.”

https://rfcx.org/guardian, 2023. Accessed August 28, 2023.

[21] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Programming languages for distributed computing

systems,” ACM Comput. Surv., vol. 21, p. 261–322, sep 1989.

[22] D. Anderson, “BOINC: a system for public-resource computing and storage,” in Fifth IEEE/ACM

International Workshop on Grid Computing, pp. 4–10, 2004.

[23] P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST Special Publication (NIST

SP) 800-145, National Institute of Standards and Technology (NIST), U.S. Dept. of Commerce,

Gaithersburg, MD, USA, Sept. 2011. Accessed August 28, 2023.

[24] M. Iorga, L. Feldman, R. Barton, M. Martin, N. Goren, and C. Mahmoudi, “Fog computing conceptual

model,” NIST Special Publication (NIST SP) 500-325, National Institute of Standards and Technology

(NIST), U.S. Dept. of Commerce, Gaithersburg, MD, USA, 2018. Accessed August 24, 2023.

[25] M. Shahrad and D. Wentzlaff, “Towards deploying decommissioned mobile devices as cheap

energy-efficient compute nodes,” in 9th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 17), 2017.

[26] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard computing: Repurposing discarded

smartphones to minimize carbon,” in Proceedings of the 28th ACM International Conference on

120

Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023,

(New York, NY, USA), p. 400–412, Association for Computing Machinery, 2023.

[27] J. Switzer, E. Siu, S. Ramesh, R. Hu, E. Zadorian, and R. Kastner, “Renée: New life for old phones,”

IEEE Embedded Systems Letters, vol. 14, no. 3, pp. 135–138, 2022.

[28] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan, “Fawn: A fast

array of wimpy nodes,” in Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, SOSP ’09, (New York, NY, USA), p. 1–14, Association for Computing Machinery, 2009.

[29] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan, “Fawn: A fast

array of wimpy nodes,” Commun. ACM, vol. 54, p. 101–109, jul 2011.

[30] T. Ambrose, V. Akella, and R. Amirtharajah, “Wireless transaction time characterization for query

vehicle networks,” in preparation.

[31] R. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Viñas, M.-D. Cano, and A. F. Skarmeta,

“Performance evaluation of lora considering scenario conditions,” Sensors, vol. 18, no. 3, p. 772, 2018.

[32] B. S. I. Group, Specification of Bluetooth System, November 2003.

[33] O. Tekdas, V. Isler, J. H. Lim, and A. Terzis, “Using mobile robots to harvest data from sensor fields,”

IEEE Wireless Communications, vol. 16, no. 1, pp. 22–28, 2009.

[34] D. Palma, A. Zolich, Y. Jiang, and T. A. Johansen, “Unmanned aerial vehicles as data mules: An

experimental assessment,” IEEE Access, vol. 5, pp. 24716–24726, 2017.

[35] M. Raj, N. Li, D. Liu, M. Wright, and S. K. Das, “Using data mules to preserve source location

privacy in wireless sensor networks,” Pervasive and Mobile Computing, vol. 11, pp. 244 – 260, 2014.

[36] M. M. Coutinho, A. Efrat, T. Johnson, A. Richa, and M. Liu, “Healthcare supported by data mule

networks in remote communities of the amazon region,” International scholarly research notices,

vol. 2014, 2014.

[37] J. Crowcroft, L. Levin, and M. Segal, “Using data mules for sensor network data recovery,” Ad Hoc

Networks, vol. 40, pp. 26 – 36, 2016.

121

[38] P. B. Val, M. G. Valls, and M. B. Cuñado, “A simple data-muling protocol,” IEEE Transactions on

Industrial Informatics, vol. 10, no. 2, pp. 895–902, 2013.

[39] R. Sugihara and R. K. Gupta, “Data mule scheduling in sensor networks: Scheduling under location

and time constraints,” UCSD Tech. Rep., 2007.

[40] R. Sugihara and R. K. Gupta, “Scheduling under location and time constraints for data collection in

sensor networks,” in Proceedings of the 28th IEEE International Real-Time Systems Symposium,

Citeseer, 2007.

[41] G. Citovsky, J. Gao, J. S. Mitchell, and J. Zeng, “Exact and approximation algorithms for data mule

scheduling in a sensor network,” in International Symposium on Algorithms and Experiments for

Wireless Sensor Networks, pp. 57–70, Springer, 2015.

[42] R. Mukherjee, S. Roy, and A. Das, “Survey on data collection protocols in wireless sensor networks

using mobile data collectors,” in 2015 2nd International Conference on Computing for Sustainable

Global Development (INDIACom), pp. 632–636, IEEE, 2015.

[43] D. Jea, A. Somasundara, and M. Srivastava, “Multiple controlled mobile elements (data mules) for

data collection in sensor networks,” in Distributed Computing in Sensor Systems (V. K. Prasanna,

S. S. Iyengar, P. G. Spirakis, and M. Welsh, eds.), (Berlin, Heidelberg), pp. 244–257, Springer Berlin

Heidelberg, 2005.

[44] R. Xu, H. Dai, Z. Jia, M. Qiu, and B. Wang, “A piecewise geometry method for optimizing the motion

planning of data mule in tele-health wireless sensor networks,” Wireless networks, vol. 20, no. 7,

pp. 1839–1858, 2014.

[45] R. Sugihara and R. K. Gupta, “Optimal speed control of mobile node for data collection in sensor

networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 1, pp. 127–139, 2009.

[46] J.-S. Liu, S.-Y. Wu, and K.-M. Chiu, “Path planning of a data mule in wireless sensor network using

an improved implementation of clustering-based genetic algorithm,” in 2013 IEEE Symposium on

Computational Intelligence in Control and Automation (CICA), pp. 30–37, IEEE, 2013.

122

[47] R. Sugihara and R. K. Gupta, “Improving the data delivery latency in sensor networks with controlled

mobility,” in International Conference on Distributed Computing in Sensor Systems, pp. 386–399,

Springer, 2008.

[48] A. Wichmann, J. Chester, and T. Korkmaz, “Smooth path construction for data mule tours in wireless

sensor networks,” in 2012 IEEE Global Communications Conference (GLOBECOM), pp. 86–92, IEEE,

2012.

[49] D. Kim, R. Uma, B. H. Abay, W. Wu, W. Wang, and A. O. Tokuta, “Minimum latency multiple data

mule trajectory planning in wireless sensor networks,” IEEE Transactions on Mobile Computing,

vol. 13, no. 4, pp. 838–851, 2013.

[50] R. Sugihara and R. K. Gupta, “Speed control and scheduling of data mules in sensor networks,” ACM

Transactions on Sensor Networks (TOSN), vol. 7, no. 1, pp. 1–29, 2010.

[51] R. Sugihara and R. K. Gupta, “Path planning of data mules in sensor networks,” ACM Transactions

on Sensor Networks (TOSN), vol. 8, no. 1, pp. 1–27, 2011.

[52] K. Li, C.-C. Shen, and G. Chen, “Energy-constrained bi-objective data muling in underwater wireless

sensor networks,” in The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems

(IEEE MASS 2010), pp. 332–341, IEEE, 2010.

[53] S.-Y. Wu and J.-S. Liu, “Evolutionary path planning of a data mule in wireless sensor network by using

shortcuts,” in 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2708–2715, IEEE, 2014.

[54] K. L.-M. Ang, J. K. P. Seng, and A. M. Zungeru, “Optimizing energy consumption for big data

collection in large-scale wireless sensor networks with mobile collectors,” IEEE Systems Journal,

vol. 12, no. 1, pp. 616–626, 2017.

[55] Y.-L. Lai, J.-R. Jiang, et al., “A genetic algorithm for data mule path planning in wireless sensor

networks,” Appl. Math, vol. 7, no. 1, pp. 413–419, 2013.

[56] J. Ansari, D. Pankin, and P. Mähönen, “Radio-triggered wake-ups with addressing capabilities for

extremely low power sensor network applications,” International Journal of Wireless Information

Networks, vol. 16, no. 3, p. 118, 2009.

123

[57] S. J. Marinkovic and E. M. Popovici, “Nano-power wireless wake-up receiver with serial peripheral

interface,” IEEE Journal on selected areas in communications, vol. 29, no. 8, pp. 1641–1647, 2011.

[58] G. U. Gamm, M. Sippel, M. Kostic, and L. M. Reindl, “Low power wake-up receiver for wireless

sensor nodes,” in 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and

Information Processing, pp. 121–126, IEEE, 2010.

[59] V. Jelicic, M. Magno, D. Brunelli, V. Bilas, and L. Benini, “Analytic comparison of wake-up receivers

for wsns and benefits over the wake-on radio scheme,” in Proceedings of the 7th ACM workshop on

Performance monitoring and measurement of heterogeneous wireless and wired networks, pp. 99–106,

2012.

[60] R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, “Ultra low power wake-up radios: A

hardware and networking survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,

pp. 2117–2157, 2017.

[61] R. Corvaja, “Qos analysis in overlay bluetooth-wifi networks with profile-based vertical handover,”

IEEE Transactions on Mobile Computing, vol. 5, no. 12, pp. 1679–1690, 2006.

[62] N. Chhabra, “Comparative analysis of different wireless technologies,” International Journal Of

Scientific Research In Network Security & Communication, vol. 1, no. 5, pp. 3–4, 2013.

[63] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: Bluetooth, uwb,

zigbee, and wi-fi,” in IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society,

pp. 46–51, Ieee, 2007.

[64] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless

systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4296–4307, 2012.

[65] S. Jain, R. C. Shah, W. Brunette, G. Borriello, and S. Roy, “Exploiting mobility for energy efficient

data collection in wireless sensor networks,” Mobile networks and Applications, vol. 11, no. 3,

pp. 327–339, 2006.

[66] G. Anastasi, M. Conti, E. Monaldi, and A. Passarella, “An adaptive data-transfer protocol for sensor

networks with data mules,” in 2007 IEEE international symposium on a world of wireless, mobile and

multimedia networks, pp. 1–8, IEEE, 2007.

124

[67] G. Anastasi, M. Conti, E. Gregori, C. Spagoni, and G. Valente, “Motes sensor networks in dynamic

scenarios: an experimental study for pervasive applications in urban environments,” Journal of

Ubiquitous Computing and Intelligence, vol. 1, no. 1, pp. 9–16, 2007.

[68] G. Anastasi, M. Conti, and M. Di Francesco, “Data collection in sensor networks with data mules: An

integrated simulation analysis,” in 2008 IEEE Symposium on Computers and Communications,

pp. 1096–1102, IEEE, 2008.

[69] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: harnessing the power of parallelism in a

pile-of-PCs,” in 1997 IEEE Aerospace Conference, vol. 2, pp. 79–91 vol.2, 1997.

[70] J. Kiepert, “Creating a Raspberry Pi-based Beowulf cluster,” 2013.

[71] T. More, “Thinking about selling your phone?.”

https://www.trademore.com/sell/how-much-is-my-phone-worth, 2021.

[72] I. LLC, “Trade-in your uses electronics.” https://www.itsworthmore.com/, 2023.

[73] M. Deruyck, W. Vereecken, E. Tanghe, W. Joseph, M. Pickavet, L. Martens, and P. Demeester,

“Comparison of power consumption of mobile wimax, hspa and lte access networks,” in 2010 9th

Conference of Telecommunication, Media and Internet, pp. 1–7, IEEE, 2010.

[74] J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access

networks,” IEEE Communications Magazine, vol. 49, no. 6, pp. 70–77, 2011.

[75] F. Nielsen, Introduction to MPI: The Message Passing Interface, pp. 21–62. 02 2016.

[76] P. Bright, “Google going its own way, forking webkit rendering engine,” Ars Technica, April 2013.

Retrieved June 2020.

[77] T. Li, V. K. Narayana, E. El-Araby, and T. El-Ghazawi, “Gpu resource sharing and virtualization on

high performance computing systems,” in 2011 International Conference on Parallel Processing,

pp. 733–742, 2011.

[78] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, 2006.

[79] S. Kleiman, D. Shah, and B. Smaalders, Programming with threads. Sun Soft Press Mountain View,

1996.

125

[80] A. Rehman and T. Saba, “Neural networks for document image preprocessing: state of the art,”

Artificial Intelligence Review, vol. 42, pp. 253–273, 2014.

[81] K. De Raad, K. A. van Garderen, M. Smits, S. R. van der Voort, F. Incekara, E. Oei, J. Hirvasniemi,

S. Klein, and M. P. Starmans, “The effect of preprocessing on convolutional neural networks for

medical image segmentation,” in 2021 IEEE 18th International Symposium on Biomedical Imaging

(ISBI), pp. 655–658, IEEE, 2021.

[82] P. Hurtik, V. Molek, and J. Hula, “Data preprocessing technique for neural networks based on image

represented by a fuzzy function,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 7, pp. 1195–1204,

2019.

[83] D. Makovoz, T. Roby, I. Khan, and H. Booth, “Mopex: a software package for astronomical image

processing and visualization,” in Advanced Software and Control for Astronomy, vol. 6274, pp. 93–102,

SPIE, 2006.

[84] A. M. Koekemoer, H. Aussel, D. Calzetti, P. Capak, M. Giavalisco, J.-P. Kneib, A. Leauthaud,

O. Le Fevre, H. McCracken, R. Massey, et al., “The cosmos survey: Hubble space telescope advanced

camera for surveys observations and data processing,” The Astrophysical Journal Supplement Series,

vol. 172, no. 1, p. 196, 2007.

[85] V. Fadeyev, G. Aldering, and S. Perlmutter, “Improvements to the image processing of hubble space

telescope nicmos observations with multiple readouts1,” Publications of the Astronomical Society of

the Pacific, vol. 118, no. 844, p. 907, 2006.

[86] I. Bird, “Computing for the large hadron collider,” Annual Review of Nuclear and Particle Science,

vol. 61, pp. 99–118, 2011.

[87] O. Sahin and A. K. Coskun, “On the impacts of greedy thermal management in mobile devices,”

IEEE Embedded Systems Letters, vol. 7, no. 2, pp. 55–58, 2015.

[88] Apple, “Core data: Persist or cache data on a single device, or sync data to multiple devices with

cloudkit.” https://developer.apple.com/documentation/coredata, 2023.

126

[89] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra, “Dague: A generic

distributed dag engine for high performance computing,” Parallel Computing, vol. 38, no. 1-2,

pp. 37–51, 2012.

[90] L. Chen, Y. Ma, P. Liu, J. Wei, W. Jie, and J. He, “A review of parallel computing for large-scale

remote sensing image mosaicking,” Cluster Computing, vol. 18, pp. 517–529, 2015.

[91] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and supercomputers,” in 2008

workshop on many-task computing on grids and supercomputers, pp. 1–11, IEEE, 2008.

[92] S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, et al., “On the parallelization of monte-carlo planning,”

in ICINCO, 2008.

[93] L. Maigne, D. Hill, P. Calvat, V. Breton, R. Reuillon, D. Lazaro, Y. Legre, and D. Donnarieix,

“Parallelization of monte carlo simulations and submission to a grid environment,” Parallel processing

letters, vol. 14, no. 02, pp. 177–196, 2004.

[94] D. Takahashi, “Parallel implementation of multiple-precision arithmetic and 2,576,980,370,000 decimal

digits of π calculation,” Parallel computing, vol. 36, no. 8, pp. 439–448, 2010.

[95] D. Takahashi, “Computation of the 100 quadrillionth hexadecimal digit of π on a cluster of intel xeon

phi processors,” Parallel computing, vol. 75, pp. 1–10, 2018.

[96] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T. Foster, “Swift/t:

Large-scale application composition via distributed-memory dataflow processing,” in 2013 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp. 95–102, IEEE,

2013.

[97] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T. Foster, “Swift/t: Scalable

data flow programming for many-task applications,” in Proceedings of the 18th ACM SIGPLAN

symposium on Principles and practice of parallel programming, pp. 309–310, 2013.

[98] M. Baker, B. Carpenter, G. Fox, S. Hoon Ko, and S. Lim, “mpijava: An object-oriented java interface

to mpi,” in Parallel and Distributed Processing: 11th IPPS/SPDP’99 Workshops Held in Conjunction

with the 13th International Parallel Processing Symposium and 10th Symposium on Parallel and

127

Distributed Processing San Juan, Puerto Rico, USA, April 12–16, 1999 Proceedings 13, pp. 748–762,

Springer, 1999.

[99] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox, “Mpj: Mpi-like message passing for java,”

Concurrency: Practice and Experience, vol. 12, no. 11, pp. 1019–1038, 2000.

[100] O. Vega-Gisbert, J. E. Roman, and J. M. Squyres, “Design and implementation of java bindings in

open mpi,” Parallel Computing, vol. 59, pp. 1–20, 2016.

[101] M. Nissato, H. Sugiyama, K. Ootsu, T. Ohkawa, and T. Yokota, “Realization and preliminary

evaluation of mpi runtime environment on android cluster,” in Advanced Information Networking and

Applications: Proceedings of the 33rd International Conference on Advanced Information Networking

and Applications (AINA-2019) 33, pp. 407–418, Springer, 2020.

[102] Z. Yannes, Portable MPICH2 clusters with Android devices. PhD thesis, 2015. Copyright - Database

copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last

updated - 2023-03-04.

[103] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley and Sons, 4 1991.

[104] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering cloud computing: foundations and applications

programming. Newnes, 2013.

[105] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s data centers: a power

consumption analysis of tpc-c results,” Proceedings of the VLDB Endowment, vol. 1, no. 2,

pp. 1229–1240, 2008.

[106] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,” IEEE

Communications surveys & tutorials, vol. 18, no. 1, pp. 732–794, 2015.

[107] Q. Zhang, Z. Meng, X. Hong, Y. Zhan, J. Liu, J. Dong, T. Bai, J. Niu, and M. J. Deen, “A survey on

data center cooling systems: Technology, power consumption modeling and control strategy

optimization,” Journal of Systems Architecture, vol. 119, p. 102253, 2021.

[108] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, “Performance evaluation of cloud

computing centers with general arrivals and service,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 8, pp. 2341–2348, 2016.

128

