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Abstract of the Dissertation

Developing and Integrating Computer-Aided

Diagnostic Tools into Clinical Medicine

by

Wesley Thomas Kerr

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2015

Professor Mark S. Cohen, Co-chair

Professor Henry Huang, Co-chair

The focus of this graduate thesis is the development and optimization of clinically

applicable computer-aided diagnostic tools (CADTs) for seizure disorder. This

thesis is comprised of two parts (1) development of unimodal and multimodal

CADTs for seizure disorder and (2) a novel method for optimization of hyper-

parameters in machine learning models. The aims of CADTs are to address key

challenges in the diagnosis and treatment of seizure disorder, including reducing

the time to an accurate diagnosis, improving the sensitivity and specificity of di-

agnostic neuroimaging, and the understanding of the diagnostic value of interictal

scalp electroencephalography (EEG). This could improve the long-term prognosis

of patients with non-epileptic seizures (NES) and candidates for potentially cu-

rative resective surgery for epilepsy because treatment earlier in these patients’

disease course has been shown to be more effective. Our novel method for optimiz-

ing hyperparameters has the potential to slightly improve the accuracy of machine

learning models, while substantially increasing the interpretability of learned esti-

mates and reducing computational cost. We define hyperparameters as variables

that contribute to machine learning models but are not optimized jointly with

parameters inherent to the model. When viewed as a whole, this body of work

ii



represents contributions both to the statistical development and application of

machine learning to important clinical challenges.
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CHAPTER 1

Introduction

1.1 Public Health, Diagnostic and Treatment Challenges

in Seizures

We aim to address important public health problems in the long process of diag-

nosing and treating patients with seizures. Ten percent of the US population will

experience at least one isolated seizure in their lifetime [8, 9]. Every year, one

hundred thousand Americans are diagnosed with epilepsy, defined by a chronic

predisposition for seizures [10, 11]. Anti-seizure medications (ASMs) effectively

treat two-thirds of these patients [12, 13, 14, 15, 16]. Failing an ASM is defined by

a less than 50% reduction in seizure frequency. After failing two or more ASMs,

the probability of seizure freedom on medical treatment is low [15]. After failing

appropriate doses of at least two ASMs appropriate to their seizures, patients are

triaged to tertiary care centers for epilepsy to identify if there are other medi-

cal, surgical or technological treatments for their seizures [17]. Even if they have

not failed two ASMs, patients with atypical seizures also may be referred for dif-

ferential diagnosis of their episodes so that the most effective treatment can be

identified [18, 17].

To effectively characterize and localize the seizure-onset zone, patients may

be admitted for simultaneous video-electroencephalography (vEEG) [19, 20, 21].

Neuroimaging including structural and diffusion magnetic resonance imaging (MRI)

and deoxyflouroglucose positron emission tomography (PET) can supplement this
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diagnostic process [17, 22, 23]. Patients with a single seizure focus may be eligible

for surgical treatment that results in seizure reduction in two thirds of patients,

depending on the etiology of their seizures [24, 25]. Surgery is more effective

when a structural and/or metabolic lesion is visible using neuroimaging, and is

consistent with patients’ semiology and ictal EEG [22, 23, 24]. In particular, it

can be challenging to discriminate bilateral from unilateral temporal lobe epilepsy

[26, 27, 28]. Due to the functional role of the mesial temporal lobe in memory

formation, bilateral resection of the temporal lobe results in irreversible deficits

in new memory formation [29, 30, 31]. Therefore, only patients with unilateral

temporal lobe epilepsy are surgical candidates. At UCLA, we have shown that

resective surgery is more effective earlier in the patient’s disease course in both

adults and children [32, 33, 34]. Unfortunately, the average time to resective

surgery is 18.8 years [35].

Of patients admitted for vEEG, one-third experience non-epileptic seizures

(NES) [8]. Throughout this manuscript, we will refer to these events as seizures

even though they are not caused by abnormally synchronous, epileptic neural ac-

tivity [18, 36]. This terminology respects the patients’ experience of these events

as seizures. We find the alternate terminology of “events” or “attacks” unneces-

sarily vague or suggestive of an external source. These terms also do not reflect

the difficulty in discriminating between NES and ES without vEEG.

NES can be split into two subtypes: psychogenic and physiologic [18]. Phys-

iologic NES are seizure-like signs and symptoms caused by organic dysfunction

including, but not limited to, complex migraines, syncope, transient ischemic at-

tacks, polypharmacy, confusion episodes in dementia [18]. Psychogenic NES are

understood as a conversion disorder, in which patients translate psychological chal-

lenges into physical symptoms [18]. At our center, 90% of NES are psychogenic

[37]. Both subtypes of NES are not due to epileptic neural activity, therefore the

primary mechanism of action of ASMs will not treat the seizures. Instead, one

2



should focus on treating the underlying psychiatric challenges through cognitive

behavioral therapy and/or medications [38]. Similar to the surgical patients, the

long-term seizure outcome for patients with psychogenic NES is better if the dis-

order is diagnosed earlier [39, 40]. However, this long and complex diagnostic

process makes a quick diagnosis and triage challenging, at best. The average time

between first seizure and the diagnosis of NES is 9.2 years [41, 42].

These unfortunate statistics have a large impact on the cost of care and quality

of life for patients with seizures. Because patients with seizures are treated, most

frequently, as if they have epilepsy until proven otherwise, the cost of care for all

medication resistant patients is similar. Without resective surgery, the lifetime

cost of medication resistant seizures is US$100,000. In the case of NES, cost could

be reduced drastically because these patients clearly would not need ASMs, but

they do require targeted treatment of the cause of their seizures [18, 38, 43]. For

patients with focal seizures, surgery for epilepsy is effective treatment and cost

effective, due to decreasing the need for ASMs and reducing, if not eliminating,

seizures [44, 32, 45, 46]. For patients with ES that are not surgical candidates,

different medications tend to be effective for focal versus generalized onset seizures,

and certain medications are effective for particular epilepsy syndromes [17]. Due

to lost ability to work and other factors, the annual economic cost of epilepsy to

the US is $34 billion [47, 48, 49, 50]. In addition to these economic factors, recent

research has shown a decreased quality of life for patients with seizures [51, 52], and

in particular patients with psychogenic seizures [53, 54], using almost any measure

of quality of life. By more effectively and efficiently identifying the cause of the

seizures, we can target therapies better. By understanding and identifying the

common comorbidities in each subtype of seizures, we also can target resources

and interventions towards treating and managing the non-seizure factors that

contribute to these quality of life statistics.
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1.2 Diagnostic Modalities Utilized in Seizures

Numerous diagnostic modalities are used to measure the clinical, structural, metabolic

and electrographic findings that are associated with seizures, to characterize sub-

types and to determine surgical candidacy. We will review these diagnostic modal-

ities in the context of diagnosing and treating a patient with medication resistant

seizure disorder.

After the patient experiences their first seizure, most patients seek medical

attention through an emergency department or outpatient facility. If they don’t

seek attention after their first seizure, patients certainly seek help after their

second unprovoked seizure. During this encounter, a physician assesses the history

of seizures, medical history, psychiatric history, social history, family history and

conducts a physical and, potentially, a neurological exam. All of these data help

the physician and patient determine the cause and treatment for the seizures

[17]. These data typically are recorded in free form text written by the physician.

These notes are made for the purpose of communication with other health care

providers and, frequently, insurance companies. However, patient-physician teams

are not known to create reliable, reproducible data: different physicians ask and

record different data from the same patient, and the same patient will answer in

different ways depending on how the question is asked and their relationship with

the physician [55]. This results in missing data and inconsistent records. This

complicates the modeling of these data. These inconsistencies will be present

when implementing or applying the knowledge gleaned from modeling.

The main challenge in utilizing clinical data is the extraction of meaningful

data from the free text. This free text can be coded as binary presence or absence,

categorical data, counts, or continuous quantities. The complexity of the data is

too large for individual readers to code every detail in the note. Instead, we use

our knowledge from treating these patients, in combination with past literature,
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to identify factors with a higher prior probability that they will help make a

meaningful distinction between populations of patients.

If the physician determines that more data is needed or could be helpful in

treating the patient, they will order a routine outpatient scalp EEG [17]. This

outpatient EEG hopes to capture epileptic activity during the 20-minute record-

ing, either in the form of a seizure or interictal epileptiform discharges. This

occurs in 50% of patients on their first recordings, and is highly sensitive [56, 57].

When these findings are not present, the EEG is inconclusive. After three or more

outpatient EEGs, 90% of patients with ES have exhibited epileptic activity. The

goal of EEGs is to identify the seizure focus, if it exists. Different medication is

effective for different seizure foci and for generalized versus focal seizures.

These assessments allow for identification of effective treatment in two thirds

of patients with seizures [12, 13, 14, 15, 16]. A patient is considered to have failed

a medication if they are not seizure free on a therapeutic dose or they experienced

detrimental side effects while on the medication. Patients that fail two or more

appropriately chosen ASMs are, by definition, medication resistant. Medication

resistant patients should be referred to tertiary care centers for epilepsy so that

the appropriate treatment plan can be made [17].

Tertiary care centers frequently utilize more extensive monitoring and more

modern technology. These modern technologies include x-ray computed tomogra-

phy (CT), MRI, PET and magnetoencephalography (MEG) [17]. These modalities

provide a unique view into the pathologic process. CT is sensitive to skull fractures

and acute bleeds, but is insensitive to the soft tissue changes that are expected in

seizure disorder. MRI can provide contrast between grey and white matter, and

thereby help visualize epileptogenic malformations of cortical development includ-

ing but not limited to focal cortical dysplasia, heterotopias, polymicrogyria, and

hippocampal sclerosis [58]. Diffusion tract imaging (DTI), a subtype of MRI, can

provide an even more detailed assessment of white matter tracts [27]. FDG-PET
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provides a complementary picture by focusing on measuring glucose metabolism in

cortical areas [22, 23]. Between seizures, a focus of hypometabolism can indicate

the seizure onset zone [59, 60]. During a seizure, a focus of hypermetabolism can

indicate regions involved in the seizure network, through FDG-PET or SPECT

imaging. The challenge to all of these imaging modalities is aligning the complex

cortical structure across patients so that intensity values can be compared. Addi-

tionally, each patient’s seizure network is different subtly, which makes it difficult

to make generalizable comparisons across patients, even if the patient’s general

seizure onset zone matches.

The gold standard diagnostic method for seizure disorder is a long-term vEEG

[10, 18, 61, 36]. The limitation in the above modalities is that most of them rely

on observing secondary aspects of the seizure network. VEEG has the benefit

of visualizing the behavior and the electrophysiologic signs of the seizures simul-

taneously. This gives an educated observer a unique ability to determine if the

behavior can be explained by the neural signal recorded by the EEG. When psy-

chogenic seizures are part of the differential, this direct pairing of behavior with

neural activity allows for an experienced observer to diagnose the patient defini-

tively. This pairing also is useful to distinguish between potential seizure onset

zones. If a single resectable focus can be identified that does not also hold critical

functionality for normal function (i.e. language), then the patient could benefit

from surgery.

If the patient is a potential candidate for surgery, additional more invasive

diagnostic modalities are available, like intracranial grids, depth electrodes and

intraoperative electrocorticography. These modalities help differentiate between

similar seizure onset zones for the sake of surgical planning, especially when pre-

vious modalities disagreed or conflicted. Because our focus is on developing diag-

nostics, these invasive methods are outside the scope of this work.
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1.3 Significance & Impact of Developing Computer-Aided

Diagnostic Tools (CADTs) for Seizures

The goal of computer aided diagnostic tools (CADTs) is to supplement, not re-

place, clinical expertise and reasoning. If designed as such, CADTs can evaluate

data differently than human experts [62]. Humans are exceptional at detecting

complex trends in small numbers of features with a strong signal to noise ratio.

Computers are exceptional at detecting subtle, noisy trends across hundreds or

thousands of features. Our goal for CADTs is to translate complex data best read

by an automated algorithm into simple outputs that expert human observers can

integrate into their clinical decision making process. In this section, we discuss

the many junctures at which CADTs could make an impact in clinical care of

seizures.

The earliest point for intervention is during or after the first, or subsequent,

outpatient assessment for seizures. Conventional assessment of seizures relies on

a description of the seizure events. These descriptions, combined with the knowl-

edge of where functions are localized in the brain, can help form an idea about

where the seizures come from. Unfortunately, witnesses and patients are notori-

ously unreliable in the description of the seizures and neural networks are complex

[63]. The specific networks involved in the seizure, and the propagation patterns

frequently vary across patients, even if the seizure-onset zone is the same. There-

fore, while these descriptions provide some evidence to localize the seizures, more

data is needed to provide a complete and definitive assessment of the seizures.

CADTs can help at this stage by quantifying the relative value of each reported

factor and integrating multiple historical factors into a single, objective likelihood

score for NES. When the algorithm indicates NES, this can be used to triage

patients at risk for NES towards tertiary care centers to rule out ES and positively

diagnose NES. The objectivity of this score allows the clinician to maintain their
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therapeutic relationship with the patient because they do not need to challenge

the patient’s idea that their seizures are due to epilepsy. As well as we try to

explain what the cause of NES is, due to the stigma around mental disorders

means that there is a potential for the patient to feel betrayed when the clinician

brings up the possibility of NES [64, 65]. By using an objective score to indicate

NES, the patient-physician alliance can be maintained.

Note that we propose that a CADT-based score could be used to triage towards

tertiary care centers, instead of used to diagnose the patient. This is based on

the knowledge that the specificity of any CADT will be less than 100%, just as

the specificity of the clinical assessment is imperfect because of the limitation of

the quality of outpatient interview data. Therefore, it is necessary to refer these

patients to tertiary care for a more detailed assessment of their seizures by an

epilepsy specialist, potentially including EEG and other imaging modalities.

If and when scalp EEG is deemed helpful or necessary to help diagnose and

localize the seizures, the interpretation of these data relies on the observation of

interictal epileptiform discharges or overt seizure activity during the recording,

as discussed above [57]. Seizure and spike detection protocols, ultimately, aim

to replace neurologists by being able to identify the activity that neurologists

use to understand the seizure onset and propagation [66, 67, 68, 69, 70]. Seizure

prediction uses similar methods to seizure and spike detection to give patients

advance warning that their seizures will occur soon [71]. Recent developments

in seizure prediction utilize intracranial EEG to achieve sufficient performance

to be applicable to patients. Patients that require intracranial monitoring have

already had their seizure onset zone localized enough to allow for placement of

recording electrodes. Seizure detection, prediction and intracranial monitoring

address important issues in the management of established ES, instead of in the

diagnosis of ES.

In addition to the extensive work that has been done in automated seizure and
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spike detection, as well as seizure prediction, CADTs have the potential to identify

diagnostic information in the resting state, interictal periods [72, 73, 8, 74]. This

addresses a fundamental limitation of scalp EEG, for a scalp EEG recording to be

diagnostic; some interpretable activity must be present. If we can identify reliable

resting state EEG changes, then we could improve the diagnostic yield of every

scalp EEG assessment ordered. This could have an impact similar to the CADT

based on the clinical information: we can triage patients at risk for NES towards

tertiary care faster, in addition to improving the localization and characterization

of epileptic seizures to facilitate medical and surgical management.

If the patient fails to respond to an ASM, an MRI is indicated to further char-

acterize the seizures [17, 75]. MRIs have the unique ability to identify tumors,

cortical dysplasia, heterotopias, other cortical and subcortical malformations, as

well as findings thought to be secondary to repeated uncontrolled seizures, like

hippocampal sclerosis. These findings are apparent to an experienced radiologist.

However, quantitative morphometry has shown repeatedly that there exist subtle

changes that are not appreciated by visual inspection [76, 77, 26, 28, 78]. Fo-

cal cortical thinning or thickening, sometimes accompanied by increase in signal

intensity, can indicate the seizure-onset zone. These findings help identify the

epileptogenic zone: the area where, if resected, the patient would be seizure free.

However, there exist radiologic changes outside the seizure-onset zone that were

not appreciated until quantitative morphometric methods were developed [26, 79].

Unfortunately, patients that have more pathologic changes outside of their pri-

mary seizure focus have a worse prognostic outcome after resective surgery for

epilepsy.

CADTs have the potential to leverage these findings into an objective pre-

dictive score for epilepsy in general, or even discriminate between subtypes of

epilepsy. A number of CADTs have been developed to identify the epileptogenic

zone, and have shown that a more complete resection of the identified area led
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to improved seizure control [80]. While these methods seem promising, none has

been validated enough to begin a randomized control trial. This may be because

the current method of determining the site of resection is through a multispecialty

discussion of all the available evidence, instead of relying on a single information

modality to define the resected area. Alternatively, CADTs can aim to assist in

this diagnostic process by helping to identify the general subtype of seizures, either

epileptic or non-epileptic. The CADTs we developed below specifically address

the question of lateralization. Differentiation between left and right temporal lobe

epilepsy (TLE) is critical for pre-surgical planning because patients with bilateral

TLE are not candidates for resective surgery due to irreversible memory loss, as

we learned with patient HM [29, 7, 81, 31]. Patients with unilateral TLE are

surgical candidates because of the capability for a single hippocampus to hold

and generate memories. The recent advent of responsive neurostimulation (RNS)

has given hope to patients with bilateral TLE [82], but these types of decisions

later in the diagnostic process are outside the scope of this work. CADTs that

aim to diagnose, as compared to identifying the region to resect, contribute to

the diagnostic process instead of aim to replace it. Therefore, there may be more

support for the integration of the latter CADTs into the clinical diagnostic and

pre-surgical process.

MRIs are ordered prior to tertiary care and within tertiary care, therefore there

is potential for their use in the early diagnosis of disease. However, MRIs are more

expensive than scalp EEG and clinical interviews, therefore current protocols only

indicate their use after failure of at least one ASM [17]. During assessment at a ter-

tiary care center, MRI also is used to subtype epileptic seizures, even if the patient

is not a surgical candidate. Therefore, development of diagnostic CADTs outside

the pre-surgical process can still have an impact on clinical decision-making.

The last pivotal piece of the diagnostic and pre-surgical assessment for epilepsy

is FDG-PET imaging. When clinical evidence, scalp EEG and MRI are discor-
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dant, PET imaging can help further localize the epileptogenic region [83, 84, 85].

The goals of algorithms based on PET are similar to those based on MRI [7].

Some methods seek to identify a region to resect, and others seek to assist in the

diagnostic process [72, 26, 27, 73, 28, 74]. Because FDG-PET scans are such a

late part of the diagnostic assessment and are only done at some tertiary care

centers, the clinical impact of these tools may be reduced.

Lastly, we recognize that MEG is another useful diagnostic modality used to

diagnose seizure disorder. The information gleaned from MEG is similar and

complementary to EEG. At our center, it is acquired after the other modalities if

more information is needed. Because of the relatively low impact of MEG in the

pre-surgical assessment, we do not address the development of CADTs based on

MEG in this work.

1.4 Statistical Challenges in Training & Validating Ma-

chine Learning Models

The rate limiting steps in the development of CADTs are statistical, in our opin-

ion. Figure 1.1 illustrates the general process to train and validate machine-

learning models. For our purposes, we define machine learning as statistical mod-

els to predict binary or categorical outcomes. The statistical challenges include

insufficient sample size, a huge number and complexity of potentially diagnostic

features, difficulties in finding the meaningful trends in this complex data through

structured algorithms and inefficiencies in using data to train these algorithms.

One of the central challenges in developing these CADTs is the collection of

sufficient high quality and clinically relevant data to train and validate these mod-

els. One limitation to many neuroimaging studies is that they are underpowered

vastly [86, 87, 88]. Using conventional models, a model is underdetermined if the

number of independent features to be studied, p, outnumbering the number of sta-
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Figure 1.1: Flow chart of a statistical experiment. Dashed lines reflect optional

steps.
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tistically independent data points, n. Using some clever statistical optimization

criteria, we can find unique and stable solutions when n << p (see Didactic Back-

ground Material, Feature Selection). These criteria, however, do not obviate the

curse of dimensionality (CoD): as the p increases, the average distance between

the data points increases supra-exponentially in the measurement space. The only

way to negate the effect of the CoD is to collect databases that increase supra-

exponentially. In the modern age of electronic health records (EHRs) and novel

advancements in data management and storage by giant technology companies

like Google and Facebook, this may be possible.

However, we must ensure that the information collected from these patients is

meaningful. While it would be tempting to collect all possible data from each data

point, we remember that if these features simply add noise, then we are decreasing

our ability to generalize from a training data point to validation data because

these data are farther apart. The best method for focusing this search is by

using biological and clinical prior knowledge in combination with novel statistical

methods [3]. For epilepsy, this means initially utilizing the data that is collected

as part of the diagnostic and pre-surgical assessment. Clinicians have determined

that these information modalities hold valuable information, so it is logical to use

rigorous statistical methods to verify and build upon that knowledge.

Even if we can collect huge quantities of data, we must make assumptions
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about the structure of the diagnostic information in these features (see Didactic

Background Material, Machine Learning Statistics). In lay language: we can

only find diagnostic information where we look for it. If we assume that the

diagnostic information is captured by linear changes in the input data, then we

can only find linear changes. Currently, the best method for integrating interaction

and non-linear information is a neural network model. These models, however,

can be too flexible and thereby require huge amounts of information. If limited

information is available, the neural network has a tendency to overfit the data by

using its flexibility to capture trends in the training data that improve training

performance, but do not translate to the validation data. Therefore, if there

is known structure in the diagnostic information, imposing that structure could

improve the ability for the model to generalize to validation data. Again, we only

can see diagnostic information in data if we look in the appropriate way.

When limited data is available, it is important to make full utilization of these

data. We define the types of machine learning algorithms based on how they

estimate the optimum value of the parameters inherent to the model, which we

will designate ψ. However, numerous models or protocols include hyperparameters

that are not optimized jointly with ψ, which we will designate θ. Conventional

methods to optimize both ψ and θ is to split the data into three groups: training

for ψ, testing for θ and validation data to assess the generalizability of the learned

ψ and θ. In order to minimize the variance of the estimate the generalizability of

the model well, the size of the validation set needs to be maximized. However,

in order to learn a good model, the size of the training and test sets also must

be maximized. Limiting the size of the training set biases the generalization

performance to be worse. This is called the bias-variance tradeoff (see Didactic

Background Material, Machine Learning Statistics).

A popular method to reduce the effect of the bias-variance tradeoff is nested

cross-validation. In cross-validation, all of the data is used in the validation set,

13



just not at the same time (see Figure 2.10). In ten-fold cross-validation, the data is

split into ten mutually exclusive subsets. Nine of the subsets are used for training

and testing, whereas the last subset is used for validation. Subsequently, the

identity of the validation subset is permuted such that each set is the validation

subset once and only once. In nested ten-fold cross-validation, the nine subsets

are split into ten mutually exclusive sub-subsets. Nine of these sub-subsets are

used to train ψ for a range of θ. The choice of θ that performs the best on the last

sub-subset is used without modification on the validation subset. Consequently,

there are ten different sub-sub-models that are applied to the same validation

subset. Pooling the result through averaging or pooling scores can estimate the

overall generalization performance while maintaining the out-of-sample nature of

both the testing and the validation data.

Figure 1.2: 3-Fold Cross-validation when θ is selected a priori, as compard to

optimized. Therefore, no data is needed to learn θ. A separate model is learned

for each fold, resulting in three overall models to aggregate later.
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If we are mostly interested in assessing the generalization performance, we

could perform a complete cross-validation within each nested fold, but this has

the propensity to overfit the data. To be clear, a complete cross-validation means

that instead of having sub-sub-models, we choose the single θ that maximizes

performance on the nine subsets, and re-train ψ based on that value of θ. This

maintains the out-of-sample nature of the validation data, and thereby maintains

the validity of our estimates of generalizability. Unfortunately, this reduces the

interpretability of the ψ and θ because they were “peaked.” Although there are
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10-fold less pairs of ψ and θ, the variance of ψ and θ across cross-validation folds

can be larger. This increase in variance reduces our ability to estimate the effect

of each parameter and hyperparameter within ψ and θ accurately.

In part 2 of this work, we propose and empirically validate a method to utilize

more of the available data for training ψ and θ, without reducing the size of

the validation set. This is accomplished by reducing the need for nested cross-

validation. Our method also explicitly addresses the variability in θ across cross-

validation folds and thereby improves our ability to interpret the sensitivity of our

model to our choice of θ.

1.5 Use of Electronic Health Records (EHRs) in Clinical

Research

One of the ways we addressed these statistical challenges was through effective

utilization of electronic health records (EHRs). As described in detail in our

manuscript, the recent mandate for EHRs has great potential impact on the de-

velopment of computer-aided diagnostic tools (CADTs) and clinical research [89].

However, there are certain considerations that must be discussed to understand

the limitations of this work.

The benefit of EHRs is that they provide large amounts of detailed patient

information in the form that is used to treat patients from an unselected popula-

tion. One of the limitations to databases of recruited patients is that we cannot

assess if the patients that volunteer for additional research tests truly reflect the

general patient population. When unselected populations are used, the diversity

of the studied population exactly matches the population that is being treated at

the institutions that contributed to the EHR.

Another benefit of EHRs is that the populations available for study can be

orders of magnitude larger than specially recruited for a specific research project.
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One of the challenges of building large databases is financing the acquisition of

data. If data were acquired as part of patients’ clinical treatment, then researchers

do not need to spend precious research dollars on data acquisition and subject

recruitment. Instead, research funds can be spent on organizing, studying the data

and developing useful models of the data. Given the recent literature showing that

many studies are underpowered and therefore difficult to reproduce, the increase

in sample size addresses a key limitation present in the literature [86, 87, 88].

However, these volumes of data are clinical quality, not research quality. The

quality of the data matches the quality used during routine treatment of patients.

Research quality data may be more consistent and clean than clinical quality

data, but the algorithms, tools and models developed using research quality data

may or may not apply to clinical quality data. Consequentially, to advocate for

CADTs developed using research quality data, one must advocate both for the

data acquisition protocol the developers used and for the utility of their CADT. If

a CADT has been developed using clinical quality data, then clinicians can better

assess how the CADT would perform on the clinician’s data.

In this work, we make judicious use of the UCLA Seizure Disorder Center’s

EHR including all records from patients admitted for vEEG monitoring. As part of

their clinical care, each patient underwent continuous scalp or intracranial vEEG

and a subset of the following diagnostic procedures: CT, structural and/or diffu-

sion MRI, FDG-PET, MEG, and/or SPECT. The goal of monitoring was to cor-

relate ictal behavior with electrographic changes indicative of hypersynchronous

epileptic neural activity. This monitoring is the gold standard for determining if

seizures are epileptic and, if they are, localizing the seizure-onset zone. UCLA

admits 140 patients per year for this monitoring. Information from each modality

is saved for a variable amount of time. EEG data and clinical reports are archived

back to 2000, resulting in 2,100 unique patients. In comparison, other studies of

ictal semiology or the risk factors for epilepsy and NES rely on data from between
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15 and 100 patients. Neuroimaging records are saved back to 2006, resulting in

up to 1,260 patient records. Because not all patients underwent all imaging, this

resulted in 800 unique patients with diagnostic neuroimaging. In comparison, the

AD neuroimaging project is spending millions of dollars to acquire research qual-

ity data from 1,000 subjects. Previous seizure studies have included no more than

150 highly selected patients. Therefore, the UCLA database has unprecedented

statistical power to study seizures. However, by including all patients admitted to

vEEG, the database has increased heterogeneity than these previous studies. This

heterogeneity also gives us the opportunity to study more rare and less appreciated

subtypes of epilepsy.

1.6 Summary of Content Herein

This graduate thesis is organized in the following manner. In chapter 2, we

start with didactic background material to establish notation and the statisti-

cal perspective we take on the problem. Chapters 3 through 6 are reprints of

peer-reviewed manuscripts that review and address basic challenges related to

the foundation of the main work. Chapters 7 through 10 describe our published

and pre-published manuscripts describing the development of single modality and

multimodality CADTs for seizure disorder. In particular, we address the devel-

opment of a CADT for three major information modalities in epilepsy: clinical

information, scalp EEG, and FDG-PET. In chapters 11 and 12, we discuss the

foundational problem of hyperparameter training and interpreation with novel

statistical perspective. Subsequently, we conclude by addressing how this work

fits into the greater context of the literature and dicuss the necessary follow up

steps that must be taken to before CADTs are implemented in epilepsy clinics.

Additionally, we discuss follow up studies regarding our random field theory based

method for optimizing hyperparameters.
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CHAPTER 2

Didactic Background Material

To provide a strong theoretical basis for the novel work described in this manuscript,

and to define notation, the following sections provide a more didactic background

in generalized linear statistical modeling, machine learning statistics, experimen-

tal design and the development of clinically applicable computer-aided diagnostic

tools (CADTs). This also illustrates the perspective from which we tackle the

important clinical and statistical challenges inherent to this work.

The goal of statistical modeling is to determine if there is a relationship be-

tween the input data, X, and the outcome variable of interest, Y . In both conven-

tional and machine learning statistics, it is difficult to measure causality, but we

can determine if there is some relationship. This has great power to understand

predictive factors, as well as answer important questions in biology, medicine and

other fields. It is our opinion that every responsible scientist should have a basic

understanding of statistics. The following section aims to cover some of these

basic principles, as well as some more advanced concepts. For a general overview,

we illustrate the complete process necessary to study data using statistics (Figure

2.1).

2.1 Simple Linear Models

Given generic input and outcome data, one should think of the simplest relation-

ship first; namely, is the relationship between X and Y linear? We note that
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Figure 2.1: Flow chart of a statistical experiment. Dashed lines reflect optional

steps.

Question
Identification

Defines Y

Data
Collection

Defines n

Feature
Extraction

Defines X

Feature
Pre-Selection

Optional

Conventional
Statistics

Population
Level

Inference

Machine
Learning
Statistics

Model
Training

Learn ψ

Model
Testing

Learn θ

Choose θChoose θ

Retrospective
Validation

Prospective
& Multisite
Validation

Individual
Level

Prediction

this is equivalent to asking, “Are X and Y correlated?’’ This is because correla-

tion implies a linear relationship. To test this question, we consider the following

relationship (Figure 2.2):

Y = Xβ + ε such that ε ∼ N(0, In×nσ
2) (2.1)

where β is a vector of linear weights of the input data, X, including an intercept

term, In×n is the n by n identity matrix and ε is a vector of the error of the model

on each exemplar. Exemplars are assumed to be independent, and identically

normally distributed across exemplars with variance of σ2. The assumption of

identical distribution suggests that the distribution of each element of the error,

εi, has the same mean and variance. Using this expression, we ask if X and Y

have a linear relationship by finding the best β and estimating how likely this β

and predictive performance would be achieved if there was no linear relationship.

In this case of assuming linearity, we define the “best” β as the β that min-

imizes the sum of the squared error,
∑n

i=1 e
2, where the English e reflects the

observed error as compared to the theoretical error, ε. We do this because we

are interested in minimizing the distance between the estimated outcomes, Ŷ , to

the observed outcomes, Y . The error can be positive or negative, whereas dis-

tances are positive, therefore simply summing e is ineffective. (Actually,
∑n

i=1 e

is guaranteed to be zero, which will become clear below.) One could propose to
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Figure 2.2: Example of simulated input data (black) and a linear regression line

(blue) fit of these data. Data were sampled from a linear line with Guassian noise.

optimize
∑n

i=1 |e|, but the kink of the absolute value function at zero leads to

more difficult (but not impossible) optimizations. In addition, for reasons that

we don’t show here, minimizing the least squared error is identical to the maxi-

mum likelihood estimate. This gaurantees that our estimates of β are unbiased:

E(β̂) = β. Therefore, we choose to minimize the sum of squared error.

Performing this optimization relies on the simple principles of finding a critical

point in a function and checking (or assuming) that it is a minimum. We note

that the only critical point in
∑n

i=1 ε
2
i is at the point ε = 0, which is a minimum. A

critical point is defined as a point for which the derivative of the function is zero.

If the second derivative is negative at the critical point, then the critical point is a

local maximum. Conversely, if the second derivative is positive, the critical point
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is a local minimum. In this case, we seek to find the β that minimizes:

min
β

n∑
i=1

e2 =
∑

(Y −Xβ)T (Y −Xβ) (2.2)

=Y TY − Y TXβ −XTY β +XTXβ2 (2.3)

Taking the derivative with respect to β

0 =− Y TX −XTY + 2XTXβ̂ (2.4)

Recognizing that Y TX and XTY are scalars and

are therefore equal

2XTXβ̂ =2XTY (2.5)

β̂ =(XTX)−1XTY. (2.6)

Note that we use linear algebra to simplify notation. One important assumption

of linear modeling is that XTX is invertible. This occurs when the row rank of X

is greater than or equal to the number of columns in X. In non-math speak, this

means that there are more independent samples of data than there are factors

that you would like to study. (In fact, you would like the row rank of X to be

much greater than the number of columns in X, for reasons that will become clear

later.)

To answer our question if there is a linear relationship between X and Y , then

we must test if β is significantly different from zero. First, we address if any

elements of β̂, β̂j are significantly different from zero. Given our β̂ is normally

distributed, this relies on estimating the standard error of β̂. When performed

on each element of β individually, this test is called a Wald test. If we substitute

β̂ into the expression for In×nσ
2 = E(εεT ), then relatively simple linear algebra
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shows us that:

V ar(β̂) =E
[
(XTX)−1XTY

(
(XTX)−1XTY

)T]
(2.7)

=E
[
(XTX)−1XT (Xβ + ε)(Xβ + ε)TX(XTX)−1

]
(2.8)

Factoring out the constant portions

=E
[
(XTX)−1XT εεTX(XTX)−1

]
(2.9)

=E
[
(XTX)−1XTσ2In×nX(XTX)−1

]
(2.10)

=σ2E
[
(XTX)−1XTX(XTX)−1

]
(2.11)

=σ2(XTX)−1. (2.12)

However, we must now recognize that σ2 is estimated from the data, and not

known a priori. Because this is a simple linear model, we know that the β are

normally distributed. If, for some reason, we knew a priori the covariance of β,

Σβ, then we can use normal statistics to compare β̂ to the null hypothesis that

there is no relation between the input data X and the outcome variable, Y as

follows:

β̂j − 0 ∼ N(0,Σβ,jj) (2.13)

where the subscript, jj, reflects the jth diagonal entry of the covariance matrix. If,

however, we do not know the covariance then we need to estimate the covariance,

Σ̂β, from the data. When we use an estimated covariance instead of a known

covariance, we must take into account the uncertainty in this estimate. We do

this by using a t distribution, as follows:

β̂j − 0√
Σ̂β,jj

∼ tν (2.14)

where ν is the number of degrees of freedom in the data. As ν → ∞, the t

distribution becomes a normal distribution. Intuitively, degrees of freedom are

the number of independent data points, after estimating the parameters inherent

to the model. In the case of a conventional univariate t test, ν is typically (n− 1)
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where n is the number of data points because the mean has been estimated. In a

linear model studying one input factor, ν typically is (n−2) because β consists of

an estimated intercept and slope. In general, we express the number of estimated

parameters as p, which is the length of β that is required to be less than the row

rank of X. This can be proven by deriving an unbiased expression for σ̂2. We

do this as follows, with a judicious use of linear algebra. To do so, we define

V arS(e) = E(eT e) as the sum of the squared deviation of the entries of e from

the mean of e.

V arS(e) =V arS(Y −Xβ) = V arS(Y − Ŷ ) (2.15)

Recognize that (XTX)−1XTY = HY = Ŷ where H is idempotent.

=V arS(Y −HY ) = V arS [(I −H)Y ] (2.16)

=V arS [(I −H)(Xβ + ε)] (2.17)

Factoring out the constant portion

=V arS [(I −H)ε] = E
[
((I −H)ε)T )(I −H)ε

]
(2.18)

=E
[
εT (I −H)T (I −H)ε

]
(2.19)

Simplifying due to symmetry and idempotency of (I −H)

=E
[
εT (I −H)ε

]
(2.20)

The expression within the expectation is a scalar, so we

can apply the trace operator:

=E
[
tr
(
εT (I −H)ε

)]
(2.21)

The trace operator is invariant to cyclic permutation of the arguments.

=E
[
tr
(
(I −H)εεT

)]
(2.22)

Reversing the order of the operators,

=tr
[
E
(
(I −H)εεT

)]
(2.23)

Using that I −H is constant and E(εεT ) is scalar

=tr [I −H]E(εεT ) = tr [I −H]V ar(ε) (2.24)
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By assumption of the linear model

=σ2tr [I −H] = σ2 [tr(I)− tr(H)] = σ2(n− p) (2.25)

Rearranging this expression

σ2 =
SSE(e)

n− p . (2.26)

Variance typically is calculated as the squared deviation of the data from the

mean, over the number of independent data points. Overall, this shows that even

though the number of data points is n, the number of independent data points is

n− p after estimating β.

Returning to our original question, we want to ask if any individual β̂j is

significantly different from zero. We define something as statistically significant if

the probability of our observed result, p, is less than a particular cutoff, α. This α

is the false positive rate: the probability we would conclude that an effect exists

even if it does not. Conventionally, α is set to 5%. Mathematically, we write this

as:

P

 |tν | >
∣∣∣∣∣∣∣

β̂ − 0(
Σ̂β,jj

)1/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ν = n− p

 ?
< 0.05 (2.27)

In addition to asking if individual β̂j, we also can ask how significant the aggregate

model is from chance. To do this, we take a slightly different, but equivalent,

perspective than above. We define the sum of squared error (SSE) as the quantity

we minimized before,
∑
e2. In addition, we define the variance accounted for by

the model, abbreviated MSE, as MSE = V arS(Y )− SSE. We then consider the

ratio of variance accounted for by the model to the unmodeled variance:

MSE

SSE
= F̂ ∼ Fν1,ν2 (2.28)

As noted above, this ratio follows an F distribution where ν1 is the number of

parameters in the model, and ν2 is the degrees of freedom in the error. The
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theoretical basis for the F distribution is based upon the following knowledge.

Each ε is normally distributed. The sum of the square of ν independent and

identically distributed normally variables is, by definition, a χ2
ν distribution with

ν degrees of freedom. The ratio of two χ2
ν distributed variables with varying

degrees of freedom is, by definition, an F distribution with ν1 and ν2 degrees of

freedom, where ν1 is the degrees of freedom of the numerator and ν2 is the degrees

of freedom of the denominator.

For our test of significance, we test if the probability of observing this F̂ is less

than 5%, given there is no linear relationship betweenX and Y . If this occurs, then

we can reject the null hypothesis that there is no linear relationship. To remove

this double negative statement, this means that there is a linear relationship

between X and Y . We note that if ν2 = 1, then the F distribution is equivalent

to the t-distribution. Additionally, we note that a subset of the model can be

tested in this way, by comparing the variance accounted for by a subset of factors,

compared to the SSE of the full model. We provide two examples of this.

First, consider if there are two information sources that contribute to X. Let’s

split X into two block matrices reflecting this: X = [X1, X2]. We can ask if there

is a linear relatioship between X1 and Y , controlling for X2. This is done by

calculating the F statistic between the portion of the sum of squared variation in

Y modeled by the β corresponding to information source 1, MSE1 to the residual

error, SSE. This is done as follows:

V arS(Y ) =MSE1 +MSE2 + SSE (2.29)

MSE1

SSE
∼Fν1,νe (2.30)

where ν1 is the number of entries of β corresponding to information source 1, and

νe = n− p, where p is the length of β.

In our second example, consider that you want to know if a particular input

factor, Xj, has a particular non-linear relationship with Y . Suppose that you
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want to ask if there is a quadratic relationship between Xj and Y . This requires

estimating two separate βj, one corresponding to the linear relationship, βj,1,

and the next corresponding to the quadratic relatiosnhip, βj,2. Using the same

structure as above, one could test if there is a significant quadratic relatisonhip

between Xj and Y by testing the F statistic corresponding to the ratio of the sum

of squared variation modeled by βj,1 and βj,2 to the residual error. Note that this

is different from the hierarchical test of if a second order term in Xj produces a

significant decrease in the residual error. This latter test can be done through a

t-test of if ˆbetaj,2 is significantly different from the null hypothesis, βj,2 = 0.

Our software of choice for implementing these simple linear models is the lm

function in R because of its ease of use, clear treatment of the error and zero

cost of the software. In addition, a good number of regression diagnostics come

with the lm function in R, so that one can check the assumptions of the model,

including if ε are independent and identically normally distributed.

2.2 Generalized Linear Models

The generalization of linear models can be written succinctly in terms of math,

but the challenge occurs in effectively estimating the parameters in these models.

A general linear model supposes that

E(Y ) =g−1 (Xβ) (2.31)

V ar(Y ) =V ar
[
g−1 (Xβ)

]
(2.32)

where g is any specified function or probability statement. We specify g based

on prior knowledge of structure of Y . If g is a probabilistic statement, then the

structure of the error is implicitly defined.

First, we will consider relatively trivial generalized linear models and when to

apply them. In simple linear models, we implicitly assumed that Y is normally
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distributed by assuming that ε was normally distributed. Suppose instead that

Y is log-normally distributed. For example, seizure duration appears to be expo-

nentially distributed with most seizures being short, and some rare seizures being

very long (i.e. status epilepticus). To model this, we transform Y such that the

error in our model will be normally distributed variable, and see if X is correlated

with that transformed value. Mathematically, this is written as (Figure 2.3):

E(Y ) =eXβ or log Y = Xβ. (2.33)

V ar(Y ) =V ar(eXβ) ∼ In×nσ
2 (2.34)

Figure 2.3: Example of simulated input data (black) and a log-normal regression

(blue) fit of these data. Data were sampled from an exponential line with Guassian

noise in the transformed, exponential space.

Because the transformed variable is normally distributed, the same optimiza-

tion procedure and software that was used for simple linear models can be used

in these settings. In this case, we used an exponentially distributed variable as

an example. In fact, if there exists a transform g(Y ) such that Y is not normally

distributed but g(Y ) is well defined and the error is normally distributed, then

the simple linear model optimization tools can be used to study the relationship

between g(Y ) and X.
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Less trivial generalized linear models rely on the knowledge or assumption

that there is a known distribution of Y that is not normal and, frequently, E(Y )

provides information about the V ar(Y ). The most frequent generalized linear

models of this type are Poisson regression for count outcome data and logistic

regression for binary outcome data. Due to our focus on binary classification, we

will cover Poisson regression first and in less detail.

If the outcome data, Y , is a count of independent events that occur over a

given time frame, where events cannot occur simultaneously and the presence of

an each event is independent, then one should use a Poisson regression. In seizure

disorder, a clear example of this is in the modeling of seizure frequency, which is

equivalent to modeling the count of seizures over a given time period. Two seizures

clearly cannot occur simultaneously in the same patient. However, seizures may

not be independent in time, especially if a patient has a tendency to have clusters

of seizures. In that case, the number or frequency of seizure clusters could be a

Poisson variable.

In a Poisson regression, we assume that the relationship between X and Y

take the following form (Figure 2.4):

P (yi = y) =
λye−λ

y!
such that λ = Xβ. (2.35)

To find the best β to maximize the posterior probability of the data, we seek

to maximize the likelihood that the observed data would occur, given our model.

This concept of maximum likelihood can be written as:

max
β

P (Y = Ŷ |X, β) = max
β

n∏
i=1

P (y = ŷi|X, β) (2.36)

This product can be done because we assume each exemplar is independent,

and the probability associated with independent variables multiplies. Next, we

recognize that differentiation of multiplied variables is messy, compared to dif-

ferentiation of summed variables, therefore we maximize the log-likelihood of the
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Figure 2.4: Example of simulated input data (black) and a Poisson regression

(blue) fit of these data. Data were sampled from a Poisson line with Guassian

noise in the transformed, Poisson space.

observed data, given the model, resulting in the following expression:

max
β

n∑
i=1

logP (y = ŷi|X, β) = max
β

m∑
i=1

− log(y!) + yi log(Xβ) +Xβ (2.37)

Looking at this expression of the log-likelihood, it is apparent that differentia-

tion with respect to β will not lead to a simple analytical formula for β. Therefore,

we must use other iterative or approximating optimization methods to estimate

β̂. Although not always used, clever optimization schemes could utilize the knowl-

edge that the variance of a Poisson variable is equal to its expectation. Therefore,

the standard error of β̂, estimated from the error in prediction, can provide further

information to better estimate β̂.

In practice, this assumption of equal expectation and variance may not be

accurate. This can occur if any other source of variation is present than simply

observing the Poisson variable. Common sources of additional variance include

measurement noise, missing counts, and approximating counts to the nearest 5th,

10th, or 100th integer. In this case, one can use an ’over-dispersed’ Poisson model

or a more complex model outside the scope of this background material [90, 91, 92].
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The most common form of over-dispersed Poisson is a negative binomial model,

where the shape of the distribution matches the Poisson, but the variance assump-

tions are less strong. The challenge to utilizing a negative binomial model is that

one must choose a priori the number of failed trials allowed (see Random Field

Theory section). Despite these assumptions and challenges, utilization of Pois-

son or negative binomial regression allows for accurate and statistically rigorous

modeling of count data.

Logistic regression is prevalent in modeling of binary outcome data because

it models outcomes as Bernoulli random variables. The key insight of logistic

regression is to translate binary data into a continuous predicted outcome so that

conventional statistics can be used. This transformation of the simple linear model

is accomplished through the logit transform (Figure 2.5):

logit(Y ) = Xβ or, equivalently, π =
eXβ

1 + eXβ
(2.38)

where π is the vector of the probabilities, πi, such that P (yi = 1|β,X) = πi.

Figure 2.5: Example of simulated input data (black) and a logistic regression

(blue) fit of these data. Data were sampled from a logistic trend used to define

the probability of success in a Bernoulli trial. Uniform noise was added to the Y

dimension of the logistic input data to aid in visualization, but this noise was not

included in modeling.
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When multiple trials are aggregated, Bernoulli random variables become binomial

random variables. Therefore, the likelihood function for logistic regression is:

L(Y |X, β) ∝
n∏
i=1

πyii (1− πi)1−yi (2.39)

This is a binomial distribution, without the leading combinatorial term, which

is why we used the “proportional to” notation. We can omit the combinational

term without loss of rigor because the derivative of this term, with respect to β

is zero. To differentiate the likelihood more easily, we optimize this using the log

of the likelihood:

`(Y |X, β) ∝
n∑
i=1

yi log πi + (1− yi) log(1− πi) (2.40)

To find the critical point of this function with respect to β, we first write the

log-likelihood in terms of β then differentiate, as follows:

`(Y |X, β) =
n∑
i=1

yi log

[
eXiβ

1 + eXiβ

]
+ (1− yi) log

[
1

1 + eXiβ

]
(2.41)

=
n∑
i=1

yi log eXiβ − log
[
1 + eXiβ

]
(2.42)

∂`(Y |X, β)

∂β
= 0 =

n∑
i=1

yiXi −
eXiβ

1 + eXiβ
Xi (2.43)

0 =
n∑
i=1

[yi − πi]Xi (2.44)

Unfortunately, we can recognize this as the transcendental equation that does not

have an analytical solution. Therefore, we estimate β̂ using Newton’s method

(Figure 2.6). This method guarantees that we find a local critical point, but does

not guarantee that this local critical point also is a global critical point. Therefore,

it is important to assess the stability of the Newton-Raphson solution with respect

to initial guesses at β̂. We denote the intial guess as β(0). Newton’s method

supposes that a function can be approximated effectively based on a second order
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Figure 2.6: Illustration of how Newton’s method is used to find a local critical

point of the data. The initial guess is X1 and the initial guess for the zero point is

X2. The value of the function is assessed at X2 and iterated until the zero point

is found. To find the critical point of a log-likelihood function, the zero of the

derivative of the log-likelihood is found.
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Taylor expansion:

f(β) ≈ f(β(0)) +
1

1!

(
β − β(0)

) ∂f(β)

∂β

∣∣∣∣
β=β(0)

+
1

2!

(
β − β(0)

)2 ∂2f(β)

∂β2

∣∣∣∣
β=β(0)

(2.45)

where the ∂kf(β)
∂βk

∣∣∣
β=β(0)

notation refers to the kth derivative of f calculated at β0.

We differentiate this expression with respect to β, we get:

0 =f ′(β(0)) +
1

2
f ′′(β(0))2

(
β(1) − β(0)

)
(2.46)

β(1) =β(0) − f ′(β(0))

f ′′(β(0))
(2.47)

where primes are used as short hand for derivatives with respect to β. Note that

β is a vector, so we can write this statement equivalently using linear algebra:

β(1) = β(0) −H−1(β(0))5 f(β(0)) (2.48)

where H(β) is the Hessian of β and 5f(β) is the gradient of f with respect to β.

We already wrote an expression for 5`(Y |X, β) above:

5`(Y |X, β) =
n∑
i=1

[yi − πi]Xi. (2.49)

What remains is to differentiate this expression again to yield the Hessian:

H(β) =
∂

∂β

n∑
i=1

[yi − πi]Xi (2.50)

=
n∑
i=1

∂

∂β

eXiβ

1 + eXiβ
Xi (2.51)

=
n∑
i=1

eXiβXi(1 + eXβ)− eXβeXβX
(1 + eXiβ)2

XT
i (2.52)

=
n∑
i=1

eXiβ

1 + eXiβ

[
1

1 + eXβ

]
XiX

T
i (2.53)

=
n∑
i=1

πi(1− πi)XiX
T
i . (2.54)
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If we provide an initial guess of β(0), this iterative optimization will converge to a

particular β̂. Note that a guess of β(0) =
⇀

0 is not a good initial guess because it

is difficult to disentangle each individual element of β, each of which provide little

effect on the final solution. One example of feasible initial values for β(0) start by

randomly selecting each β
(0)
j from independent standard Gaussian distributions.

This iterative optimization accurately estimates β̂ but does not necessarily

estimate the standard error of β. The standard error of β is estimated by as-

suming that the linearity assumption inherent to Newton’s optimization holds.

Consequentially, β are distributed normally with standard deviation defined by

the Hessian of β. This means that for binary or logical input data, the variation

of βj is:

V ar(β) = (XTWX)−1 (2.55)

for some weighting matrix, W , of the data. From (2.53), we know that

XTWX =
n∑
i=1

πi(1− πi)XiX
T
i . (2.56)

As a reminder, to test if the relationship between the outcome and input data is

significant with 95% confidence, we test if

P
(
|β̂j| < βj

∣∣E(βj) = 0, V ar(βj) = (XTWX)−1j,j

)
< 0.05 (2.57)

Using words, this equation asks if the probability of observing a β̂j as or more

extreme to the β̂j we observed is less than 5% given the null distribution that

E(β) = 0 and the variance is (XTWX)−1.

In addition to understanding how logistic regression models are trained, it is

important to understand the interpretation of the resulting model. Firstly, if the

number of exemplars in each class (yi = 0 or yi = 1) is equal and each of the

input variables have zero mean, then the intercept, β0 should be zero, reflecting

that 50% (inverse logit of 0 is 50%) of the outcome data came from exemplars

34



with yi = 1. For βj that correspond to the linear effect of input data, the β̂j is a

log odds ratio. An odds ratio of 2 suggests that the oods of the outcome is yi = 1

is twice the probability that the outcome is yi = 0 (66% vs 33%).

To combine these multiple odds ratios, we assume that each variable is condi-

tionally independent. Mathematically, we can express this as:

P (yi = 1|X, β) =
m∏
j=1

P (yi = 1|Xj, βj). (2.58)

When we extend this to combine multiple odds ratios (OR), we get:

OR(yi) =
P (yi = 1|X, β)

P (yi = 0|X, β)
=

∏m
j=1 P (yi = 1|Xj, βj)∏m
j=1 P (yi = 0|Xj, βj)

. (2.59)

The calculation of this can be simplified by taking the logarithm of that product:

logOR(yi) =
m∑
j=1

log
P (yi = 1|Xj, βj)

P (yi = 0|Xj, βj)
= Xiβ. (2.60)

On finite precision machines, sums take much less computational power than

products, therefore this simplification can be useful practically without loss of

interpretability. When creating a receiver operating curve (ROC), one can use

OR(yi) or logOR(yi) to determine the trade-off between sensitivity and specificity

(see below).

To implement these generalized linear models, there are numerous software

packages. Our software package of choice is the standard lm and glm functions

in R. This is because of its efficient implementation, good documentation (see

http://www.ats.ucla.edu/stat/r/), clear treatment of standard error of all

estimates, and good support for goodness of fit regression diagnostics.

2.3 Machine Learning Statistics

This section covers a unified theory of machine learning and gives examples of

key machine learning classifiers that are necessary to understand the state of the
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field. By no means is this a comprehensive list and treatment of each classifier,

but one will be able to understand the theory behind novel classifiers based on

those presented here.

In this setting, we define machine learning as the development of automated

methods to predict binary (or categorical) outcome data (y ∈ {±1} or y ∈ {0, 1}).
In these models, we aim to maximize the predicted accuracy or surrogates of the

accuracy. We can give each solution a quantitative score by combining a confusion

matrix with a risk matrix. A binary risk matrix is defined as:

R =

 r0,0 r0,1

r1,0 r1,1

 (2.61)

We note that risk matrices are sometimes referred to as penalty functions. The

first index of rk,l represents the known class whereas the second index refers to

the class predicted by the model. Typically, r0,0 and r1,1 are zero, because they

represent correctly classified exemplars. The off diagonals, r0,1 and r1,0, are non-

negative and represent the penalty desired for either false positive (r0,1) or false

negative (r1,0) classifications. The relative magnitude of r0,1 and r1,0 define our

desired balance of maximizing sensitivity (r1,0 > r0,1) versus maximizing specificity

(r0,1 > r1,0). When r0,1 = r1,0, we are optimizing the overall accuracy of the model.

We will return to this concept of the balance of sensitivity and specificity when

we discuss receiver operating curves below.

The binary confusion matrix is defined as:

C =

 n0,0 n0,1

n1,0 n1,1

 (2.62)

where the indices are defined as they are in the risk matrix below. The n reflects

the number of exemplars that has been classified in each way.

We calculate the weighted accuracy by the following element-wise sum:∑
l,k

rl,knl,k. (2.63)
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The challenge to optimizing these models is that this cost or penalty inherently is

based on step functions that place exemplars into one item of the confusion matrix,

or another. This step function is both non-continuous and non-differentiable (see

Figure 2.7). This step function is the desired penalty that one would like to

apply: a cost of unity for misclassifying a single training exemplar, and zero cost

for correctly classifying that exemplar. The key to developing an efficient and

effective machine-learning algorithm is to approximate this step function with an

alternate penalty function. The key difference between each of the classifiers is

how each approximates the step function (Figure 2.7).

The simplest approximation is taken by Decision Trees. In decision trees, we

assume that the meaningful information in the input data also can be harnessed

through step functions. Therefore, we sequentially choose input features that

maximize the predictive accuracy in the training set. The next level of complexity

is accomplished by approximating the step function by a linear function, as is done

in Fisher Linear and Quadratic Discriminant Analysis (LDA and QDA). This

linear assumption is sensitive to both easy to classify and hard to classify outliers.

The soft-margin support vector machine (SVM) assumption uses the concept of a

margin (see SVM below) to reduce sensitivity to easy-to-classify outliers. The next

level of complexity is logistic regression, which assumes that the probability of class

membership changes linearly in logit space (see Logisic Regression in Generalized

Linear Models section above). This perspective has the benefit of being based

firmly in statistical rigor through the Bernoulli distribution. Lastly, we do not

assume the shape of the penalty function. In the canonical neural network model

(not shown in Figure 2.7), we construct hidden layers of data, which are linear

combinations of input data modeled through a logistic function. These hidden

layer(s) of data are combined linearly through more logistic regression functions.

The consequence of this deep model is that we can more closely approximate the

step function with a series of logistic functions. These approximations allow for
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mathematical optimization of our chosen objective function (see below), but do

not necessarily translate to improved accuracy of the generalized model. Prior to

reviewing each of these models, we cover overarching themes of machine learning

statistics that apply to each of these models.

Figure 2.7: Qualitative illustration of the ideal and approximated penalty function

for major categories of machine learning models. In this illustration, y ∈ {±1}
and ŷ ∈ R.

The general method to develop any machine-learning model is to use data to

train the various aspects of the models. In ideal situations, one has enough data to

split the available data into two or three subgroups: training group for parameters

(ψ), testing group for hyperparameters (θ) and validation group for out-of-sample

performance (Figure 2.8). The core of a machine learning model is the structure

and parameters, ψ, that are optimized with respect to some objective function.

Most machine learning models require the selection of hyperparameters, θ, that

are critical to the structure of the model, but traditionally are fixed and are not

optimized jointly with ψ. An optional testing set, generally smaller than the

training set, can be used to optimize θ. Without this optimization, traditionally θ

are considered fixed. Lastly, the learned ψ and θ are applied, without change, to

the validation group to assess the generalizability of the model to ’unseen’ data.

38



Because the ultimate goal of developing machine learning models is to apply them

to data that the outcome we are trying to predict is unknown, the performance

of the model on this dataset is critical.

Figure 2.8: Splitting the data into three mutually exclusive groups to avoid overfit-

ting and use data to estimate all important parts of the model and its performance.

Training
Learn ψ

Testing
Learn θ

Out-of-sample
Validation

To estimate the performance of the learned model accurately, one would sug-

gest that the validation set would be as large as possible, but in creating these

sets, we must consider the bias-variance trade-off [93]. This trade-off states that as

the validation set grows, the variance in the estimate of performance decreases. In

terms of the overall accuracy, the binomial distribution suggests that the standard

error of the estimate of variance of a proportion is defined by (Figure 2.9):

SE(π = Accuracy) =

√
π(1− π)

n
(2.64)

where n is the number of samples in the validation set. We define “overall”

accuracy as the accuracy considering all exemplars equally. (We will address

later if this binomial assumption is valid.) However, the bias-variance trade-off

states that when one increases the size of the validation set, the size of the training

and/or test sets must decrease, given a constant overall sample size. This decrease

in size of the training and/or test sets results in reduction of the generalization

performance, likely due to a decreased ability to estimate the predictive value of

the input data. Thereby, we have the trade-off where an increase in the validation

set allows us to estimate generalization performance better, but the same increase

in the size of the validation set decreases the generalization performance.

When large or unlimited datasets are available, this trade-off is a non-issue,

but in realistic situations, it is critical to use all the available data. One method
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Figure 2.9: Bias-Variance Tradeoff: As the number of training samples increases,

both the mean and variance of the cross-validation accuracy increase monotoni-

cally. Mean is indicated by the black line, and standard deviation is illustrated by

the grey error bars. Exact values and shape are illustrative, and do not represent

real or simulated results.

to accomplish this is through cross-validation (Figure 2.10). In cross-validation,

the entire dataset is split into the two groups and θ is chosen a priori. After the

model has been trained and validated, the data in the validation set is permuted

and the process is repeated such that each data point is in the validation set once

and only once. The generalization results across all validation sets are pooled. In

this way, all of the data is used to make a large validation set, and the size of the

training group is maximized. If one data point is left out of training and test-

ing, as in leave-one-out cross-validation, then the size of the training and testing

sets are maximized while the whole dataset is used for assessing generalization

performance.

When there are hyperparameters, θ, to optimize, a testing group is required,

because one must use data to estimate the optimum θ. Throughout this work,

we define θ as parameters that cannot or are not estimated simultaneously with

the parameters intrinsic to the model, ψ. If one uses the same data to optimize ψ

and θ by choosing the θ-ψ pair that results in the best training performance, then

40



Figure 2.10: 3-Fold Cross-validation when θ is selected a priori, as compard to

optimized. Therefore, no data is needed to learn θ. A separate model is learned

for each fold, resulting in three overall models to aggregate later.

Fold 1Fold 1
Training
Learn ψ

Out-of-sample
Validation

Fold 2Fold 2
Training
Learn ψ

Out-of-sample
Validation

Training
Learn ψ

Fold 3Fold 3
Out-of-sample
Validation

Training
Learn ψ

the model frequently is over-fit. By using separate data to optimize ψ (training)

and θ (testing), the propensity for overfitting is reduced because the testing set is

statistically independent, at least theoretically, from the training set.

This testing set typically is chosen through nested cross-validation (Figure

2.11). Just as data is left out for the validation set to estimate the generalization

accuracy, data can be left out from the training group to estimate the optimal θ.

In double leave-one-out nested cross-validation, one exemplar is used for validation

and a separate exemplar is used for testing. For each θ in the search space (range

of possible θ), ψ should be optimized using the training data. Those learned ψ

are applied to that testing exemplar. The θ-ψ pair that best predicts the testing

exemplar, by a chosen criterion, is then applied without change to the validation

to assess the generalization performance.

With our knowledge of the bias-variance trade-off, we recognize that this pro-

gressive splitting further biases the model towards worse generalization perfor-

mance and contributes to another source of variance in the estimate of generaliza-

tion performance. However, this is the least biased and most principled method

for estimating both θ and ψ. Addressing this critical and basic challenge is one of

the pillars of this graduate thesis (see chapters 11 & 12).

Cross-validation both is intensive computationally and can complicate the in-
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Figure 2.11: 3 then 2 Fold Nested Cross-validation. The data is split into 3

mutually exclusive sets, and each one is successively used as the validation set.

For each validation set, the remaining data is split into 2 mutually exclusive sets

to estimate the optimum ψ and θ. As shown, the inner splits correspond to the

higher level splits, but this is not necessarily the case. A separate model is fit for

each fold. These models must then be aggregated in post-processing.

Fold 1-1Fold 1-1
Training
Learn ψ

Out-of-sample
Validation

Testing
Learn θ

Fold 1-2Fold 1-2
Training
Learn ψ

Out-of-sample
Validation

Testing
Learn θ

Fold 2-1Fold 2-1
Training
Learn ψ

Out-of-sample
Validation

Testing
Learn θ

Fold 2-2Fold 2-2
Testing
Learn θ

Out-of-sample
Validation

Training
Learn θ

Fold 3-1Fold 3-1
Training
Learn ψ

Out-of-sample
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Fold 3-2Fold 3-2
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Out-of-sample
Validation

Testing
Learn θ
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terpretation of ψ̂ and θ̂. Because multiple models need to be trained, the compu-

tational cost increases linearly with the number of validation folds. Additionally,

each training and test set result in a different model. In some cases, averaging

across validation folds results in models similar to when all the data was used for

training and testing (i.e. β in logistic regression). In most cases, however, averag-

ing either cannot be done or does not reflect what a larger model would look like

(i.e. thresholds and variable order in decision trees). Therefore, interpretation of

models across folds can be extremely difficult.

These problems can be reduced by utilizing k-fold cross-validation, where the

data is split into k validation groups. This results in only k different models to

train and interpret (or k2 when performing nested cross-validation).

With the exception of logistic regression, one additional challenge to many

machine learning models is the lack of good statistical theory to predict the sen-

sitivity of the solution to changes in chosen or estimated parameters, or design

choices. In some cases, this results in an inability to estimate the probability

distribution of summary statistics under the null hypothesis that X has no pre-

dictive relationship with Y. In machine learning literature, the “null” hypothesis

frequently is referred to as “chance.” A chance classifier is defined by a predictive

algorithm based on an X matrix that has no predictive relationship with Y . In

other words, a chance classifier randomly guesses Y without consideration of X.

When we seek to test statistical significance, we are asking what the probability

of our observed results are if the classifier was a chance classifier. If we do not

have a clear probability distribution for a summary statistic, the key to estimating

significance is determining a quantifiable value that represents the aspect of the

solution that we seek to test. As long as this quantifiable value is defined for each

solution, its significance can be assessed.

There are two subtly different methods to establish empirical probability dis-

tributions for arbitrarily defined values: permutation testing and bootstrapping.
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In bootstrapping, artificial datasets are created by artificially resampling the data

with replacement, then retraining the model on each of these artificial datasets.

Each artificial dataset is the same size as the original dataset. The variation

around the observed value due to resampling allows us to estimate the 95% con-

fidence interval around the value. However, the assumptions critical to boot-

strapping frequently do not hold for many machine learning models, therefore

bootstrapping is not used frequently.

In permutation testing, we seek to form an empirical probability distribution of

any summary statistic achieved by a chance classifier. This empirical probability

distribution can estimate the p-value of the observed value. If the observed value

has less than 5% probability, then we consider the observed value statistically

significant. This is achieved by randomly permuting the class information without

replacement. The input data is left unchanged even though the class label is

changed, thereby breaking the association between data and class. The correlation

structure within the data, however, is maintained. The significance of the observed

value with real data can be estimated by counting the number of times the null

data achieved the observed value, or one more extreme.

An alternate method of permutation testing is to create artificial null data,

which we define subsequently. The class information is kept the same, but fake

input data is generated according to the null hypothesis. For binary input data,

when the probability of xi = 1 is not related to the input class, πi is set to be

50%. For continuous input data, typically one assumes the data is Gaussian with

a mean of 0 and a variance of 1. The actual value of mean and variance are

irrelevant, except for normalization relative to other features and, depending on

the objective function, relative magnitude to the regularization term (see below

for explanation of regularization).

The difference between the two types of permutation testing is the latent struc-

ture within the input data. When the class information is permuted, but the input
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data is unchanged, there is latent structure in the data. When artificial data is

created, this latent structure also is removed. One reason for removing this struc-

ture is that even when the class information is permuted, there is a quantifiable

similarity between the original and permuted class labels. As that similarity in-

creases, the similarity of the “null” data and the original data increases. This

breaks the assumption of permutation testing that there is no relationship be-

tween the class labels and the input data. (This may be one reason why the

distributions of predicted accuracies estimated by permutation tests are not ex-

actly binomial.) However, when there is correlation within the input data, the

correlation can result in numerical instabilities and other unpredictable effects on

the value of interest. Therefore, there is no best choice between the two types of

permutation testing.

Even though an false positive rate, α, of 0.05 can be estimated for any sum-

mary statistic with just 20 permutations in each permutation scheme, many more

need to be conducted to be confident in the estimated cutoff. While the mean or

median value is stable when 20 independent permutations, the ordinal statistics

are unstable relatively. This is clear when one considers the distribution of the

maximum value of 20 permutations. Due to heavy tailed distributions, the prob-

ability of huge values is small, but finite, thereby potentially huge variations in

the maximum. Therefore, rules of thumb are that to estimate the α cutoff of 5%

or 1%, 10,000 and 50,000 independent permutations must be done, respectively.

Permutation tests, as described above, can be used to determine significance

for any summary statistic. While we motivated these tests above based on a desire

to test the significance of parameters in the model, ψ and θ, permutation tests

are used most commonly to estimate the significance of the performance of the

overall model. When one is interested in applications, accurately estimating the

significance of performance statistics is critical to assessing the applicability of the

model.
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Performance statistics include cross-validation accuracy, sensitivity, specificity

and area under the receiver operating unit curve (AUC, see Figure 2.12). Up to

a certain degree of error, one can assume that accuracy is binomially distributed

by assuming the probability of predicting the class of each exemplar is equal.

An astute reader would notice that binomially distributed variables are counts,

whereas accuracies are percents. Accuracy can be transferred trivially to a count

of the number of accurately predicted exemplars by multiplying by the number of

validation exemplars. The binomial assumption is useful when performing power

calculations and for pilot studies where we seek to avoid the computational cost of

at least 10,000 permutations. However, other work has shown that this assumption

is an approximation [94].

Figure 2.12: An example receiver-operating curve which shows performance of a

prediction with respect to different balances of sensitivity (True Positive Rate)

compared to specificity (1-False Positive Rate). The black line illustrates a clas-

sifier with good performance, whereas the gray line indicates theoretical chance.

The inexact nature of this assumption becomes clear when we explore sit-

uations where the number of exemplars in each class is uneven, or we seek to

estimate probability distributions for the other performance statistics. Consider

the extreme example where 90% of exemplars are class yi = 0. A naive classi-
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fier would predict every validation case came from class zero and thereby acheive

90% accuracy. If the distribution of the validation data matches the training data,

then the accuracy of these naive classifiers would be binomially distributed around

90%. However, the probability of success on each exemplar is not equal: it is more

likely for exemplars that are class zero to be classified correctly. Next, consider

a less extreme example where leave-one-out cross validation is used on a dataset

with 150 exemplars, 75 of which are from each class. Within each training set,

the classes are mismatched slightly so if the model assumes the class distribution

in the training set is the same as the validation set, then the overall accuracy

would be 74/149 or 49.7%. If, however, the model takes the naive perspective

and classifies the validation data as the most common class in the training set,

then the overall accuracy would be 0%. In order to tell the difference between

these two options, empirical tests of chance provide invaluable evidence for what

“chance” means.

Theoretically, the balance between the naive and chance classifiers is due to the

amount of overfitting done by the model in the training set. If the model overfits

the data, then it can be more confident in the class of the validation exemplars.

If one class is more common, this confident classifier could classify everything as

the most common class, irrespective of its input data, resulting in a fully naive

classifier. If the data is not as overfit, then the decision boundary could be softer,

where a larger fraction of the input space would result in classification of validation

data as the less common class. Because validation data would lie, randomly, on one

side or the other of this decision boundary, the classifier would act more like chance

classifier. Because the degree of overfitting cannot be predicted theoretically, it is

difficult to knowing when and the degree to which a classifier will overfit the data.

Therefore, when possible, permutation tests are the preferred method of de-

termining the significance of any summary statistic. In addition to the benefits

discussed above, permutation tests also allow us to estimate the null distribution
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of any summary statistic that we can calculate from the results. As long as the

summary statistic is defined and consistently quantitative, it can be calculated

both in the original data and the permutated datasets. Suppose, for instance, we

desire to report the area under the receiver operating curve (AUC). Estimating

the probability distribution of this can be difficult [95]. Alternatively, suppose we

want to report the number of predictive factors with non-zero log odds ratios in a

L1 regularized logistic regression model so that we can comment on the complexity

of the problem at hand (see Feature Selection section in Didactic Background).

There is not good theory that could be used to determine a null probability value

for that. In these situations, permutation testing provides a simple and statis-

tically valid method for determining significance and interpreting values, even

though they are expensive computationally.

2.4 Machine Learning Classifiers

We will review the key classifiers discussed briefly above. We cover both the basic

theory behind each algorithm and selected quantitative results whose significance

can be estimated empirically for these models without strong statistical theory to

suggest a distribution.

2.4.1 Nearest Neighbor Classifiers and Norms

The classifiers with the simplest and most generalizable design concept are nearest

neighbor classifiers. This relies on the generalizable insight that data points that

are closer in X are therefore more likely to have similar output class. A classical

nearest neighbor algorithm simply classifies the validation data as the same class

as the closest exemplar within the training data. This can result in an extremely

complicated, and binary, decision boundaries (see Figure 2.13). A decision bound-

ary is defined as a line in the input space where if a validation exemplar lies on
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one side, it is classified as y = 1, and if it lies on the other side, it is classified as

y = 0. Highly flexible and binary decision boundaries have a greater propensity

to overfit the data. If we want to make a softer boundary that takes into ac-

count more training data at each point, we can use a k-nearest neighbor classifier,

where we consider the class of the k nearest training exemplars. The fraction of

these training classifiers that were y = 1 is used to estimate the probability the

validation exemplar is y = 1.

Figure 2.13: This illustrates the complexity of a nearest neighbor solution for two

dimensional input data, where the closest k = 5 neighbors based on an Euclidean

or L2 norm were considered. The lighter color indicates the region in which

validation data would be predicted to be from the blue or red class.

An important remaining question regarding nearest neighbor classifiers is ’how

do we define close?’ Typically, we assume that all input data are equally important

and linearly scaled; and the orientation of vectors within the X space does not

hold information, then the L2 norm is appropriate. The L2 norm is the most

49



common distance norm, and is defined by:

‖Xtraining −Xvalidation‖2 =

√√√√ m∑
j=1

(xtraining,j − xvalidation,j)2. (2.65)

Many people use this norm without considering the strong assumptions listed

above. Potentially, this is because it is difficult to make an argument for any

other distance function without making an explicit local model (see below for

model descriptions). However, both of the main assumptions can be modified

easily. First, if we do not want to assume that data is spherical in the input

space (orientation doesn’t matter), then we can use an L1 norm, where distance

is defined by the sum of the distance along each input dimension (Figure 2.14),

as follows:

‖Xtraining −Xvalidation‖1 =
m∑
j=1

|xtraining,j − xvalidation,j| . (2.66)

Figure 2.14: The distance between two points based on the L1 and L2.

Next, we can assume that not all features should be equally weighted. If we

say that only the maximum difference along an individual input feature matters,

we can use L∞ norm:

‖Xtraining −Xvalidation‖∞ = max
m
|xtraining,j − xvalidation,j| . (2.67)
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Lastly, if we want to count the number of features where the input data differs,

by any amount, we can use the L0 norm:

‖Xtraining −Xvalidation‖0 =
m∑
j=1

|xtraining,j − xvalidation,j|0 . (2.68)

Any non-negative real number, r, can be used in the exponent, resulting in a con-

tinuous variation in the “circle” equidistant from a center (Figure 2.15). These

unconventional r values balance the strength of the various norms by being inter-

mediate between them, and are defined by the following formula:

‖Xtraining −Xvalidation‖r =

[
m∑
j=1

(xtraining,j − xvalidation,j)r
] 1
r

. (2.69)

If instead we want to use a mix of these classifiers, we can use a mixed norm,

defined by

‖Xtraining −Xvalidation‖r,c =γ‖Xtraining −Xvalidation‖r

+ (1− γ)‖Xtraining −Xvalidation‖c (2.70)

where γ ∈ [0, 1], and r and c are in R≥0. While there are a great variety of norms,

it is difficult to know which norm will result in the most generalizable solution

prior to applying it to the validation data. This is there is not clear statistical

theory behind the nearest neighbor classifier that would suggest which norm is the

best for a given type or structure of input data. Therefore, we prefer classifiers

with a clear objective function that has some theory behind it.

2.4.2 Decision Trees

The classifiers that best match the step function are decision trees (Figure 2.7).

The simplest version of a decision tree is called an alternating decision tree (ADT).

These trees are built by making successive binary decisions to separate the output

classes. At each decision point, called nodes, we search through each of the avail-

able input data and test each threshold to maximize the purity of the daughter
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Figure 2.15: The shape of “circles” calculated according to various norms.

leaves, as quantified by their Gini impurity. Formally, this search is defined as:

max
j,k

G(j, k) = max
j,k

P (Y = −1|Xj < k) · [1− P (Y = −1|Xj < k)] +

P (Y = 1|Xj ≥ k) · [1− P (Y = 1|Xj ≥ k)] (2.71)

where Y is a vector of exemplars that were present at the node (see Figure 2.16).

For each daughter leaf, the successive maximization and split are repeated until

one of the following conditions is met:

• The daughter node consists of exemplars of only one type.

• The daughter node consists of just one exemplar.

• A predefined stopping point is reached.

There are a large variety of predefined stopping criterions including but not limited

to a minimum size of daughter node; a maximum number of binary decisions; not

allowing the same Xj to be used at multiple levels of the tree; or a minimum

Gini impurity achieved for the best Xj and k. Alternatively, pruning methods

can be applied after a dense tree is trained. These criterions hope to reduce the

propensity for decision to overfit the data.

The challenge in using decision trees is that their propensity to overfit the data

and the strong assumption that binary decisions can capture the full complexity
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Figure 2.16: An example decision tree. All exemplars begin in the largest cir-

cle, then are triaged towards the daughter circles based on maximizing the Gini

impurity. Exemplars are predicted to be the most common class within the last

daughter circle. Note that once a covariate is used, it can be reused lower down the

tree. Depending on the stopping criterion, the depth of the tree is not necessarily

uniform.

Class yi = 0Class yi = 0Class yi = 1Class yi = 1

Purity of color indicatesPurity of color indicates
percent compositionpercent composition

All
exemplars

X3 ≥ 0X3 ≥ 0

X3 < 0X3 < 0

X1 ≥ 5X1 ≥ 5

X1 < 5X1 < 5

X2 ≥ −1X2 ≥ −1

X2 < −1X2 < −1

X3 ≥ 5X3 ≥ 5

X3 < 5X3 < 5
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of the data. Both of these challenges can be shown through a simple example.

Consider a single input feature where a linear increase in x logistically increases

the probability that y = 1. For any finite sample and no predefined conditions,

successive binary decisions can split the range of x into sections that are predicted

to be all y = 1 and other sections predicted to be all y = −1 (see Figure 2.17). The

decision points will be more dense in around the region where P (yi = 1|xi = γ) =

50%, but they will give the false impression that the certainty of the predicted

class is equally accurate in this intermediate region as it is along the outer ranges

of x.

Figure 2.17: An example of an overfit decision tree. Black sections indicate where

the model would predict class below, whereas white sections indicate class above.

Simulated data (black dots) were distributed uniformly over the interval and ran-

domly assigned to be class below or above, with a stable probability of 50%.

One method to overcome this particular limitation of decision trees is addressed

partially by random forests. As is connoted by calling the algorithm a ’forest,’ this

method uses a combination of many decision trees to make a probabilistic decision.

If all trees were constructed with the same input data and training exemplars,

each tree would be identical. Randomly sampling the input features and training

exemplars with replacement generates variation across trees. The overall sample

size and dimensionality of the data are kept constant, but by placing multiple

identical points at certain locations and not sampling others results in changes

to the Gini impurity, thereby creating varying trees. When the forest is used to

classify an exemplar, a probabilistic decision is generating by dividing the number

of decisions that the classifier was yi = 1 divided by the total number of trees
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in the forest. However, when limited training exemplars and input features is

available, the variation across trees is limited.

2.4.3 Discriminant Analysis

Instead of assuming that all information in the features can be captured through

binary decisions, one can relax that assumption slightly, as is done in Fisher Lin-

ear or Quadratic Discriminant Analsyis (LDA or QDA). Instead of using binary

decisions, LDA and QDA use a linear changes in X to produce linear changes in

the probability that y = 1. The LDA algorithm officially is trained by maximiz-

ing the ratio of the predicted within-class variance to the between-class variance

(Figure 2.18). Formally, this is done through either of the following equivalent

maximizations:

min
β
−βTΣBβ s.t. βTΣWβ = 1 or max

β

βTΣBβ

βTΣWβ
. (2.72)

where ΣW is the within class variance and ΣB is the between class variance. The

solution to both of these maximizations is:

β = [E(Xi|yi = 1)− E(Xi|yi = 0)] Σ−1W = [µ1 − µ0] Σ−1W (2.73)

However, this phrasing of the algorithm is unnecessarily opaque. LDA is equiv-

alent mathematically to k-means clustering when k is 2. In k-means clustering,

the multivariate means of all the exemplars where y = 1 and y = 0 are taken

separately. The probability that an out-of-training-sample exemplar is defined as:

P (yi = 1|X) =

<yi,E(Xi|yi=1)>
V ar(Xi|yi=1)

<yi,E(Xi|yi=1)>
V ar(Xi|yi=1)

+ <yi,E(Xi|yi=0)>
V ar(Xi|yi=0)

. (2.74)

In LDA, one assumes that V ar(Xi|yi = 1) = V ar(Xk|yk = 0). If all exemplars are

classified as the most likely exemplar (or a threshold probability is defined), this

results in a linear decision boundary (a hyperplane w ∈ Rm) that is perpendicular

to the β̂ learned above. In QDA, we estimate the within-class variance separately,
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Figure 2.18: Examples of lines separating two classes based on Fisher Linear and

Quadratic Discriminant Analysis. Simulated data is centered around a point with

Gaussian noise added. The variance of the blue class is twice that of the red class.

resulting in a quadratic decision boundary that curves towards the class with the

smaller variance (Figure 2.18).

There are a few key limitations to LDA and QDA. The most apparent limita-

tion is the assumption of linearity in X. Both LDA and QDA would, therefore,

be insensitive to quadratic (or higher order) trends in individual Xj or nonlinear

interactions between dimensions in Xj and Xk for j 6= k. Additionally, all train-

ing exemplars contribute equally to the final solution, including potential easy to

classify outliers.

2.4.4 Support Vector Machines

In contrast, the main innovation in a Support Vector Machine (SVM) classifier,

relative to LDA and QDA, is unequal weights on training exemplars, although

other innovations also are present [96]. Support vectors are the hardest to classify

exemplars, in that their input data lie closest to the other class. The exemplars

that are easier to classify are ignored, for sake of determining the maximally

separating hyperplane. This makes SVM less sensitive to outliers, if they are
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easy to classify. The line that is used to separate the two classes is based on

maximizing the margin between the exemplars from each class (Figure 2.19). A

margin is defined by the distance between the closest two exemplars along the

line that is perpendicular to the separating hyperplane, w. Because less data is

used to determine this hyperplane, we must apply regularization so that there is

one unique maximum to the objective function. A hard-margin SVM is trained

by optimizing the following Lagrangian objective function:

L(X, Y |ψ = {w, α}) =
‖w‖22

2
−

n∑
i=1

αi [yiXiw − 1] (2.75)

where yi ∈ {±1} and α denotes the support vectors: αi = 0 if and only if the

exemplar is not a support vector. In comparison to the β that we learned in other

machine learning applications, w is the hyperplane perpendicular to β.

The last innovation of SVM is the use of a kernel. The objective function above

finds a linear separating hyperplane in the original input space. Alternatively, we

can find a linear separating hyperplane in the kernel space. The kernel space is a

higher dimensional space that can be used to train non-linear separating planes.

The SVM objective listed above reflects a “hard-margin” SVM, where there

exists a linearly separating hyperplane in which none of the training data is mis-

classified. In the original X space, this hyperplane may not exist. In a sufficiently

higher dimensional kernel space, one can guarantee that such a hyperplane exists.

If we do not want to use that type of kernel space, we can use a “soft-margin”

SVM, where misclassified training exemplars penalize the Lagrangian objective

function linearly with the distance from the separating hyperplane, as follows:

L(X, Y |ψ = {w, α, ξ, r}, θ = {C}) =
‖w‖22

2
+ C‖ξ‖1

−
n∑
i=1

αi [yiXiw − 1 + ξi] +
n∑
i=1

riξi (2.76)

where ξi is the distance of training exemplar i to the correct side of the sepa-

rating hyperplane, and r is another Lagrange parameter indicating the support
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Figure 2.19: Example of a soft-margin SVM solution for simulated Gaussian data.

The black line indicates the SVM separating hyperplane. The red exemplar on

the wrong side of the hyperplane is an example of a misclassified training exem-

plar that is a distance, ξ, from the maximum separating hyperplane. The green

squares highlight the three support vectors that would define the hyperplane, if

the misclassified exemplars were not present. The value of αi is greater than 0

for all suport vectors, by definition. Lastly, the separating hyperplane is defined

by Xw where w is perpendicular to a line that linearly projects the multivariate

data onto a single decision dimension, β.
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vectors. In this case, support vectors are the points that define the separating hy-

perplane plus all misclassified training exemplars. This guarantees that a unique

solution exists for any X and kernel. However, we note that as the penalty for

misclassification decreases (C → 0), SVM approaches L2 regularized LDA.

SVM models are very popular in neuroimaging because of their demonstrated

applicability, their resistance to outliers and stability in high dimensional spaces

despite limited exemplars. As discussed in detail below, regularization increases

our ability to find stable solutions in underdetermined systems where the number

of exemplars, n, is far less than the number of input features, m. All of these

models induce an assumed structure of the loss function and the shape of the

predictive information held within the input data.

2.4.5 Neural Networks

The most flexible model, a neural network, places very little assumptions on the

data. While there are multiple structures of neural networks, the most common is

a multilayer perceptron (see Figure 2.20). A multilayer perceptron makes multiple

and successive linear combinations of the original input data, which are placed

through a logistic function after each linear combination. After multiple layers

of these combinations, any loss function can be approximated. Additionally, any

structure of predicted information, including quadratic and exponential relation-

ships between particular Xj and Y , can be utilized fully. Because of this flexibility,

the performance of a deep neural network is at least equivalent to any the perfor-

mance of any other machine learning model, when infinite data is available.

The benefit of neural networks is also the challenge. Training the many modi-

fiable parameters, ψ = {βν,z}, and hyperparemeters, θ = {ν, z} ∈ Z2
≥0, within the

neural network requires a large amount of data and computational power. When

limited data is available, neural networks tend to overfit the data, because the
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Figure 2.20: An illustration of the structure of a multilayer neural network. The

input data, X, are combined linearly and pushed through a link function, g. In

the case of a multilayer perceptron, this link is a logit function. Other neural

networks use other link functions. These successive combinations of the input

data are eventually used to predict the final output class. Through these successive

combinations, high level interactions can be modelled, and a more nuanced penalty

function can be used to approximate the ideal step function.

X1 X2 X3 · · ·· · · Xm

h1,1 h2,1 h3,1 · · ·· · · hm,1 g(hv,1) = Xβv,1g(hv,1) = Xβv,1

h1,2 h2,2 h3,2 · · ·· · · hm,2 g(hv,2) = H1βv,2g(hv,2) = H1βv,2

...... ...... ...... ......

h1,z h2,z h3,z · · ·· · · hm,z g(hv,z) = Hz−1βv,z−1g(hv,z) = Hz−1βv,z−1

y g(y) = Hzβzg(y) = Hzβz
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large number of parameters allows each exemplar to completely define the region

around it, just as the deep alternating decision tree did earlier. In that way, the

performance of the model on the training data can be much greater than the per-

formance on the validation data. Because we are more concerned with the ability

of the learned solution to generalize to unseen data, this propensity to overfit is a

major limitation.

Now that we have reviewed the major categories of classifiers (but by no means,

not all classifiers), a logical question is how one goes about choosing a classifier

for a given application. Based on the insight above about overfitting, we should

choose a classifier that best matches the known or hypothesized structure of the

input data. In lay terms: “keep it simple, stupid.” In more nuanced language:

unless you know there exists a more complicated structure, don’t assume that it

exists. The simplest and easiest to interpret models are from logistic regression

because of the wide applicability to multiple types of input data, clear distributions

of error, and rigorous statistical motivation.

If the input data is known to be from an unbounded Gaussian distribution,

then it is feasible to assume linearity, as is done by LDA or QDA. If, in addition,

we know that the data has a problem with outliers, an SVM could result in

more stable and generalizable solutions. However, due to how SVM maximizes

the margin of the hyperplane, SVM may not be the best algorithm for binary

data: since all data lie in two locations, the margin is the same no matter which

exemplars are the support vectors.

Lastly, if the previous classifiers are not effective, a large amount of train-

ing data is available and/or a complex interaction structure in the input data is

expected, then a neural network classifier could result in the best performance.

The challenge is that in deep neural network classifiers, the number of parame-

ters is prohibitively hard to interpret. This limits our ability to learn about the

underlying system, even if we can produce highly accurate class predictions.
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Even though this may seem like a comprehensive review of machine learning

algorithms, we have left out key categories that are not pertinent to the work

below. These omitted topics include, but are not limited to, unsupervised and

semi-supervised algorithms. A supervised algorithm is defined by using known

class information to train the algorithm.

While there are a plethora of good software to implement each individual

model, we recommend using the Java-based software package Weka. The main

benefit to Weka is its implementation of many diverse classification methods

within the same software, and the ability to modify the risk matrix easily. This

facilitates the comparison of results across different models. Additionally, Weka is

relatively easy to use in a graphical user interface (GUI), and can be implemented

non-trivially on the command line. The major limitations to Weka are inefficient

memory usage, especially for large scale models, and lack of good documentation

for the command line version of the software.

2.5 Experimental Design, Curse of Dimensionality & Fea-

ture Selection

The design of experiments for the sake of machine learning is both similar and

different from experiments that plan on utilizing conventional statistics. A key

point is that, even though machine-learning statistics has great power, they are

still limited by the same need for a sufficient amount of high quality data to

estimate the predictive ability of the input data.

To illustrate this, we will illustrate this by drawing a parallel between un-

derdetermined simple linear models and generalized linear models. When Y is

Gaussian, the solution to simple linear regression is:

β = (XTX)−1XTY, (2.77)
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where β is the multivariate slope, and the other variables are defined as they have

been throughout this manuscript. We note that if XTX is not invertible, the sys-

tem is underdetermined: there is insufficient data to independently estimate all

elements of β. When these methods are applied using computers with finite pre-

cision, an XTX that is close to an uninvertible XTX also may provide inaccurate

or noisy estimates of β. In this latter case, XTX is said to have a poor condi-

tion number. Non-invertibility and poor condition numbers occur when there is

insufficient or close to insufficient row rank. This occurs when there are fewer

training exemplars, n, than features, m. Alternatively, if two or more X variables

are collinear or approximately collinear then the inverse is similarly undefined be-

cause at least two columns are linear combinations of each other. This is just one,

of many, examples of the types of relationships that cause poor condition num-

ber. In a generalized linear model, we model Y through a transformation function

g(Y ), like the logistic function. While the solution to a generalized linear model

is not always based on the inverse of XTWX. In the case of logistic regression,

Newton’s algorithm is based on the Hessian of X, which depends on the inverse

of XTWX (see Logistic Regression Section above). Therefore, if simple linear

regression is underdetermined, there is a possibility that logistic regression also

may be underdetermined.

To avoid these issues, we should aim to sample the full range of X from as

many independent patients as possible. This minimizes the potential for collinear

variables. Additionally, by sampling from a wide distribution of patients, we also

maximize our ability to estimate the predictive ability of each feature.

However, it is sometimes unavoidable to have collinear variables or insufficient

data (n << m). To overcome these, we can apply penalties and optimization

methods to result in stable, unique solutions. While these methods are not unique

to machine learning, they are applied more widely in machine learning settings.

Before we describe regularization penalties and feature selection methods to over-

63



come these limitations in the data, we must describe the curse of dimensionality

(CoD).

The curse of dimensionality (CoD) is an unavoidable fact of sampling data

[97]. No matter what method of feature selection or regularization we apply, the

curse of dimensionality applies. The basic premise of the curse is that as the

dimensionality of X increases (more features are measured), the average distance

between exemplars increases more than linearly (Figure 2.21). When we make

predictions, each method is based on applying knowledge from similar exemplars

in X to the validation data. If the distance between exemplars increases, then the

data are less similar and, consequentially, less can be learned from the “nearby”

exemplars, subject to a few assumptions.

Figure 2.21: An example of the curse of dimensionality for one (black) versus two

(red) dimensional data uniformly distributed over the interval [0, 1]. The colored

interval and circle represent the size a hypersphere with matching radius in each

dimensionality.

The proof of this is simple relatively. Let’s assume that data is uniformly

distributed from 0 to 1 along each X dimension, and that the distribution in each

dimension is independent. If we choose an arbitrary data point and draw a circle

of radius d around it, the area of that circle is the fraction of the space that is a
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given distance from the data point. The formula for the volume of a Euclidean

hypersphere with radius d and dimensionality m is:

Vm(d) =
πm/2

Γ
(
m
2

+ 1
)dm. (2.78)

Due to the gamma function, it is difficult to gain intuition about the behavior

of the volume from the formula alone. This becomes more apparent when we

plot Vm(d) as a function of m (see Figure 2.22). From this figure, it is clear

that the volume decreases more than exponentially as d increases. The reason

for the supraexponential increase is the combination of an exponential function

with a factorial. While we do not show it here, this proof is not restricted to

Euclidean distance or uniformly distributed X. As long as each dimension of X

is independent, the result would be the same, but the integrals would be (much)

harder.

Figure 2.22: An illustration of the fraction of the total space taken by hyperspheres

of various radii as the dimensionality of the input data increases. Observe that

the fraction of the total space taken decreases more than exponentially, as seen

by the slight positive inflection on these trend lines.

The impact of the CoD is that if each X dimension was independent, the only

way to combat this supraexponential increase in distance between the points is

to increase the number of data points supraexponentially, to achieve the same
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sampling density as would be achieved in a lower dimensional space.

If, however, the data point lie in a lower dimensional subspace or manifold

within the high dimensional space, then the CoD does not hold. The premise

behind feature selection methods is to find this lower dimensional space, or limit

the search region to a smaller section of the full X space. For the sake of this

work, we split feature selection into the following categories: (1) subsampling, (2)

filter methods, (3) projection methods, (4) iterative methods, (5) regularization

and Bayesian priors and (6) biological priors. We note that this is, by no means, a

comprehensive review of feature selection methods, which is a field unto itself [98].

After reviewing key examples of each of these methods, we will discuss briefly a

couple key challenges in the implementation of feature selection methods, namely,

the optimization of hyperparameters involved in each method and the need for

careful cross-validation.

2.5.1 Subsampling

Feature selection through subsampling was discussed when we discussed random

forests. In random forests, the exemplars and the features are sampled with

replacement such that the artificial datasets match the size of the original dataset.

When making the artificial datasets, we can choose the dimensionality of X in

each. Even if we choose X to be of the same dimensionality as the original

datset, the double sampling that occurs due to sampling with replacement causes

the functional dimensionality to decrease. If each, or a large fraction of, original

input features held predictive information, then limiting the dimensionality within

each tree would improve the tree’s ability to model that predictive information.

If, however, a sparse subset of X held predictive information, and a limited size

tree was used such that at least part of that subset was not included in each tree

frequently, then the majority of the trees would be modeling noise, resulting in

an ineffective prediction.
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2.5.2 Filter methods

One of the most popular methods of feature selection is filter feature selection. In

this case, we set a quantifiable criterion that ranks or orders the features. We then

choose to include the top F of these features in the subsequent machine learning

classifier training. The remaining features are left out. While this decreases the

dimensionality of the dataset that is seen by the classifier, it does not obviate the

CoD. If the filter feature selection is applied within each cross-validation fold (and

it should be), then the identity of the F features selected will not be consistent.

To determine the predictive ability of any feature, one must consider both how

frequently it was selected, and how much it was utilized when it was selected.

Just because a feature was ranked highly by the filter does not mean that the

machine learning classifier, in fact, used that feature to predict the outcome.

Additionally, if we choose a filter feature selection that ignores the dependency

and inter-relatedness between the features, then the subsequent classifier will not

have access to this dependency or potentially informative interaction, which we

discuss more below.

The simplest and most popular filter is the ANOVA or mass univariate t-

statistic filter where we calculate the absolute value of the t statistic for each

input feature. We then include features with the highest magnitude of t, or

choose a univariate significance cut-off that a feature must pass to be included.

The difference between these two criterions is practical, so we view them as duals

of each other (i.e. functionally equivalent). We note that this filter is different

from stepwise regression (see iterative methods below). While this filter is simple

and easy to apply, it also ignores the potentially rich correlation structure within

the input data and biases towards features that are discriminative on their own.

Therefore, after this type of selection, one should utilize simpler linear models

of X, like a decision tree, LDA, QDA or logistic regression, where each variable

is considered independent. The t statistic is linear inherently; therefore it will
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be less sensitive to non-linear information. If a neural network is applied after

this mass univariate t-statistic filter, then it will look for interaction effects that

were ignored in the initial filter. While it may be feasible to suggest that we are

only interested in interaction effects when main effects also are present, the most

discriminative information may be held within higher level interactions or when

sources of noise are controlled for, as we discuss in Kerr et al. [99].

An example of a filter feature selection that explicitly incorporates the de-

pendency within X is the minimum redundancy, maximum relevancy toolbox

(mRMR) [5, 6]. This is applied through either forward or backward selection.

We describe the forward selection algorithm. In mRMR, we rank features based

on their mutual information with the predicted class labels, with a penalty for

sharing information with higher ranked features, as such:

ScoreX(r+1) = max
j
MI(Y,Xj)−

1

r

∑
Xk∈X(r)

MI(Xk, Xj) (2.79)

Where MI(A,B) is the mutual information between A and B, and X(r) is the set

including the top r ranked features. The function of this criterion is to maximize

the independence within the modeled set, with the hope that the non-redundant

information in the lower ranked features holds no predictive information. If we

apply this type of filter, then assumptions of independence between the modeled

features are more likely to be true. Additionally, the non-linearity of the mutual

information allows for us to consider non-linear relationships between Y and Xj,

but when Xj ∈ R then we must quantize or smooth Xj prior to calculation of

the mutual information. This leads to another free hyperparameter that can be

optimized.

2.5.3 Projection methods

The next version of feature selection is projection methods, where we search for

a lower dimensional projection of the data that holds the predictive information.
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The general form of a linear projection is:

Z = XA (2.80)

Where Z is an n by p matrix, X is our original n by m matrix, and A is a m by

p projection matrix. The difference between the many linear projection methods

is their criterion for finding A.

The canonical projection method is principle component analysis (PCA) or

singular value decomposition (SVD), which are identical for our purposes. PCA

seeks to find a set of orthogonal axes within the space that capture the maximum

variance within the higher dimensional set, irrespective of the source of that vari-

ance. This is equivalent to finding the eigenvalues and eigenvectors of the dataset,

defined by:

D = UTXV (2.81)

where D is a diagonal matrix of eigenvalues, and U and V are unitary n by p and

m by p matrices, respectively. When using this as feature selection, we choose

the F eigenvectors with the F highest magnitude eigenvalues for inclusion into

subsequent modeling. This assumes that all other dimensions of variation are

noise. It is important to note that scaling of individual Xj will result in larger

eigenvalues along that axis, so all Xj must be scaled similarly prior to PCA.

While the choice of F can be arbitrary, in some settings there is solid sta-

tistical theory to suggest an effective choice. Suppose that there exists a lower

dimensional space with meaningful information, and all subsequent dimensions

are noise. Because we rank the eigenvalues, the eigenvalues from noise dimensions

should grow steadily as the rank increases. However, when an inflection point

is reached where the magnitude of the eigenvalue is suddenly higher, then that

suggests that there is another source of variation that the eigenvector is capturing.

If this alternate source is not noise, then it could be signal. Therefore, if there is
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an inflection point in the curve of the magnitude of eigenvalues, then F could be

selected to include all principle components with rank higher than that inflection

point.

The challenge in PCA is that because of the quadratic loss function inher-

ent in maximizing the variance, almost every Xj has a non-zero projection onto

each PCA. Therefore interpreting the principle components (PCs) can be diffi-

cult. That has led to the development of more sparse methods of linear projec-

tion, where sparse refers to the number of Xj that contributes to each projected

component.

In neuroimaging, the most popular projection method outside PCA is inde-

pendent component analysis (ICA). Instead of finding mathematically orthogo-

nal components as PCA does, ICA finds statistically independent components

that maximize the variance captured in the data [100]. This can result in non-

orthogonal components that are oriented along the major axes of variation in the

data (see Figure 2.23). Although there are a number of definitions for statistical in-

dependence in this setting, the fast ICA toolbox (http://research.ics.aalto.

fi/ica/fastica/) is the easiest to implement. The effect of using statistical

independence as compared to mathematical orthogonality is that a larger num-

ber of Xj have a zero-weighted projection onto each independent component

(IC). In neuroimaging, this has resulted in our ability to identify that particu-

lar ICs correspond to particular networks of anatomical regions. When a high

number of ICs are fit, biological prior beliefs of the shape and structure of ICs

that correspond to “real” signal can be used to exclude or filter out “noise” ICs

[101, 102, 103, 100, 104, 105, 106].

The selection of how many components to include, F , is even more challenging

in ICA than it was in PCA. It is trivial to show that PCA is nested: when a

smaller F is selected, it causes no change to the highest ranked components. ICA

is not nested: selecting a smaller F results in changes to each of the components.
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Figure 2.23: An example of the PCA (red) versus ICA (green) projection of input

data. Observe that the first components of ICA and PCA are identical, whereas

the second components vary. The second IC reflects the generative process of the

data by identifying the next largest statistically independent component of the

data, whereas the second PC is required to be orthogonal to the first. Figure

reproduced from gael-varoquaux.info.

Additionally, the rank of ICs is not stable for the same F , but the identity of the

ICs are. Therefore, F needs to be selected prior to ICA and the argument of the

inflection point in variance cannot be easily applied.

If your input data allows it, even more sparsity can be applied through the uti-

lization of non-negative matrix factorization (NNMF). Similar to ICA and PCA,

NNMF finds a linear projection from the original X space to a lower dimensional

space, with the strong prior assumption that noise results in zero or near zero

values, and signal results in positive values in X. It is required that all elements

of X are non-negative. Similar to ICA, there are multiple algorithms to imple-

ment NNMF that are based on optimizing subtly different criterion that are the

outside the scope of this work. It is sufficient to note that, similar to ICA, NNMF

is not nested, and can provide an even high degree of sparsity on how many Xj

contribute to each component. NNMF has shown to be highly effective in natural
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language processing (NLP) applications [107], as well as in some neuroimaging

applications [108].

The last two projection methods that we will discuss are non-linear projection

methods called local-linear embedding (LLE) [1] and multidimensional scaling

(MDS). The premise behind these methods is that there exists a manifold within

the X space that may or may not be captured by a linear projection. This

presumes that it is the distance along this manifold that is predictive, instead of

the distance traveled in the original space.

In local-linear embedding (LLE), [1] we calculate the pairwise distance between

all data with respect to some norm. We then place exemplars on a new, lower

dimensional space such that these pairwise distances are maximally preserved,

according to the following loss function:

min
W

n∑
i=1

‖Xi −
∑
j

WijXj‖2 (2.82)

where j is the set of neighbors or local points, and W is a reconstruction matrix

to predict Xi from its neighbors Xj. After learning W for set X, the final step

in LLE is to map the higher dimensional X onto a low dimensional manifold, Z,

such that the following loss function is minimized:

min
Z

n∑
i=1

‖Zi −
∑
j

WijZj‖2 (2.83)

where W is fixed and Z are allowed to vary. This allows us to plot the higher

dimensional data on a lower dimensional subspace, according to the learned man-

ifold.

This assumes that the relationship between data is linear within the manifold.

If we want to relax this assumption to suggest that within a certain distance, all

non-linear spaces can be approximated by linear functions, we can implement a

variation of LLE that only seeks to maintain the pairwise distances for local data

(with some criterion). This perspective has the unique ability to model complex
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manifolds within the original space, like U and S shapes (see Figure 2.24), that

would be otherwise unappreciated.

Figure 2.24: A) A two-dimensional manifold transformed into a three dimensional

space. Distance along the manifold is meaningful, but distances based on three-

-dimensional coordinates have little to no meaning. B) Data sampled from this

two-dimensional manifold. C) The data in B projected onto a two-dimensional

space based on local-linear embedding. The black outlines in B and C reflect a

neighborhood around a point in the original and projected spaces. Figure repro-

duced from Rowes & Saul [1].

Similar to LLE, MDS seeks to find a new set of input data that maintain

the pairwise distance between points. (MDS is built into the statistics toolbox

of MATLAB.) In MDS, one can choose the desired norm that should be used to

calculate distance in the new space. If we seek to apply a particular norm during

our machine-learning model (see below), then this guarantees that the input data

obeys the assumptions behind that norm. However, this is because all information

that is not captured by this norm is filtered out. Further, in non-metric MDS, we

don’t seek to match the continuous value of distance between points. Instead, we

seek to maintain the rank of distances across points. Therefore, if the norm that

we assumed in the original space was incorrect, but was correct up to the rank of

the points, the relationship between points in the non-metric MDS would not be

affected.
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The limitation of both of these manifold learning methods is that the rela-

tionship between the Y and the original input data X is broken. If we seek to

learn about the discriminative power of a given Xj or group of Xj, it is difficult

to back-project from solutions in the manifold space onto the original X. There-

fore, similar to the neural network classifier above: manifold learning can result

in improved class predictions, but at the cost of the interpretability of the model.

2.5.4 Iterative methods

The next category of feature selection methods is iterative methods. Just as in the

above methods, iterative feature selection is not incorporated into the likelihood or

objective function fit by the classifier, but it uses the result of classifier learning to

help select which features to include. The underlying assumption behind iterative

methods is that there exists a subset of features that, when included in the model,

result in the best performance. Therefore, we must search the combinatorial space

of subsets of features to find this optimal model.

The simplest version of iterative methods is forward selection. Forward selec-

tion is initiated by fitting a univariate predictive model for each Xj and choosing

the Xj that maximizes the performance of the model. Subsequently, models are

built with this high ranked feature, plus each individual Xj that was not already

included. The subset X(2) that results in the best performance is saved and the

process is iterated until either (1) no improvement in performance is reached or

(2) all features have been ranked. Note that both the number of features in the

model, F , and the criterion that models were trying to maximize can be selected

by the user.

Alternatively, models can be built using backward selection. In this case, a

full model using all the data is trained. Then, models excluding one Xj of are

trained. We again select the smaller model with the best performance and repeat
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this process until (1) no change in the performance is reached or (2) the model

includes no Xj.

In some cases, backwards selection can be accomplished without fitting smaller

candidate models. If we choose to model data using logistic regression, features

can be ranked according to the significance of their odds ratio. Similarly, in

SVM recursive feature elimination (SVM-RFE), features with zero or close-to-

zero weights can be excluded [109, 110]. Both of these criteria allow for iterative

exclusion of groups of Xj, in addition to just singular Xj. However, even though it

is tempting to suggest that non-zero weighted features are related to the outcome

class, this is not guaranteed. These features either provide predictive information,

or control for important sources of noise that allow for more predictive information

to be gleaned from other variables (see Haufe et al. [111] for more discussion).

Additionally, when using a regularized model (see below), the risk of false-negative

findings is high.

We note that each of these iterative methods do not fully search the com-

binatorially large space of all subsets of X. Instead, they provide heuristics for

searching a reasonable subset of this space. There exist stochastic methods to

more effectively search a larger number of the subsets, but those methods are

outside the scope of our work.

2.5.5 Regularization and Bayesian priors

The most statistically appealing method of feature selection is the application or

regularization or Bayesian priors about the nature of informative features. The

difference between the terms “regularization” and “Bayesian priors” is semantic,

and not based on differences in theory, as will become clear below. In contrast to

all of the above methods, regularization and Bayesian priors are integrated into

the likelihood and objection functions that we optimize using the training data.
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By integrating feature selection into the function we optimize, we can study the

sensitivity of our fitted model to these choices better, by considering the deriva-

tive of the solution with respect to the regularization term, and/or modeling the

distribution of the solution with the regularization term. Determining signifi-

cance and the effect of these terms is a novel and active area of research called

post-inferential statistics.

First, we discuss regularization terms. Regularization terms apply the prior

hypothesis that a small subset of X is informative, and the other terms are just

noise. Therefore, most of the values of the β vector that weights the X should

be zero or close to zero (i.e. β are sparse). We impose this hypothesis by saying,

mathematically, that we prefer solutions that this is the case. Regularization

can be applied to any machine learning classifier that optimizes a likelihood or

objective function by optimizing the sum of the regularization penalty and the

likelihood or objective function:

`R(Y |X,ψ, θ) = λ‖β‖+ `(Y |X,ψ, θ). (2.84)

In this way, non-sparse solutions that produce high likelihood are penalized, re-

sulting in a more sparse solution.

A consequence of applying this prior hypothesis is that stable, unique solutions

can be achieved despite underdetermined data. If n << m, then many machine

learning models discussed above do not have unique solutions. If a regularization

term is applied, then the requirement of invertibility of the Hessian (XTX) is not

required because the solution is not based on inverting the Hessian. (Frequently,

the solution relies on the inversion of the Hessian plus a term derived from the

regularization penalty.)

Observant readers will remember that the original formulation of SVM in-

cludes an L2 regularization term. This is included because when we consider just

the support vectors when learning the maximally separating hyperplane, we are
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working essentially in a system where n << m. Therefore regularization is needed

to guarantee the uniqueness of the solution.

However, regularization has a tendency for false negative results. Consider

an Xj and Xk that both have unique and shared predictive information. If the

magnitude of the unique information in Xj or Xk is hard to distinguish from noise,

then a regularized solution could include Xj but not Xk, or vice-versa. This is

because most of the predictive information is in Xj. The addition of weight of Xk,

given that Xj is included, may not result in enough improvement of the likelihood

or objective function. Therefore, regularized solutions will identify sets of features

that are predictive, but interpreting a weight of zero or near zero is difficult (see

Haufe et al. [111] for why we say sets of features, as compared to individual

features).

The easiest regularization penalty to optimize is the L2 norm, because of its

differentiability. While L2 regularization is effective in a wide variety of appli-

cations, L2 regularized solutions do not tend to place zero-weight on any Xj.

Instead, small values are allowed.

Suppose that βj = 0.01. In an L2 norm, this would contribute a penalty of

roughly (βj)
2 = 0.0001. Therefore, small weights are no different than zero weights

in terms of the final solution. If all features contribute to the end solution, then

it is difficult to interpret which features are the most discriminative, especially

when utilizing a kernel space in an SVM [111].

A solution to this problem of non-zero weights is to use an L1 norm. A

challenge behind an L1 norm is that it is undifferentiable at zero. Because we seek

for many values to be uniquely zero, this can be a large optimization problem.

The functional effect of an L1 norm is that it makes the wj that were small,

but non-zero, actually have a weight of zero. This results in more interpretable

solutions because we can assess our performance as if we only sampled the features

with non-zero weight. In fact, clever proofs from the compressed sensing literature
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have shown us that L1 solutions are identical to L0 solutions (see Figure 2.25).

L0 solutions seek to minimize the number of features with non-zero weight and

ignore the actual weight assigned. This has a clear interpretation: L1 and L0

regularization results in the solution that includes the minimum number of Xj

to achieve the given performance. Therefore, when performing a pilot analysis

of a large number of features, with the hope of identifying a small set of highly

important features, it may be attractive to apply L1 or L0 regularization even if

it is not necessary for the uniqueness of the solution.

Figure 2.25: For linear solutions, there exist a set of solutions that result in the

same log-likelihood (black line). The L1 penalty chooses the solution with the

minimum L1, which also happens to be the solution with minimum L0, in the

vast majority of cases (b). In contrast, the L2 and L0 solutions do not coincide

(a).

An important limitation to L1 regularization is that the estimates it generates

are biased towards zero. In other words, L1 will underestimate the effect of the

Xj that it gives non-zero weight, relative to when infinite data is available.

The last example of regularization terms we will discuss is a total variation

(TV)-L1 norm hybrid. While it is trivial to suggest that norms can be mixed

through weighted sums, or norms other than the L1 and L2 can be applied, the

TV penalty let’s us apply a prior about the structure of Xj. If Xj are pixels or

voxels (volumetric pixels) from an image, then a reasonable prior hypothesis is
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that nearby Xj could provide similar information. Therefore, the weight of Xj

should not change drastically cross the image. This is achieved by applying the

following TV penalty in one dimension:

‖5β‖1 =
m∑
j=2

|βj − βj−1| . (2.85)

Both L1 and L2 regularization of logistic regression and SVM have been imple-

mented within the LibLinear toolbox, available for C and MATLAB (http://www.

csie.ntu.edu.tw/~cjlin/liblinear/, [112]). The TV penalty has been imple-

mented within scikitlearn, a Python toolbox for machine learning (https://git

hub.com/nilearn/nilearn/pull/219) [113, 114].

Lastly, more general Bayesian priors can be applied to likelihood functions.

Suppose we apply the given prior on β: P (β). Using Bayes formula, this is

integrated into the posterior probability in the following way:

P (Y |X,ψ, θ) =
P (X|Y, ψ, θ)P (Y )

P (ψ, θ)
(2.86)

where β is an element of ψ, the set of parameters optimized using the objective

function. As a reminder, θ are the set of hyperparameters that are not estimated

jointly with the objective function. Since optimizing sums is easier than opti-

mizing products, we can log-trans form this expression to generate log-posterior

probability:

logP (Y |X,ψ, θ) = logP (X|Y, ψ, θ) + logP (Y )− logP (ψ, θ). (2.87)

The subtraction of logP (ψ, θ) is eerily similar to the addition of a penalty term to

the objective functions listed above, when we recognize logP (X|Y, ψ, θ) as the log-

likelihood. Therefore, the regularization terms discussed above can be expressed

in terms of prior hypothesis on ψ and θ.

One example of a Bayesian feature selection prior is a spike and slab prior.

For each βj, we place a large spike of probability mass at βj = 0. The rest of the
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probability mass we spread uniformly (or with a slow decay constant) on the rest

of the possible range of βj. Consequentially, most βj will have zero weight, and

some βj will have non-zero weight.

The challenge to the application of Bayesian methods is their computational

intensity. Even though there is a strong statistical basis for their construction,

only a limited number of posterior probabilities have analytical solutions to their

optimization. The most popular method to find the optimum of Bayesian expres-

sions is through Markov chain Monte Carlo (MCMC) simulations, generally using

Metropolis Hastings sampling (i.e. OpenBUGS software). For even moderately

sized problems, these MCMC simulations can be prohibitively slow to converge.

Novel hardware and software is being developed to address these limitations.

2.5.6 Biological priors

The last feature selection method is important to discuss, even if it has no math-

ematical or statistical motivation. If we have prior biological knowledge of the

system that we are studying, applying that knowledge to assist in feature selection

can result in improvements in performance [3]. For example, if we are studying

the difference between left and right temporal lobe epilepsy, we can hypothesize

that the strongest signal is going to in the temporal lobes, and/or the difference

between the temporal lobes. (Note that based on current research, including our

own, [7, 81] this is not necessarily a good hypothesis.) This hypothesis can be

applied by considering only the X that consist of features from those regions.

We highlight that some biological hypotheses can be applied within a statistical

framework. In particular, we know that human brains are organized into similar

functional regions; therefore the contribution of nearby regions should be similar.

This hypothesis matches the assumptions behind TV regularization, therefore TV

may be effective for neuroimaging data (as in Dubois et al. [114]).
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As another example, the structural changes due to dementia may be focused

in particular regions, but they also involve wide regions of the brain. Therefore,

when predicting class information about dementia using brain information, an L2

prior that considers small but dispersed contributions may be more appropriate.

In contrast, some epilepsies are due to highly focal lesions. When predicting class

information about these, an L1 prior may be more effective in eliminating the large

amount of irrelevant information while focusing on a small number of informative

features.

A common theme through each of these feature selection methods is that

they require the selection of seemingly arbitrary hyperparameters, θ. With the

exception of Bayesian priors, these θ are not explicitly written into the likelihood

or objective function. Therefore, it is difficult to balance the choice of θ with

the goodness of fit of the model, or understand the sensitivity of the model to

changes in θ, which otherwise could be done by differentiating the likelihood or

objective function with respect to θ. The selection of these θ and understanding

the sensitivity of the performance to these choices is discussed in chapters 11 &

12 in detail.

The other important caveat to feature selection methods that we must re-

emphasize is that they are partial solutions to the curse of dimensionality, but

they are no means full solutions in all situations. The addition of free parameters

and hyperparameters also increases the propensity to overfit the data, especially

when limited data is available. Therefore, feature selection must be applied within

each cross-validation fold so that we can ensure that the accuracy of the estimates

of how well the models generalize to out-of-sample data are preserved. If a general

feature selection is done prior to the cross-validation split, then information from

the validation data can bleed into the training solution. Therefore, unless it is

impossible to split feature selection from cross-validation, we advise that it should

be done. This is the case even for unsupervised feature selection methods.
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2.6 Population Selection in the Development of CADTs

The key to developing clinically applicable CADTs is the identification and de-

tailed description of the diagnostic challenge, the clinical context, the patient

population, and the data available for study. Even as mathematicians and statis-

ticians, it is critical to have a close collaboration with clinicians that are familiar

with the practical challenges inherent in the desired application.

The first and most important part of a CADT is to define clearly the diagnostic

challenge and the appropriate control population. One example of this is in the

early diagnosis of Alzheimer’s dementia (AD). Once clinical signs and symptoms

of dementia are apparent, the pathologic challenges responsible for the dementia

may be irreversible. If patients at high risk for AD could be identified prior to

onset of clinical signs, then interventions could be developed prior to the onset

of permanent damage. Therefore, CADTs for AD focus on the prediction of

later development of clinical signs of dementia in normal or high-risk populations.

Based on this insight, diagnostic studies focus on discriminating age-matched

controls from AD, stable mild cognitive impairment (MCI) and progressive MCI.

Patients with MCI have early signs of dementia, but have not yet progressed

to overt AD. The discrimination between controls and AD serves as a proof of

concept that the classification scheme is effective. The discrimination between

progressive and stable MCI reflects the desired application of the CADT. The Holy

Grail would be to identify patients at high risk for AD prior to the development

of clinical signs. This Holy Grail study requires long-term follow up of a large

population of health patients, with the knowledge that some would develop AD.

The diagnostic challenge in seizures is different from dementia because physi-

cians are seeking to determine the etiology of seizures that occur prior to assess-

ment. Therefore, comparison of patients with epilepsy to seizure-naive controls

does not address the diagnostic challenge at hand because clinicians would never
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consider epilepsy as a potential diagnosis in patients who have never experienced

a seizure-like event. In our opinion, there are two potential control populations.

If we seek to diagnose epilepsy as early as possible, we should compare patients

with epilepsy to patients who experience an isolated or provoked seizure but do

not progress to experience repeated, unprovoked seizures, which is the definition

of epilepsy. If we seek to diagnose the etiology of repeated seizures, these patients

with isolated seizures are irrelevant. Instead, we should compare to patients that

experience NES (see chapter 1). In contrast to the patients with isolated seizures,

patients with NES are treated as if they have epilepsy until they are diagnosed.

Consequentially, their exposures to ASMs and other iatrogenic exposures match

patients with epilepsy [8, 81]. Therefore, when developing CADTs for epilepsy,

we believe that the first, critical stage is to differentiate epilepsy from NES.

This mirrors the clinical question of interest because both populations have a

prior history of seizures, but complicates the interpretation of the learned models.

Any observed differences reflect the difference between patients with NES and ES,

as compared to just the difference attributable to epilepsy. Therefore, without

other corresponding evidence, changes could be due to ES, NES or a combination

of both conditions.

For example, in the chapter 9, [7] we find that metabolic alterations in senso-

rimotor cortex, which we interpret as a novel finding suggestive of extratemporal

changes due to temporal lobe epilepsy (TLE). This was based on the supposi-

tion that patients with NES have no focal lesions visible by FDG-PET. Recent

research, however, found reductions in cortical thickness in sensorimotor cortex

in patients with psychogenic non-epileptic seizures compared to healthy controls

[115]. This reduction in cortical thickness would likely be accompanied by a con-

comitant reduction in glucose metabolism. Therefore, we should have interpreted

our change in sensorimotor cortex as at least in part due to metabolic changes in

NES.
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This reasoning can be generalized beyond Alzheimer’s, psychogenic seizures or

epilepsy. We argue that the proper control for a novel CADT is the differential

diagnosis (DDx) for the signs or symptoms of interest. In clinical medicine, the

term “symptoms” reflect observations made or reported by the patient, witnesses

or their caregivers. The term “signs” reflect objective observations made by a

health care provider. Lastly, a DDx reflects all of the potential conditions or syn-

dromes that can result in the sign or symptom. These lists are well defined in

the medical literature and, frequently, are long because they include all possibil-

ities, no matter how unlikely it is. Note that this requires us to recognize signs

or symptoms to address, as compared to conditions, the latter of which is the

conventional organization of research and medicine.

A relevant example of a differential diagnosis is the DDx of episodic, self-

resolving loss of awareness, responsiveness or consciousness is as follows:

1. Epilepsy

(a) Generalized-onset seizures

(b) Focal dyscognitive seizures

2. Psychogenic non-epileptic seizures

3. Physiologic non-epileptic seizures

(a) Complex migraines

(b) Confusion episodes in dementia

(c) Syncope

(d) Narcolepsy or cataplexy

(e) Hyperventiliation syndrome

(f) Movement disorders
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4. Provoked causes

(a) Stroke

(b) Temporary Ischemic Attacks (TIA)

(c) Myocardial infarction (MI)

(d) Polypharmacy

(e) Medication or substance effect

5. Malingering

6. Munchausen’s Disease

The sheer number of conditions on a differential diagnostic list is long, requiring

sufficient patients in each group to be able to characterize the trends of the input

data within the group. The sheer number of patients required for this can be

prohibitive, so initial CADTs can and should address the most salient facets of

this differential. For example, much of our work focuses on answering the follow-

ing question: who will benefit from treatment with ASMs? This simplifies the

differential into two groups, at the cost of a certain level of detail.

Alternatively, one can utilize data from an unselected population of patients

that present with episodic, self-resolving loss of awareness, responsiveness or con-

sciousness. Some groups of patients will not be represented well in this dataset

because they are rare, compared to the other groups. This naturally will priori-

tize research towards the most prevalent groups. If, however, one seeks to study

a more rare group, then the minimum size of the database will be defined by how

many exemplars of the rare group of interest are expected to be present, for a

given size.

For example, if we seek to study psychogenic NES, we know from previous

literature that psychogenic NES comprises 30% of patients admitted to vEEG.
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If we want a minimum sample of 100 patients with psychogenic NES, then we

would need to collect data from at least 334 patients admitted to vEEG. If we

seek to study malingering or Munchausen’s Disease, we recognize that roughly

5 of every 300 patients with NES are malingering (estimate from UCLA Seizure

Disorder Center data). If we want at least 100 patients who are malingering or

have Munchausen’s Disease in our dataset, then we need at least 20,000 patients

admitted to vEEG. While these sample size calculations are important for exper-

imental design, they also are important concerns about implementation. If we

expect to apply our CADT to hundreds of patients, then it may be feasible to

ignore the possibility of malingering or Munchausen’s Disease in favor of identify-

ing psychogenic NES. If, however, we propose that our CADT should be applied

nationwide to the hundreds of thousands of patients per year that present with

episodic loss of awareness, then a non-negligible number of these patients are ma-

lingering or have Munchausen’s Disease. Therefore, it would be inappropriate for

us to not attempt to describe that population.

Therefore, when seeking to develop a clinically relevant CADT, one must con-

sider the specific clinical question that the CADT seeks to assist with. For di-

agnostics, this question frequently refers to a differential diagnosis of signs or

symptoms present in a patient. Prior to implementation, the CADT should be

trained on an appropriate amount of data to study the population of interest.
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CHAPTER 3

The Future of Medical Diagnostics: Large

Digitized Databases

This chapter is a reproduction of our work published in the Yale Journal of Biology

& Medicine.[89] This work includes contributions from Edward P. Lau, Gwen E.

Owens and Aaron Trefler. WTK initiated, organized and wrote the majority of

this article. EPL created the third figure and contributed significantly to sections

regarding computational efficiency, the structure of databases and the content

strategy problem. GEO created the first and second figures, as well as the first

table, and contributed significantly to sections regarding patient and physician

attitudes toward databases and computer-aided diagnostics. AT contributed by

conducting substantial literature review to support the ideas expressed.

3.1 Abstract

The electronic health record mandate within the American Recovery and Rein-

vestment Act of 2009 will have far reaching impacts on medicine. In this article,

we provide an in-depth analysis of how this mandate is expected to stimulate

the production of large scale digitized databases of patient information. There is

evidence to suggest that millions of patients and the NIH will fully support the

mining of such databases to better understand the process of diagnosing patients.

This data mining likely will reaffirm and quantify known risk factors for many

diagnoses. This quantification may be leveraged to further develop computer-
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aided diagnostic tools that weigh risk factors and provide decision support for

health care providers. We expect that creation of these databases will stimulate

the development of computer-aided diagnostic support tools that will become an

integral part of modern medicine.

3.2 Introduction

The impact of nationwide implementation of electronic health record (EHR) sys-

tems will change the daily practice of medicine as we know it. With medical

records in their current state, it is extremely difficult to efficiently collate records

and mine clinical information to understand trends in and differences between var-

ious patient populations. This limits the size of patient groups and thereby reduces

the statistical power of many research protocols [62]. The EHR mandate will stim-

ulate institutions to digitize their records in common formats that are amenable to

collating data into large databases. These databases with records from potentially

millions of patients can then be processed using sophisticated data mining tech-

niques. There are numerous regulatory, practical and computational challenges

to creating and maintaining these databases that will need to be appropriately

addressed. Many groups are already compiling large databases of high quality pa-

tient information with great success [116, 117, 118, 119, 120, 121, 122, 123, 124].

Based on its previous efforts, we expect the National Institute of Health (NIH) to

fully support researchers that seek to tackle the challenges of creating EHR-based

databases that include clinical notes and other data points such as laboratory

results and radiological images. Such databases will be invaluable to the develop-

ment of computer aided diagnostic (CAD) tools that, we believe, will be respon-

sible for many advances in the efficiency and quality of patient care[62]. CAD

tools are automated programs that provide synthesized diagnostic information to

providers that are not otherwise readily accessible. The rate of development of

88



CAD tools and the mining of medical record systems has increased markedly since

2002 (Figure 3.1) and we expect the development of large EHR-based databases

will only stimulate this activity further [2][2][2][2]. In this article, we provide

an in-depth analysis of the effect of the EHR mandate on the development of

databases that could be mined to create high quality CAD tools. Further, we

illustrate how computer aided diagnostics can be integrated efficiently into daily

medical practice.

Figure 3.1: This figure illustrates the number of PubMed citations using each of

the Mesh terms listed. Since 2002, the number of publications regarding com-

puter-aided diagnostics has increased substantially. We are already seeing a com-

mensurate increase in the number of publications regarding computerized medical

record systems and electronic health records.[2]
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3.3 Mandates and Policies Driving the Change

Although the growth of large digitized databases is stimulated by numerous sources,

there are two key policy decisions that have the potential to dramatically speed

this growth and change medical diagnostics as we know it. These key policies are

the final NIH statement on sharing research data in 2003 and the EHR mandate

in the American Recovery and Reinvestment Act of 2009 (ARRA) [125, 126][125,

126][125, 126][125, 126]. The seed for developing large open databases of medical

information began was planted initially by the NIH statement on sharing research

data. In 2003, the NIH mandated that investigators submitting an NIH applica-

tion seeking $500,000 or more in direct costs in a single year are expected to include

a plan for data sharing [126][126][126][126]. A large portion of academic medicine

research is funded through grants of this type and therefore the amount of high

quality information about patients in the public domain is growing rapidly. This

may be one reason why interest in computerized medical record systems increased

in 2003 (Figure 3.1). Unfortunately, the NIH has identified that this policy has

not led to the degree of data sharing they anticipated, as evidenced by NOT-DA-

11-021 entitled “Expansion of sharing and standardization of NIH-funded human

brain imaging data” [127]. The focus of this request for information (RFI) was to

identify the barriers to creating an open-access database for brain imaging data,

including medically relevant images. This RFI implies that the NIH likely would

support efforts to establish large open, digitized databases that include patient

information.

Those who designed the ARRA presumably recognized the potential of digi-

tized medicine and decided to support its development. In the ARRA 20 billion

dollars was provided to establish EHRs for all patients treated in the US [125].

Healthcare providers that do not establish an EHR system after 2014 will be

subject to fines. This was intended to further stimulate the trend of increased
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utilization of EHR systems (Figure 3.2). As stated in the bill, the reasons for this

mandate include reduction of medical errors, health disparities, inefficiency, inap-

propriate care and duplicative care. Further, the ARRA EHR mandate has and

is meant to improve coordination, the delivery of patient-centered medical care,

public health activities, early detection, disease prevention, disease management

and outcomes [128, 125]. To facilitate these advances, the knowledge about and

methods for bioinformatics must be applied to millions of EHRs to develop auto-

mated, computer aided diagnostic (CAD) tools. For example, one efficient way to

avoid inappropriate care is for an automated program to produce an alert when a

health care provider attempts to provide questionable service. The development

of such CAD tools is not trivial; however large, high-quality, open EHR databases

will greatly decrease development costs and accelerate testing. Below we discuss

why it is our firm belief that these databases will make the implementation of

computer-aided diagnostics virtually inevitable.

3.4 Large Databases

There are a growing number of these large databases populated with clinically

relevant information from patients suffering from a diverse range of medical con-

ditions, some already including detailed multimodal information from hundreds

to millions of patients. Here we will briefly review the General Practice Research

Database (GPRD), the Alzheimers Disease Neuroimaging Initiative (ADNI), the

Personal Genome Project (PGP), the European Database on Epilepsy (EDE)

and the Australian EEG Database. These and other databases are summarized

in Table 3.1.

The GPRD includes quality text based records from over 11 million patients

primarily from the UK but also includes patients from Germany, France and

the US [118, 129]. The database is used primarily by pharmacoepidemiologists
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Figure 3.2: Even before the ARRA in 2009, the number of physicians utilizing

EHR systems was increasing. There are already a substantial percent of physicians

using electronic records. Consequentially, it is relatively inexpensive to combine

and mine these EHR systems for high quality clinical information.
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Table 3.1: A quick summary of notable databases of high quality information that

have been developed and are being used for large scale studies.
Database Information Contained Funding Source(s) Access Website

ADHD-200 776 resting-state

fMRI and anatomical

datasets along and

accompanying pheno-

typic information from

8 imaging sites; 285 of

which are from children

and adolescents with

ADHD aged 7-21

NIH Research community fcon_1000.projects.nitrc

.org/indi/adhd200/

index.html

Alzheimer’s Disease

Neuroimaging Initia-

tive (ADNI)

Information on 200

control patients, 400

patients with mild cog-

nitive impairment, and

200 with Alzheimer’s

disease

NIH Public access www.adni-info.org/

Australian EEG

Database

18,500 EEG records

from a regional public

hospital

Hunter Medical Re-

search Insitute and the

University of Newcastle

Research Management

Committee

User access required

(administrator, an-

alyst, researcher,

student)

aed.newcastle.edu.au:

9080/AED/login.jsp

Clinical Trials Registry and results of

>100,000 clinical trials

NIH Public access clinicaltrials.gov/

Epilepsiae European

Database on Epilepsy

Long-term recordings

of 275 patients

European Union Research community www.epilepsiae.eu/

Healthfinder Encyclopedia of health

topics

Department of Health

and Human Services

Public access healthfinder.gov/

Kaiser Permanente

National Research

Database

Clinical information on

>30 million members

of the Kaiser Founda-

tion Health Plan

Kaiser Foundation Re-

search Institute

Kaiser Permanente

researchers and col-

laborating non-KP

researchers

www.dor.kaiser.org/

external/research/topics/

Medical_Informatics/

National Patient Care

Database (NPCD)

Veterans Health Ad-

ministration Medical

Dataset

U.S. Department of

Veterans Affairs

Research community www.virec.research.va.

gov/DataSourcesName/

NPCD/NPCD.htm

Personal Genome

Project (PGP)

1,677+ deep sequenced

genomes. Goal is

100,000 genomes.

NIH and private donors Open consent www.personalgenomes.org/

PubMed Article titles and ab-

stracts

NIH Public access www.ncbi.nlm.nih.gov/

pubmed/

though other researchers are mining this database actively to create automated

tools that extract, at base, the diagnostic conclusions reported in each note [130,

131]. Although the recall and precision of these tools was good–86% and 74%

respectively in one study [131]these tools are constantly improving. We expect

the increasing size of this and other databases will further stimulate high quality

research in this field and result in highly efficient and effective data extraction
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tools. This conclusion is supported by the fact that over 73 scholarly publications

utilized the GPRD in the first three quarters of 2011 alone [129]. This database,

however, is limited to the text of the clinical notes.

Other databases go further by providing complex data regarding large cohorts

of patients. The ADNI database contains data fields that track the rate of change

of cognition, brain structure and function from 800 patients, including 200 with

Alzheimers disease (AD) and 400 with mild cognitive impairment (MCI) [124].

Researchers are planning to add 550 more patients to this cohort in ADNI2 [117].

The current ADNI database includes full neuroimaging data from all of these pa-

tients in the hope that this data can be used to discover the early warning signs

for AD. ADNI has been used already to develop machine learning (ML) tools to

discriminate between AD and normal aging . Another database compiled by the

PGP currently has 1,677 patients and researchers plan to expand this to include

nearly complete genomic sequences from 100,000 volunteers using open-consent

[121]. Researchers involved in the PGP anticipate that this sequence information

will be used to understand risk profiles for many heritable diseases [119]. Other

similarly large databases of complex data already exist; the EDE contains long-

term EEG recordings from 275 patients with epilepsy [116, 123] and the Australian

EEG Database holds basic notes and full EEG results from over 20,000 patients

[120, 122]. These databases have been used to develop sophisticated seizure pre-

diction and detection tools. Here at UCLA we are compiling a database of clinical

notes, scalp EEG, MRI, PET and CT records from over 2,000 patients admitted

for video-EEG monitoring.

The existence of these databases containing detailed clinically relevant infor-

mation from large patient cohorts confirms that the international research estab-

lishment and the NIH are extremely excited about and supportive of large clinical

databases. This suggests that as the EHR mandate simplifies collation of patient

data, the limiting factor in generating large databases of thousands to millions
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of patient records will be for organizations to work through the practical hur-

dles of consenting patients and making data available for efficient searching and

processing.

3.5 Anticipated Challenges to Database Creation

Our conclusion that large clinical databases will continue to expand is based on

key assumptions that important regulatory and computational hurdles will be

overcome. These challenges include, but are not limited to: (1) patient consent, (2)

IRB approval and (3) consistent improvements in processing these large datasets.

We believe the probability that these potential problems will be solved is high.

Forming open databases requires that patients consent to the sharing of perti-

nent parts of their medical records. In the development of the Personal Genome

Project (PGP), Church et al. established open-consent so that all de-identified

records can be shared freely [121]. Patients in EHR databases would likely uti-

lize an identical open-consent process. We have personal experience analyzing

datasets that require consenting adult patients admitted for video-EEG monitor-

ing for epilepsy as well as pediatric epilepsy patients undergoing assessment for

resective neurosurgery at UCLA. After we explained that consent would have no

impact on their care, every patient admitted for these reasons (716/716) con-

sented to their records being used for research. Weisman et al. reported that 91%

of respondents would be willing to share their records for health research and that

most would be more comfortable with an opt-in system [132]. Other surveys of

patients report a consent rate of approximately 40% for providing de-identified in-

formation to researchers [133, 134]. Even after consenting, patients are relatively

uninformed about the safeguards and risks to sharing their health information

[135]. A more detailed and careful explanation of these procedures and the poten-

tial impact of the research may result in an increased consent rate. Any national
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patient database is likely to face pushback from a public already concerned about

invasions of privacy by corporations and the government, therefore we suspect

consent rates would be lower than what we have experienced. Additionally, the

rate of consent is likely to decline, in part, due to media coverage of previous un-

ethical practices in research. A prime example is the novel, The Immortal Life of

Henrietta Lacks, published in 2010 by Rebecca Skloot, that recounts how, due to

lack of proper regulation in 1951, Ms. Lacks cells were immortalized without her

consent and were used widely for important advances in medical research[136].

We expect that patients and regulators sensitive to the concept of information

about their care being stored indefinitely for research use may not consent on the

basis of this and other salient examples.

The key regulatory challenge to the creation of such large databases, however,

is the complex multicenter IRB approval process. The most important concern

that current IRBs have expressed is whether the data stream includes adequate

de-identification of all records before they are released for research use, as illus-

trated in Figure 6.3. This would likely require each contributing institution to

develop a reliable and consistent method of de-identifying all records. For writ-

ten records, this includes removing all protected patient information (PPI), as

defined by HIPAA regulations and the Helsinki Declaration [137, 138]. In order

to do this effectively, numerous safeguards must be put in place. For example, if

a nation-wide database is updated in real time malicious individuals could poten-

tially re-identify individual patients by their treatment location, date and basic

information as to what care they received. One solution to minimize these risks,

suggested by Malin et al., is to granulize dates and treatment locations to ensure

that the potential re-identification rate of patients remains well below 0.20%[135].

This granulation may also allow for inclusion of patients older than 89 years, the

maximum reportable age under HIPAA regulations [137]. Although specific dates

and locations are important, especially to the Center for Disease Control (CDC),
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simply generalizing days to months and towns to counties is required to maintain

patient privacy. When dealing with more complex records as in neuroimaging, all

centers would be required to be proactive in using the most up to date software for

de-identification including, but not limited to, the removal of the bone and skin

structure of the face that can be used to recreate an image of the patients face

and thereby identify the patient. Automated software to do these complex steps

has already been made publically available by the Laboratory of Neuroimaging

(LONI) at UCLA [139]. Due to the unprecedented quality and applicability of

these large databases, we are confident that responsible researchers will work to

identify and address these regulatory hurdles.

Lastly, the computational burden of utilizing such large databases is not trivial.

The question is not if mining this database is possible: it is when. Moores law

has accurately predicted the biennial doubling of computer processing power [140]

and, though this rate is showing signs of slowing, growth still is exponential [141].

Current ML methods have been effectively applied to the ADNI database of 800

patients [3, 142, 143] and as well as the GPRD of almost 12 million patients from

the UK [129]. This suggests that if adequate computational technology does not

already exist to effectively mine US-based EHR databases, it will be available

soon.

3.6 Current Applications and Benefits of CAD

The application of CAD to patient data is not a novel idea. Numerous CAD

tools have been demonstrated to be extremely useful to clinical medicine but few

have been approved for routine clinical use [144, 145, 146, 147, 148, 149, 150,

151, 152, 153, 154, 155, 62, 156, 157, 158]. In general, these tools attempt to

predict the outcome of more expensive or practically infeasible gold standard di-

agnostic assessments. Humans are capable of weighing at most 30 factors at once
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Figure 3.3: The creation and utilization of EHR databases is complex; however,

each of the steps in the data and implementation system are well defined. We

expect that responsible researchers will be capable of tackling each of these steps

to create unparalleled databases and develop high quality, clinically applicable

CAD tools.
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using only semi-quantitative modeling [159]. The key exception to this is visual

processing in which the visual heuristic reliably removes noise from images to

readily detect the underlying patterns [160]. This exquisite pattern detection,

however, is limited by our inability to detect relationships separated widely in

space or time or whose patterns evolve out of changes in randomness. Further,

human performance is highly variable due to the effects of expertise, fatigue and

simply human variation [161]. Computational analysis, on the other hand, can

integrate complex, objective modeling of thousands to millions of factors to re-

liably predict the outcome of interest [162]. During validation, the performance

of a CAD tool is described in detail to understand its strengths and weaknesses.

Unlike manual analysis, given a similar population of test samples, a CAD tool

can be expected to perform exactly as it did during validation. In some cases, the

constantly updating algorithms inherent in human decision-making may result in

deviation from the previously studied ideal. It is not certain that this deviation

always results in improved sensitivity and specificity. The cost of expert analysis

of clinical information also is increasing continually. Effective implementation of

automated screening tools has the potential to not only increase the predictive

value of clinical information but also to decrease the amount of time a provider

needs to spend analyzing records. This allows them to review more records per

day and thereby reduce the cost per patient so that the effective public health

impact of each provider is increased [163]. This will complement the numerous

potential benefits quoted above. Here we review the success of implemented CAD

tools and highly promising new tools that have demonstrated the potential for

wider application. In particular, CAD tools have been applied to aid in the diag-

nosis of three extremely prevalent maladies in the US: heart disease, lung cancer

and Alzheimers disease (AD).

The most widely recognized CAD tool in clinical medicine is built into elec-

trocardiogram (EKG) currently available software and reads EKG records and
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reports any detected abnormalities. These algorithms are responsible for the life

saving decisions made daily by automated electronic defibrillators (AEDs). The

diagnosis of more complex cardiac abnormalities is an extremely active area of

research [144, 164, 145, 147, 148, 165, 150, 151, 152, 153, 166, 155, 157, 158]. In

one recent example, a CAD tool differentiated between normal beats, left and

right bundle block (LBBB and RBBB), and atrial and ventricular premature con-

traction (AVP, PVC) with over 89% accuracy, sensitivity, specificity and positive

predictive value [158]. This and other automated algorithms detect subtle changes

in the shape of each beat and variations in the spectral decomposition of each beat

over an entire EKG recording that often includes thousands of beats. As a re-

sult of this accuracy, conventional EKG readouts in both hospitals and clinics

frequently include the results of this entirely automated analysis. When taught to

read EKGs, providers are instructed that the automated algorithm is largely cor-

rect but to better understand the complex features of the waveforms, providers

must double check the algorithm using their knowledge of the clinical context.

This CAD tool was the first to be widely applied because, in part, EKG analysis

is simplified by the presence of the characteristically large amplitude QRS wave

that can be used to align each beat. Other modalities do not necessarily have

features that are as amenable to modeling.

One example of overcoming this lack of clear features is the semi-automated

analysis of thoracic x-ray computed tomography (CT) images to detect malig-

nant lung cancer nodules. This tool segments the CT into bone, soft tissue and

lung tissue then detects nodules that are unexpectedly radiolucent and assesses

the volume of the solid component of non-calcified nodules [156]. This method

effectively detected 96% of all cancerous nodules with a sensitivity of 95.9% and a

specificity of 80.2% [156]. Even though this tool is not part of routine care, Wang

et al. demonstrated that when radiologists interpret the CTs after the CAD tool

they do not significantly increase the amount of cancer nodules detected [156]. In
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fact, they only increase the number of false positive nodules, indicating that the

CAD tool is operating on meaningful features of the nodules that are not reliably

observable even by trained radiologists. This suggests that in some cases, com-

puter aided diagnostics can reduce the number of images that radiologists have to

read individually while maintaining the same high quality of patient care.

The success of CAD tools in Alzheimers disease (AD) shows exactly how auto-

mated tools can utilize features not observable by trained radiologists by reliably

discriminating AD from normal aging and other dementias. Because of its unique

neuropathology, AD requires focused treatment that has not been proven to be

effective for other dementias [167]. The gold standard diagnostic tool for AD is

cerebral biopsy or autopsy sample staining of amyloid plaques and neurofibrillary

tangles [167]. The clear drawback of autopsy samples is that they cannot be used

to guide treatment and cerebral biopsy is extremely invasive. An alternative di-

agnostic is critical for reliably distinguishing between the two classes of patients

at a stage that treatment is effective. In 2008, Kloppel et al. demonstrated

how a support vector machine (SVM)-based CAD tool performed similarly to six

trained radiologists when comparing AD to normal aging and fronto-temporal lo-

bar dementia (FTLD) using structural magnetic resonance imaging (MRI) alone

[168]. Numerous other applications of ML on other datasets all have achieved

similar accuracies ranging from 85 to 95% [142, 169, 170, 143]. All of these tools

do not require expertise to read; therefore they can be applied both at large re-

search institutions and in smaller settings as long as the requisite technology is

available. These tools, with appropriate validation using large databases, could

indicate which patients would benefit most from targeted treatment and therefore

substantially reduce morbidity.

These cases are exemplary; however, many other attempts to develop CAD

tools have had more limited success. In particular, the automated analysis of

physicians notes has proven particularly difficult. In a publication in 2011 using
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a total of 826 notes, the best precision and recall in the test set were 89% and

82%, respectively [171]. These values are extremely encouraging when considering

a similar study in 2008 that attempted to measure the health related quality of

life in 669 notes and achieved only 76% and 78% positive and negative agreement

between the automated algorithm and the gold standard [172]. When viewing

these accuracies in terms of the potential of applying these tools to patients,

these accuracies are far from adequate. Physicians can quickly scan these notes

and immediately understand the findings within them and therefore these CAD

tools would not improve upon the standard of care if used to summarize the note.

Nevertheless, note summaries are useful in an academic setting. It is possible that

these tools can be used to interpret thousands of notes quickly and without using

any physician time. Even though more than 10 percent of the interpretations

are inaccurate, the findings of the CAD tool could be used in a research setting

to estimate the risk of other outcomes in these patients including their risk for

cardiovascular disease and even death.

3.7 Benefits and Challenges of Databases in the Develop-

ment of CAD Tools

The establishment of databases that are made possible by the EHR mandate has

enormous potential for the development of CAD tools. A telling quotation from

Rob Kass, an expert in Bayesian statistics, reads: “the accumulation of data

makes open minded observers converge on the truth and come to agreement”

[173]. In this setting, the accumulation of a gigantic body of clinical data in the

form of EHR databases will be invaluable for the description of numerous clinical

syndromes and disease. If these databases are unbiased, high quality samples of

patients from the general population, there will be no better dataset with which

to apply bioinformatics methods to understand the epidemiology, co-morbidities,
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clinical presentation and numerous other features of most syndromes and dis-

eases. In addition to quantifying what is known already, these large databases

can facilitate the development of new hypotheses regarding neurobiological and

genetic underpinnings of these conditions through machine learning approaches

[174][174][174][174]. One of the constant factors that limit many clinical and re-

search studies is the steep cost of obtaining high quality data that can be used to

develop and test continually updated hypotheses. EHR databases would drasti-

cally reduce this cost and thereby allow more funds to be dedicated to the devel-

opment of models that better elucidate the biology underlying each condition.

In addition to facilitating more applicable and statistically powerful modeling,

increased sample size also results in increased machine learning performance. In

theory, as sample size increases, the amount of detected signal grows, resulting in

an accuracy that is a sigmoid function of sample size. Each feature would therefore

have a maximum discriminatory yield that can only be achieved with sufficiently

large training sample size. Using the ADNI database, Cho et al. confirmed this

theoretical result by demonstrating that the accuracy of all tested discriminations

increased monotonically with the number of training subjects[175]. Therefore, in

order to develop the most accurate and therefore applicable CAD tool, one must

train it on as large a representative sample size as can be obtained. As noted

by van Ginneken et al. [62], if one CAD tool is already FDA approved, securing

adequate funding to prove a new tool performs better is a major hurdle. Large

EHR databases would lower this barrier and foster innovation that will benefit

patient care. If even ten percent of US patients consented to the addition of their

records to databases, millions of cases would be available. It is important to note,

however, that the accuracy of a tool developed on an infinite sample is not 100

percent. Instead, it is limited by the ability of the model to understand trends

in the data and the discriminatory power of the features used in the model. This

discriminatory power, and thereby CAD tool performance, is based on a few key
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assumptions about the databases.

The most important assumption is that the gold standard reported in the

database is definitive. At best, supervised machine learning can only recreate the

performance of the gold standard. If, for example, clinicians consistently misdi-

agnose bipolar disorder as depression, then any database would confuse the two

disorders and replicate this misdiagnosis. Thereby, any CAD tool can only be as

good as the experts used to train it. This suggests than when training CAD tools,

the developers should limit the training and validation sets to clear examples of

each condition to minimize but not eliminate this bias. This limitation also leaves

space for research groups to develop improved gold standards or clinical proce-

dures that could outperform the CAD tool. Thereby, we expect that CAD tools

cannot replace the great tradition of continual improvement of clinical medicine

through research or the advice of the national and international experts that study

and treat specific conditions.

Another key assumption is that the training sample is an unbiased representa-

tion of the population in which the CAD tool will be applied. Correction of this

bias is critically important because a supervised CAD tool is only as applicable

as its training and validation set is unbiased. We expect that these databases

will endow modern statistical methods the power needed to identify, quantify

and control for possible sources of bias that have not been appreciated in smaller

databases[176]. In many clinical research protocols, it is common practice to

ignore this assumption because the practical cost of obtaining a truly unbiased

sample is prohibitive. For example, it is often the case that patients recruited

at large academic medical centers have more severe disease than other centers.

This assumption of an unbiased sample is justified because, in most cases, there

is little evidence that the pathophysiology underlying disease in research subjects

or patients with severe disease differs from the full population. Because of their

size, EHR based databases would be expected to include patients that would not
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ordinarily be recruited into research studies. Research based on these databases

would then be more representative of the affected population than current research

methods.

Current experimental design methods produce high quality clinical information

that minimizes noise in the sampled data. As the number of patients increases, so

does the number of independent health care providers and institutions that collect

data associated with each patient. This in turn substantially increases the number

of possible sources of uninformative noise that must be adequately controlled.

Controlling for some of these sources of noise is simply a statistical exercise but

others require more complex biostatistical modeling. One particularly egregious

source of noise is if providers at particular institutions do not write clinical notes

that fully represent the patients symptoms and the providers findings. No matter

how effective CAD tools become, providers will always need to speak to patients,

ask the right questions and provide consistent, high quality care. Patients are not

trained, unbiased observers. Patients frequently omit pertinent details regarding

their complaints unless they trust the provider and the provider asks the right

question in the right way. On the scale of the entire database, detecting low

quality or biased information is difficult because it requires testing if the data

from each institution varies significantly from the trends seen in the rest of the

dataset. These differences, however, could reflect unique characteristics of the

patient population being treated at that institution. The development of reliable

techniques to identify and control for these sources of noise will be critical to the

effective mining of the EHR databases.

3.8 The Future of Medical Diagnostics

The key hurdle to deploying CAD tools in academic and clinical medicine is the

efficient implementation of these tools into software already utilized by clinicians.
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As stated by van Ginneken et al., the requirements of a CAD are that it has

sufficient performance, no increase in physician time, seamless workflow integra-

tion, regulatory approval and cost efficiency [62]. We have already discussed

how the sheer size of the EHR database will substantially improve the perfor-

mance and applicability of CAD tools. The improvements that were the basis for

the ARRA EHR mandatewhich we believe will be implemented using computer-

aided diagnosticsprovide clear evidence for the issue of cost effectiveness. Each

of the improvements from the reduction of duplicative or inappropriate care to

the increase in early detection, will decrease the cost of health care nationwide

[125][125][125]. Given these benefits and improved performance, it would only be

a matter of time before these tools would be given regulatory approval. The only

facet of CAD implementation left would be efficient implementation that does not

increase physician time. This is a content strategy problem

Before seeing a patient, many providers scan the patient note for information

such as the primary complaint given to the intake nurse, if available, and the

patients history. A CAD tool could provide a formatted summary of such notes,

making it more accessible. Reviewing other test data is also routine. A CAD tool

that pre-reads radiological images could simply display the predicted result as part

of the image header. Radiologists could then see and interpret the results of the

CAD tool as well as confirm these results and provide additional details in their

subsequent clinical note. Outputs similar to these could be provided at the top

or bottom of reports for EEGs, metabolic panels and other medical procedures.

Regardless, physicians should have access to the raw data so that they can delve

deeper if they desire more detailed information [62].

During a patient visit, the CAD tool could help remind the physician of key

issues to cover that are related to previous clinical notes to address patterns that

the computer notices but the physician may have overlooked. The Agile Diagnosis

software is already exploring how best to design this type of tool [177].
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After the visit, the tool could then operate on the aggregate information from

this patient and provide recommendations and warnings about medications and

treatments. The inclusion of citations that verify the evidence-based efficacy of

the recommended medications and warnings is simple and requires very little space

and processing power though frequent updating may be necessary.

Although, the CAD reminders would likely be ignored by experienced providers,

their constant presence could serve as a quality assurance measure. As discussed

by Dr. Brian Goldman, M.D., at his TED talk, all providers make mistakes[178].

These CAD based reminders have the potential to improve upon the rate at which

these mistakes are made and important details are missed. The most impactful

benefits of CAD, however, are not in improving the care given by experienced

providers that rarely make mistakes or miss details. Instead, these CAD tools

will help inexperienced providers, those with limited medical training or special

expertise or experienced practitioners who lack current expertise to provide basic

health care information to underserved populations. In this way, the development

of CAD tools could reduce the magnitude of health disparities both inside the US

and worldwide.

3.9 Conclusions and Outlook

The EHR mandate will likely have widespread beneficial impacts on health care.

In particular, we expect that the creation of large scale digitized databases of mul-

timodal patient information is imminent. Based on previous actions of the NIH,

we expect it to substantially support the development of these databases that will

be unprecedented in both their size and quality. Such databases will be mined

using principled bioinformatics methods that have already been actively devel-

oped on a smaller scale. In addition to other potential impacts, these databases

will substantially speed up the development of quality, applicable CAD tools by
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providing an unprecedented amount of high quality data at low cost upon which

models can be built. We believe that these tools will be responsible for many of the

improvements quoted in the motivation for passing ARRA including the reduc-

tion of medical errors, inefficiency, inappropriate care and duplicative care while

improving coordination, early detection, disease prevention, disease management

and, most importantly, outcomes [125].

The development of widespread CAD tools validated on large representative

databases has the potential to change the face of diagnostic medicine. There are

already numerous examples of CAD tools that have the potential to be readily

applied to extremely prevalent, high profile maladies. The major limiting fac-

tor is the validation of these methods on large databases that showcase their full

potential. The development, validation and implementation of these tools, how-

ever, will not occur overnight. Important regulatory, computational and scientific

advances must be achieved to ensure patient privacy and the efficacy of these auto-

mated methods. The problem of mining large databases also introduces numerous

statistical problems that must be carefully understood and controlled.

The goal of these methods is not to replace providers but to assist them in de-

livering consistent, high quality care. We must continue to respect the science and

art of clinical medicine. Providers will always be needed to interact with patients,

collect trained observations and interpret the underlying context of symptoms and

findings. In addition, providers will have the unique ability to understand the ap-

plicability of computer-aided diagnostics to each patient. Thereby, we believe that

bioinformatics and machine learning will likely support high quality providers in

their pursuit of continual improvements in the efficiency, consistency and efficacy

of patient care.
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CHAPTER 4

The utility of data-driven feature selection: Re:

Chu et al. 2012

This is a reproduction of our work published in Neuroimage.[99] This work was

a collaboration with Pamela K. Douglas, Ariana Anderson and Mark S. Cohen.

PKD is a co-first author on this manuscript. Wesley identified the manuscript and

brought his comments to the attention of the rest of the Laboratory of Neuroimag-

ing Technology. He organized the article, collaboration and was responsible for

the feature selection discussion. PKD was responsible for the section discussing

the optimization of the C parameter and the overall direction and tone of the

article. AA created the figure and assisted with editing the whole manuscript.

MSC encouraged WTK and PKD to pursue the manuscript, and helped direct

the tone of the manuscript, in addition to providing significant editing.

This is a comment on the following publication:[3]

Chu C, Hsu AL, Chou KH, Bandettini P, Lin C, ADNI Initiative. “Does fea-

ture selection improve classification accuracy? Impact of sample size and feature

selection on classification using anatomical magnetic resonance images.” Neu-

roImage. 2011;60(1):59-70.

4.1 Abstract

The recent Chu et al. [3] manuscript discusses two key findings regarding feature

selection (FS): (1) data driven FS was no better than using whole brain voxel data
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and (2) a priori biological knowledge was effective to guide FS. Use of FS is highly

relevant in neuroimaging-based machine learning, as the number of attributes can

greatly exceed the number of exemplars. We strongly endorse their demonstra-

tion of both of these findings, and we provide additional important practical and

theoretical arguments as to why, in their case, the data-driven FS methods they

implemented did not result in improved accuracy. Further, we emphasize that

the data-driven FS methods they tested performed approximately as well as the

all-voxel case. We discuss why a sparse model may be favored over a complex one

with similar performance. We caution readers that the findings in the Chu et al.,

report should not be generalized to all data-driven FS methods.

4.2 Comment

Recently, Chu et al. [3] assessed how feature selection (FS) affected classification

accuracy on a series of two class problems using grey matter voxels features. FS

techniques are categorized typically as filter based, embedded, or wrapper based

methods [179]. Within the neuroimaging community, data-driven FS (DD-FS)

methods have been used commonly because they are generally effective: univari-

ate t-test filtering (e.g. [180, 181]) and wrapper-based SVM recursive feature

elimination (RFE) approaches (established in [110]; effective in [182, 183, 184]).

Chu et al. [3] presented a principled analysis that compared the performance

of these two DD-FS approaches with voxelized features from a region of inter-

est (ROI) based on a biological hypothesis, t-test in combination within an ROI

constraint, and in absence of any first stage FS. Their analysis revealed that the

DD-FS methods tested were unable to outperform simply using all ∼300,000 voxel

features for discrimination, similar to results published by [?] who tested a series

of FS methods. While Chu et al.[3] clearly discusses that these results are data

specific, their findings nonetheless highlight the essential importance for further
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analysis of FS methods in neuroimaging applications where the data is both noisy

and vast. We emphasize that their findings that DD-FS did not improve accu-

racies should be limited to a certain class of FS methods, for a limited set of

parameter choices and kernels. The sensitivity of SVM accuracy to DD-FS meth-

ods with respect to changing kernels was discussed by [185], so we focus on the

specific DD-FS methods implemented by Chu et al.[3]. We caution readers that

their results should not be generalized to other DD-FS methods.

We first discuss the two DD-FS methods that were tested, and point out

certain theoretical constraints that are common across both techniques. These

limitations are well established in the machine learning (ML) literature, and have

been discussed by the primary author of the fundamental RFE manuscript [109].

Both t-test filtering and RFE favor selection of features that maximize accuracy

individually, assuming that these will provide the highest discrimination accu-

racy when used in aggregate [110]. Consider however, examples where multiple

features provide largely redundant, yet highly diagnostic, information (i.e., spa-

tially adjacent neuroimaging voxels), while other features with lower margins and

t statistics hold unique information [186]. Within this framework, the redundant

features will be retained, while the features that provide unique information that

could improve performance will be discarded. Both of these factors contribute

to a decrease in classification accuracy, rather than an increase, as discussed for

neuroimaging data by [187, ?, 188].

Further, features that are not themselves diagnostic, but which control for

nuisance factors (e.g. age-associated atrophy [26]) are expected to have extremely

low univariate |t| values and reduced margins. To determine the utility of each

feature in RFE, the multivariate separability vector, w, is projected onto each

feature-dimension to get a univariate margin, wj. In RFE, features with the

smallest univariate margin, ‖wj‖, are excluded iteratively until the desired number

of features is achieved. We expect that the margin of nuisance-controlling factors
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would be greater than noise but smaller than the margin of the diagnostic feature.

In this case, the smallest margin and |t| statistic features would be excluded before

the diagnostic features by these DD-FS methods because the stopping criterion

used by Chu et al.[3] was the number of selected input features. The stopping

criterion is defined by the criteria used to determine exactly how many features

are included in the final model. If one had used the observed training or testing

accuracy (as in backward or forward selection) or an arbitrary fixed criterion

for ‖wj‖ or |t| to determine the stopping criterion, we would expect that these

nuisance features may be included in the final model learned using RFE, but not

using t-statistic filtering.

In contrast, the least-squares (`2) regularization in SVM, itself a multivariate

DD-FS method, likely includes these nuisance factors: in regularization, features

are selected based on the degree to which they maximize classification accuracy

instead of reducing the number of input features using an indirect proxy for clas-

sification accuracy. The RFE model is mathematically equivalent to the `2 SVM

model in which the smalleest SVM margins are set to be identically zero instead

of their small estimated value. Similarly, t statistics assumes that the margins

of low |t|-statistic features should be zero. This assumption is identical to the

sparsity assumption of an `1 regularized SVM. However, `1 SVMs only outper-

form `2 SVMs when the underlying solution itself is sparse [189]. By extension,

we believe that RFE and t statistic filtering will only outperform `2 SVM if the

best diagnostic model is sparse.

As shown by Chu et al.[3], RFE and t-statistics did not improve performance,

suggesting that these assumptions of non-redundancy and sparsity may have been

violated. These shortcomings suggest that, while t statistics and RFE have prac-

tical value, they are not general panaceas.

The limited efficacy of RFE, or univariate t statistics, does not predict that

alternate unsupervised DD-FS algorithms will, or will not, outperform regular-
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ization. Independent and Principal Component Analysis (ICA and PCA), for

example, can both in effect project multiple linearly correlated, or redundant, fea-

tures onto reduced number of features [103, 100, ?, 190]. In contrast to RFE and

t-statistics, these methods that combine highly correlated and, frequently, spa-

tially continuous voxels into regional features improve generalization substantially

(e.g. [191, 192, 193, 194, 195]). Both ICA and PCA can control for the variation

in highly diagnostic independent or principle components due to nuisance fac-

tors. Other DD-FS methods such as information criteria [5, 6], genetic algorithms

[196], and Markov Chain Monte Carlo methods [197] select a single representative

of each set of redundant diagnostic features. This perspective on DD-FS does not

modify the original input features; instead it aims to more efficiently select the

minimum subset of non-redundant features that maximizes performance. Numer-

ous other DD-FS approaches employ clever algorithms that overcome some of the

limitations of RFE and t statistics (i.e [198, 199, 200, 201, 202, 203, 204, ?, 205]);

for review see [206]. Therefore, we emphasize again that the findings for RFE and

t statistics should not be generalized to all DD-FS methods.

As a second practical point, we consider the conclusion that DD-FS performed

worse than the feature selection inherent to SVM. We direct attention to figure

9F of the original manuscript, which shows how accuracy changes with decreasing

values of the SVM regularization parameter, C, as a function of the DD-FS method

employed for the largest sample size. We remind the reader of the original soft

margin SVM formulation presented famously by [96] that presents the Lagrange

functional for the two-class problem as:

L(w, b,R, ξ) =
1

2
‖w‖2 −

n∑
i=1

αi [yi(xi · w + b)− 1 + ξi]−
n∑
i=1

riξi + C

n∑
i=1

ξi (4.1)

where n, i, w, b, Y , X, α, r, and ξ are the total number of exemplars, exemplar

index, margin, intercept, output class vector, input data matrix, support vector
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Lagrange parameter, soft margin Lagrange parameter and soft margin misclas-

sification penalty, respectively. The linear decision function in the feature space

takes the form:

I(z) = sign

( ∑
Support Vectors

αixi · z + b

)
(4.2)

Where z is the hyperplane perpendicular to w. If αi = 0, then the corresponding

sample was classified correctly and are irrelevant to the final solution. If αi = C,

then the sample was misclassified, and if 0 < αi < C, then the sample is located on

the margin. If αi > 0, the sample is called a support vector. When solving for very

large values of C, the problem tends towards the hard margin solution that can be

solved using quadratic programming. With smaller C, the soft margin functional

can be optimized through its dual formulation with quadratic programming.

Within their analysis, Chu et al.[3] assessed their accuracy with several pa-

rameter choices of C without cross-validation. The global optimum accuracy was

obtained in absence of FS. However, we would like to emphasize that even for

the optimum C case (indicated by C*), the performance of the other FS algo-

rithms were all within the 95% confidence interval of the no FS (Figure 4.1). For

moderate to small choices of C, FS methods systematically outperformed no FS,

and were overall less sensitive and more robust to the choice of C. As discussed

by Chu et al.[3], the selection of this C is computationally intense therefore it is

frequently simply selected a priori.

While we agree that DD-FS does not always improve classification accuracy,

it can help elucidate the pathology or physiology of the system under study, and

can reduce the sensitivity of performance to tuning parameters when applied to

the data in a principled manner. Overall, a parsimonious model made possible by

DD-FS allows models to be more transparent, and thereby more useful for neuro-

scientific interpretation [?]. This sparsity can be implemented through separate

FS methods, or within the SVM itself. While `2 regularization already applies a
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Figure 4.1: A reproduction of Chu et al.’s[3] figure 9F where the added shading

indicates the 95% confidence interval for the no feature selection accuracy us-

ing the normal approximation of the binomial distribution. Accuracy using all

voxelized features was no significantly higher than data-driven feature selection

accuracy at the optimum C, C∗. At multiple non-optimum C values, the accuracy

using data-driven feature selection was significantly higher than using all voxelized

features.
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degree of sparsity [96], `0 regularization imposes a stricter penalty and has been

used to interpret dynamic causal modeling features [207].

In the ML literature, it is common to evaluate methods primarily, or solely,

on their classification accuracy. For typical cases, this is entirely appropriate:

the goal is to classify, and not to explain. In investigative research, however, the

needs are broader and more nuanced. In our own work, we use ML to aid in our

understanding of brain function and dysfunction. We have shown previously that

in some cases high classification accuracy can be obtained either from nuisance

factors [208], or from factors in the data, such as demographics, unrelated to neu-

roimaging [209]. While these have the potential to generate clinically meaningful

accuracies, they provide limited neurophysiological insight. If, on the other hand,

the feature space is selected to project onto well defined, neurally-oriented sub-

spaces, it is possible to jointly achieve excellent accuracy and explanatory power to

aid in neuroscientific discovery. For example, independent components identified

from functional MRI data frequently identify the default mode network [210] and

have been used for classification [193] as well as the generation of meaningful fea-

ture dictionaries [208, 211]. Although these dictionary elements would vary across

subjects and scans, we and others have shown that they are consistent enough to

have an identifiable manifestation, an assumption underlying group-ICA methods

[212, 213]. Therefore, these methods accomplish the tasks of feature ‘identifica-

tion’ and ‘selection’ simultaneously.

The goal of feature selection is to minimize the number of estimated parameters

in the final machine-learning model to improve performance and generalizability.

The concept of balancing the empirical performance of the model to the data with

the number of estimated parameters is well established in conventional statistics.

For generalized linear models, the pervasive F test explicitly divides the explained

variance of a model by the number of estimated parameters in the model to

calculate the mean squared error. Additionally, the reference F distribution for
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determining significance is wider for models with more estimated parameters.

Similarly, the Akaike and Bayesian information criteria (AIC and BIC) explicitly

penalize the observed log likelihood of models using a function of the number of

estimated parameters. While these criteria cannot formally be applied directly

to cross-validation accuracy, our perspective is that the concept behind these

criteria is applicable to machine learning models. Based on that idea, machine-

learning models that achieve similar accuracy by operating on a selected set of

features are preferred in investigative research over machine-learning models that

are saturated with input features. We recognize that, unlike the likelihood or

explained variance, cross-validation accuracies do not monotonically increase with

the number of estimated parameters. We believe that DD-FS methods, in some

situations, can be used effectively to accomplish this dual goal of model simplicity

and high empirical cross-validation accuracy.

Despite the shortcomings of the methods tested mentioned herein, we also find

it interesting that removal of a vast number of potentially irrelevant features with

FS did not offer improvement, despite the theoretical caveats we detail above. It

is possible that this lack of improvement is informative in and of itself. We suggest

that pre/post FS accuracy should be reported more often, as these results may

be helpful in conceptualizing how feature interactions are related to information

representation in neural systems.

Because of this improvement in interpretability, we emphasize that FS meth-

ods are valuable beyond improving classification accuracy; just as a picture is a

thousand words, an interpretable model is oftentimes immensely more valuable

than a marginally superior yet uninstructive classification tool.
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CHAPTER 5

Balancing Clinical and Pathologic Relevence in

the Machine Learning Diagnosis of Epilepsy

This chapter is a reproduction of our work that appeared in the proceedings

of the International Workship on Pattern Recognition in Neuroimaging.[?] This

work was a collaboration with Andrew Y. Cho, Ariana Anderson, Pamela K. Dou-

glas, Edward P. Lau, Eric S. Hwang, Kaavya R. Raman, Aaron Trefler, Stefan

T. Nguyen, Navya M. Reddy, Daniel H. Silverman and Mark S. Cohen. Wesley

organized the manuscript and the data, wrote the manuscript, wrote the neces-

sary code and performed the majority of the analysis. AYC and EPL assisted

with parallel processing that was necessary to complete the analysis in a timely

manner. AA and PKD assisted with direction and discussion. ESH, KRR and

AT assisted in identifying eligible candidates for the study and assisted in editing

the manuscript. STN and NMR processed the PET images through NeuroQ and

assisted in editing the manuscript. DHS supervised STN and NMR and assisted

in direction and phrasing of the manuscript. MSC secured funding for the study,

assisted with direction and editing.

5.1 Abstract

The application of machine learning to epilepsy can be used both to develop clini-

cally useful computer-aided diagnostic tools, and to reveal pathologically relevant

insights into the disease. Such studies most frequently use neurologically normal
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patients as the control group to maximize the pathologic insight yielded from

the model. This practice yields potentially inflated accuracy because the groups

are quite dissimilar. A few manuscripts, however, opt to mimic the clinical com-

parison of epilepsy to non-epileptic seizures, an approach we believe to be more

clinically realistic. In this manuscript, we describe the relative merits of each

control group. We demonstrate that in our clinical quality FDG-PET database

the performance achieved was similar using each control group. Based on these

results, we find that the choice of control group likely does not hinder the reported

performance. We argue that clinically applicable computer-aided diagnostic tools

for epilepsy must directly address the clinical challenge of distinguishing patients

with epilepsy from those with non-epileptic seizures.

5.2 Introduction

Machine learning (ML) has proven clinically useful in many aspects of the diag-

nosis and pathologic characterization of epilepsy. For decades, seizure detection

and prediction algorithms have been applied to scalp and intracranial electroen-

cephalography (EEG) to characterize each patients seizures [214, 215]. The seizure

detection algorithms are integrated regularly into the clinical software for EEG

review. More recently, ML has been applied to scalp EEG, intracranial EEG,

structural and diffusion MRI and FDG-PET to diagnose epilepsy compared to

both patients with non-epileptic seizures (PWN) and seizure-naive, neurologically

normal patients (NNPs) [8, 7, 26, 28, 27, 216, 217]. These applications helped to

provide meaningful pathological insight into the features of epilepsy. They likely

also have the potential to become computer-aided diagnostic tools (CADTs) that

can be applied readily in clinical medicine. The choice of which “control” group to

compare patients with epilepsy (PWE) against is not uniform. In this manuscript,

we provide evidence to suggest that that the optimal control group depends upon
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whether an ML tool is intended to elucidate facets of the neurophysiology of

epilepsy, or to estimate the reliability of the tool to diagnose patients in a clinical

setting.

Non-epileptic seizures are primarily psychiatric events. In greater than 90%

of cases, these seizure-like attacks are a symptom of conversion disorder in which

patients psychological challenges present as physical symptoms [218, 219]. These

attacks tend to mimic seizures that the patient has seen or heard about; they

are therefore difficult to distinguish from epileptic seizures. The diagnosis of non-

epileptic seizures is based on ruling out all organic causes for the attacks; therefore

these patients are frequently exposed to antiepileptic medication and other neu-

rologic interventions prior to definitive diagnosis. There are no neuropathologic

changes that predispose these patients to have attacks and the electrophysiological

mechanism for the attacks is dissimilar from the mechanism for epileptic seizures.

Therefore, antiepileptic medication and other neurologic interventions will not

control these attacks, though their side effect profile remains the same. Although

a small minority of PWN also suffer from epileptic seizures, it is important to

distinguish PWN from PWE so that they can receive the treatment appropriate

to the underlying cause of their seizures.

The pathologic benefit of comparing NNPs to PWE is clear. Using our knowl-

edge of normal physiology, this comparison has been used to describe how the

complexity of EEG recording during seizure (ictus) is less than that of interictal

EEG [?, 215]; how epileptic lesions are associated with focal cortical atrophy and

hyperintensity on MRI [58]; and how focal interictal hypometabolism in FDG-

PET can indicate the seizure onset zone [22]. These differences are thought to be

macro-scale features that confirm our understanding of epilepsy on a neural level.

The decreased complexity in EEG reflects hypersynchronized activity of neu-

rons in the epileptic network, coupled with inhibited activity in the surrounding

tissue [220]. Focal cortical atrophy and MRI signal hyperintensity are MRI-based
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signs of increased cell death of inhibitory cells and the ensuing gliosis [221]. The

cause for focal hypometabolism is defines less clearly, but it has been shown that

neurons within the epileptic network have altered metabolic activity [222]. Cell

death and gliosis also may play a role in interictal hypometabolism [222]. While

these findings help us to understand the neuropathologic features of epilepsy, there

are, unfortunately, important caveats to their interpretation.

Patients with seizures are exposed to environmental factors that may artifi-

cially increase physicians ability to discriminate NNPs from PWE. The mecha-

nism of action of many antiepileptic drugs (AEDs) is to decrease the synchronicity

and excitability of neural networks [220], thereby potentially increasing the base-

line complexity of EEG so that the contrast with seizure activity is enhanced.

Similarly, some AEDs have psychiatric side effects that appear similar to the

psychiatric co-morbidities of PWN [223, 224]. In contrast with NNPs, PWN

frequently are treated with these AEDs before their seizures are determined to

be non-epileptic, therefore the use of PWN as a control group more accurately

controls for the potential effect of AEDs.

Even though the diagnoses of non-epileptic seizures and epilepsy are distinct,

many of their risk factors are shared. PWNs model their seizures after those they

have seen or heard about before, therefore the relationship with family history

is difficult to describe [225, 226]. Similarly, both PWN and PWE are associated

with traumatic brain injury (TBI), albeit PWN are more associated with mild

TBI [218, 225]. The presence of psychiatric comorbidities increases the suspicion

for non-epileptic seizures, but epilepsy also has been shown to be associated with

significant psychiatric challenges, potentially as a side effect of AEDs, or to the loss

of independence and the stigma associated with the disease [227]. Therefore, in

order to assess reliably if ML models can detect signs of the underlying pathology

associated with epilepsy, it is useful to compare PWE to PWN.

Lastly, and potentially most importantly, the comparison to PWN mirrors the
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clinical question at hand. Physicians only question if a patient has epilepsy if they

present with seizure-like events. They do not, as suggested by the comparison with

NNPs, consider epilepsy in all patients they encounter.

As a result of these concerns, we seek to study in our FDG-PET database

which control group results in a more accurate diagnosis of lateralized temporal

lobe epilepsy (TLE). This allows us to measure the potential effect of the con-

founding factors discussed above. We also inspect if there were detectable and/or

interpretable differences between PWN and NNP.

5.3 Methods

5.3.1 Dataset

All of the 105 patients with seizures included in our analysis were admitted to

the University of California, Los Angeles (UCLA) Seizure Disorder Centers video-

EEG Epilepsy Monitoring Unit between 2005 and 2012. Each patients diagnosis

was based on a consensus panel review of their clinical history, physical and neu-

rological exam, neuropsychiatric testing, video-EEG, interictal FDG-PET, ictal

FDG-PET, structural and diffusion MRI and/or CT scan. This multimodal as-

sessment is the gold standard for epilepsy diagnosis, and for localization of the

epileptic focus. The patients included in this analysis were chosen because they

had an FDG-PET; had no history of penetrative neurotrauma, including neu-

rosurgery; were determined by consensus diagnosis to have a single, lateralized

epileptogenic focus and had no suspicion of mixed non-epileptic and epileptic

seizure disorder. These patients were diagnosed with either left temporal lobe

epilepsy (LTLE, n=39), right temporal lobe epilepsy (RTLE, n=34) or non-

epileptic seizures (PWN, n=32). PET images were determined to be interictal by

clinical findings and concurrent scalp EEG. Neurologically normal, seizure naive

patients (NNP, n=30) were scanned for other reasons on the same clinical scan-
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ners and were age matched to the PWN. Details of PET acquisition and feature

extraction using NeuroQ (Syntermed, CA) are described in [7].

5.3.2 Machine Learning Details

The Multilayer Perceptron was implemented to discriminate between either PWN

or NNP versus RTLE or LTLE with default parameters in Weka [228] using

the protocol described in [7] where the clinical implications of the PWN versus

TLE discrimination are discussed. The minimum redundancy-maximum relevancy

(mRMR) toolbox for MATLAB [6, 5] was used to generate a ranked list of the

47 ROI metabolisms (features) based on the training set. We used a random

field theory correction (RFTC) to correct for the bias in selecting the maximum

cyclical leave-one-out cross validation (CL1OCV) accuracy after testing multiple

numbers of ROIs that contributed to the model [7]. Weka [228] was used to imple-

ment CL1OCV of a cost-sensitive MLP that was weighted to maximize balanced

accuracy, defined by the mean of sensitivity and specificity.

5.4 Results

5.4.1 Cross-Validation Accuracy Differences

Using either control group, we diagnosed lateralized TLE effectively with greater

than 81% CL1OCV accuracy (RFTC z-test of proportions versus naive classifier,

z>5.8, p< 10−8; Figure 5.1). There was no significant difference between the

CL1OCV accuracies when NNP or PWN was used when diagnosing RTLE or

LTLE (two sample z-test of proportions, |z| <1.5, p >0.16). We discriminated

between PWN and NNP with 77% CL1OCV accuracy which was significantly

better than chance (RFTC z-test of proportions versus naive classifier, z=4.9,

p< 10−5).

123



Figure 5.1: CL1OCV accuracy of our computer-aided diagnostic tool using each

control group. Error bars indicate standard error from the mean. Shading indi-

cates performance of a naive classifier. PWN: Patients with non-epileptic seizures;

NNP: Neurologically normal patients; L or R TLE: Left or Right Temporal Lobe

Epilepsy.

5.4.2 Insight into Focality of the Epilepsies

Figure 5.2 illustrates the number of features that produced the random field theory

corrected CL1OCV accuracy. Using the PWN as a control, the RTLE comparison

required fewer ROIs than the LTLE comparison. Using the NNPs as a control, the

same trend was seen, albeit with different mRMR feature rankings (Table 5.1).

5.5 Discussion

Even though there are substantial differences in the resting state neural metabolism

of PWNs and NNPs, the choice of control group did not substantively affect our

ability to diagnose PWEs, nor did it provide different pathologic insight into the

difference between LTLE and RTLE. This suggests that comparing PWE to NNPs

did not artificially increase our discriminative ability, contrary to our hypothesis.

Our reliable discrimination between PWNs and NNPs, and the difference in fea-

ture rankings however, indicate that the multilayer perceptron may harness sepa-
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Figure 5.2: Percent of the 47 ROIs that contributed to the best CL1OCV accuracy.

Error bars indicate accuracies within the same significant random field theory

cluster.

Table 5.1: The mRMR Rank of the top 5 ROIs based on the full data. Note that

these rankings utilize the full dataset and therefore do not necessarily coincide with

any individual training set, each of which are missing data from just one patient.

The preceding L and R refer to left and right respectively. The lower case i, l,

a, p, s, and m stand for inferior, lateral, anterior, posterior, superior, and medial

respectively. The other abbreviations are for temporal cortex (Temp), thalamus

(Thal), associative visual cortex (Ass Vis), and Sensorimotor cortex (SM). The

temporal, parietal and frontal ROIs are all cortical ROIs. Colors indicate repeat

ROIs.

ROI Rank LTLE vs PWN LTLE vs NNP RTLE vs PWN RTLE vs NNP

1 Midbrain R Ass Vis R ila Temp R ila Temp

2 L ilp Temp R pm Temp L SM R ilp Temp

3 R ilp Temp L i Frontal R ilp Temp L Lentiform

4 L Ass Vis R s Parietal L sl Temp L SM

5 L Broca’s L SM R Thal R sl Temp
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rate pathologic findings depending on the control group used. Interested readers

are directed to [7] for an in depth description of this clinical and pathologic insight.

This suggests that there may be no control group that a priori will result in

higher performance. The comparison to NNPs might describe better the com-

bination of pathologic insults that results from, and/or causes, epilepsy. In our

case, the lack of temporal ROIs in the top 5 rankings for LTLE suggests that the

most salient pathologic consequences, and/or initiating factors, may lie outside

the epileptogenic focus whereas the opposite may be true for RTLE. In contrast,

the comparison to PWN demonstrates directly how the algorithm would perform

in the clinic. In addition to utilizing the neurometabolic changes associated with

epilepsy, this model may also harness the neurometabolic changes associated with

PWN. Therefore, all of the observed differences cannot be attributed directly to

epilepsy. As discussed above, depression was associated with hippocampal vol-

ume loss [229, 230]. Therefore, conversion disorder may also have characteristic

FDG-PET findings.

These results reveal the challenge of developing a CADT to diagnose patients

effectively. Just detecting epilepsy is not enough; we must also discriminate it re-

liably from disorders whose presentation is similar. The ideal CADT for epilepsy

would effectively rule out transient ischemic attacks, confusion episodes, syncope,

drug abuse and other disorders on the differential diagnosis for seizures (for full dif-

ferential diagnosis see [231]). This presents a clear challenge: effectively recruiting

and scanning enough patients with each of these disorders is prohibitively expen-

sive in both time and money. Therefore, when planning experiments, we believe

that one must choose the control group(s) that reflects the desired balance of

clinical relevance to pathologic relevance.

There are a few limitations in the generalizability of these findings to the

diagnosis of epilepsy and other disorders. In patients who present with their first

seizure, the clinical question is not merely if the seizures are epileptic or non-
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epileptic: the patient also needs to know if they are at risk for future seizures.

This clinical comparison may be better served by the contrast between NNPs

and PWE. In addition, PWN are more frequently misdiagnosed as frontal lobe

or generalized epilepsy instead of TLE. Therefore, there are also some caveats to

using PWN as the control group for TLE diagnosis.

The challenge of identifying the proper control group to train CADTs is

not unique to epilepsy. For example, many CADTs for Alzheimers disease fre-

quently are controlled both by NNPs and patients with mild cognitive impairment

[169, 175]. Few studies, however, consider the full differential diagnosis for demen-

tia, including Parkinsons dementia, fronto-temporal lobe dementia, Lewy-body

disease, and other dementias. Similarly, much work has been done in discriminat-

ing patients with schizophrenia from NNPs even though antipsychotic medication

is associated with substantial neurologic changes [232].

We believe that there may be two divergent goals for machine learning in

clinical populations: the pathologic description of disorders and the development

of clinically applicable tools. Therefore, when describing the underlying patho-

physiology of disease, the goal of machine learning is not necessarily to optimize

classification accuracy. It is instead to pose a biologically plausible model that

reflects trends seen in the data. This is related, but potentially separate, from

the ultimate goal of using machine learning to maximize the clinical utility of

computer-aided diagnostic tools. We argue here that to maximize clinical appli-

cability, one must mimic the clinical question at hand by carefully selecting the

control group.
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CHAPTER 6

Poisson Noise Obscures Hypometabolic Lesions

in PET

This chapter is a reproduction of our work published in the Yale Journal of Biology

& Medicine. [233] This was a collaboration with Edward P Lau, who provided

computation and editing support.

6.1 Abstract

The technology of flouro-deoxyglucose positron emission tomography (PET) has

drastically increased our ability to visualize the metabolic process of numerous

neurological diseases. The relationship between the methodological noise sources

inherent to PET technology and the resulting noise in the reconstructed image

is complex. In this study, we use Monte Carlo simulations to examine the effect

of Poisson noise in the PET signal on the noise in reconstructed space for two

pervasive reconstruction algorithms: the historical filtered back-projection (FBP)

and the more modern expectation maximization (EM). We confirm previous ob-

servations that the image reconstructed with the FBP biases all intensity values

towards the mean, likely due to spatial spreading of high intensity voxels. How-

ever, we demonstrate that in both algorithms the variance from high intensity

voxels spreads to low intensity voxels and obliterates their signal to noise ratio.

This finding has profound impacts on the clinical interpretation of hypometabolic

lesions. Our results suggest that PET is relatively insensitive when it comes to
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detecting and quantifying changes in hypometabolic tissue. Further, the images

reconstructed with EM visually match the original images more closely, but more

detailed analysis reveals as much as 40% decrease in the signal to noise ratio for

high intensity voxels relative to the FBP. This suggests that even though the ap-

parent spatial resolution of EM outperforms FBP, the signal to noise ratio of the

intensity of each voxel may be higher in the FBP. Therefore, EM may be most

appropriate for manual visualization of pathology but FBP should be used when

analyzing quantitative markers of the PET signal. This suggestion that different

reconstruction algorithms should be used for quantification and visualization rep-

resents a major paradigm shift in the analysis and interpretation of PET images.

6.2 Introduction

Positron emission tomographic (PET) images play a major role in the treatment

and management of a growing number of maladies. In most cases, the interpreta-

tion of these images relies on the detection of high intensity lesions by quantifying

the relative distribution of a radioactively decaying tracer. This tracer is most

commonly fluoro-deoxyglucose (FDG) which allows PET to quantify the relative

glucose metabolism in tissues. Hypermetabolic lesions indicate the presence of

inflammation, malignancy and/or major functional changes. The observation of

these changes has been critical to the characterization and clinical management of

central nervous system cancers, paraneoplastic syndrome, Huntingtons and, when

scanned during ictus, epilepsy [22, 234]. In some cases, PET is used to guide

resective curative neurosurgery [22, 235].

The detection of hypometabolic lesions is equally clinically relevant. PET has

been effectively used to characterize Parkinsons disease, Alzheimers disease, in-

terictal epilepsy, cortical dysplasia, tuberosclerosis, and even mood disorders. In

these cases, the hypometabolic lesions indicate functional abnormalities or por-
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tend the location of future atrophic lesions [236, 237, 238, 239, 240, 241, 242, 22,

235, 243, 234, 222]. In cortical dysplasia, tuberosclerosis and central nervous sys-

tem infections multiple structural abnormalities frequently exist but only a small

subset of these lesions generates epileptic seizures. The co-localization these struc-

tural abnormalities visualized in MRI with hypometabolic lesions observed using

PET can be effectively used to determine which of these structural abnormalities

is generating the seizures [22]. When these co-localized lesions are resected, 86% of

patients achieve favorable outcomes compared to 30-76% without co-localization

[244, 245, 246].

PET, however, may be biased against the detection of these hypometabolic

lesions. The technology of PET relies on the emission of positrons from radioac-

tively decaying isotopes. The number of positrons that are emitted from each

volumetric pixel, or voxel, is Poisson distributed. In a Poisson distribution, the

variance of a sample is equal to its mean. Consequently, the variance of positron

count increases as overall signal increases. Due to the fact that these images are

reconstructed based on projections, this noise could potentially spread to nearby

voxels [247, 248]. For hypermetabolic lesions, this would result in the lesion dom-

inating the signal in the reconstructed images. Unfortunately, the same signal

interaction can allow surrounding normal tissue to mask hypometabolic tissue.

This potential bias against the detection of hypometabolic lesions may seem

to be an issue of resolution. Modern reconstruction techniques like ordered subset

expectation maximization (OSEM) substantially increase the resolution of recon-

structed images relative to the canonical filtered back-projection (FBP) [249, 250].

One of the major hurdles to resolution in FBP is the streaking caused by high

intensity voxels. In X-ray computed tomographic (CT) imaging this streaking is

regularly caused by bone artifacts. It is also present, albeit to a lesser degree, in

PET [251, 252]. The OSEM algorithm substantially decreases the effect of these

streaks and thereby increases image resolution [253, 254]. This improvement is
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visually apparent even to the untrained observer and has resulted in the pervasive

adoption of the OSEM algorithm for CT and PET reconstruction.

These improvements, however, only focus on decreasing the bias in signal

intensity caused by surrounding tissues and ignore effects of noise. A simple the-

oretical proof illustrates that maximum variance of voxel intensity in image space

provides an upper bound for the maximum reconstructed voxel intensity variance

for FBP (see Supplementary Material) [249]. There is no analogous proof for the

iterative EM algorithm, much less the OSEM algorithm. Therefore even though

the OSEM algorithm decreases bias, it has the potential to increase variance and

thereby decrease signal to noise ratio. This potential challenge has been largely

ignored because, as humans, we are exquisitely capable of detecting changes in

the mean but relatively weak at detecting changes in spread. The development of

PET and CT reconstruction has focused on the generation of visually interpretable

images; therefore previous literature has focused almost exclusively on trends of

the mean. As more quantifiable markers of PET are developed, we believe that

an in-depth treatment of the variance is critically important to achieving accurate

and clinically relevant measurements.

In this paper, we use Monte Carlo simulations to characterize the statisti-

cal properties of the variance in both EM and FBP reconstructed images. We

demonstrate that in both algorithms, the Poisson noise from hypermetabolic vox-

els obliterates the signal to noise ratio for hypometabolic lesions, resulting in a

bias against the detection of hypometabolic lesions. The understanding of this

effect has a profound impact on the interpretation of hypometabolic lesions on

PET images.
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6.3 Materials and Methods

In this Monte Carlo simulation, 10 million exemplars of reconstructed Poisson

noise were measured from pixels with integer initial intensity from 1 to 100. Even

though these are two dimensional (2D) images, the concepts are readily generaliz-

able to three dimensions. Figure 6.1 illustrates one example of a noisy image and

the two reconstructions with a common intensity scale. We ignore the effects of

attenuation, randoms, scatter, deadtime, detector normalization, scan length, de-

cay, interpolation and the specific reconstruction filter because their inclusion does

not influence our conclusions. These factors either uniformly increase the variance

of the reconstructed intensities or exaggerate the contribution of hypermetabolic

voxels to the total variance of the image.

Figure 6.1: These circles illustrate examples in which each pixel intensity is initial-

ized using a discrete uniform distribution with range of 1 to 100. An independent

Poisson random variable with parameter equal to this intensity is then realized

for each pixel. We then used the filtered back projection (FBP) and expectation

maximization algorithm (EM) to reconstruct this circle based on its projection,

as is done for PET images.

Images were sequentially realized until each intensity value had been recon-

structed at least 100 thousand times. This took 2,614 realizations and approxi-

mately 7 cpu-days. Each simulation image was 80 voxels by 80 voxels with circle

of radius 35 voxels centered on the 40th voxel in each dimension. This corre-
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sponds roughly to PET images of an average human brain with (2mm)3 voxels.

Each voxel within the circle was given an initial intensity from a discrete uniform

distribution ranging from 1 to 100. All voxels outside the circle had intensity

0. Poisson noise with parameter equal to the initial intensity of each voxel was

then added. Radon projections were used to simulate the actual data collected by

sensors for integer angles from 0 to 179 degrees of this noisy image. By realizing

many independent images in this way, edge effects and the effect of particular

configurations were minimized.

The regular shape and voxel intensities were chosen to improve the inter-

pretability of our results. This simplification resulted in a deeper understanding

of the forces generating our results below. The results can be easily generalized to

the interpretation of a diverse set of hypometabolic lesions on cranial PET. The

diversity of lesion location and type is prohibitively large to address in a single

publication.

Images were reconstructed from the simulated sensor data using the filtered

back-projection (FBP) and expectation maximization (EM) algorithms. For the

FBP reconstruction, the ramp filter and linear interpolation were used and the

image was padded with zeros up to 126 voxels by 126 voxels. This reconstruction

exactly mimics the canonical implementation of the algorithm. For the iterative

EM reconstruction, the initial image had uniform intensity 1. The canonical full

form formula was used for the updates of the EM. The A matrix was formed by

calculating the explicit point spread function for all integer angles from 0 to 179

degrees (see Supplementary Information for algorithmic details). The pervasive

OSEM algorithm is a subset of the EM algorithm that substantially decreases

the computational load of reconstruction therefore all results shown for the EM

algorithm generalize to OSEM.

Due to the high spatial frequency in the focus of the image, 300 iterations

were used for each EM reconstruction. The image did not appear qualitatively
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different after 20 iterations. The magnitude of variance was also observed to

decrease asymptotically with iteration number (data not shown). The choice of

300 was made to maximize the potential for high spatial frequency noise that may

better match the underlying data.

All simulations were conducted in MATLAB 7.14 (Mathworks) and all statis-

tical analysis was conducted in R (see Supplemental Material). Signal to noise

ratio was calculated as the ratio of original intensity to the standard deviation of

the reconstructed intensity. This is equivalent to a hypothesized two fold change

in original intensity.

6.4 Results

A detailed statistical analysis of the reconstructed images reveals important trends.

Figure 6.2 illustrates the probability density of the reconstructed values with re-

spect to their initial intensity. In this figure, all densities above 0.1 are rounded

down to 0.1 to facilitate comparisons between the distributions. In the right

panel the Poisson nature of the original image is evident: the spread increases

linearly with respect to the original intensity. The probability densities of the

reconstructed intensities are markedly different from that of the original image.

For both algorithms, the variance is much more homogenous and more extreme

values shrink towards the mean. In order to formalize these observations, we

fit statistical models to these trends. All intervals below reflect 95% confidence

intervals.

First, we address the observation that all intensities shrink back towards the

mean, albeit less so for EM than FBP (Figure ??).This regression back to the

mean appears to be linear for FBP reconstructed voxel intensities (FBP-RVI) and

quadratic for EM reconstructed voxel intensities (EM-RVI). This quadratic trend

results in fitting high intensity voxels more closely compared to low intensity
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Figure 6.2: This figure illustrates the probability distribution of reconstructed

voxel intensity for each of the reconstruction algorithms. For comparison, the

right panel illustrates the original probability distribution before reconstruction.

voxels. We fit statistical models to quantify and compare these trends across

reconstruction algorithms. The FBP reconstructed voxel intensities (FBP-RVI)

regressed back to this mean linearly with slope of -0.64 and intercept of 31 units

(-0.0642 to -0.0634 and 31.56 to 31.63). The EM reconstructed voxel intensities

(EM-RVI) regressed quadratically back to the mean with acceleration of 0.0018

units−1 (0.00176 to 0.00179). After controlling for this quadratic term, the EM-

RVI had a 7 units smaller intercept and a slope of 0.038 closer to zero than the

FBP-RVI (-7.44 to -7.37 and 0.037 to 0.040). The F statistic of this composite

model was 3.7 million with 4 and 195 degrees of freedom, resulting in a model-wide

p value of less than 10-16. There was no evidence that the residuals deviated from

the assumption of independent identically distributed Gaussians. Even though

the EM algorithm converges quadratically to the maximum likelihood solution

[253, 254], calculating more iterations does not significantly change any of these

fitted parameters.
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Figure 6.3: This figure illustrates the magnitude of the reconstructed intensity

bias of each of the algorithms. The line thickness represents the standard error

for each point. This standard error is small due to the large sample size. The

FBP is indicated by cyan and the EM is indicated by green.

The focus of this report is the signal to noise ratio of reconstructed voxels.

Controlling for the biases addressed above, the signal to noise ratio to detect

a hypothesized two fold change in intensity was substantially reduced for EM

reconstructions compared to FBP reconstructions (Figure ??). The maximum

signal to noise ratio for FBP-RVI was 60% larger that of the maximum for EM-

RVI. For both algorithms, this original intensity dependent increase in the signal

to noise ratio with respect to original intensity reflects similar trends in variance

as seen in the bias. The FBP-RVI variance increases linearly with intercept of

73 units2 and slope of 0.013 units (73.36 to 73.82 and 0.009 to 0.017). The EM-

RVI variance increased quadratically with acceleration of 0.004 (0.0040 to 0.0044).

After controlling for this quadratic term, the EM-RVI variance had a 13 units2

smaller intercept and a 1 unit larger slope (-13.6 to -12.8 and 1.04 to 1.08). This

means that the EM performs slightly better for extremely low intensity voxels

but variance in EM-RVI and FBP-RVI also quickly increases as original intensity
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increases. The F statistic of this composite model was 280,000 with 4 and 195

degrees of freedom, resulting in a model-wide p value of less than 10−16. There

was no evidence that the residuals deviated from the assumption of independent

identically distributed Gaussians.

Figure 6.4: This figure illustrates the magnitude of the signal to noise ratio of

the reconstructed intensity each of the algorithms. Signal to noise ratio was

calculated as the original intensity divided by the standard deviation of the biased

reconstructed intensity. This corresponds to a hypothesized two-fold change in

intensity. The line thickness represents the standard error for each point. This

standard error is small due to the large sample size. The FBP is indicated by

cyan, and the EM is indicated by green.

6.5 Discussion

These striking results have a profound impact on the interpretation of PET images

using quantitative and visual measures. We demonstrated in our simulations

that PET is insensitive to all but large scale changes in hypometabolic regions.

Therefore, we caution against the interpretation of hypometabolic lesions when
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reading PET images both visually and quantitatively. However, we confirm that

EM improves the spatial resolution of reconstructed images by decreasing the bias

introduced by nearby voxels when compared to the FBP but we also illustrate

that this bias correction results in a substantial decrease in the signal to noise

ratio. Consequentially, even though EM reconstructed images are more consistent

with our knowledge of the underlying biological structures, this increased spatial

resolution comes at the cost of decreased statistical power of quantitative measures

of the signal.

When interpreting PET images, our results suggest that one should focus on

regions that are normally hypermetabolic relative to the surrounding tissue and

caution against interpretation of changes in hypometabolism. For example, this

is particularly important when interpreting images from patients with tuberoscle-

rosis for identification of epileptic focus. The tubers that characterize this disease

can be small and distributed throughout the brain. Lee & Salamon suggests that

hypometabolic lesions corresponding with structural abnormalities are candidates

for epileptic foci [22]. If a structural lesion is in a hypometabolic region, however,

our results suggest that there is very little power to detect metabolic abnormal-

ities. This has the potential to increase the false negative rate for foci detection

and thereby lead to patients with multifocal epilepsy being diagnosed with fo-

cal epilepsy. This misclassification can lead to patients undergoing focal surgical

treatment that fails to control their seizures [244, 245, 246].

However, this does not hinder the ability of PET to recognize changes in

relatively hypermetabolic tissue. It is important when reading PET images for

one to consider the expected metabolism in the region of interest. If the expected

metabolism is high, then most observed changes are interpretable and clinically

relevant. Conversely, if the expected metabolism is low, then one should recognize

that only comparatively large changes in metabolism are interpretable.

These findings also provide further motivation for the development of focused
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radioactive PET tracers to improve sensitivity [255]. Focused tracers target par-

ticular receptors or tissue types. For example, in Parkinsons disease, there is

increased neural death in the substantia nigra, resulting in decreased metabolism

[256]. As we have shown, the power to detect these subtle, highly localized hy-

pometabolic lesions is limited with FDG-PET. Our results suggest that the ra-

dioactive serotonin analog, 18F-DOPA, that differentially localizes to the substan-

tia nigra in normal tissue has increased signal to noise ratio [257]. If the relative

localization of this tracer is reduced, this may provide early diagnostic or more

detailed prognostic information for the patient [258]. From a research perspec-

tive, this early detection could result in the development of novel pharmaceutical

intervention that could slow the progression of disease. This also suggests that

PET experiments will have higher signal to noise ratios if they are designed such

that they focus on changes in tissue that is the target of the tracer.

The implication of these findings is particularly salient for quantitative PET

analysis that has the potential to capture more subtle or distributed trends in

metabolism. Conventional analysis of PET segments the brain into focused re-

gions of interest then averages the reconstructed metabolic rate across the entire

region [259, 260]. Although it is tempting to suggest that this averaging improves

the signal to noise ratio with respect to the factors we have modeled, this is, un-

fortunately, not the case. Instead, the linearity of the noise spreading suggests

that the variance from hypermetabolic voxels spreads across the entire projection

and is not corrected by reconstruction algorithms. This suggests that the noise

across a local hypometabolic region is correlated. Because of this correlation, the

average then estimates the value of the signal plus the noise instead of separating

the two. Therefore, our results suggest that PET is systematically insensitive to

the detection of changes in hypometabolic tissue even when averaged over lower

resolution regions of interest.

Our guidance to bias against interpretation of changes in hypometabolic tissue,
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however, is most generalizable to high resolution changes in metabolism. If these

changes are widely distributed over tissue, then the number of hypermetabolic

voxels that contribute to each projection decreases. Consequentially, the noise is

dominated only by the voxel with highest metabolism within the larger region.

This is especially relevant to current analysis of epileptic foci because, due to the

low spatial resolution of surgical procedures, only large magnitude, low resolution

changes are clinically meaningful.

The substantial decrease in signal to noise ratio caused by the EM reconstruc-

tion suggests that while it vastly outperforms the FBP in manual interpretability

and spatial resolution, EM may be not be appropriate for quantitative analysis of

the PET signal. Based on our results, studies based on EM reconstructed images

need 2.5 more patients or images than studies based on FBP reconstructed images

to achieve the same signal to noise ratio (see Supplementary Material). Compu-

tation time for both reconstructions is relatively inexpensive, therefore our results

suggest that both methods should be employed. The EM reconstruction should

be used for visual interpretation and the FBP reconstruction should be used for

statistical inferences. This guidance, however, is balanced by the fact that FBP

reconstructed images are more biased than EM reconstructed images. Using the

mean squared error, which incorporates both bias and variance, the signal to noise

ratio for the EM remains less than the FBP for the majority of voxel intensities.

One could naturally suggest acquiring multiple PET images from the same

patient to better quantify the noise distribution, but this practice is limited by

expense. Statistically, one can expect that collecting multiple samples will increase

the signal to noise ratio by a multiplicative factor of the square root of the number

of samples. For hypometabolic voxels, however, the signal to noise ratio is so low

that hundreds PET images would be insufficient to reveal relatively large changes.

Each PET, however, has substantial cost in physician, scanner and patient time

and resources. Simply splitting each scanning session into smaller time windows
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also does not solve the problem because the spatial resolution is a function of the

total number of positrons observed [251, 252].

The knowledge that the noise in reconstructed space is likely heteroschedas-

tic can be incorporated into statistical models of the signal in two theoretically

equivalent ways. From a frequentist perspective, this can be done by relaxing the

assumption that the residuals of the model are identically distributed. Instead, the

variance of the residuals can be modeled as a linear or quadratic function of signal

strength. By modeling this source of noise, therefore removing its contribution to

the standard error of the model, we expect that the fit of the model would increase

[261, 262, 263]. From a Bayesian perspective, one could introduce a prior that lin-

early or quadratically deweights the contribution of hypometabolic regions. This

deweighting may also help ill posed models like those used in machine learning

reduce their propensity to over fit the data by incorporating additional knowledge.

As shown recently by Chu et al., this incorporation of additional biological and

physical information may result in improved predictive performance .

These simulated results can be extended to address the signal to noise ratio in

specific regions of interest. In particular, this approach of simulating the Poisson

noise can be used to determine the sensitivity of FDG-PET to detect differences

in numerous regions of interest in the brain. This could be used to give a more

detailed explanation of the power of PET to describe high resolution metabolic

changes. This could lead to an improved interpretability of smaller magnitude

changes that indicate subtle phenomena. In particular, these subtle changes could

be used in the aging population to predict which patients will progress to AD,

as is currently being actively addressed using genotypic and MRI-based measures

[264].
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6.6 Supplementary Material

6.6.1 Regressions of Trends in Reconstructed Voxel Intensity

All regressions were performed by directly comparing the results for the EM to

the FBP by incorporating a logical indicator variable for the EM, δEM , into the

regressions. The full equation of the quadratic model fit is:

Y = β0,FBP + β1,FBP I + δEM
(
β0,EM + β1,EMI + β2,EMI

2
)

+ ε (6.1)

where the ε vector is the Gaussian stochastic error term, the I vector indicates

original intensity, the Y vector reflects the bias or variance and the β vector reflects

the fitted non-linear parameters. The model was fit in this way because β0,EM

and β1,EM reflect the change in the model attributable to the EM algorithm. The

quadratic term was not included for the FBP because, when fit, its coefficient was

not significantly different from zero (p>0.4).

6.6.2 Reconstruction Algorithms

The Radon projection, m(t, θ), for angles from 0 to 179 degrees of this noisy image

was defined by the line integral over the line l(t, θ) for t = x cos θ + y sin θ for the

image, I(x, y):

m(t, θ) =

∫
l(t,θ)

I(x, y)ds (6.2)

The filtered back projection (FBP) reconstruction calculates the reconstructed

image,J(x, y), based on the convolution, ∗, of the projection with the ramp

filter,g(t), using the formula below. In this case, ∆θ is 1 because the angles

of projections are in integer steps.

J(x, y) =
179∑
θ=0

m(t, θ) ∗ g(t)∆θ (6.3)

In the EM reconstruction, the initial reconstructed image had uniform intensity

1. The following formula was used for the iterative updates of the EM, where
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the A matrix was calculated as the point spread functions of individual voxels of

intensity 1 in each position of the image. The superscript indicates the iteration

index. The sums with two indices indicate double sums.

J(x, y)(n+1) = J(x, y)(n)

∑
t,θ

(
m(t,θ)A(x,y,t,θ)∑

x,y A(x,y,t,θ)J(x,y)
(n)

)
∑

t,θ A(x, y, t, θ)
(6.4)

6.6.3 Variance Proof for the Filtered Back-Projection

In order to derive the relation between the noise in the image space and the

reconstructed noise, we use slightly different notation than we used above for the

FBP. Let ∆t, ∆θ and Nθ denote the step size in pixels and angles and the number

of angles sampled, respectively. Define the projection as mij = m(t = i∆t, θ =

j∆θ) such that t = x cos j∆θ+ y sin j∆θ. Further, let σ2
max ≥ V ar [m(t, θ)] for all

t and θ. The discrete FBP is then:

J(x, y) =
∑
i,j

mijg(t− i∆t)∆t∆θ. (6.5)

Consider then the variance of these reconstructed values and recognizing the filter

as a linear operator:

V ar [J(x, y)] =V ar

(∑
i,j

mijg(t− i∆t)∆t∆θ
)

(6.6)

=
∑
i,j

V ar(mij)g(t− i∆t)2∆t2∆θ2 (6.7)

≤
∑
i,j

σ2
maxg(t− i∆t)2∆t2∆θ2 = σ2

max∆t∆θ
2
∑
i,j

g(t− i∆t)2∆t

(6.8)

Using Parsevals theorem, applying the Nyquist frequency cutoff for the ramp filter

and recognizing that total degrees are sampled:

V ar [J(x, y)] ≤ σ2
max∆t∆θ

2Nθ

12∆t3
=
π2

12

σ2
max

Nθ∆t2
. (6.9)
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This formula provides a reasonable upper bound for the variance in the recon-

structed space. Both algorithms performed significant better than this upper

bound.

6.6.4 Sample Size Calculation using Signal to Noise Ratios

We calculate the relative sample size required to achieve an equivalent effective

signal to noise ratio when using an acquisition or processing stream with different

statistical power. Let SNREM , SNRFBP , nEM , and nFBP be the signal to noise

ratio of EM and FBP and the sample size of EM and FBP, respectively. Because

standard error is proportional to the square root of sample size, the following

equivalence can be assessed:

SNREM

√
nEM = SNRFBP

√
nFBP . (6.10)

This equation can trivially be rearranged to show that, to achieve the same

effective signal to noise ratio, the ratio of the sample sizes must be equal to the

square of the ratio of the signal to noise ratios. Alternatively, this is equivalent to

the ratio of the variances. This can be written in functional form as:

nEM
nFBP

=

(
SNRFBP

SNREM

)2

=
V arFBP
V arEM

(6.11)
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CHAPTER 7

Accurate differentiation of epileptic and

non-epileptic seizures through quantitative

combination of findings in the clinical history

This chapter describes work for future publication. This work was a collabora-

tion with Chelsea T. Braesch, Emily A. Janio, Justine M. Le, Jessica M. Hori,

Akash B. Patel, Norma L. Gallardo, Janar Bauirjan, Andrea M. Chau, Sarah

E. Barritt, Eric S. Hwang, Emily C. Davis, Andrew Y. Cho, Joe Gordon, David

Torres-Barba, Jerome Engel, Jr., Mark S. Cohen and John M. Stern. Wesley or-

ganized the collaboration, downloaded and curated the database, performed the

statistical analysis, and wrote the majority of the manuscript. CTB, EAJ, JML,

JMH, ABP, NLG, JB, AMC, SEB, ESH, and ECD annotated clinical notes, con-

tributed to which factors would be studied and contributed to the interpretation

and discussion of results. AYC assisted with parallelizing the code and helping

make the computational intensive portions of this work happen. JG and DT-B

provided pilot analysis of results that helped contribute to which factors would

be included. JE provided substantial support for interpretation and framing of

results. MSC assisted with organization, direction, experimental design and fram-

ing. JMS assisted with continual guidance throughout all stages of the study and

manuscript.
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7.1 Abstract

Objective: Early and accurate differentiation of patients with epileptic (ES) and

non-epileptic seizures (NES) is critical to establish effective treatments, improve

quality of life, and reduce the cost of intractable seizures. Hundreds of clinical

measures have been shown to differentiate these populations, yet the diagnosis

remains challenging, and often is questioned by non-epileptologists. We evaluated

the real-world clinical applicability of a computer-aided diagnostic model that

combined the diagnostic value of a large set of measures reported in routine out-

patient clinical reports for a large population of 1,126 patients with intractable

seizure disorder. Methods: We included all consecutive patients (634 ES, 314

NES, 178 mixed/inconclusive) admitted to our adult video-electroencephography

epilepsy-monitoring unit between January 2006 and April 2014. We recorded 91

potentially diagnostic measures included in the first outpatient neurological re-

port evaluating the seizures written at our center. We estimated an objective

diagnostic score for ES versus NES by combining multiple imputation of missing

data with multivariate and regularized logistic regression. Results: Of the 91

studied measures, 43 were independent predictors of ES or NES (empirical Wald,

p<0.05). When we balanced the number of questions we needed to ask against

the overall accuracy of the model, combining 31 findings resulted in an area under

the receiver-operating curve (AUC) of 90.1% (p<0.001). At the point of highest

overall accuracy (85%, p<0.001), the sensitivity and specificity were 92% (p>0.6)

and 70% (p<0.05), respectively. Significance: This quantitative analysis expands

our understanding of the role historical findings to estimate the likelihood of a

NES diagnosis. No individual clinical finding was pathognomonic for NES. In-

stead, a combination of multiple findings provides a more reliable and complete

assessment of each patient. This retrospective analysis provides the foundation

for a prospective validation of an objective score to identify patients who are more

likely to have a diagnosis of NES, so that they are triaged more rapidly for defini-
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tive diagnosis and appropriate treatment. Earlier diagnosis is expected to reduce

cost and iatrogenic harm, and to improve quality of life and long-term prognosis.

7.2 Introduction

Prior to an accurate diagnosis of non-epileptic seizures (NES), patients with NES

are treated erroneously for epileptic seizures, resulting in increased cost, mini-

mal seizure control, and unnecessary exposure to medications with risks of ad-

verse effects. While epileptic seizures (ES) and non-epileptic seizures (NES) may

be behaviorally similar, they are generated by different mechanisms, so treat-

ment for ES generally does not affect NES.[18, 265] These treatments may in-

clude emergency department visits with the risk of iatrogenic harm from urgently

treating presumed epileptic seizures with intravenous medications and sometimes

intubation.[10] [56, 266] On average, there is a 9.2 year delay between seizure-

onset and diagnosis of NES,[42] and long-term seizure burden is reduced when

NES by early diagnosis.[39, 40] Patients with NES comprise 10% of patients with

seizures seen by neurologists.[8, 9] With better understanding of the outpatient

presentation of NES, earlier diagnosis may be possible and this would expedite

more appropriate care.

Our group, and others, have shown that NES can be differentiated from certain

types of ES prior to or during video-electroencephalography (vEEG) monitoring

using focused psychiatric assessments,[267] video recordings of seizures,[268, 269]

interictal scalp EEG,[8] and interictal flouro-deoxyglucose positron emission to-

mography (FDG-PET).[7] Numerous publications have reported the diagnostic

value of particular clinical findings, or groups of findings, particularly in psy-

chogenic NES,[18, 270, 271, 272, 63, 273] and a few risk scores for NES have been

validated on smaller, selected patient populations.[274, 272, 63] Some smaller stud-

ies suggest that individual findings including sexual abuse, ictal hip thrusting, and
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lack of ictal incontinence may be almost perfect predictors of psychogenic NES.

Follow-up studies, however, frequently fail to replicate these findings. Addition-

ally, limited work has reliably identified physiologic NES either by ruling out ES

or by identifying NES positively, prior to ineffective treatment with ASMs. Thus,

previous work leaves an open question: can the plethora of findings associated

with seizures be combined to improve the diagnostic accuracy for NES?

Once we establish how findings can be combined, how can we apply that

learning in a busy outpatient clinic? While prior studies suggested important

psychiatric and pathophysiologic information about the mechanism for NES, a

limitation of all of these assessments is that they require more and higher quality

data to be collected, and for patients to be selected from a population based upon

their subjective risk for NES. In contrast, we focus on diagnostic findings that were

reported during an outpatient clinical interview by patients that were admitted

ultimately for vEEG monitoring. Our approach aims to maximize the potential

applicability of our results because it does not require neurologists to change how

they practice medicine: it leverages the massive amounts of data that are available

at all epilepsy treatment centers. Studies on more selected populations regarding

a limited number of diagnostic findings have been shown to have a remarkably

reliable ability to detect NES.[270, 269, 272, 63] Our work aims to replicate and

extend these findings on a large, unselected population, while developing a method

to combine potentially diagnostic findings to improve our accuracy.

7.3 Methods

7.3.1 Clinical Features

For this study we included 1,126 patients who had been admitted consecutively

to the UCLA adult vEEG monitoring unit between January 2006 and April 2014.

This sample included 634 with a vEEG diagnosis of ES, 314 with NES, and 178
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with either mixed ES and NES or inconclusive monitoring results. Inconclusive

results were those who had an insufficient number of typical seizures during mon-

itoring for any reason. Patients were considered to have mixed ES and NES if

there was any evidence or suspicion of both seizure etiologies. For instance, if

a patient had two seizure types, and one of which was proven with vEEG to be

NES, but there was suspicion that the second type could be epileptic even though

none were observed on vEEG, the result was considered mixed or inconclusive.

We excluded such patients because logistic regression requires mutually exclusive

diagnostic classes (ES or NES, not both). Additionally, the diagnostic label for

patients with suspicion of mixed etiology and inconclusive monitoring was more

uncertain, relative to the gold standard of a fully conclusive vEEG monitoring

admission. Methods for integrating data with uncertain diagnostic labels into a

predictive algorithm, called semi-supervised learning, are not yet well established.

While there are many subtypes of ES and NES, we modeled these diagnostic

groups as large and homogenous groups (see Table 7.1 for breakdown) with the

understanding that future work can address the ability of predictive models to

predict sub-groups within ES and NES that, likely, are very different from each

other. In particular, that includes the differentiation of psychogenic from phys-

iologic NES. All forms of NES were included in our analysis to have the results

pertain to a real-world situation that includes both and does not require the

clinician to exclude physiologic NES when considering whether the seizures are

epileptic or non-epileptic. All patients consented for the use of their records in

research, and the UCLA Institutional Review Board approved this study. This

work is consistent with the Declaration of Helsinki.

To determine the presence or absence of diagnostic findings, WTK and trained

undergraduate researchers (CTB, EAJ, JML, JMH, ABP, NLG, JB, AMC) man-

ually annotated each patients first sufficiently detailed report of an outpatient

neurology clinical visit at UCLA. There were 258 unique authors of the reports
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Table 7.1: Diagnostic subtype breakdown of patients included in our popula-

tion. Lobe indicates location of seizure-onset zone. If seizure onset zones were in

multiple lobes and/or had multiple seizure etiologies, patient was listed in each

category. Abbreviations: Not Otherwise Specified (NOS), Lobe Epilepsy (LE),

Frontal (F), Temporal (T), Parietal (P), Occipital (O), Non-Epileptic Seizures

(NES), Epileptic Seizures (ES).

Diagnostic Subtype Count % Total % of Diagnostic Class

NES 314 28%

Psychogenic NES 285 25% 91%

Physiologic NES 32 3% 10%

Inconclusive 178 16%

Insuff. Typical Events 131 12% 74%

Mixed NES + ES 47 4% 26%

ES 634 56%

Generalized-Onset 33 3% 5%

FLE 115 10% 18%

TLE 343 30% 54%

PLE 31 3% 5%

OLE 19 2% 3%

Focal-Onset NOS 22 2% 3%

NOS 105 9% 17%

Other ES 23 2% 4%

Total 1,126

with 114 authors writing at least two reports. The most common author was JMS

(143 notes). The mean and median number of reports written per author was five

and one, respectively. All report authors were blind to this analysis. A report

was considered sufficiently detailed if the seizure history was longer than 5 sen-

tences and included a description of the patients seizure semiology. Annotation
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took approximately 15 minutes per patient for the selected findings. The consid-

ered measures were selected based on (1) previous literature reports examined the

finding (see online-only appendix), (2) neurologists in the group mentioning the

finding in a large number of reports or (3) pilot analysis suggested that a difference

existed. This resulted in the inclusion of five categories of findings: demographics,

comorbidities, remote history & physical exam findings, peri-ictal characteristics,

and pharmacologic history. All findings were recorded as binary presence/absence,

unless a natural quantification existed (i.e. age, comorbidity count or seizure fre-

quency). Unclear history was assumed, conservatively, to indicate that the finding

was not present. Comprehensive annotation of each finding mentioned in every

report was used for training and took 90 minutes per patient, and all undergradu-

ate researchers were trained by annotating at least 10 notes comprehensively prior

to examining notes for the selected findings alone. The undergraduate researchers

were blinded to the vEEG diagnosis when annotating each outpatient report. To

assess inter-rater reliability, 21 patients were coded twice by different undergrad-

uates and a random selection of 10 patients from each undergraduate also were

annotated by WTK. For binary features, Cohens kappa was averaged across all

logical features. For continuous features, paired correlation was averaged across

all continuous features reported (no missing data imputation). The complete list

of the 91 considered findings appears in Table 7.2. For a detailed description of

how all of these findings were defined and how missing data were modeled, see

the online-only appendix.

7.3.2 Statistical Methods

In these real-world clinical records, not all findings were discussed in every note,

resulting in missing data. No report discussed all included findings. The findings

with missing entries were split into two groups: findings that would be missing

completely at random (MCAR), and findings whose absence holds information–
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Table 7.2: A complete list of the studied factors from each clinical note. For a

detailed description of each factor, please refer to the online-only appendix. Ab-

breviations: number (#,n), anti-seizure medications (ASMs), medications (meds),

review of systems (ROS), gastro-esophageal reflux disorder (GERD), transient is-

chemic attacks (TIA), neurofibromatosis type 1 (NF1), supplements (suppl).
Demographics Comorbidities Peri-Ictal Factors

Age (years) # medical comorbidities (n) Median seizure duration (s)

Gender # psychiatric comorbidities (n) # Seizure Types (count)

Family history of seizures Catastrophic illness Trigger: sleep deprivation

Metastatic neoplasia Trigger: stress

Physical & Historical Exam Non-metastatic neoplasia Trigger: loud noises

Duration of seizure disorder (years) Neurodegenerative disease Trigger: Menses

Age of onset (<14, <19, >54, Cardiovascular disease Auras

year between 19 and 54) Hypertension (HTN) Aura: Headache

Seizure frequency (per month) HTN encephalopathy Aura: Metallic taste

Remote history of seizures Atrial fibrillation Aura: Anxiety/fear

Precipitating event Diabetes mellitus (DM) Post-ictal confusion/fatigue

Neuroinfection Stroke Sudden onset of seizure

Neurotoxin TIA Seizure directly from sleep

Febrile seizures Developmental delay Amnesia

Traumatic brain injury (TBI) NF1 Aphasia

TBI with immediate effects Hydrocephalus Dialeptic seizures

TBI with prolonged effects Psychosomatic disorders Automatisms

Injury during seizure GERD/Gastric Ulcers Lip smacking

Sexual abuse Migraines Oral trauma

Physical abuse Asthma Tonic/clonic movements

Significant social challenges Hypothyroidism Hip thrusting

Substance abuse Chronic pain Head movements

Current substance use Major depressive disorder Myoclonus

Current smoking Anxiety disorders Freezing

Obesity Secondary generalization

Employment/student status Pharmacologic History # limbs moving (count)

Premature birth # current ASMs (n) Gaze deviation

# complaints on RoS (n) # failed ASMs (n) Eye closure

Memory complaints on RoS # psychiatric meds (n) Hallucinations

Coordination complaints on RoS # current meds (n) Metallic taste

Muscle twitching on RoS # non-medical suppl (n) Cry/Scream

Deep tendon reflexes (score+) Anxiety-like symptoms

Incontinence

termed “biased” findings (see online appendix for list). For example, if a report

did not discuss migraines, it is most likely that the patient does not have migraines

or migraines were not an active problem. Therefore, we filled in the missing data

with the most likely result. This will result in an underestimate of the diagnostic

power of the biased finding. In contrast, an MCAR finding, i.e. seizure frequency,

would be relevant for all patients but was not mentioned or quantified. The
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values of the MCAR finding entries were multiply-imputed 20 times using all other

findings in a multivariable logistic, linear, ordinal or categorical regression based

on the inherent distribution of the MCAR finding. In brief, single imputation uses

the inherent co-linearity between findings to estimate the value of each missing

entry. Multiple imputation estimates the value of the missing entry, plus statistical

noise based on the goodness of fit of the imputation model. The 20 different

realizations of the statistical noise allow the subsequent modeling to place the

appropriate amount of confidence in the imputed value. Each realization was run

for 10,000 iterations (7 hours per realization, Rhat<1.1). If the MCAR assumption

is true, multiple imputation will yield in an unbiased estimate of the diagnostic

power of the MCAR findings.[275, 276] All summary statistics were combined

into a single aggregate statistic with respect to variance both within and between

imputated datasets. Mixed and inconclusive patients were treated as if their

diagnosis was MCAR and contributed to the multiple imputation because the

relationship between the studied findings was expected to be preserved.

Our predictive analysis was conducted in two phases to answer two similar but

separate questions. We used multivariate logistic regression (MLR) within MAT-

LAB (Mathworks, MA) to ask which studied findings were independent predictors

of NES, and how predictive is each finding, controlling for all others. However, to

implement an objective score of the likelihood of NES, we would require patients

and physicians to quantify each significant finding. When we study 91 different

findings, this is infeasible. Therefore, we use L1-regularized logistic regression

(L1-LR) to ask: what is the smallest number of questions we can ask to achieve

a similar predictive performance? Briefly, L1-regularization applies a penalty to

the log-likelihood of the model for every finding that is estimated to have non-

zero predictive power. Functionally, this allows us to misclassify more training

examples, if it means that we can ask fewer questions. Although to our knowl-

edge L1-regularization has not been applied in the setting of seizures, it is well
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established in machine learning statistics. As of this writing, the specific software

we use to implement the L1-LR model, Liblinear, has 688 citations. [112]

We built separate MLR and L1-LR models on each imputed dataset inde-

pendently using leave-one-out cross-validation. Each of these models predicts

a probability of ES versus NES for each patient and imputed dataset. We logit-

transformed, and averaged, the predicted probability across the imputed datasets.

The transformed average gives more weight to imputed datasets that indicated

better confidence in the prediction of ES versus NES. We trained and assessed

the accuracy, sensitivity and specificity of our differentiation of patients with a

conclusive vEEG diagnosis only (n=950). To estimate the clinical impact of our

work, we also examine the accuracy of our algorithm based on each patients reason

for vEEG admission.

To ensure the accuracy of our estimates of significance, we estimated the null

probability distribution of all summary statistics empirically based on at least

10,000 permutation tests, in which the diagnostic labels were shuffled randomly

without replacement. All stages of analysis (imputation and cross-validation) were

conducted on each of the at least 10,000 permuted datasets and the quantiles of

the observed summary statistic were used to determine significance. This ensures

that any bias, non-normality, or overfitting that occurred in our original datasets

also could occur in our permuted datasets. Therefore, our p-values should be more

accurate than the assumption of Gaussian or binomial statistics.

To interrogate the diagnostic power of each finding independent of all other

data, and in combination with other features, univariate diagnostic power was

quantified using univariate t or hypergeometric statistics. For univariate statistics,

MCAR findings were not filled in, but biased factors were. Binary findings were

compared using Fisher exact tests. Continuous findings were compared using

heteroschedastic t-statistics on original or, if there was theory suggesting log-

normal behavior, log-transformed data. We split the age of onset into 3 indicators
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and a continuous range: onset before puberty (age 14), onset before age 19, onset

after age 54. Age of onsets between 19 and 54 were modeled by their exact value.

Due to the co-linearity of duration of seizure disorder, age of onset and current

age, current age was excluded from the predictive models. Multivariate diagnostic

power was quantified by averaging the log-odds ratio in the predictive models

across all cross-validation folds and imputed datasets. This assesses the diagnostic

power of each finding, when linearly controlling for every other examined finding.

Due to the non-normality and dependence structure of L1-regularized log-odds

ratios and to maintain consistency across models, empirical null distributions

were calculated for each measure in both models using the permutations described

above.

The data regarding the inconclusive patients is presented in Supplementary

Table 1 to begin to characterize this difficult to treat group, but it does not

provide evidence about the efficacy of our method. Our full & imputed de-

identified datasets, as well as a web application to explore our overall models will

be published concurrent with this manuscript at brainmapping.org/MarkCohen/

research.html.

7.4 Results

Our principal finding is that the diverse clinical information collected during a

conventional outpatient interview can be combined to accurately distinguish pa-

tients with epileptic seizures from those with non-epileptic seizures. At the point

of highest overall accuracy (85%, empirical p<0.001), the sensitivity and speci-

ficity of both our models were 90% and 70%. As discussed below, these high

accuracies were achieved using only a subset of the 91 findings we annotated from

the clinical records.

Nine findings were mentioned either positively or negatively in less than 20
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patient notes, and therefore were excluded from analysis: transient ischemic at-

tacks, atrial fibrillation, neuro-fibromatosis type 1, neurodegenerative disease, hy-

drocephalus, psychosomatic disease, hypertensive encephalopathy, metallic taste

during seizures, and metastatic neoplasia. There was no significant difference in

the probability of missing data for NES versus ES for any MCAR feature (Fisher

exact tests, p>0.068) except for the duration of seizure disorder and age of on-

set, which were reported more frequently for patients with ES (95% vs. 90% for

NES, Fisher exact tests p<0.002). After imputation, the sign and magnitude of

the mean difference between the populations on these findings did not change

substantially. Cohens Kappa for logical features indicated moderate agreement

(κ=0.50), whereas the paired correlation for continuous features showed near per-

fect agreement (ρ=0.83).

In the summary tables and figures, all reported intervals reflect 95% confi-

dence. Table 7.3 and 7.4 illustrates the significant differences observed between

patients with ES and NES. The findings with significant multivariate odds ratios,

as determined by MLR with multiple imputation, are illustrated in Figure 7.1.

Expanded versions of Table 7.3, Table 7.4, and Figure 7.1, with all studied find-

ings, are available in the online-only supplement. The significant and full odds

ratios from the L1-LR model are available in Supplemental Figures.

The cross-validation performance of the L1-LR model to predict the vEEG

diagnosis is illustrated in Figure 7.2. The cross-validation performance of the

MLR model is illustrated in a Supplemental Figure, and was almost identical

to the L1-LR model performance. Performance based on the reason for vEEG

admission and diagnostic subclass is listed in Supplemental Figures. No subgroup

performed significantly better or worse than would be predicted by the fraction

of NES to ES within the group (z-test of proportions, p>0.1).
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Figure 7.1: Odds ratio of all factors with a significant factors with at least 95%

confidence based on multivariate logistic regression (MLR) with multiple imputa-

tion. The size of the colored bar indicates the magnitude of the odds ratio, and the

color indicates its sign (Green for ES, Blue for NES). The transparent gray over-

lay indicates the 95% empirical confidence interval of chance. For prevalence, see

Supplementary Table 1. All factors were indicators unless the units are specified

otherwise. All starred units (∗) were normalized across the whole dataset therefore

bars reflect the odds ratio of an increase of one standard deviation. Because p–

values were not independent across factors, no correction for multiple testing was

applied. Abbreviations: number (#,n), seizure disorder (SzD), years old (y.o.),

traumatic brain injury (TBI), with (w/), anti-seizure medication (ASM), seizure

(Sz), movements (mvmts).
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Figure 7.2: Leave-one-out cross-validation performance statistics of the data–

driven L1 regularized logistic regression (L1-LR) to differentiate between

Non-Epileptic Seizures (NES) and Epileptic Seizures (ES). Accuracy, sensitivity

and specificity (7.2A) describe the point on the receiver operating curve (ROC,

7.2B) that maximizes accuracy. Shading reflects empirical 95% confidence inter-

vals of chance. Abbreviations: area under the ROC (AUC).
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Table 7.3: The significant differences between patients with epileptic seizures

(ES), non-epileptic seizures (NES) and inconclusive/mixed diagnosis based on

video-electroencephalography. All factors are listed in percentages, unless oth-

erwise specified. ∗Statistics of seizure duration, seizure frequency, and duration

of seizure disorder were calculated in log space, but are displayed in linear val-

ues (i.e. displayed value is 10[mean[log10 data]]). All unlisted factors exhibited no

statistically significant differences between ES and NES with greater than 95%

confidence (false discovery rate, α=0.05). Dashes in missing data indicate a vari-

able assumes to be biased (see Methods). Abbreviations: number (#), missing

data (M), seizure disorder (SzD), standard error (SE), seizures (Sz), anti-seizure

medications (ASMs), review of systems (RoS), postictal (PI), deep tendon reflexes

(DTRs), comorbidities (comorbid).

Feature Name %M Mean SE %M Mean SE p

Demographics

Age (years) 0% 39.8 0.9 0% 35.1 0.6 2.E-05

Female Gender 0% 73% 3% 0% 53% 2% 8.E-09

7.5 Discussion

The high diagnostic value of the clinical interview to differentiate between patients

with non-epileptic versus epileptic seizures mirrors the fact that the diagnosis of

seizures is inherently clinical. Nevertheless, physicians in the clinic are challenged

to integrate a large number of diverse findings in order to make the important sin-

gle distinction between ES and NES for individual patients. While no substitute

for experience and clinical acumen, we believe that providing the clinician with a

statistically-derived objective metric has the potential to augment the diagnostic

process, reducing time between evaluation and treatment, and improving diagnos-

tic accuracy overall.[62] The results also may be useful to help orient the physician

to aspects of the history that are predictive of a diagnosis, even if the physician
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Table 7.4: See legend for Table 7.3.
Feature Name %M Mean SE %M Mean SE p

Historical & Physical

Duration SzD (years∗) 12% 2.66 0.30 5% 9.33 0.55 3.E-20

Age Onset ≤ 13 10% 15% 2% 5% 47% 2% 4.E-27

18<Age Onset<55 (years) 10% 34.3 0.5 5% 31.1 0.4 6.E-04

Age Onset≥ 55 10% 8% 2% 5% 4% 1% 7.E-03

Sz Freq (per mo∗) 26% 13.2 1.4 21% 5.9 0.5 3.E-08

Remote Hx Seizure - 5% 1% - 10% 1% 1.E-02

Febrile Sz - 3% 1% - 10% 1% 2.E-05

TBI w/ immediate - 26% 2% - 16% 2% 8.E-04

Sexual abuse - 10% 2% - 1% 0% 2.E-09

Physical abuse - 9% 2% - 2% 1% 7.E-06

Social challenges - 13% 2% - 5% 1% 2.E-05

# complaints on RoS (n) 42% 8.86 0.55 43% 5.52 0.25 4.E-05

Coord complaints on RoS - 20% 2% - 12% 1% 1.E-03

Muscle twitching on RoS - 10% 2% - 6% 1% 1.E-02

DTRs (score+) - 1.99 0.03 - 1.90 0.02 8.E-03

Co-Morbidities

# medical comorbid (n) - 2.82 0.16 - 1.18 0.06 1.E-19

# psych comorbid (n) - 0.68 0.05 - 0.33 0.02 1.E-09

Hypertension - 17% 2% - 8% 1% 2.E-04

GERD/Ulcers - 16% 2% - 4% 1% 2.E-07

Migraines - 21% 2% - 7% 1% 1.E-10

Asthma - 13% 2% - 3% 1% 1.E-08

Hypothyroid - 10% 2% - 6% 1% 1.E-02

Chronic Pain - 15% 2% - 3% 1% 1.E-10

Depression - 30% 3% - 16% 1% 4.E-07

Anxiety - 16% 2% - 7% 1% 4.E-05

Pharmacologic

# current AEDs (n) - 1.65 0.08 - 2.17 0.05 8.E-08

# failed AEDs (n) - 1.37 0.11 - 2.61 0.10 5.E-17

# psych meds (n) - 0.54 0.05 - 0.21 0.02 1.E-08

# other meds (n) - 3.24 0.22 - 1.07 0.08 6.E-19

# non-med suppl (n) - 0.50 0.06 - 0.28 0.03 3.E-03

Peri-Ictal

Sz Duration (min∗) 35% 3.85 0.40 30% 1.16 0.07 7.E-16

Trigger: sleep dep - 10% 2% - 20% 2% 5.E-05

Trigger: menses - 4% 1% - 9% 1% 2.E-03

Auras - 38% 3% - 46% 2% 3.E-02

Aura: headache - 6% 1% - 3% 1% 3.E-02

Aura: metallic taste - 6% 1% - 3% 1% 2.E-02

Aura: anxiety/fear - 1% 1% - 6% 1% 4.E-04

PI confusion/fatigue - 29% 3% - 43% 2% 1.E-05

Directly from sleep - 13% 2% - 22% 2% 8.E-04

Amnesia - 19% 2% - 27% 2% 8.E-03

Automatisms - 7% 1% - 24% 2% 1.E-10

Lip smacking - 4% 1% - 11% 1% 2.E-04

Oral Trauma - 9% 2% - 17% 1% 2.E-03

Tonic/Clonic mvmts - 26% 2% - 48% 2% 1.E-10

Hip Thrusting - 8% 1% - 2% 1% 2.E-05

Myoclonus - 19% 2% - 11% 1% 1.E-03

Gaze deviation - 14% 2% - 20% 2% 1.E-02

Eye closure - 14% 2% - 3% 1% 5.E-10

Hallucinations - 11% 2% - 6% 1% 2.E-03
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does not determine the metric. While prior literature has claimed certain find-

ings as near-perfect classifiers, a clear message of our analysis is that one cannot

rely on a single finding to identify NES. Therefore, providers should look for a

combination of findings that, in aggregate, raise or lower the suspicion that the

patients seizures are non-epileptic. There are two important applications of this

work: a resource for illustrating the diagnostic value of a large variety of findings

both on their own and in combination, and an objective risk score to assess the

likelihood of NES in the outpatient clinic. Patients with high outpatient likeli-

hood for NES should be triaged more quickly towards video-EEG monitoring for

definitive diagnosis and appropriate treatment. [36]

7.5.1 Diagnostic Value of Particular Findings

While the number of studied features is too large to provide an interpretation and

context for each, we highlight several key findings to help understand our results.

This interpretation focuses on psychogenic NES, but it is important to note that

10% of our NES population had physiologic NES. The mechanism for each are

very different, but further splitting the classes is outside the scope of this work.

We found that our patients with NES had, by description or diagnosis, more

organic and more psychiatric dysfunction. Although psychogenic NES often is

considered a conversion disorder, a biological correlate for this increased somatic

sensitivity, [277, 278, 279, 280] is apparent in neuroimaging studies.[281, 282, 283,

115, 284, 285] The complaints and common comorbidities were relatively non-

specific, with almost all comorbidities and specific complaints being more common

in NES. This supports the hypothesis that patients with psychogenic NES may

report more disability for the same experience.

Our perspective of looking at features in combination helped us understand

how to interpret specific findings within the review of systems (RoS). Patients with
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NES reported far more somatic problems during the review of systems, including

coordination problems and resting muscle twitches (univariate, MLR & L1-LR

p<0.05). When controlling for the number of complaints during the RoS, coordi-

nation problems and muscle twitches no longer were suggestive of NES (MLR &

L1-LR p>0.1). This suggests that these signs may reflect increased somatic sen-

sitivity but do not have an interpretation outside that context. In contrast, the

specific complaint of memory issues indicated ES when controlling for the num-

ber of complaints, but not when viewed alone (univariate p>0.7, MLR & L1-LR

p<0.05). That is, the addition of one more complaint on RoS would usually in-

dicate NES. If, however, the patient reported memory issues, ES was more likely,

potentially reflecting hippocampal dysfunction that is characteristic of temporal

lobe epilepsy.[30]

Aside from between-seizure features, the ictal features of an NES differed from

ES in ways that we did not expect. Classical ictal signs of PNES (i.e. hip thrusting

& eye closure) were present much more frequently in NES but also were present

in ES (univariate, MLR & L1-LR p<0.05). Even though the shibboleth is that

patients with PNES maintain bladder and bowel autonomic tone,[266, 286] this

has been disputed by other researchers and our patients with NES who reported

ictal injuries and incontinence just as frequently as patients with ES (univariate

p>0.6).[287, 288] However, ictal incontinence indicated NES in our group, when

considered with other factors (MLR & L1-LR odds ratio for NES 1.5, p<0.05).

This suggests that when ictal incontinence occurs without findings strongly asso-

ciated with ES (i.e. a generalized seizure) the incontinence may indicate NES.

Our findings might be used as guidelines to assess specific factors in clini-

cal reports to promote more accurate diagnoses in the future. While our model

performed well, an important challenge in the use of clinical notes is that criti-

cal details often are not recorded. For instance, patients with ES reportedly were

more likely to bite their cheek and the sides of their tongue, whereas patients with
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PNES reportedly more frequently bite their lip and the tip of their tongue.[266]

We identified oral trauma as a risk factor for ES (univariate, MLR & L1-LR

p<0.05); however, the nature of oral trauma was specified in only 26% of notes.

Our reported results reflect the diagnostic utility of our defined categories (see

online-only appendix), which may or may not be improved by further refinement.

These examples of incontinence and memory dysfunction illustrate the more

general observation that multivariate models highlight the importance of consid-

ering the patterns of findings to arrive at a more complete picture of the pa-

tient, instead of focusing on individual factors on their own. Even factors that

were significant on a multivariate level should not be interpreted as diagnostic in

isolation.[111] Instead, the pattern associated with changes in this factor result in

our ability to differentiate NES from ES.

7.5.2 Developing an Outpatient Assessment Score

In addition to validating and building upon the observations of the extensive prior

literature on the differences between patients with NES and ES, our methods could

be used to generate an objective, quantitative and individualized assessment of a

patients chance of NES using only information acquired in the out-patient setting.

While the MLR model identified 43 independent predictive findings to help dif-

ferentiate NES from ES (Figure 1), asking this many questions of a patient may

prove impractical in clinical practice. In comparison, our L1-LR model balanced

the number of contributing findings with the predictive accuracy and achieved

similar and impressive out-of-sample performance using just 31 questions (Supple-

mental Figure 2). These strong retrospective results suggest that the prospective

application of one or both of these models may provide valuable clinical insights

to identify patients with NES quickly and effectively. Prior to implementation,

however, this must be confirmed directly through a prospective study.
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It is particularly notable that our methods are based on data from clinical

notes that were written for the purpose of documentation and communication,

and not for research to assess the diagnostic value of any of the studied factors [89].

Clinical data seldom are pristine, and an analytic method that depends on near-

perfect research quality inputs would have limited value in real-world health care

settings; we chose instead to develop a method that acknowledges the potential for

bias, missing points and other contaminations because these same biases would be

present in most outpatient clinics for seizures. For instance, neurologists do not

perform a full cardiovascular and psychiatric assessment. Instead, comorbidities

come up as part of care for the seizures. Therefore, we expect our estimate of the

frequency of other medical and psychiatric comorbidities to be an underestimate

of the true burden of disease. As discussed above, patients with NES may or may

not have more medical and psychiatric comorbidities than patients with ES, but

the perceived impact of these conditions may be higher, leading the patient to

be more likely to discuss them with their neurologist. We expect therefore that

when domain-specific experts examine our factors with specific, validated data

collection and assessment tools, the frequency and magnitude of the differences

we saw will change, reflecting a more accurate description. However, we expect our

estimates to match the frequencies with which outpatient providers will learn of

these conditions. Our inclusion of patients with other neurologic and psychiatric

comorbidities, physiologic NES, developmental delay, traumatic brain injury and

previous epilepsy surgery prior to being seen at UCLA complicates the analysis

and interpretation of results but also ensures that our population best matches the

full complexity of patients with seizure-like events at a tertiary epilepsy center.

Our lack of a seizure-naive control group both was convenient and valuable for a

number of reasons.[81] Our goal was to describe how to differentiate NES from

ES. Seizure-naive controls could be differentiated perfectly from our patients, for

example, simply by asking if they had experienced repeated seizure-like events.
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7.5.3 Limitations

The difference between our results and previous literature from smaller popula-

tions is consistent with how the magnitude of statistical effects typically decreases

as sample size increases,[86] but also could be explained by differences in our pop-

ulation. UCLA draws patients a large area of the southwestern United States.

Our population of patients with ES may have more medically refractory epilepsy

and, in particular, more temporal lobe epilepsy and lesional epilepsies than out-

patient clinics for epilepsy and other tertiary care centers. The proportion of

patients with NES (28%), and the delay to diagnosis (8.7 years) was similar to

other centers[42] but the proportion of patients with confirmed or potential mixed

NES plus ES (12.6% of all NES) was lower at UCLA than at other centers, al-

though this proportion varies widely by definitions and centers.[289, 290, 269, 291]

These populations, however, do not reflect patients with NES that were identified

in outpatient clinics and did not require referral to a tertiary care center.

7.5.4 Future Potential and Perspective

If validated prospectively, these results could be used to identify 70% of patients

with NES quickly and cost-effectively in a variety of outpatient settings. Because

patients with NES are a highly heterogeneous group, our negative predictive value

will always be less than 100%. Our data might lead to more timely referral of

patients with likely NES for vEEG monitoring; however, we strongly believe all

patients with disabling seizures that persist despite trials of two appropriate ASMs

deserve a consultation by specialists at a full service tertiary care epilepsy center.

A reduction in time to diagnosis of NES has been shown to improve long-term

seizure control, while reducing cost and potential for mistreatment.[56, 266] While

other risk scores exist,[274, 272, 63] none have achieved such high performance on

this large of a population. Clearly, important validation steps like prospective
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data collection must occur before we can conclude that our score can and should

be implemented in outpatient clinics. This work represents a foundational first

step in quantitatively assessing the value of combining a wide variety of findings

reported in the outpatient clinic for differentiating between NES and ES.
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CHAPTER 8

Automated Diagnosis of Epilepsy using EEG

Power Spectrum

This work is a reproduction of our work published in Epilepsia. [8] This work

was a collaboration with Ariana Anderson, Edward P. Lau, Andrew Y. Cho,

Hongjing Xia, Jennifer Bramen, Pamela K. Douglas, Eric S. Braun, John M.

Stern and Mark S. Cohen. WTK organized the collaboration, curated the data,

wrote the code and the majority of the manuscript. AA, JB & PKD provided

guidance for experimental and machine learning design, as well as interpretation

of the results. EPL & AYC provided substantial computational support to get the

analysis stages to be effective. HX assisted with understanding & preprocessing

of the EEG data and extraction of meaningful features. ESB was responsible for

Akima interpolation and helped understand the sampling and optimization of the

method. JMS provided direction and context with regard to how our work fits

within the context of the diagnostic assessment for seizure disorder. MSC assisted

with all stages of the experiment and manuscript preparation.

8.1 Abstract

Interictal electroencephalography (EEG) has clinically meaningful limitations in

its sensitivity and specificity in the diagnosis of epilepsy because of its dependence

on the occurrence of epileptiform discharges. We have developed a computer-

aided diagnostic (CAD) tool that operates on the absolute spectral energy of the
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routine EEG and has both substantially higher sensitivity and negative predictive

value than the identification of interictal epileptiform discharges. Our approach

used a multilayer perceptron to classify 156 patients admitted for video-EEG

monitoring. The patient population was diagnostically diverse with 87 diagnosed

with either generalized or focal seizures. The remainder was diagnosed with non-

epileptic seizures. The sensitivity was 92% (95% CI: 85-97%) and the negative

predictive value was 82% (95% CI: 67%-92%). We discuss how these findings

suggest that this CAD can be used to supplement event-based analysis by trained

epileptologists.

8.2 Introduction

Epilepsy is common and has a major impact on the global burden of disease.

Though epilepsy is defined as an enduring predisposition for seizures, its diagnos-

tic assessment relies on the clinical and/or electrographic description of transient

events. Consequentially, the sensitivity of a single outpatient interictal electroen-

cephalography (EEG) is only 50% [56, 57]. If physicians do not observe the hall-

mark electrical features of interictal epileptiform discharges (IEDs), the assessment

is inconclusive. This might help to explain why the average time to the diagno-

sis of non-epileptic seizures (NES) is 7.2 years [41]. Automated seizure detection

algorithms currently help physicians identify these transient events [69], but they

do not detect the stable pathology underlying each patients chronic disease. A

better understanding of the chronic state of epilepsy has great potential to im-

pact patient care; automated computer methods have the potential to identify this

stable abnormality and thereby to increase diagnostic accuracy, saving clinicians

valuable time and improving patients quality of care.

Seizure detection and prediction tools in epilepsy have been proposed fre-

quently, yet efficient and effective computer aided diagnostic (CAD) tools have
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not yet been established. Only three publications address the question of epilepsy

diagnosis using interictal scalp EEG alone [72, 73, 74]. All three publications re-

port accuracies in excess of 90%. Other publications using the Freiburg dataset

compare scalp EEG from normal controls to interictal intracranial EEG patient

with epilepsy, which may limit clinical applicability [70]. Based on their success

in the seizure and prediction literature, these tools used largely wavelet-based

analysis and time frequency decompositions of short time windows of the signal

[66, 67, 69]. However, longer time windows can capture the stable changes base-

line dynamics attributable to epilepsy. The previous literature often compares

the EEGs of patients with epilepsy to the EEGs from a healthy control popula-

tion, a question that does not reflect the actual clinical situation. We consider

comparing epilepsy to NES mimics the clinical scenario of a patient that needs

to be assessed after experiencing a potential seizure event. As we show below,

30 percent of patients admitted for video-EEG monitoring have NES, including

some who previously were diagnosed with intractable epilepsy. To develop di-

rectly clinically applicable tools, the diagnosis of each patient in the validation

set must be certain therefore a careful discussion of the diagnostic assessment of

each patient is critical. Similarly, epilepsy is a heterogeneous syndrome. Gener-

ally, the CAD literature either studies temporal lobe epilepsy or does not specify

diagnostic subclass.

In this report, we outline the success of a novel CAD tool applied to a larger

population of patients who have either focal or generalized epilepsies. By com-

paring to patients with NES and also inspecting time-frequency features of longer

time windows of the EEG signal, we harness the stable interictal changes in the

EEG that can be used to diagnose epilepsy. Further, we provide a detailed discus-

sion of how such a tool can be used to supplement, not replace, manual analysis.
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8.3 Patients and Methods

We studied the diagnostic test results from 514 patients admitted between 2008

and 2011 to the UCLA Seizure Disorder Center video-EEG monitoring unit. A

subset of 156 patients was identified for further study because their diagnoses

were definitive and they had not experienced previous penetrating head trauma.

Within this subset, 87 were diagnosed with epilepsy and 69 were diagnosed with

NES (full breakdown in Supplementary Information). Patients with NES and

those with epilepsy underwent an identical evaluation. All methods were approved

by the UCLA IRB and complied with the Helsinki Declaration.

All scalp EEG recordings were collected in accordance with standardized clin-

ical procedures with a 200 Hz sampling rate using 26 electrodes placed according

to the International 10-20 system. During acquisition, an analog 0.5 Hz high pass

filter was applied to all recordings. Reviewed data consisted of between 1.5 and

25 hours (mean 9 hours, S.D. 4.5 hours) of archived EEG from either the first or

second night of video-EEG monitoring. To assess the diagnostic yield of long term

monitoring, we also inspected the records of all 514 reviewed patients admitted

to UCLA for video-EEG monitoring.

The mean, standard deviation, minimum and maximum absolute spectral en-

ergy for non-overlapping 1 sec, 5 sec, 60 sec, 30 min windows of EEG recordings

from all electrodes relative to reference electrode 1, located between Fz and Cz,

were calculated using the fast Fourier transform in MATLAB. The absolute value

of spectral energy from 1-100 Hz was averaged over 1 Hz spectral bands. Short

window lengths measure phenomena analogous to event related spectral perturba-

tions (ERSPs) whereas longer windows capture baseline activity and connectivity.

Each input feature corresponds to a separate electrode location, frequency band,

statistical parameter and window length. The spectral energy from 58-62 Hz was

excluded from all analysis to avoid AC line noise contamination. No other artifacts
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were removed. Ictal activity and muscle artifact were included in analysis.

Using a cyclical leave-one-out cross validation technique, a subset of the power

spectrum was identified as potentially diagnostic by a highly-efficient minimum

redundancy, maximum relevancy (mRMR) feature selection algorithm [5, 6]. This

subset was then used as input for the Multilayer Perceptron neural network algo-

rithm as implemented in Weka [292]. For algorithmic details please refer to the

supplementary material and Kerr et al. [293].

8.4 Results

The Multilayer Perceptron performance was comparable to manual event-based

EEG analysis. Both manual and automated analyses were substantially and sig-

nificantly better than a chance classifier based on clinical trial statistics (Figure

8.1). The diagnostic accuracy of the CAD tool was 71% (64%-76%, p < 10−4)

significantly higher than chance: 56%. The risk ratio (the probability that a pos-

itive finding occurred in a patient with epilepsy compared to a patient with NES)

was 3.68 (1.92-8.19, p < 10−6). The odds ratio was 9.32 (3.51-25.73, p < 10−5).

In the study population, the results of a single outpatient non-video-EEG are not

significantly different and have a relative risk ratio, odds ratio and accuracy of

2.52 (2.05-2.64, p < 10−10), 99 (8.90-1100, p < 10−3) and 72% (66-73%, p < 10−4),

respectively [56, 57]. All intervals reflect 95% confidence bounds and all p values

reflect comparisons to a naive classifier.

In contrast with manual analysis, the performance of our CAD was driven by

exceptionally high sensitivity (85%-97%, p < 10−82) in comparison to only modest

specificity (37%-51%, p > 0.20). Consequentially, the negative predictive value

(67%-92%, p < 10−24) is high compared to the positive predictive value (62%-

71%, p < 10−5). There was no significant difference in performance for focal and

generalized epilepsies (see Suppl. Materials).
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Figure 8.1: (A) directly compares the summary statistics of our computer- aided

diagnostic (CAD) tool to the same statistics regarding conventional analysis of

EEG. (B) assesses the likelihood ratios that can be achieved when our CAD is

combined with conventional analysis. Error bars denote 95% CIs and are cal-

culated without normal assumptions. Dashed lines indicate chance or 95% CIs

of chance. All effects are significantly different from chance (p < 0.001) except

when CAD is positive and manual analysis is negative. No comparative effects

are significantly different.
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These results can be expressed in combination with the results of outpatient

non-video EEGs as likelihood ratios, assuming the two tests are independent (Fig-

ure 8.1) based on the formula:

LR−M+CAD =
P (−M |Ep)
P (−M |NES)

P (+CAD|Ep)
P (+CAD|NES)

.

We assume that 99% of neurologically normal patients have negative EEGs and

that 50% and 90% of patients with epilepsy have abnormal outpatient EEGs after

1 and 4+ recordings, respectively [56, 57].

To illustrate the clinical problem further, we addressed the diagnostic yield

of long term video-EEG monitoring specifically. As summarized in Figure 8.2,

9 percent of the 514 patients in our sample had inconclusive results upon the

completion of monitoring (6%-12%). Six percent of patients admitted for pre-

surgical assessment or intractable epilepsy were diagnosed with NES (2-10%).

8.5 Conclusion

Inconclusive EEG results are a significant challenge to the effective treatment of

epilepsy. For patients diagnosed with epilepsy, our finding that 6% of patients are

later found to have NES is concerning. Further, the most reliable diagnostic test,

conventional long term video-EEG monitoring, is inconclusive for roughly 9% of

epilepsy patients due to lack of relevant electrophysiological events. To reduce

this rate, admission duration must increase. Our technology, however, avoids this

problem altogether by focusing on baseline diagnostic features. Successful valida-

tion and then implementation of our CAD tool could therefore provide additional

information to that could, in time, substantially reduce both of these values. Val-

idation would require a prospective assessment of patients who are later admitted

for video-EEG monitoring or retrospective analysis of records from other institu-

tion(s).

We hypothesize that our results capitalize both on low frequency trends used

173



Figure 8.2: Diagnostic yield of long-term video-EEG monitoring. Numbers indi-

cate how many patients are in each class, and the size of the bar denotes percent

of total, listed on the right side of the figure, that belong to each class. When

the presurgical and intractable classes are combined, 6% of the patients have

inconclusive results. NES, nonepileptic seizures.
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by previous literature and, potentially, also on high frequency oscillations up to

100 Hz. Most ictal activity is within the 3-25 Hz range [69]. Seizure detection

algorithms have achieved impressive results operating on frequency bands less than

40 Hz using much more complex machine learning methods [70]. However, recent

evidence in intracranial EEG suggests that patients with epilepsy have increased

high frequency oscillations in the 40+ Hz range [66, 67]. Due to the nature of our

algorithm, the contribution of each window length, spectral band and electrode

location is unclear.

Our entirely automated tool diagnosed patients with performance similar to

epileptologists manually reading outpatient EEGs. Our performance was quan-

titatively less than previous methods. However, ours was designed and tested

in the real-world context of an inpatient unit, with its heterogeneous mixture of

medications, ages and patient histories. The statistics reveal that our approach

has a high negative predictive value whereas manual analysis has, instead, a high

positive predictive value. These improvements are based on information not ob-

servable without CAD and are independent of rate expertise, suggesting that our

methods can be used in combination with manual analysis to improve the di-

agnostic yield of EEG. This synergistic combination could more efficiently and

quickly identify those patients who may require further diagnostic or pre-surgical

assessment. Given the broad and growing evidence that early epilepsy surgery

– when supported by accurate diagnostics – may be more effective than treat-

ment with AEDs alone [32], we believe that this application offers the potential

to meaningfully impact the care of patients with epilepsy.
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CHAPTER 9

Computer aided diagnosis and localization of

lateralized temporal lobe epilepsy using

interictal FDG-PET

This chapter is a reproduction of our work that was published in Frontiers in

Neurology. [7] This work was a collaboration with Stefan T. Nguyen, Andrew Y.

Cho, Edward P. Lau, Daniel H. Silverman, Pamela K. Douglas, Navya M. Reddy,

Ariana Anderson, Jennifer Bramen, Noriko Salamon, John M. Stern and Mark S.

Cohen. WTK organized the collaboration, wrote the code and the majority of the

manuscript. STN & NMR processed the data through NeuroQ and assisted with

manuscript editing. STN also curated the dataset. DHS supervised STN & NMR,

and helped with direction and interpretation of PET data. AYC & EPL assisted

with parallel processing of the images. PKD, AA & JB assisted with design of the

experiment and machine learning algorithms as well as editing of the manuscript.

JMS & NS helped understand how this work fits in the context of the pre-surgical

and diagnostic assessment for seizure disorder. MSC assisted with all stages of

planning and trouble shooting the manuscript.

9.1 Abstract

Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus,

potentially before structural MRI, that does not require rare and transient epilep-

tiform discharges or seizures on EEG. The visual interpretation of iPET is chal-
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lenging and requires years of epilepsy-specific expertise. We have developed an

automated computer-aided diagnostic (CAD) tool that has the potential to work

both independent of and synergistically with expert analysis. Our tool operates on

distributed metabolic changes across the whole brain measured by iPET to both

diagnose and lateralize temporal lobe epilepsy. When diagnosing left temporal

lobe epilepsy (LTLE) or right TLE (RTLE) versus non-epileptic seizures (NES),

our accuracy in reproducing the results of the gold standard long term video-EEG

monitoring was 82% (95% confidence interval [CI] 69-90%) or 88% (95% CI 76-

94%), respectively. The classifier that both diagnosed and lateralized the disease

had overall accuracy of 76% (95% CI 66-84%), where 89% (95% CI 77-96%) of

patients correctly identified with epilepsy were correctly lateralized. When iden-

tifying LTLE, our CAD tool utilized metabolic changes across the entire brain.

By contrast, only temporal regions and the right frontal lobe cortex, were needed

to identify RTLE accurately, a finding consistent with clinical observations and

indicative of a potential pathophysiological difference between RTLE and LTLE.

The goal of CADs is to complement–not replace–expert analysis. In our dataset,

the accuracy of manual analysis of iPET (∼80%) was similar to CAD. The square

correlation between our CAD tool and manual analysis, however, was only 30%,

indicating that our CAD tool does not recreate manual analysis. The addition

of clinical information to our CAD, however, did not substantively change per-

formance. These results suggest that automated analysis might provide clinically

valuable information to focus treatment more effectively.

9.2 Introduction

It is difficult to differentiate between patients with epilepsy, and those with non-

epileptic seizures (NES). The clinical assessment relies on the report of untrained

witnesses or the patients themselves. A non-epileptic seizure is defined as the pres-
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ence of external seizure symptoms and/or signs with no electrographic features

characteristic of epilepsy. Long term video-EEG monitoring has shown consis-

tently that roughly one third of patients diagnosed with medication refractory

epilepsy in fact suffer from NES [8]. Because they dont suffer from epilepsy, these

patients with NES (PWN) are not treated effectively with anti-epileptic drugs

(AEDs). For the majority of PWN, the NES are a manifestation of dissociative

or conversion disorder in which their psychological challenges manifest themselves

physically [294, 295]. A minority of PWN suffers from organic, non-epileptic mal-

adies that can be confused with seizure disorder including, but not limited to,

dementia and cardiovascular disease [265]. The gold standard for the differential

diagnosis and pre-surgical assessment of epilepsy includes 72 or more hours of

video-EEG monitoring [296, 38]. However, 10 percent of patients admitted for

this extensive assessment leave with inconclusive results [8]. Considering that one

sixth of patients with epilepsy are diagnosed with medication refractory epilepsy

[297], improved methods to effectively identify PWN who do not benefit from

AEDs effectively could reduce the morbidity and both the financial and social

cost of treating epilepsy.

Improved diagnostic tools could also help patients with epilepsy (PWE). The

difficulty in ruling out non-epileptic etiologies speaks to the challenge of adequately

localizing and characterizing each patients epileptic etiology. The major seizure

type discriminations are focal versus generalized; partial versus complex; and

lesional versus non-lesional. Each of these key discriminations leads patients down

a different treatment path. When medication or other novel treatments like the

vagus nerve stimulator fails, as they frequently do, the patient is left to consider

resective neurosurgery. Recent reports have shown that surgery is most effective

earlier in the course of disease [32]. Improved diagnostic tools could more quickly

and effectively diagnose patients with epileptic seizures and therefore speed the

progression towards considering the surgical option.
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Ultimately, our goal is to establish a general, automated computer-aided diag-

nostic (CAD) tool that effectively combines clinical information, manual interpre-

tation of EEG and imaging technologies as well as automated analysis of interictal

FDG-PET (iPET), EEG, structural MRI (sMRI) and diffusion MRI for all sub-

types of epilepsy and NES. To accomplish this, we first must develop effective

CAD tools that harness the information from each modality for a limited set of

epileptic localizations. We have begun already to address automated analysis of

interictal EEG for a wide variety of epilepsy subtypes [8]. Others have described

effective CAD tools that diagnose and lateralize temporal lobe epilepsy (TLE)

using structural and diffusion MRI [26, 27, 28].

The clinical, metabolic and structural differences between left and right TLE

can be subtle. Some theories suggest that TLE is inherently a bilateral disease.

Potentially, due to the strong functional link between the hippocampi, the only

clinical difference is that in the aura of patient with left TLE (LTLE) more fre-

quently includes language dysfunction. Over time, patients with LTLE more com-

monly develop verbal memory deficits, compared to non-verbal memory deficits

in right TLE (RTLE) [298, 299]. This functional connection between the hip-

pocampi may also lead some patients to be falsely lateralized using scalp EEG

because a small seizure onset zone (SOZ) in one hippocampus can induce larger

scale ictal activity in the contralateral hippocampus with very little time delay.

This can lead neurologists to falsely conclude that the SOZ is either bilateral

or in the contralateral hippocampus. Structural and metabolic imaging can re-

duce these errors by demonstrating that that one temporal lobe is asymmetrically

affected, as shown by the previous CAD tools that lateralize TLE [26, 27, 28].

Studies of the functional connectivity of these epileptic networks, however, con-

clude that there are very few, if any, differences between the two lateralizations

[300, 301, 302, 303, 304, 305]. Recently, Pereira et al. suggested that more patterns

of functional connectivity change in LTLE compared to RTLE [306]. However,
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after patients suffer from intractable seizures for 10 or more years, the intrahemi-

spheric hippocampal connectivity linearly increases with the duration of disease,

suggesting that over time lateralized disease may become bilateral disease [302].

Because patients with bilateral hippocampal disease are no longer considered sur-

gical candidates, improved methods to distinguish left and right TLE early in the

course of disease are needed.

In this manuscript, we discuss the development of an automated computer-

aided diagnostic (CAD) tool to diagnose, and lateralize, temporal lobe epilepsy

using iPET. We also begin to address how to combine our CAD tool with man-

ual analysis (MA) and incorporate it into clinical practice. Using a mutual

information-based feature selection technique, we examine how our methods re-

veal more about the distributed metabolic abnormalities that are associated with

the different anatomical locations of the epileptogenic focus.

The realistic goal of CAD tools is to complement, not to replace, expert analy-

sis. Therefore, we focus on how clinical information and expert analysis can work

synergistically with our automated technology. To summarize the major clinical

differences, patients with NES are characteristically females in the third decade

of life with psychiatric co-morbidities [265]. Patients with epilepsy, however, also

have significant psychiatric co-morbidities including potentially reduced financial

and social independence due to the suspension of their drivers and, frequently,

professional license. Particularly in adult onset epilepsy, age-associated changes

in metabolism may confound the interpretation of iPET, possibly leading to an

increased diagnostic uncertainty. It is well established that 80 to 90 percent of

medication refractory epilepsy is PET positive [22, 23]. The rate of PET positiv-

ity in NES has not been studied extensively, therefore the true positive predictive

value of iPET is unclear. Although these differences in clinical presentation are

salient, their quantitative effect on diagnostic probabilities is unknown. Therefore,

we also examined how simple clinical information and expert manual interpreta-
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tion can be incorporated into our quantitative CAD tool.

The standard of care for the pre-surgical assessment for epilepsy is the manual

correlation of iPET with numerous other diagnostic modalities. The goal of this

assessment is to simultaneously verify the diagnosis of epilepsy, characterize the

seizure etiology and identify the location and extent of the SOZ. Expert radiolo-

gists and neurologists can detect metabolic asymmetries indicative of the epilep-

togenic focus or foci [222]. The exact threshold at which asymmetric metabolism

is attributed to pathologic change or seen as a variant of normal is part of the art

of neuroradiology [307, 42]. Once non-epileptic etiologies have been ruled out, our

previous work demonstrated that the quantitative degree of metabolic asymmetry

is correlated with surgical outcome [259]. Surgical outcome is improved further

when iPET is co-registered to structural MRI (sMRI) because of improved char-

acterization of the focus or foci [308, 22, 309, 23]. These hypometabolic lesions

are thought to be secondary to increased inhibitory neuron cell death, gliosis and

abnormal functional connectivity resulting in altered functional metabolism.

The size of the hypometabolic lesion tends to be larger than the SOZ, po-

tentially due to functional changes in nearby tissue secondary to the presence of

the epileptogenic lesion [240, 310, 311]. Such reports are major limitations to

the wide implementation of iPET in epilepsy practices [312, 58, 313]. In addition

to the limitation of counting statistics, that forces the quantitative radioactivity

intensity of iPET to be less certain in hypometabolic lesions [233], the biolog-

ical hypothesis is that the epileptogenic abnormality induces metabolic abnor-

mality at the SOZ and also at closely associated and/or functionally connected

regions [314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324]. The epileptogenic

lesion commonly is larger and more diffuse in left TLE then right TLE, poten-

tially because of the high degree of functional connectivity between specialized

foci within the left temporal lobe associated with language and other functions

[325, 79, 326, 327, 328]. These insights parallel the trend in dementia that at-

181



rophy starts focally then spreads more quickly to functionally connected regions

[329]. The limited sensitivity of iPET unaligned with sMRI to characterize ex-

tratemporal lesions may be partly due to the insufficient description of the local

functional network of each extratemporal focus and thereby reduced detection of

a characteristic pattern of metabolic abnormalities associated with each focus. In

general, an improved insight into the clinical interpretation and value of metabolic

abnormalities outside the SOZ is needed. To overcome this limitation, the iPET

analysis is used in combination with other diagnostic modalities determine which

tissue to resect.

Clinical description, EEG, MRI and FDG-PET each describe separate facets

of the pathophysiological etiology, and therefore all play critical roles in the diag-

nosis of epilepsy, and in the identification of the epileptogenic lesion [330]. Each

modality, however, also has unique limitations. EEG provides an in-depth de-

scription of the seizures and interictal epileptiform spikes. These seizures and

spikes, however, are rare events: only 50 percent of PWE exhibit diagnostic inter-

ictal epileptiform spikes and/or seizure activity during the first outpatient scalp

EEG [57]. The characteristic signs of epilepsy in structural and diffusion MRI

may not be measurable until years after the first seizure because these meth-

ods require the detection of atrophic tissue and/or subtle regions of cortical dys-

plasia [77, 331, 332, 333, 334, 335, 336, 337]. Manual analysis (MA) uses the

contralateral structure to assess if atrophy is present but a certain degree of

asymmetry is expected [26, 28]. It takes years of specific experience in manu-

ally analyzing structural MRIs from patients with epilepsy to reliably discrim-

inate between normal variation and pathologic changes. Once these relatively

large-scale changes in neural structure have occurred, it is less likely that both in-

vasive and noninvasive treatments will be effective [32]. Interictal FDG-PET can

localize the epileptogenic lesion without observing rare events and, potentially,

before changes are detectible on sMRI and/or diffusion tensor imaging (DTI)
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[338, 339, 340, 341, 308, 342, 343, 344, 239, 345, 346, 241, 347, 348, 22, 235, 349,

309, 350, 23, 336, 351, 352, 353]. As discussed above, the presence of metabolic ab-

normalities outside the SOZ, however, complicates the effective localization of the

SOZ using iPET alone [240]. An improved description of these induced changes

outside the SOZ may help spare healthy tissue from resective surgery. Given the

recent report that resective neurosurgery for epilepsy is more effective earlier in

disease [32]; we believe that iPET may play a critical role in characterizing pa-

tients with unremarkable MRIs and inconclusive EEGs earlier in the course of

their disease.

9.3 Materials and Methods

9.3.1 Patient data

All of the 105 patients that were included in our analysis were admitted to the Uni-

versity of California, Los Angeles (UCLA) Seizure Disorder Centers video-EEG

Epilepsy Monitoring Unit (EMU) between 2005 and 2012. Each patients diagnosis

was based on a consensus panel review of their clinical history, physical and neu-

rological exam, neuropsychiatric testing, video-EEG, interictal FDG-PET, ictal

FDG-PET, structural and diffusion MRI and/or CT scan. This multimodal as-

sessment is the gold standard for epilepsy diagnosis and localization of the epilep-

tic focus [296, 38]. The patients included in this analysis were chosen because

they had an FDG-PET after 2005; had no history of penetrative neurotrauma,

including neurosurgery; were determined by consensus diagnosis to have a single,

lateralized epileptogenic focus; and had no suspicion of mixed non-epileptic and

epileptic seizure disorder. These patients were diagnosed either with left tempo-

ral lobe epilepsy (LTLE, n=39), right temporal lobe epilepsy (RTLE, n=34) or

non-epileptic seizures (NES, n=32). PET images were determined to be interictal

by clinical findings and concurrent scalp EEG.
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PET and MRI images were acquired according to the best clinical practices at

the time of acquisition. PET/CT studies were acquired using a Siemens Biograph

scanner. After a minimum fasting period of 6 hours, patients received 0.14 mCi/kg

of 18F-FDG-PET intravenously. During the ensuing 40 minute uptake period with

concomitant EEG monitoring to confirm interictal status, the patients waited in

a quiet, dimply lit room with their eyes open. PET images were reconstructed

with an iterative algorithm (OSEM: 2 iterations, 8 subsets). CT images were

reconstructed using filtered back projection at 3.4 mm axial intervals to match

the slice separation of the PET data, and used for attenuation correction.

9.3.2 Computer aided diagnostic tool training and validation

Automated analysis of the interictal FDG-PET records was performed in four

stages. (1) First, each image was screened for gross structural and/or metabolic

abnormalities by S.T.N., N.M.R., and/or W.T.K. (n=21). These excluded sub-

jects are not reflected in the sample sizes quoted above. (2) NeuroQ (Syntermed,

GA) was used to segment each brain into 47 regions of interest (ROIs) and then

to calculate the average radioactivity in each ROI, normalized by the whole brain

radioactivity (Supplemental Table 1). (3) The minimum redundancy-maximum

relevancy (mRMR) toolbox for MATLAB (Mathworks, MA) was used to gener-

ate a ranked list of the ROI metabolisms (features) within each training set that

were maximally relevant to the diagnosis of epilepsy and minimally redundant

with all higher ranked features [5, 6]. The representative number of features to

exclude and quantal levels was selected based on our method discussed previously

[8, 293] (see below). In each of the training sets, the feature ranking was deter-

mined exclusive of the test patients data. We expect the ranked lists to be similar,

but not identical, across training sets. For purely illustrative purposes, the full

dataset was used to create the ranked list in Table 9.2. (4) Weka was used to

implement leave-one-out cross-validation of a cost-sensitive Multilayer Perceptron
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(MLP) that was weighted to maximize balanced accuracy, defined by the mean

of sensitivity and specificity [292]. Using this method, we examined our ability

to diagnose either LTLE or RTLE from NES and assessed our ability to diagnose

and lateralize disease simultaneously. For the remainder of this manuscript, the

latter tool that discriminates LTLE versus RTLE versus NES is called the tri-

nary classifier. Similarly, the binary CAD tools are referred to by the laterality

of epilepsy that is being detected. The comparison to NES is not stated, but can

be assumed. We then compared our CAD tools performance to the results of MA

alone.

9.3.3 Machine learning algorithmic details

The Multilayer Perceptron (MLP) was implemented with default parameters in

Weka [292]. All input features were normalized to values between negative and

positive 1. No limit was set on the number of hidden layers or nodes within each

hidden layer. These parameters were optimized within each training set indepen-

dently. The learning rate and momentum were set to 0.3 and 0.2, respectively.

Five hundred epochs were used for training. During training, models with more

than 20 consecutive errors were excluded. The trinary classifier was created by

decomposing the three class problem into three 1-against-1 problems that were

combined using majority voting. No three-way ties occurred during training or

testing.

Balanced accuracy was optimized using a cost-sensitive classifier in which a

false positive was given a cost of n+ and a false negative was given the cost of

n−, where n+ and n− represent the number of patients with epilepsy and non-

epileptic seizures in the full sample, respectively. In the trinary classifier, the cost

was set as the sum of the number of patients in the other two diagnostic classes.

Cyclical leave one out cross validation (CL1OCV) was used to assess the per-
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formance of the MLP. In this paradigm, all but one patient was used to determine

the features selected and train the algorithm. The single remaining patient is

tested using the model built upon the other patients. The identity of the test

patient is permuted until all patients have been the test case once and only once.

To determine the number and identity of the input features, the mRMR algo-

rithm requires the number of input features, F, and quantal levels, Q, be set a

priori. For the calculation of mutual information, the features were smoothed into

Q quantal bins akin to the bins in a histogram. Classification, however, utilizes

unsmoothed features. The choice of input features smoothed into quantal levels

was determined to be most representative of the performance of the algorithm

across a wide variety of choices of F and Q [293]. This choice was made by select-

ing a point within a region of F-Q parameter space that performed significantly

better than the naive classifier with 95% confidence based on random field theory

correction where the spatial smoothness is estimated directly from the data (for

more details, see [354, 355]). The naive classifier classifies all test exemplars as

the most common class in the training set. Under the CL1OCV procedure, these

input features were determined independently for each of the training samples.

The illustrated rank order of features was calculated based on the full dataset,

and does not necessarily match the rank list of any individual training sample.

When clinical information was incorporated into the algorithm, the same

methodology was applied as above, except that all exemplars with missing data

were excluded from analysis. In these additional analyses, we did not re-sample

the parameter space of F and Q. We simply used the selections determined in the

previous analysis.

9.3.4 Manual analysis of PET and MRI records

Manual analyses of the iPET and sMRI records were performed based on the

review of clinical records primarily written by Dr. Noriko Salamon. Dr. Sala-
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mon has 10 years of experience in the pre-surgical assessment of epilepsy using

FDG-PET and MRI. All manual interpretation was conducted for the clinical as-

sessment of each patient when it occurred, prior to the CAD tool development.

Therefore, Dr. Salamon was blinded to the automated results. Due to the unclear

relationship between structural and metabolic abnormalities, asymmetries and

epilepsy, all abnormal results were interpreted to be consistent with some form

of epilepsy. Not all patients had sMRI (n=6) and iPET (n=1) reports available;

therefore all analysis regarding MA of neuroimaging includes only patients with

available records. These patients had raw iPET data available; they therefore

were included in the automated analysis.

9.3.5 Combination of clinical information with computer aided diag-

nostic information

To examine the combined power of clinical knowledge, MA and our automated

analysis, we assessed the linear correlation of detecting epilepsy with CAD com-

pared to MA, and also incorporated clinical information and MA into our algo-

rithm in two ways. First, the clinical literature suggests that patients with NES

are more likely to be female, begin having seizures in the third decade of life,

have a decreased duration of disease and have increased seizure frequency (Table

9.1). Although we did not see a significant difference seizure frequency within our

dataset, we included this features to better match clinical practice. These clini-

cal features were then added to the input and leave-one-out cross validation was

repeated. Secondly, to explore how our computational methods can complement

clinical wisdom, we included the results of MA of the iPET and sMRI as two

additional input features and re-evaludated CAD performance. For the trinary

classifier only, we split each of the features describing the iPET and sMRI MA to

indicate if a left and/or right sided abnormality was reported.

To assess the applicability of our CAD as a separate modality that could
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Table 9.1: This table reflects the clinical information known before the application

of the CAD tool. All times are listed in years (y) unless otherwise specified by

days (d), weeks (w), or months (m). Manual analysis of all patients’ iPET and

sMRI were not done, therefore we list the number with available manual results.

∗, §, or ¶ indicate that the value for NES vs. LTLE, NES vs. RTLE, or LTLE

vs. RTLE, respectively, is statistically significant from both the LTLE and RTLE

groups with at least 95% confidence using a two-sample z-test of proportions or

MannWhitney U test, where appropriate. No other differences are statistically

significant (p > 0.10).
NES LTLE RTLE

Age Mean ± SD 37 ±14∗ 38±12 36±13

Min-Max (Median) 16-76 (38) 18-54 (40) 17-67 (35)

N 32 39 34

Sex % Female±SE 78.1±7.3∗§ 53.8±8.0 35.3±8.2

Duration of disease Mean ± SD 12±12∗§ 22±15 20±13

Min-Max (Median) 10d-40y (7) 6m-53y (21) 2y-48y(19)

Seizure frequency Mean ± SD 3.2/d ± 5.9/d 1.2/d ± 2.4/d 1.5/w ± 1.7/w

Min-Max (Median) 0.3/m-25/d (3/d) 0.2/m-11/d (1/w) 0.1/m-1/d (0.8/w)

iPET manual % Positive±SE 18.8±6.9∗§ 76.9±6.7 87.9±5.7

N 32 39 33

sMRI manual % Positive±SE 34.5±8.8∗§ 73.7±7.1 87.5±5.8

N 29 38 32

be considered as part of the clinical assessment of epilepsy, we calculated the

likelihood ratios (LRs) of each of the combinations of our CAD with MA of iPET

and/or sMRI. This was done only for the binary classifiers, because likelihood

ratios have a clear formulation only for binary outcomes. The likelihood ratio is

defined by the likelihood that a patient with a certain combination of diagnostic

outcomes has epilepsy, divided by the likelihood that the same patient has NES.

Intuitively, a likelihood ratio of two implies that the patient is twice as likely to

have epilepsy. The 95% confidence intervals of chance were calculated using exact

binomial intervals by considering the likelihood ratio of a classifier that diagnosed

patients according to their prior likelihood alone, conditioned upon the assumption

that the same total number of patients would have the diagnostic outcome of

interest. For example, 39 of 71 patients had LTLE when we discriminated between
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LTLE and NES, therefore the median LR is 1.2. Thirty-five patients from the NES

versus LTLE group had negative MA of their iPET. Therefore, we use a binomial

distribution with 35 trials and success probability of 39 over 71 to yield a 95%

confidence interval of 0.94-3.38.

9.4 Results

All of our results are compared to the gold standard diagnosis from the consen-

sus panel. The clinical trial statistics of each of our automated diagnostic tool

matched, but were not redundant with, expert manual analysis of both interictal

PET and sMRI (Figure 9.1). All intervals reflect 95% confidence intervals and all

p-values correspond to differences from a naive classifier. The binary CAD tool for

RTLE had accuracy of 88% (69-90%), compared to the accuracy of MA of iPET

(85%, [72-92%]) and sMRI (77%, [63-85]). The binary tool for LTLE had accuracy

of 83% (69-90%), compared to the accuracy of MA of iPET (79%, [66-88%]) and

sMRI (70%, [56-81%]). The pattern in sensitivities, specificities and odds ratios

all parallel this trend where our automated diagnostic tools are non-statistically

superior to MA or iPET, which, in turn, are non-statistically superior to MA of

sMRI (Figure 9.1). The accuracy of our trinary CAD tool that simultaneously

diagnoses epilepsy and lateralize disease was 76% (66-84%), where 89% (77-96%)

of patients correctly identified with epilepsy were also lateralized correctly. MA to

diagnose and lateralize was 78% (69-86%) accurate with 89% (76-94%) correctly

lateralized using iPET and 71% (61-80%) accurate with 91% (78-97%) correctly

lateralized using sMRI.

The rank order of the features used in our algorithm parallel the clinical ob-

servation that the epileptogenic networks in LTLE are broader than in RTLE.

The LTLE vs NES classifier achieved its performance by utilizing trends across

almost the entire brain by including 42 of the 47 features in the final algorithm. In

189



Figure 9.1: CAD tool performance matches manual analysis. These figures in-

dicate the accuracy, sensitivity and specificity of the LTLE (A), RTLE (B) and

trinary (C) classifiers. The performance of our CAD tools matched that of MA

and was superior to just using gender alone. The error bars indicate standard

error of the mean performance for each measure. The translucent region indicates

the performance of a naive classifier. ∗Indicates significant differences from the

naive classifier with a confidence level of 95% or more.
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Table 9.2: This table illustrates the top six informative and non-redundant regions

of interest (ROIs) that may contribute to each of the CAD tools, as determined

by the minimum redundancy-maximum relevancy criteria (mRMR)[5, 6]. The

illustrated rank order of features was calculated based on the full dataset and

does not necessarily match the rank list of any individual training sample. The

leading L or R indicates left or right. The lowercase letters indicate inferior (i),

lateral (l), median (m), anterior (a), and posterior (p). The lagging C signifies

cortex. Note that the LTLE vs. NES and trinary classifiers include information

from 42 and 30 ROIs, respectively. To better understand the benefit of mRMR,

this list can be directly compared to the list of ROIs ranked by t-statistics in Table

A1 in Appendix.

Region of Interest

mRMR rank LTLE vs NES RTLE vs NES Trinary

1 Midbrain R ila temporal C R ila temporal C

2 L ilp temporal C R ilp temporal C L ilp temporal C

3 R ilp temporal C L sensorimotor C L sensorimotor C

4 L associative visual C L sl temporal C R ilp temporal C

5 L Broca’s Region R thalamus R sl temporal C

6 L s frontal C R i frontal C R pm temporal C

contrast, the RTLE vs NES classifier only needed to measure the metabolism in 6

regions–bilateral temporal cortex and two associated regions of cortexto achieve

its impressive performance (Table 9.2). As expected, the trinary classifier utilized

an intermediate number of features to achieve its accuracy (30 of 47). The rank

list of these features matches the biological intuition based on knowledge about

the potential connectivity of epileptogenic networks (Table 9.2).

We then considered how this CAD information could be used in combination

with clinical information or expert analysis. The squared correlation of our CAD

tool with manually interpreted iPET was 0.25 (0.09-0.43), 0.32 (0.17-0.54) and
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0.34 (0.17-0.46) for the LTLE, RTLE and trinary classifiers, respectively (Figure

9.2). The squared correlation of our tool with manually interpreted sMRI was

0.07 (0.001-0.23), 0.21 (0.06-0.40) and 0.11 (0.02-0.25) for the LTLE, RTLE and

trinary classifiers respectively. For comparison, the squared correlation between

manually interpreted iPET and sMRI was 0.17 (0.06-0.33).

Figure 9.2: CAD tool is not redundant with manual analysis. The squared cor-

relation of our CAD tools’ results with those of MA of the iPET or sMRI from

the same patients was below 50%. This indicates that while some information is

shared, the majority of information provided by our CAD tools is not captured by

MA. The correlation between MA of iPET and sMRI is similar in magnitude to

the correlation of CAD with MA, therefore the CAD could potentially be seen as

similar to another informative modality. ∗Indicates significant differences of the

correlation from zero with a confidence level of 95% or more.

When the same automated analysis was used to combine clinical findings with

our iPET data, performance did not change significantly. After the four clinical

factors were added to the input of our tools, the accuracy changed to 79% (66-

88%), 68% (56-79%) and 64% (54-73%) for the LTLE, RTLE and trinary classi-
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fiers, respectively (Figure 9.3). These accuracies do not substantively change when

only sex and duration of disease were considered (results not shown). Adding the

results of MA of both iPET and sMRI to our iPET data changed the accuracy to

82% (73-91%), 77% (67-88%) and 68% (59-77%) for the LTLE, RTLE and trinary

classifiers, respectively. When all information sources contribute to the algorithm,

the accuracy changed to 77% (68-88%), 74% (64-85%) and 76% (68-84%) for the

LTLE, RTLE and trinary classifiers, respectively.

We combined the results of MA were combined with our CAD tool manually

using likelihood ratios. After doing so, the likelihood was generally only significant

if all considered modalities agreed. Viewed alone, MA and our CAD increased

the likelihood of the predicted outcome between two and nine-fold (p < 0.02;

Figure 9.4A). When two analysis streams were combined, if both analyses agreed,

the likelihood of the predicted outcome was increased between eight and 27 fold

(p < 3× 10−4; Figure 9.4B and 9.4C). If all three analyses agreed, the likelihood

of the predicted outcome increased more than 15 fold (p < 1.3 × 10−5; Figure

9.4D). However, in most cases, if there was any disagreement, the likelihood did

not change significantly, most probably due to the small numbers of patients with

each potential outcome. There are two key exceptions: (1) Given iPET results

indicating NES over RTLE using either MA or CAD, the sMRI could be largely

ignored (p < 1.1× 10−2). (2) If both MA and CAD of iPET agreed that a patient

suffered from LTLE and not NES, the sMRI results could be similarly ignored

(p < 3.3× 10−2).

9.5 Discussion

These results demonstrate how our CAD tool has the potential for clinically appli-

cation, while also confirming and elucidating the distributed effects of epilepsy on

the entire brain. Our CAD tools diagnostic performance of TLE matches, but is
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Figure 9.3: Automated combination of clinical information with automated anal-

ysis of iPET images. The automated combination of clinical information and/or

MA with our analysis produced no significant change in performance for the LTLE

(A), RTLE (B) or trinary (C) classifiers, relative to the CAD operating on au-

tomated values alone. The unshaded bars indicate the performance of similarly

constructed CAD tools using clinical information or the results of MA alone. The

shaded bars indicate the modified performance when information from NeuroQ is

added. The horizontal line indicates the mean accuracy of each CAD tool without

clinical information. The translucent region indicates the performance of a naive

classifier.
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Figure 9.4: Combination of clinical information and CAD results using likeli-

hoods. Columns in this log plot above 1 indicate that the seizures are more likely

to be epileptic whereas the columns below 1 indicate a non-epileptic etiology is

more probable. (A) Illustrates the positive and negative likelihood ratio of each

analysis method considered individually. (B,C) Illustrate the likelihood ratios of

each possible outcome when two analysis methods are combined. (D) Indicates

the likelihood ratios of each possible outcome when all analysis methods are com-

bined. If all modalities agree, the likelihood non-significantly increases with the

addition of each modality. However, if there is disagreement, the likelihood ratio

is generally not significantly different from chance. The translucent bars indicate

the 95% confidence interval for chance with the relevant sign (see Materials and

Methods).The numbers above the translucent bars indicate the total number of

patients with each outcome. The bars that go off the scale of the graph diverge

toward zero or infinity because no patients of a certain class had that outcome.

∗Indicates significant differences of the correlation from zero with a confidence

level of 95% or more.
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not redundant with, expert manual analysis of iPET and sMRI. When considered

in the context of recent reports of CAD tools for epilepsy based on structural MRI

and interictal EEG data [26, 27, 28, 8], CAD is proving especially applicable to

epilepsy. Further, if more work confirms the hypothesis that metabolic changes in

iPET are observable before the structural changes in sMRI, our iPET tool may

have better clinical utility than these existing sMRI tools. In contrast to MA,

this and other CAD tools can be quickly and efficiently applied by minimally

trained technicians, emergency physicians and primary care providers as prelimi-

nary analysis of the iPET images [89, 62]. The performance of MA can vary with

experience and fatigue of the observer; automated tools are consistent over time.

Upon further validation, these CAD results could also be incorporated into the

consensus diagnoses with minimal cost if iPET already has been obtained.

9.5.1 Clinical Impact

Our CAD tools could provide valuable clinical information that may help readily

identify which treatments may be effective in patients who present with unchar-

acterized, and/or medication refractory seizures [8, 89]. In particular, 15 of our

105 patients were admitted twice to achieve definitive characterization or local-

ization of their seizures. The appropriate binary classifier correctly diagnosed

12 (80%) of these challenging patients. This valuable information might reduce

the need for multiple video-EEG admissions. Additionally, 28% (9/32) of our

PWN were admitted for improved characterization of their previously-diagnosed

“epilepsy,” and 16% (12/73) of our PWE were admitted for the differential di-

agnosis of epilepsy, indicating that non-epileptic etiologies were not ruled out

sufficiently. The trinary CAD effectively diagnosed 67% (14) of these particularly

challenging patients. Despite this impressive performance, the ultimate goal of

CAD, however, is to complementnot replacemanual analysis.
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9.5.2 Combination of automated analysis with clinical wisdom

Our finding that performance almost uniformly, but non-statistically, decreased

when the automated algorithm incorporated clinical information indicates that

automated analysis cannot and should not replace manual interpretation across in-

formation modalities. We suspect that this performance decreased due to ineffec-

tive modeling of the contribution of the clinical information and over-fitting. The

statistical distribution of the clinical factors was very different from the metabolic

data therefore the same model likely cannot effectively utilize both modalities.

The efficient incorporation of multimodality information into machine learning is

an active area of theoretical research, and well-validated methods are not yet avail-

able. Now that CAD tools using interictal EEG [8], structural MRI [26, 27, 28]

and iPET have been published, we believe it will be extremely exciting to assess

how these various tools can be combined.

We expected that the best performance would be achieved when our CAD

is used synergistically with MA. The low correlations between the CAD results

and MA suggest that our CAD tool provides information that is not evident

on visual inspection. These results emphasize that PET is not redundant with

MRI [356]. Physicians could learn to view CAD as analogous to another imaging

modality that provides valuable, but not perfectly diagnostic, clinical insight. This

synergistic application of computer aided diagnosis after manual interpretation

already has proven beneficial in the detection of lung nodules by the FDA and is

an active area of translational research [89, 156]. The key differences between MA

and automated analysis are the ability to entirely ignore certain pieces of data,

and to rule that the results are inconclusive.

The results summarized above, and the likelihood ratios for each analysis

stream individually, show that both MA and CAD are useful clinically. If the

analysis streams agree, the diagnostic certainty increases substantially, but at a
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cost: as more analyses are added, more patients have inconclusive results because

the analyses did not agree, and the likelihood ratios are not significant. Even

though our sample size is large compared to other studies of this type, there were

not enough patients in our dataset with each diagnostic outcome to explain the

clinical implication of disagreeing analyses adequately. This matter of inconclusive

results is a common challenge faced in clinical practice. Physicians struggle regu-

larly with those types of decisions. When MA of iPET and sMRI are combined,

they need to agree to yield meaningful results. However, our analysis shows that

in some specific cases, if both the MA and CAD of iPET agree, the sMRI is not

needed. This parallels the finding we suggested above: iPET may be more clini-

cally useful than sMRI to diagnose and lateralized epilepsy. The hypometabolic

abnormality may be present earlier in disease [338, 339, 340, 341, 308, 342, 343,

344, 239, 345, 346, 241, 347, 348, 22, 235, 349, 309, 350, 23, 336, 351, 352, 353],

and it may provide slightly more accurate disease characterization, as seen in

our dataset. In settings where the PET scanner is not combined with the MRI

scanner, and/or when the cost of imaging is a limiting factor (both common oc-

currences) the effective application of our CAD could result in substantial cost

savings.

9.5.3 Pathophysiological Insights

Our methods also reveal a potential difference in the pathophysiology of left ver-

sus right TLE. This may help explain why CAD tools perform slightly better

when diagnosing RTLE compared to LTLE [26, 27, 28]. The finding that mostly

bilateral temporal ROIs, the right inferior frontal cortex and left sensorimotor

cortex provide non-redundant diagnostic information for RTLE is consistent with

the clinical wisdom that the epileptogenic network in RTLE is more focal than in

LTLE. The inclusion of temporal regions echoes the conventional wisdom that fo-

cal hypometabolism and asymmetry reflect characteristic changes due to epilepsy.
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This suggests that conservative resection of the temporal lobe may result in in-

creased rates of seizure freedom in RTLE compared to LTLE due to complete

resection of the SOZ. Further, seizures that originate in the left temporal lobe

may secondarily generalize more frequently in LTLE. These differences have not

yet been studied clinically.

The trends in the extratemporal regions included in the algorithms suggest

that the primary lesion may induce metabolic changes in functionally or anatom-

ically associated regions. This is substantiated further by the finding that almost

all regions of the brain provide informative diagnostic information in LTLE. This

in turn mirrors the increased stereotypic connectivity of the left temporal lobe.

Even though the interconnectivity of the right hemisphere is higher than the left

hemisphere, the left hemisphere has strong connections between specialized foci

[325, 326, 327]. We hypothesize that the SOZ may induce abnormal metabolism

along these strong, stereotyped connections. This change cannot be attributed

to language specifically in our dataset because we did not identify the laterality

of language dominance in our patients. Compared to our t-statistics ranking, it

may seem surprising that the metabolism of the midbrain was ranked first by

mRMR for LTLE versus NES. This rank may indicate a nonlinear change in the

metabolism within the dorsal midbrain anticonvulsant zone, which has itself been

identified in animals to be part of the network that modulates seizure thresh-

old [357]. The exact relationship between epilepsy and midbrain metabolism is

unclear, however. The lack of distributed atrophy in LTLE measured by sMRI

suggests that these changes are not associated with distributed cell death or gliosis

[26, 27, 28]. Instead, we hypothesize that this change instead reflects abnormal

metabolism in these regions due to altered neural connectivity and/or activity

secondary to the epileptogenic lesion. This is supported by the finding that LTLE

was associated with more changes in functional connectivity than RTLE was [306].

This also explains why we observed metabolic changes in the right thalamus in
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RTLE: recent work demonstrates that the connectivity of the right thalamus with

the right hippocampus is reduced in RTLE [303]. The presence of such distributed

changes also supports the finding that the size of the hypometabolic lesion visu-

alized on PET may be larger than the SOZ [240, 310, 311]. It is particularly in-

teresting to note that the extent of these distributed changes is underappreciated

by t-statistics comparing LTLE to NES. This indicates that there is a complex,

likely nonlinear, relationship between the metabolism of the hypometabolic lesion

and its associated tissue that may be better understood by mutual information.

The inclusion of the contralateral hippocampus in both of the binary classi-

fiers lends itself to multiple interpretations that are all supported by biologically

sound hypotheses. Firstly, a salient feature of LTLE or RLTE could be asym-

metric metabolism, as suggested clinically; therefore the metabolism of the con-

tralateral hippocampus was compared to the observed metabolism in the ipsilat-

eral hippocampus. Alternatively, the interhemispheric connectivity between the

hippocampi is high, therefore under our hypothesis that changes in metabolism

spread according to functional connections, the metabolism in the contralateral

hippocampus may be one of the first induced changes due to the epileptic lesion.

Lastly, if LTLE and RTLE are inherently bilateral diseases then the metabolism

in the contralateral hippocampus may also be abnormal. This also provides an

explanation for why LTLE and RTLE were not perfectly distinguished.

In addition to diagnosing epilepsy, our algorithm lateralized disease efficiently

with an accuracy of approximately 90 percent when epilepsy was diagnosed cor-

rectly. This impressive accuracy could be clinically useful for pre-surgical plan-

ning, when used in combination with other clinical and radiological information.

Although our current sample size is too small to fully assess this potential fully,

our results suggest that similar methodology could be applied to a larger dataset

with more diverse and specific SOZ localizations to yield an objective and reli-

able tool to assist in pre-surgical SOZ localization. Our data suggest that this
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approach likely would identify and utilize distributed metabolic findings associ-

ated with each epileptic lesion to improve performance. Instead of blurring the

boundary of the SOZ by detecting affected tissue outside the SOZ, the improved

understanding of these distributed effects may lead to more refined characteriza-

tion of this clinically vital SOZ. However, the spatial resolutions of our outcome

classes were insufficient to assess the utility of this method directly to identify

candidate lesions for resective surgery.

While our lateralization accuracy is exciting, there is also a potential clinical

interpretation of the patients who were falsely lateralized. Functional connectiv-

ity between the temporal lobes is particularly strong. In a minority of patients,

this connectivity allows epileptogenic activity to spread quickly from the seizure

onset zone to the contralateral temporal lobe on EEG, resulting in the appearance

of either bilateral or falsely-lateralized disease. Similarly to the distributed net-

works discussed above, this high degree of functional connectivity also may induce

metabolic abnormalities in the contralateral temporal lobe that may be indistin-

guishable from the primary lesion. This hypothesis can be tested by comparing

these falsely-lateralized patients to patients with bilateral temporal lobe epilepsy.

This comparison requires a detailed methodological treatment of non-mutually

exclusive classes in machine learning and therefore lies outside the scope of the

current manuscript.

To characterize these and other pathophysiological insights, most studies uti-

lize healthy neurologically normal controls. In contrast, we prefer the use of PWN

as our control group. In brief, when constructing a control group, one aims to

match the patients in the pathologic group in all aspects other than the pathology.

In contrast to neurologically normal controls when compared to PWE, PWNs have

been exposed similarly to AEDs and other medications, have increased prevalence

of TBI and some other risk factors for epilepsy [265], have regular and frequent

meetings with health care providers, and have much more strict inclusion criteria.
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Lastly, and perhaps most importantly, physicians do not consider whether all of

their patients have epilepsy; they assess only the patients with seizures. Therefore,

in our opinion, the use of PWN as the control group is a benefit in of our study

because it maximizes the clinical relevance of our results while simultaneously

improving its statistical selectivity.

9.5.4 Limitations and future directions

Because our retrospective dataset was collected as part of clinical care, our ap-

proach has a few important limitations. The accuracy of MA reported in our

patients is worse than the rates quoted in previous literature [22, 309, 23]. Given

UCLAs status as a tertiary referral center, the decrease in manual accuracy likely

indicates that our patients had more heterogeneous etiologies and/or were more

complex and difficult to diagnose than other centers. This suggests that our CAD

tool may perform better on other datasets. Our iPETs and MRIs were collected

on varying cameras with varying resolutions. This demonstrates the flexibility of

our automated analysis using NeuroQ. The efficacy of the MA of older and limited

resolution data may not be comparable to that of more current and higher resolu-

tion data. After establishing the efficacy of our method, we plan to both validate

our tool prospectively on data from other centers, and to incorporate multi-center

data into our algorithm to further improve its performance. Additionally, we only

discuss the combination of CAD results with independently derived MA. Future

work will examine the efficacy of CAD tools informed by MA and vice versa.

Critics of our approach might claim that the significant gender and age dif-

ference of the patients with NES compared to patients with epilepsy may lead

to our CAD simply detecting the age and/or gender of the patients. While we

do not expect this to be the case for RTLE, the utilization of language areas

by the LTLE classifier might reflect differences in gender, and not epileptogenic

pathology. However, the performance of our CAD was significantly higher than
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when clinical information was used directly, therefore the algorithm utilized more

information than just clinical data to achieve its strong performance. These signif-

icant differences in clinical factors largely mirror the observed differences in clinic;

therefore our dataset better matches the population for which our CAD tool would

be applied. The only noteable exception is the significant age difference between

LTLE and RTLE, which was unexpected. Due to the naturalistic nature of our

data collection scheme, we did not correct for this difference. However, we note

similarly to the NES group, the use of age alone was significantly worse than our

tool and the addition of age to the iPET data to control for its effect did not

significantly change performance.

Another key caveat to the direct clinical application of our tool to clinical

practice is the fact that epilepsy is an extremely heterogeneous disease. The gen-

eralization of our method to bilateral temporal lobe epilepsy (TLE), extratemporal

foci and multifocal epilepsy will be critical before it can be incorporated into clin-

ical practice. In particular, even though non-epileptic seizures mimic all types

of seizures, it is uncommon for TLE to be mistaken for NES. Instead, it is more

common that non-epileptic seizures appear to have a focus in frontal cortex [358].

Therefore, the literature suggests that the highest impact CAD tool would dis-

criminate between frontal lobe epilepsy and NES and another, separate tool could

be used to lateralize TLE. Based on our results above (see section 4.1), we believe

that our TLE-specific tool may be clinically applicable. For the first publication

demonstrating the applicability of computer aided diagnosis based on iPET data,

we chose to focus on the diagnosis and lateralization of TLE, based, based on prior

findings that the sensitivity of iPET is highest for TLE. Our future work then can

address generalizing our methods to the other epilepsies, including bilateral TLE

and frontal lobe epilepsy.
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9.6 Conclusion

Despite a few caveats, and upon further validation with data from other centers,

our automated methods could provide unique information for the effective and

efficient characterization of epilepsy, with the potential to decrease the fraction of

patients with non-epileptic seizures that are being treated (inappropriately) with

AEDs, and to more quickly triage patients with medication refractory epilepsy

towards surgical intervention. This may help achieve the ultimate goal: a global

reduction in seizures [32].
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CHAPTER 10

Multimodal diagnosis of epilepsy using

conditional dependence and multiple imputation

This chapter is a reproduction of our work that appeared in the proceedings of

the International Workshop in Pattern Recognition in Neuroimaging. [?] This

work was a collaboration with Eric S. Hwang, Kaavya R. Raman, Sarah E. Bar-

ritt, Akash B. Patel, Justine M. Le, Jessica M. Hori, Emily C. Davis, Chelsea

T. Braesch, Emily A. Janio, Edward P. Lau, Andrew Y. Cho, Ariana Ander-

son, Daniel H.S. Silverman, Noriko Salamon, Jerome Engel, Jr., John M. Stern,

and Mark S. Cohen. ESH, KRR, SEB, ABP, JML, JMH, ECD, CTB, and EAJ

read all of the clinical & radiological notes and annotated the meaningful data

in them. AYC assisted with parallelizing code and performing permutation tests.

AA helped design the machine learning portion and interpret the multimodal re-

sults. DHSS, NS, JE and JMS helped fit our work in context of the diagnostic

assessment of seizure disorder. MSC helped with all stages of these processing

and manuscript.

10.1 Abstract

The definitive diagnosis of the type of epilepsy, if it exists, in medication-resistant

seizure disorder is based on the efficient combination of clinical information,

long-term video-electroencephalography (EEG) and neuroimaging. Diagnoses are

reached by a consensus panel that combines these diverse modalities using clinical
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wisdom and experience. Here we compare two methods of multimodal computer-

aided diagnosis, vector concatenation (VC) and conditional dependence (CD),

using clinical archive data from 645 patients with medication-resistant seizure dis-

order, confirmed by video-EEG. CD models the clinical decision process, whereas

VC allows for statistical modeling of cross-modality interactions. Due to the

nature of clinical data, not all information was available in all patients. To over-

come this, we multiply-imputed the missing data. Using a C4.5 decision tree,

single modality classifiers achieved 53.1%, 51.5% and 51.1% average accuracy for

MRI, clinical information and FDG-PET, respectively, for the discrimination be-

tween non-epileptic seizures, temporal lobe epilepsy, other focal epilepsies and

generalized-onset epilepsy (vs. chance, p<0.01). Using VC, the average accu-

racy was significantly lower (39.2%). In contrast, the CD classifier that classified

with MRI then clinical information achieved an average accuracy of 58.7% (vs.

VC, p<0.01). The decrease in accuracy of VC compared to the MRI classifier

illustrates how the addition of more informative features does not improve per-

formance monotonically. The superiority of conditional dependence over vector

concatenation suggests that the structure imposed by conditional dependence im-

proved our ability to model the underlying diagnostic trends in the multimodality

data.

10.2 Introduction

The diagnosis of seizure disorder is challenging, and relies on the effective integra-

tion of multiple streams of information, or modalities. Clinicians must combine

clinical information, obtained through the clinical interview, with various tech-

nological modalities including, but not limited to, scalp electroencephalography

(EEG), structural and diffusion magnetic resonance imaging (MRI), and fluoro-

deoxyglucose positron emission tomography (PET). Each modality provides in-
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complete but complementary information upon which a diagnosis can be built,

and each modality has its own limitations. Clinical information depends typi-

cally upon accurate reporting from patients and/or caregivers who are untrained

observers, and some work has shown that their reports are no more accurate

than random guessing [63]. Neuroimaging relies on the development of observable

structural and/or metabolic abnormalities that are associated, but not necessarily

by cause or effect, with epileptogenic regions. Based on analysis of these factors,

clinicians are able to provide effective treatment for two-thirds of patients with

seizure disorder.

When a patient has failed two or more antiepileptic drugs (AEDs), or the

etiology of the seizures is unclear, they are admitted for long-term video-EEG

monitoring. During these admissions, 20 to 30% of patients with medication-

resistant seizure disorder are found to have non-epileptic seizures [8]. For those

patients with epilepsy, the goal of long-term monitoring is to determine if the

seizures have focal or generalized onset and, if the seizures have focal onset, de-

termine where the focus is and if it is surgically resectable [359]. Each of these

determinations leads to changes in the treatment plan to target the cause of the

seizures more effectively.

Our objective in designing computer-aided diagnostic tools (CADTs) is to im-

prove diagnostic accuracy and certainty by providing information complementary

to clinicians’ judgment. This has the potential to decrease the cost of and time to

diagnosis by providing clinicians’ information that they would not otherwise have

access to. Due to the inherently multimodal nature of the diagnosis of epilepsy,

we focus on how to develop effective multimodal CADTs using the information

available to clinicians.

In this manuscript, we assess the efficacy of two methods of multimodal learn-

ing: vector concatenation (VC) and conditional dependence (CD), with simplified
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Table 10.1: Summary of the most prevalent features in each diagnostic group,

prior to multiple imputation. Abbreviations: Temporal Lobe Epilepsy (TLE),

Other Focal Epilepsy (OFE), Generalized-onset epilepsy (Gen), Unspecified-on-

set Epileptic Seizures (UES), Non-Epileptic Seizures (NES), Magnetic Resonance

Imaging (MRI), fluoro-deoxyglucose Positron Emission Tomography (PET).
mean (standard error of the mean) TLE OFE Gen UES NES

Female (%) 51 (3) 60 (5) 53 (7) 49 (6) 71 (3)

Age (years) 38.1 (0.8) 33.5 (1.4) 32.3 (2.0) 34.5 (1.7) 38.4 (1.2)

Duration Seizure Disorder (log10year) 1.074 (0.033) 1.065 (0.044) 1.002 (0.072) 0.959 (0.082) 0.464 (0.066)

Seizure Frequency (log10Seizures/month) 0.787 (0.049) 0.988 (0.083) 0.789 (0.132) 0.807 (0.100) 1.148 (0.069)

History of Stroke (%) 3 (1) 5 (2) 6 (3) 8 (3) 9 (2)

History of Febrile Seizures (%) 16 (3) 18 (4) 12 (6) 13 (4) 9 (3)

History of Neurotrauma (%) 35 (3) 31 (4) 24 (6) 25 (5) 36 (4)

History of Neuroinfection (%) 16 (3) 8 (3) 3 (3) 8 (4) 16 (3)

Abnormal MRI (%) 68 (3) 56 (5) 41 (7) 49 (6) 24 (3)

Abnormal PET (%) 71 (3) 48 (5) 36 (8) 43 (6) 26 (6)

Mesial Temporal Sclerosis (%) 68 (3) 34 (5) 27 (6) 35 (5) 10 (2)

Other MRI Findings (%) 45 (3) 48 (5) 37 (7) 41 (6) 22 (3)

Temporal Hypometabolism (%) 60 (3) 29 (3) 33 (8) 37 (6) 18 (5)

Other PET Findings (%) 27 (3) 27 (5) 13 (5) 13 (4) 11 (4)

data from clinical information (CI), MRI and PET. Vector concatenation repre-

sents a purely information theory perspective that relies on algorithms to discover

the relationships between modalities. For other applications, VC has resulted in

decreased performance relative to single modality models, likely due to overfitting

and the “curse of dimensionality.” CD attempts to overcome these limitations

by considering each modality sequentially [360]. CD also models clinical practice,

where clinicians make a preliminary diagnosis based on the clinical interview, then

look to technological data to modify that initial impression.

10.3 Methods

All 645 selected patients with medication-intractable seizures were admitted to the

University of California, Los Angeles adult (age 13-88) video-EEG epilepsy moni-

toring unit (UCLA EMU) between the years of 2006 and 2013. Patients were split

according to their definitively diagnosed etiology: temporal lobe epilepsy (TLE,
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n=235), other focal-onset epilepsy (OFE, n=109), generalized-onset epilepsy (Gen,

n=50), unspecified epilepsy (UES, n=81) and non-epileptic seizures (NES, n=170).

Patients diagnosed with unspecified epilepsy had confirmed epilepsy, but the

seizure onset zone was not determined. Definitive diagnosis was based on consen-

sus panel review of long term scalp video-EEG, MRI, FDG-PET, clinical history,

physical and neurologic exam, and/or neuropsychiatric testing. Not all patients

underwent all studies. Patients with prior neurosurgery, those with inconclusive

video-EEG results, and events suspicious for mixed NES and epilepsy seizure

disorder were excluded from analysis (n=219). This work was approved by the

UCLA Institutional Review Board and was consistent with the Helsinki declara-

tion. Written informed consent was obtained from all patients (or guardians of

patients).

Our analysis focused on three modalities: CI, MRI and PET. All data were

acquired as part of the patients’ clinical care according to the resources avail-

able at the time of care. Simple clinical information was extracted, including

age, gender, duration of seizure disorder prior to neuroimaging, seizure frequency

and a history of clinically suspected stroke, febrile seizures, focal or generalized

neurotrauma, and neuroinfection. For patients with multiple neuroimages, only

the most recent, pre-operative scan of each modality was included. Neuroimag-

ing results were based on review of clinical records written primarily, but not

exclusively, by Dr. Noriko Salamon, who is an expert in the interpretation of

neuroimaging for the diagnosis and pre-surgical assessment of epilepsy. The MRI

findings were simplified into binary indicator variables for extratemporal FLAIR

or T2 hyperintensities, evidence of mesial temporal sclerosis, mass/space occu-

pying lesion, encephalomalacia, cavernoma/hemangioma/angioma, cortical dys-

plasia, ischemic changes, gliosis, grey or white matter heterotopia, diffuse atro-

phy, focal extratemporal atrophy, meningioma, encephalocele, non-specific tumor,

edema, vascular abnormality, cortical thickening, tuberosclerosis, unspecified le-
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sion, cerebellar tonsil ectopia, abnormal gyration/sulcus structure, neurocystocer-

cosis, hydrocephalus, and other MRI finding. The PET findings were simplified

into indicators for hypo- or hyper-metabolism in the temporal lobe, frontal lobe,

occipital lobe, parietal lobe, insula, diffuse cerebral cortex, cerebellum or whole

brain diffuse hypometabolism, as well as foci of abnormal metabolism (i.e. high

metabolism in white matter). Both neuroimaging modalities also included an

aggregate indicator of abnormal findings.

Our data were extracted entirely from real-world clinical archives; not all data

values were available for all patients. For the purposes of data imputation, we

split the missing data into two groups. Duration of seizure disorder (0.5% miss-

ing) and seizure frequency (7% missing) were considered to be missing completely

at random (MCAR), because these variables clearly are defined for every patient,

and there was no trend in percent missing in any diagnostic subgroup. In contrast,

if the clinical notes did not mention a historical factor (i.e., neurotrauma), we as-

sumed that the patient had no history of this factor because the clinician is biased

to report a historical factor if it exists. Overall 624 (97%) and 486 (75%) patients

had MRI and PET records, respectively. The presence or absence of neuroimaging

was not a significant predictor of diagnosis, when other clinical factors were taken

into account (data not shown). Therefore, we assumed that this data was MCAR.

We multiply imputed the data 20 independent times using the mi package in R

[361]. Based on their theoretical and observed distribution, duration and seizure

frequency were log transformed to maintain linearity. For the neuroimaging, there

was insufficient information to impute each individual abnormality, therefore only

the aggregate abnormality indicator for each modality was imputed. Separate

analysis was conducted on each imputed dataset and results were aggregated with

respect to the within and between imputation variance [362].

All classifications were based on C4.5 decision trees in Hall2009 [228] with

leave-one-out cross-validation (LOOCV), and performance was compared to chance
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distributions determined by permutation tests. Briefly, at each node, the C4.5

finds the feature and threshold that maximizes the normalized information gain.

In LOOCV, one patient is excluded from all training. Once the decision tree is

built, its performance is assessed on this “unseen” patient. For each method, we

evaluated the overall accuracy, sensitivity for each diagnostic class (TLE, OFE,

Gen, UES, NES). UES patients were considered correctly classified if they were

predicted to have any type of epilepsy, but not NES. All other patients were

considered misclassified if they were predicted to have UES. This penalty was

reflected in the cost matrix of the C4.5 classifier. To compare multiple classifiers

head-to-head we calculated the paired performance change, where the difference

in accuracy is paired within patient, then averaged across patient because the per-

formance on each patient cannot be assumed to be independent across classifiers.

The null distribution for all performance measures was calculated by conducting

the same analysis (imputation, training, LOOCV and aggregating results across

imputed datasets as in [362]) on data with permuted diagnostic labels, without

replacement. At least 100 permutations were done on each imputed dataset. The

rank order of performance measures from the permutations were used as as em-

pirical markers for the 1% quantile bins of each chance, or null, distribution used

to determine significance, because the permuted labels had no relation to the

underlying diagnostic class.

We compared VC and CD. VC ignores the modality structure and treats all fea-

tures as components of one large model. CD, otherwise known as “stacking” [360],

classifies each patient into discrete, multivariate classes based on each modality

individually in a specified order. Intuitively, for each test case the classifier gives

a preliminary diagnosis based on the first modality. Then, a second layer classifier

is learned from all training samples that also were classified as that same prelim-

inary diagnosis, either correctly or incorrectly. To frame this theoretically, Bayes
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theorem states that:

P (Dx|DataM1,M2) ∝ P (DataM1,M2|Dx)P (Dx) (10.1)

where Dx and Data indicate the diagnosis and data, respectively. In CD, we

factor P (Dx|DataM1,M2) by each modality to get:

P (Dx|DataM1,M2) ∝P (DataM2|Dx,DataM1)

· P (DataM1|Dx)P (Dx) (10.2)

where M1 and M2 indicate two modalities, in order. Therefore, P (DataM2|Dx)

is conditionally dependent on DataM2. Although we have described two-modality

CD, this reasoning can be extended to apply to m modalities for any positive

integer m. The final predicted diagnosis is the diagnosis that maximizes this

likelihood, given the data and the classification model used to estimate the prob-

abilities.

10.4 Results

The LOOCV accuracy and per-class sensitivity, taking into account the multiple

imputations [362], of the single and multimodality classifiers is illustrated in Figure

10.1. The accuracy of the single modality classifiers was 53.1%, 51.5%, and 51.1%

fo MRI, CI, and PET, respectively. The accuracy of VC was 39.2% and 37.7%

using MRI+PET+CI and just MRI+CI, respectively. The accuracy of CD was

58.7%, 56.6%, 52.9%, and 51.8% when modalities were considered in the order

MRI→CI, CI→MRI, MRI→PET→CI, and CI→MRI→PET, respectively. All

accuracies were significantly better than chance (p<0.01) except the MRI+CI,

MRI→PET→CI, and MRI→CI (p>0.1). All pairwise comparisons revealed that

all classifiers were superior to vector concatenation (p<0.01), but no other pairwise

comparisons were significant (p>0.08).

Table 10.1 illustrates the distribution of the considered diagnostic features,
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Figure 10.1: Overall accuracy (A) and per-class sensitivity (B) of each classifier.

Error bars reflect binomial theoretical standard error bars, with multiple impu-

tation. Red shading reflects the 95% quantile bounds from permutation tests.

Vector concatenation and conditional dependence are indicated by + and -, re-

spectively. For conditional dependence, the order of modalities is read from left

to right. Abbreviations: Clinical information (CI).
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except for the long list of neuroimaging indicators, by diagnostic class. All trees

were more than 10 nodes deep and were too large for display.

10.5 Discussion

In real-world applications, combining information from multiple modalities does

not always improve accuracy; this combination must consider the statistical and

practical limitations inherent in modeling high dimensional data. Conditional

dependence (CD) was superior to vector concatenation (VC) in overcoming these

limitations, but did not result in a significant improvement over the single best

modality classifier: the MRI.

The efficacy of CD relies on efficiently splitting the patients into more ho-

mogenous subgroups. The curse of dimensionality states that as the number of

dimensions increases the number of samples needed to achieve the same sampling

density increases exponentially. This curse can be overcome if the data truly ex-

ist in a lower dimensional subspace. This can occur when there are subgroups

of patients within each diagnostic class that are more similar to each other, and

therefore are distributed over a relatively limited region of feature space. These

subgroups can be discovered using hypothesis-driven methods like CD, or through

data-driven “committee-of-experts” methods that we will examine in the future.

We hypothesize that, when applied in the most efficient order (neuroimaging

first), CD identifies subgroups of patients with similar etiology. The relatively

simple clinical variables then can identify if the clinical presentation of this eti-

ology matches with the expected presentation of patients with similar etiologies.

In particular, this order is interesting because it is the opposite of how clinicians

diagnose patients. This illustrates how the ideal structure of automated computer

analysis may differ from how clinicians’ diagnose, due to the relative strengths of

each analysis method. This reflects our belief that CADTs cannot, and should
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not, replace clinicians’ expertise.

Even though neuroimaging-first produced higher accuracies than CI-first, this

was not significantly higher than the accuracy on permuted diagnostic labels.

Variation of chance between 36% (nTLE/ntotal) and 49% (nTLE + nUES/ntotal) was

expected due to the latent structure of the data and classifiers naively diagnosing

all patients as the most common class (TLE), which also was considered correct

for patients with UES. However, chance accuracies of 58% for the neuroimaging-

first CD classifiers seem inflated, for a number of reasons that can and should

be explored. For instance, latent structure of the data could have been used to

identify coherent subclasses that the randomly permuted diagnostic labels did not

break up. This exploration is outside the scope of this short manuscript.

While most of our diagnostic accuracies were significantly above chance, they

were too low to be readily applicable to clinical medicine. We expect that CADT

performance would improve by including more detailed clinical information, in-

cluding ictal semiology and co-morbidity profile; as well as integrating in auto-

mated MRI- and/or PET-based CADTs that utilize features not appreciated by

radiologists (i.e. [27, 26, 28, 7]). However, the addition of these other diagnostic

features could magnify the problem of the curse of dimensionality. We, there-

fore, chose to focus first on simplified, high-salience features to assess multimodal

classification methods.

To develop this CADT, we relied solely on archived clinical data from a tertiary

epilepsy center, which has its benefits and limitations. The primary benefit is

that the information we used reflects the information that would be available in

clinic. This ensures that the CADT performance on this data is more similar

to how the CADT would perform when applied in a similar setting, at the cost

of accurately describing the underlying pathology [81]. As discussed above, the

clinical information may be misreported, and radiologists cannot determine the

epileptogenic region in all patients. Therefore, even though our CADTs may
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be clinically applicable, these observed trends may or may not reflect the true

pathologic process of disease.

Archived clinical data often are limited because some data are missing. In

this case, we multiply-imputed the missing durations, seizure frequency and neu-

roimaging results based on multilinear trends in all of the other included variables.

This allowed the imputed missing data points to contribute to the MRI- and PET-

based classifiers. While we expect the variance and, therefore the uncertainty, of

each diagnosis to increase with the amount of missing data, in the case of our

CADT, multiple imputation has the additional benefit of allowing us to apply one

unified model to all patients, irrespective of what data has been collected.

10.6 Conclusion

Conditional dependence resulted in a more clinically-applicable CADT compared

to vector concatenation. The imposed structure of conditional dependence im-

proved performance. The opposite order of modalities in our analysis suggests

that computers view the data differently from clinicians and could provide a non-

redundant, complementary perspective on the data that could improve diagnostic

accuracy and certainty, when combined with clinicians’ expertise.
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CHAPTER 11

Parameter Selection in Mutual

Information-Based Feature Selection in

Automated Diagnosis of Multiple Epilepsies

Using Scalp EEG

This chapter is a reproduction of our work that appeared in the proceedings of

the International Workshop on Pattern Recognition in Neuroimaging.[293] This

work is a collaboration with Ariana Anderson, Hongjing Xia, Eric S. Braun, Ed-

ward P. Lau, Andrew Y. Cho, and Mark S. Cohen. EPL and AYC assisted with

computational processing and parrallelization of code. AA assisted with machine

learning design and interpretation of results. HX assisted with implementing the

mRMR feature selection, as well as understanding the structure of the data. MSC

assisted with all stages of planning, implementation and manuscript preparation.

11.1 Abstract

Developing EEG-based computer aided diagnostic (CAD) tools would allow identi-

fication of epilepsy in individuals who have experienced possible seizures, yet such

an algorithm requires efficient identification of meaningful features out of poten-

tially more than 35,000 features of EEG activity. Mutual information can be used

to identify a subset of minimally-redundant and maximally relevant (mRMR) fea-

tures but requires a priori selection of two parameters: the number of features of
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interest and the number of quantization levels into which the continuous features

are binned. Here we characterize the variance of cross-validation accuracy with

respect to changes in these parameters for four classes of machine learning (ML)

algorithms. This assesses the efficiency of combining mRMR with each of these

algorithms by assessing when the variance of cross-validation accuracy is mini-

mized and demonstrates how naive parameter selection may artificially depress

accuracy. Our results can be used to improve the understanding of how feature

selection interacts with four classes of ML algorithms and provide guidance for

better a priori parameter selection in situations where an overwhelming number

of redundant, noisy features are available for classification.

11.2 Introduction

The accuracy of machine learning (ML) relies on the identification of salient fea-

tures that reflect, at least partially, the discrimination in question. Ideally that

feature space is sparse and, in clinical classification, it is based on biological fea-

tures with prior likelihood of involvement in the medical condition. In complex,

heterogeneous clinical syndromes, such as epilepsy, there are large numbers of

computational features with sound biological support. ML methods can be used

to identify features that discriminate the patients from controls. This can eluci-

date the pathology underlying complex disorders but there are an overwhelming

number of possible features, many of which are redundant. A key challenge to this

approach is: how does one select the number of features to include? ML methods

often use a hypothesis-driven approach to select a small subset of features and

explain their discriminative efficacy without reference to excluded features. The

salience of these hypothesized features can be confirmed using principled data-

driven feature selection algorithms that leverage features against each other and

results in a better characterization and therefore classification of disease. Mutual
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information (MI) is particularly capable of considering the interactions of thou-

sands of features simultaneously, using model-free methods to identify those that

are minimally-redundant and maximally-relevant (mRMR) to the classification

[6]. This depends on the choice of two parameters: the number of quantal levels,

Q, in which to bin the continuous features, and the number of features, F , selected

to classify.

In this work we use resting state EEG data to distinguish whether a given

patient suffers from epilepsy or instead has experienced non-epileptic seizures

(NES). Conventional methods initially miss greater than 50% of patients with

epilepsy and further assessment inadequately diagnoses up to 30% of patients.

Starting from roughly 40,000 different summaries (features) per subject of EEG

behavior, we use mRMR to select features and create an ML classifier that dis-

criminates between epilepsy and NES. We demonstrate how parameter choices of

(Q,F ) affect the mean and variability of the cross-validation accuracy; arbitrary

parameter selection can lead to models that systematically classify worse than

chance while naive attempts to optimize parameters within the model can lead to

bias. We demonstrate the varying effect of parameter selection on four classes of

machine learning algorithms: Support Vector Machines (SVM), Multilayer Per-

ceptrons (MLP), Bayesian Logistic Regression (BLR) and Alternative Decision

Trees (ADT). Accurate discrimination will translate directly to reduced morbid-

ity, and the results of our sampling of the parameter space can be used to guide

others in the selection of these critical parameters when utilizing mRMR.

In mRMR, all continuous features must be smoothed into Q a priori selected

discrete bins. Redundancy between features is computed by calculating the MI

between features:

MI(Xi, Xj) =

Q∑
i=1

Q∑
j=1

nij
N

log2

Nnij
ni·n·j

, (11.1)

where nij is the number of elements in bin (i, j) from the joint time series (Xi, Xj).
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For features in which the classes are separable, a clear choice for Q is 2. Real data,

however, is rarely separable. If the continuous scale of a feature is meaningful,

then discretizing the data results in a loss of information that increases with the

log of the chosen bin size [363]. If bin size is minimized with one exemplar per bin,

then nij is uniformly one, resulting in an inaccurate MI calculation. Therefore the

optimal value of Q is likely intermediate. We hypothesize that near the optimal

number of quantal levels, the variance of the accuracy is decreased due to effective

calculation of mutual information.

A limitation common to mRMR and many other feature selection algorithms

is that the number of features, F , must be selected prior to testing. Selection of

too few features omits valuable discriminative information, whereas selection of

too many features risks over fitting. Because the magnitudes of these accuracy

decreasing forces are both minimized at the optimum, we expect the variance

of cross-validation accuracy to decrease around the optimal number of features.

When too many features are specified, the accuracy in the training set is rela-

tively stable, whereas the test accuracy varies artifactually. Similarly, when the

number of features is inadequate to explain the test set variation the accuracy is

highly affected by the addition or subtraction of salient features. This optimum

number of features might not be conserved across different ML algorithms, as al-

gorithms vary substantially in the degree to which features with low signal to noise

ratios contribute to the classification. SVM and MLP perform remarkably well

using extremely high dimensional neuroimaging data but fail when considering

small numbers of highly salient features, relative to BLR or decision trees. Algo-

rithms that omit information distributed across many features may not capture

highly discriminatory information; however algorithms that integrate many fea-

tures may be incorporating redundant information. Reducing redundancy using

mRMR ensures that the utilized subset closely represents the full dataset thereby

minimizing the computational burden of operating on non-contributory informa-
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tion and reducing the effect of redundant, low salience features. The relevancy

criteria used in MI may screen out noise features, but it is not guaranteed that

this translates to higher classification accuracy. The selection of support vectors

in SVM suppresses data points far from the decision boundary, whereas MI in-

corporates all data points. Therefore, multiple ML classifiers must be tested with

different numbers of input features to generalize the effect of parameter selection

on classification accuracy.

11.3 Methods

11.3.1 Patient & EEG Processing Information

Our subjects include 156 patients admitted to the UCLA Seizure Disorder Center

Epilepsy video-EEG Monitoring Unit (EMU) from 2009-2011. Upon the com-

pletion of monitoring, 87 were diagnosed with a diverse set of epilepsies and the

remaining 69 were diagnosed with non-epileptic seizures by clinical criteria. All

scalp EEG recordings were collected in accordance with standardized clinical pro-

cedures with a 200 Hz sampling rate using 26 electrodes placed according to the

International 10-20 system. During acquisition, an analog 0.5 Hz high pass filter

was applied to all recordings. Reviewed data consisted of between 1.5 and 25

hours (mean 9 hours, S.D. 4.5 hours) of archived EEG from either the first or

second night of video-EEG monitoring. This work is compliant with the UCLA

IRB (IRB#11-000916, IRB#11-002243).

The mean, standard deviation, minimum and maximum power spectra for

non-overlapping 1 sec, 5 sec, 60 sec, 30 min windows of EEG recordings from

all electrodes relative to reference electrode 1 were calculated in MATLAB. The

absolute value of spectral energy from 1-100 Hz was averaged over 1 Hz spectral

bands for each of the 26 electrodes. Short window lengths measure phenomena

analogous to event related spectral perturbations (ERSPs) whereas longer win-
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dows capture baseline activity and connectivity. The power spectra from 58-62

Hz were excluded from all analysis to avoid AC line noise, leading to 39,174 fea-

tures per subject describing EEG activity. No other artifacts were removed. Ictal

activity, muscle artifact and bad channels were included in analysis.

11.3.2 Sampling, Feature Selection and Classification

The most relevant and least redundant of the 39,174 features were selected for

specific (Q,F ) using the highly efficient mRMR feature selection algorithm op-

timized and released for MATLAB and C++ by Ding & Peng [6]. All machine

learning algorithms were implemented using default parameters in Weka 3.6.4[292]

using the full continuous range of each selected features. Accuracy is based on

cyclical leave-one-out cross validation that left one subject out of both the feature

selection and ML training.

We sampled the cross-validation response surface of (Q,F ) using a series of

grids with highly parallel computing. The computational burden of each sample is

O(F 3) therefore the space was more densely sampled for low F . Sampling points

with more than 2,400 features took over 156 days and is therefore infeasible. Sam-

pling 17,677 of the more than 365,000 possible parameter combinations took more

than 144 cpu-years therefore the use nested cross-validation, and permutations are

infeasible. The possible discontinuity and non-convexity of the space violates the

assumptions of most joint optimization procedures.

We then examined the local variation in the 3D space and also the trends of

accuracy and variance across each parameter individually. The visualizations of

the 3D space utilize Akima bivariate interpolation to fill in unsampled points [4].

When modeling variation along an individual parameter ignoring the other,

we interpolated the value of unsampled parameters using a Loess smoother [364].

Because higher numbers of features were sampled less densely, the smoother was
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trained on log-features in order to maintain a consistent sampling density across

the domain.

11.4 Results

Figure 11.1 illustrates the cross-validation accuracy for each of the four algo-

rithms. To illustrate the full space, the F dimension is shown in log steps. On

average, the SVM outperformed the other algorithms that otherwise seemed rel-

atively indistinguishable. For extreme quantal levels, the accuracy of the MLP

was comparable to the SVM. The maximum accuracy achieved was 86, 70, 69 and

71% for BLR, ADT, SVM and MLP, respectively. The minimum accuracy was 8,

32, 43 and 29% for BLR, ADT, SVM and MLP, respectively. The accuracy for

a naive classifier in this setting is 56% (95% CI: 48-64%). Falsely assuming that

the sampled points were randomly selected without replacement, the 95 percent

confidence intervals for the mean cross validation accuracy for BLR, ADT, SVM

and MLP were: 54.7-54.9; 54.0-54.2; 57.8-57.9 and 55.5-55.7%.

11.4.1 Variance with respect to Feature Number

As illustrated in Figure 11.2, the variance of accuracy of most algorithms decreases

with increasing feature number. The notable exception is SVM, which had higher

accuracy and lower variance across almost all of the space. The minimum for each

algorithm was reached at 2,400; 2,400; 1 and 234 feature(s) for BLR, ADT, SVM

and MLP, respectively.

11.4.2 Variance with respect to Quantal Level

As illustrated in Figure 11.3, the variance of accuracy is relatively constant except

for high Q. The variance of SVM is lower than all algorithms across all selections.
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Figure 11.1: The cross validation accuracy of all four classifiers. The unsampled

points are filled using Akima bivariate interpolation [4]. The bottom right corner

is set to 0 due to lack of support. All values less than 40% are rounded up to

40% to maintain contrast. Without multiple testing correction, individual yellow

to red points are significantly more accurate than a naive classifier whereas deep

blue points are significantly worse.
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Figure 11.2: Variance of cross validation accuracy with respect to number of input

features. Thickness represents standard error.

Figure 11.3: Variance of cross validation accuracy with respect to number of

quantal levels. Thickness represents standard error.
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11.5 Discussion

We note a few key observations regarding the behavior of the cross-validation

accuracy. (1) The distribution of all algorithms has substantial negative skew.

(2) The number of features is responsible for most of the variation in accuracy.

(3) The variance of cross-validation accuracy largely is independent of the choice

of quantal level. (4) SVM has decreased variance and increased accuracy within

this system compared to the other algorithms.

When visualizing the overall cross-validation accuracy (Fig. 1), the majority of

points seem to be less than chance, 56%. This, however, is not the case. Negative

bias occurs because the majority of points are sampled for low feature number

relative to the optimum, causing these less accurate points to be over represented.

This skew means that a naive or random choice of parameters could lead to a

conclusion that no discriminatory signal exists when a signal indeed exists. This

illustrates the need to better understand the effect of parameter selection.

It is apparent that as long as an intermediate number of quantal levels are

chosen, the variance of accuracy is relatively constant. This suggests that the

mRMR algorithm is resistant to small variations in the selection of this parameter

and confirming our hypothesis that variance is decreased around the optimum Q.

Even as the variance of accuracy is constant across quantal levels (Fig. 1), the

accuracy is even more consistent within each quantal level.

Similarly, the variance with respect to number of features had very similar

trends across the four algorithms. All of the algorithms achieved a local minimum

of variance at around 200 to 500 features. This suggests that across all algorithms,

this may represent the number of non-redundant features in the data that hold

diagnostic information. As expected from the bias-variance tradeoff, the accuracy

grows according to a roughly sigmoidal function that peaks around 500 features.

After this optimum, the accuracy then falls, possibly due to over fitting, as dis-
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cussed in the introduction. Due to the decreasing trend in variance for all but the

MLP, it is not guaranteed that this represents a global optimum.

The magnitude of each of the variances suggests that on a large scale, the

number of features is much more important than the choice of quantal level.

Around the region with decreased variation in F , however, the variance from Q

is of similar magnitude. This suggests that this space may be explored efficiently

using coordinate descent.

It is particularly interesting to note the large difference in variance for low

feature numbers. The most salient example is the BLR that has between 1.5 and

5 fold more variance for low F than the other algorithms. BLR achieves both

the maximum and minimum global accuracy with low F and high Q, therefore

this performance may be due to noise instead of (in)effective modeling of the

underlying pathology or MI. This is confirmed by our hypothesis that with high

Q the probability distribution of each feature approaches the uniform; therefore

the MI calculation may be ineffective.

On the other hand, the SVM was impacted the least by the parameter selec-

tion. The variance with respect to both parameters was less for the SVM than

for most of the other algorithms across all parameters. As discussed in the in-

troduction, this may be because the underlying weighting of relevancy by mRMR

is substantially different from the SVM. The minimum accuracy observed for the

SVM was substantially higher than the minimum for all other algorithms. The

optimum accuracy was also achieved across intermediate quantal levels, suggest-

ing that it reflects an effective modeling of the underlying data to discriminate

epilepsy from non-epileptic seizures. We caution against interpretation of the ex-

trema because their significance can only be assessed using random field theory

[365] and/or bias correction [366], both of which are out of scope for this article.

Based on these and other results, we believe that the power spectrum of EEG

holds valuable diagnostic information for epilepsy but that this diagnostic infor-
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mation is hidden among a large degree of noise [74]. A deeper understanding of

parameter selection may lead to the efficient implementation of power spectrum

information on an automated diagnostic tool for epilepsy.

In general, a priori selection of the number of input features and quantal levels

in mRMR has the same challenges as other feature selection algorithms even

though it involves a joint optimization because accuracy is generally invariant of

quantal level. The selection of the optimum number of features requires sampling

to determine the region that maximizes both classification accuracy and minimizes

the variance with respect to changes in number of features. This ensures that the

accuracy is not inflated artifactually but also correctly reports the best accuracy

that can be achieved in practice.
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CHAPTER 12

Hyperparameter Optimization with Random

Field Theory without Nested Cross-Validation

This is an early and partial draft of our manuscript in progress. This is a col-

laboration with Ryan M. McCarthy, Andrew Y. Cho, Edward P. Lau, Marc A.

Suchard and Mark S. Cohen. WTK came up with the idea, organized the collab-

oration, wrote most of the code and the manuscript. RMC assisted with initial

explorations of the idea and wrote some simulations. AYC and EPL assisted with

the computational aspects of this work. MAS helped verify and develop the an-

alytical foundation for this work, as well as assisted in the other aspects of the

work. MSC assisted with framing, design of experiments, manuscript preparation

and interpretation of results.

12.1 Abstract

Machine learning models effectively estimate the optimal value of parameters in-

herent to the model based on training data, but determining the optimal value of

hyperparameters comparatively less well defined. We define hyperparameters as

selected values that are not optimized jointly with the parameters inherent in the

log-likelihood of the data, given the model. Common examples of hyperparameters

are the soft margin parameter, C, in support vector machines (SVM); the regular-

ization parameter, λ, in regularized machine learning models; and the number of

features selected from a high dimensional dataset using a filter-based feature selec-
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tion. Learning of these hyperparameters is critical to developing highly accurate

and applicable models, but current methods to learn these values typically rely

on a priori selection or nested cross-validation. In this manuscript, we theoreti-

cally pose and empirically validate a novel method for assessing the significance

of cross-validation accuracy and optimizing hyperparameters by understanding

the inherent dependency between the cross-validation accuracy for similar hyper-

parameter choices using the ideas of random field theory. This method has the

potential to reduce the computation cost of fitting highly accurate models, espe-

cially in applications with limited training data, while reducing the complexity of

interpreting the final solution. It also gives quantifiable evidence about the stabil-

ity of the learned solution, with respect to changes in hyperparameter selection.

12.2 Introduction

Training effective machine learning models relies on learning optimum parameters,

ψ, and hyperparameters, θ, to describe the problem at hand accurately. Each of

the many machine learning models is based on maximizing some form of log-

likelihood of the data given ψ and the chosen model. We define a hyperparameter

as a value or choice made outside of the context of maximizing the log-likelihood

that affects the structure and effectiveness of the model. In this manuscript,

we theoretically pose and empirically validate a novel method based on random

field theory (RFT) for assessing the significance of observed cross-validation (CV)

accuracies achieved over a range of θ that maximizes the data available for training

and validation, while reducing computational cost.

This addresses a key challenge with the application of machine learning mod-

els that include hyperparameters. In many manuscripts, θ seems to be chosen

arbitrarily. Hopefully, this arbitrary choice was made prior to observing the CV

accuracy that was achieved by a given θ. If it wasn’t and the researchers instead
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chose the θ that resulted in the best performance, their performance would be

inflated and the estimates of significance would be inaccurate. For even the most

responsible researchers, there is little guidance provided in the choice of many

types of θ. For example, when applying a filter feature selection, one must choose

the number of features, F , to allow through the filter, out of the total number of

features, m. The best evidence is that F should be chosen based on biological

prior knowledge, or simply prior knowledge with the classification scheme[3].

This challenge of selecting θ is that without observing the CV performance, it

is difficult to predict performance or the sensitivity of performance on the choice

of θ. The methods we outline here, while applied to hyperparameters in machine

learning, can be applied to other statistical problems where an arbitrary parame-

ter(s) must be chosen to assess how well a model fits, and the sensitivity of model

fitting to the choice of parameter is unknown.

The applicability of a machine-learning model to unseen data is assessed com-

monly through CV or testing its performance on an external or left out dataset.

This requires splitting the data into at least two groups: training and validation.

The training group is used to optimize ψ. However, separate data is needed to

optimize θ to limit overfitting. This can be done by further splitting the training

set into a smaller training set to optimize ψ and a testing set to optimize θ. Fre-

quently, this is done within the setting of cyclical K-fold nested cross-validation,

where each exemplar is used successively for training, testing and validation. The

method of splitting the full dataset into subsections ensures that the reported

generalization accuracy is not overinflated by overfitting the data. Overfitting is

where the learned ψ and θ capture trends present in the available data that do

not translate to unseen data.

However, this practice of successively splitting the data results in fewer ex-

emplars to train ψ and θ, increases computational cost, and decreases the inter-

pretability of the model. If K-fold nested CV is employed with 10-fold outer and
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inner loops, then we estimate 100 different pairs of ψ̂ and θ̂. For the duration of

this manuscript, we denote estimates of values with a hat. Ten-fold nested CV,

however, results in only 80% of the available data being used to learn ψ, arguably

the most important part of a model. One generalizable finding in machine learn-

ing is that the more training data that is used to learn the model, the better the

model reflects the underlying problem at hand. Consequentially, one could con-

duct leave-one-out CV in both the inner and outer folds, resulting in n2 different

pairs, where n is the number of available exemplars. This moderate increase in the

number of training exemplars may result in only moderately improved accuracies;

the reported accuracy is what determined the impact or applicability of machine

learning models. However, even as leave-one-out nested CV may improve general-

ization accuracy, it does so at the expense of computational cost, it also decreases

the interpretability of the learned ψ and θ. For some models, averaging ψ and θ

is a valid procedure to result in a single, interpretable summary statistic, but this

ignores the potential strong dependency between ψ and θ. While the variability

around these averages can be quantified, there is insufficient data to assess how

this variability influences CV accuracy.

To address these challenges, we propose to apply the ideas of random field

theory to understand how cross-validation accuracy varies “spatially” with respect

to changes in θ. This directly studies the sensitivity of the reported CV accuracy

with respect to θ, thereby improving the interpretability of θ̂. In addition, by using

statistical theory to describe the “spatial” relationship, we remove the need for the

nested CV loop without compromising the validity of the reported CV accuracy.

Lastly, and most importantly, by understanding how to correct for testing multiple

θ, we develop a statistical procedure for determining the significance of an observed

CV accuracy, as compared to chance.

To our knowledge, there are only two methods that address this specific prob-

lem. First, one could consider each assessment of the CV error for different θ a
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statistically independent test. Therefore, one could apply a Bonferroni correction

to assess the significance of the highest achieved CV error. This, however, ignores

the dependence that we will make clear below. Secondly, Tibshirani & Tibshirani

proposed that when testing multiple θ, the bias for choosing the best observed

CV error is the same as the bias for choosing the best observed training error.

Therefore, this bias can be corrected by the following expression:

ErrorCorrected = ErrorCV(θ̂) +Bias = 2 · ErrorCV(θ̂)− 1

K

K∑
k=1

ek(θ̂k) (12.1)

where ek(θ̂k) is the prediction error on the training set of the optimum choice of

θ within cross-validation fold k. To demonstrate the superiority of random field

theory to these two methods, we will compare the ability of these methods to

achieve an unbiased estimate of the true CV accuracy in each application.

This manuscript can be split into five building sections: (1) theoretical framing

of random field theory for this application, (2) analytical exploration of the shape

of the random field, (3) empirical estimation of the random field in null data,

(4) application of this theory to real world data from patients with epilepsy, and

(5) comparison to alternate correction methods. Subsequently, we discuss how

this theory can be applied for planning sampling schemes of θ and for correcting

observed cross-validation accuracies when multiple θ are sampled regularly.

12.3 Theoretical Framing of Random Field Theory Appli-

cation

In random field theory, one considers a stationary random variable that varies

across space such that nearby values are dependent based on a given smooth-

ing kernel. By describing this kernel, one can derive analytical expressions for the

probability that the random variable will achieve a certain value, or more extreme,

over a region with a given size. Through the Statistical Parametric Mapping soft-
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ware, Gaussian random field theory, in particular, has become a popular multiple

testing correction in neuroimaging data. For the duration of this manuscript,

we use quotations around the phrase “spatial” to denote that not all θ represent

spatial dimensions, but there is an analogy between our theory and the theory of

Gaussian random fields for neuroimaging data, where θ are spatial dimensions.

For our application, consider CV accuracy, ε, a random variable that varies as

a function of θ. In that way, we think of θ as describing a position in “space”.

For each CV exemplar, there are two versions of ε that we can consider: ε as

an indicator for correct prediction, therefore ε ∈ {0, 1}; or ε as the amount of

predictive error, with ε ∈ R. In both cases, it is clear for an arbitrary θ1 that

as |θ1 − θ2|, the expected values of E [ε(θ1)] and E [ε(θ2)] become more similar.

It follows that the correlation, Corr [ε(θ1), ε(θ2)], is non-zero for θ1 and θ2 that

are sufficiently close together. Therefore, ε(θ1) and ε(θ2) are not statistically

independent. To derive a null probability distribution for ε in this random field,

one must determine the structure and range of the dependence of ε with respect to

|θ1−θ2|. This null probability distribution can be used to accomplish our ultimate

goal: determine the significance of an observed ε achieved over a range of θ.

12.3.1 Chosen Examples

There are a great variety of hyperparameters. We will address a few major cat-

egories of hyperparameters including regularization costs, λ; the soft margin pa-

rameter, C, in support vector machines (SVM); the number of selected input

features, F , from a filter-based feature selection; and the number of quantal lev-

els, Q, chosen for to calculate the mutual information for minimum redundancy,

maximum relevancy (mRMR) feature selection [?]. While these do not comprise

the whole variety of hyperparameters, these choices allow the reader to assess the

wide applicability of our proposed perspective. For simplicity, we discuss hyper-

parameter selection and its relevance to binary classification problems, although
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these ideas could translate to multiclass and other problems.

First, regularization parameters are used to apply the prior hypothesis that

the optimal solution is sparse in the number of features, X, that contribute to the

solution. This is accomplishing by incorporating a regularization penalty into the

log-likelihood in the following form:

L(Y,X|ψ, θ) = λ‖β‖+ `(Y,X|ψ), (12.2)

where Y is the vector of class membership, X is the matrix input data, ψ is

the set of parameters including β, the weights placed on the input data, θ is the

set of hyperparametrs including λ, the regularization parameter and `(Y,X|ψ) is

the chosen log-likelihood function. In our applications, we will explore when `

corresponds to logistic regression. Conventionally, λ is taken as unity, or may be

scaled dependent on the length of β or size of X.

Secondly, we study the effect of the soft margin parameter, C, in a SVM model.

In SVM, we optimize the following Lagrange equation:

L(Y,X|ψ, θ) =λ‖β‖22 +
n∑
i=1

‖w‖2
2

+
n∑
i=1

αi [yi (w · xi − b)− 1]

+ C
n∑
i=1

ξi +
n∑
i=1

βiξi, (12.3)

where α is the vector of weights on exemplars to indicate the support vectors, b is

the bias due to imbalanced classes or non-centered input data, ξ is the vector of

distances from the separating hyperplane on the wrong side. When C is zero, SVM

simplifies to linear discriminant analysis, depending on the kernel used. When C

is ∞, the soft margin SVM is equivalent to a hard-margin SVM. Simultaneously,

the value of C is related to the amount of regularization applied, therefore λ and

C are not statistically independent. Conventionally, C is taken as unity or is

optimized using nested-cross validation.

Lastly, we study two hyperparameters related to feature selection, because

hyperparameters occur more frequently when multiple optimization methods are
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applied, but the additional methods are not incorporated into the log-likelihood

optimization. The simplest filter-based feature selection only utilizes the F fea-

tures with the highest t-statistic difference between the two classes. Equivalently,

one could select a particular t-statistic cutoff with which features needed to pass

prior to incorporation in the classification model.

Next, we address hyperparameter seletion the mRMR feature selection [?, ?],

which requires a priori selection of the number of selected features, F , and the

number of quantal levels, Q, used in the calculation of mutual information. As

discussed in [?], the calculation of mutual information requires discretizing the

data or selecting a Gaussian smoothing kernel with a chosen σ. Both of these

feature selection hyperparameters result in the following log-likelihood:

L(Y,X|ψ, θ) = `(Y,X(1..F )|ψ) (12.4)

where X(i) is ith ranked feature based on either t-statistic ranking or maximizing

the mutual information between the included features and the predicted class, mi-

nus the average redundant information across input features. Mutual information

is defined for discrete input data, therefore continuous data must be quantized,

with a certain number of quantal bins, Q. Ideally, F and/or Q are chosen prior

to assessing the cross-validation accuracy of the model, but when preparing a

manuscript, it is very tempting to simply report the optimal value without dis-

cussing the process with which that optimum was reached. Conventionally, if one

seeks to optimize F and/or Q, it must be done through nested-cross-validation.

12.4 Analytical Exploration of ’Spatial’ Dependence of Hy-

perparameter Choice

To apply random field theory to each of these hyperparameters, we must determine

the structure of the dependence of ε on θ around the optimal value of θ. For sake of
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comparison, in Gaussian random field theory, the correlation of nearby ε resembles

a Gaussian random variable in |θ1− θ2|. Equivalently, this suggests that ε(θ1) can

be approximated locally using a first order Taylor approximation, i.e. ∂mε(θ1)
∂θm

is

zero for m > 1. To explore the structure of the dependence, we will examine the

analytical form of the derivatives of the likelihood function with respect to θ in

each of our chosen examples. This assumes that the log-likelihood is a valid proxy

for ε and that the unseen validation data comes from the same distribution as the

training data.

12.4.1 Regularization Hyperparameter, λ

As an example of a regularized machine learning model, we consider a canonical

L2 regularized logistic regression model, due to it’s firm analytical motivation and

amenability to differentiating. For the purposes of this analytical exploration, we

consider εi(θ) = yi − πi where where yi ∈ 0, 1 is the known class membership

for exemplar i, πi is the estimated probability exemplar i is in class yi = 1. We

denote ε(θ) =
∑n

i=1 εi(θ). In logistic regression, the log-likelihood function we

seek to maximize using the training data is:

`(β) =
n∑
i=1

yi log πi + (1− yi) log(1− πi) where πi =
eXiβ

1 + eXiβ
(12.5)

where β is a to-be-estimated vector of weights on the input data and Xi is a vector

of known input data, including an intercept term. We add regularization into the

log-likelihood function by adding an L2 penalty, with the set of hyperparameters

θ = {λ}, resulting in a regularized log-likelihood of:

`R(β, λ) = λ‖β‖22 +
n∑
i=1

yi log πi + (1− yi) log(1− πi) (12.6)

To learn about ∂ε(λ)
∂λ

, we use the log-likelihood, `R(β, λ) as a proxy for ε(θ). We

simplify the problem at hand using the chain rule, which states that

∂ε

∂λ
=
∂ε

∂β

∂β

∂λ
(12.7)
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First, we optimize β by setting ∂`(β,λ)
∂β

equal to zero. This result in the expression

(for derivation, see Appendix A):

β =
1

λ

n∑
i=1

[yi − πi]Xi (12.8)

We note the similarity of this expression to the transcendental equation that has

no closed-form solution. In unregularized logistic regression, the transcendental

equation is optimized frequently using Newton’s method, suggesting that a second

order Taylor assumption for ∂`(β,λ)
∂β

is valid locally. Using this expression, we

also can determine ∂β
∂λ

by differentiating the modified transcendental equation,

resulting in the following expression (for derivation, see Appendix A):

∂β

∂λ
=

∑n
i=1 yiXi

λ−H(β)
− β

λ−H(β)
(12.9)

where H(β) is the Hessian of β that is used within Newton’s method to optimize

`(β) with respect to β. Since we are interested in developing a method to deter-

mine significance, we are most interested in the structure of the random field under

the null hypothesis that there is no predictive relationship between X, the matrix

of input data, and Y , the vector of class memberships. In this case, E(β) = 0,

which simplifies the above expression to:

∂β

∂λ
=

∑n
i=1 yiXi

λ−H(β)
(12.10)

From this expression, it is apparent that (1) the random field may not be station-

ary across λ and (2) subsequent derivatives of ε with respect to λ clearly will be

non-zero. Therefore, while the surface of ε among changing λ may be a random

field, we believe that it may be non-stationary and non-Gaussian.

12.4.2 Soft Margin Hyperparameter, C, in SVM

Similarly to above, we begin by differentiating the objective function of the SVM

above (eq. 1) with respect to C. However, in contrast to using `(ψ, θ) as a
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proxy for ε(θ), we note that ξi is the continuous εi(ψ, θ) that we are interested in

studying, therefore we rearrange the expression in terms of these terms to yield:

∂f(φ, θ = {C})
∂C

= 0 =w
∂w

∂C
+

∂

∂C

n∑
i=1

αi [yi (w · xi − b)− 1] + ‖ξ‖1 +
∂

∂C

n∑
i=1

βiξi

−‖ξ‖1 =w
∂w

∂C
+

n∑
i=1

[
αiyi

(
∂w

∂C
· xi −

∂b

∂C

)
+ [yi(w · xi − b)− 1]

∂αi
∂C

+βi
∂ξi
∂C

+ ξi
∂βi
∂C

]
Unfortunately, the soft-margin SVM has no closed form solution and is, instead,

solved through quadratic programming. Therefore, to understand the structure

of the partial derivative with respect to C, we must utilize our knowledge of the

inter-relationship between the estimated variables. First, we consider the La-

grange variables, α and β, which are critical to the difference between a soft and

hard-margin SVM. In a hard-margin SVM, C is effectively∞ because no misclas-

sification errors are allowed. In terms of the objective function, this is equivalent

to stating that ξi = 0∀i or βi = ∞∀i. When C is finite, misclassification errors

are allowed, but up to a point. For a constant C, it can be shown trivially that

C = βi + αi (see Appendix B). This linear equation suggests that the derivative

of βi and αi with respect to C is linear, for all i. To phrase the linear relation-

ship between βi and C in words as compared to variables, the weight placed on

misclassifying exemplar i (βi) by a distance ξi changes linearly with changes in

C. Up to a reasonable approximation, this suggests that the optimized ξi changes

linearly with C. Looking back to our original equation, this suggests that:

−‖ξ‖1 ≈ w
∂w

∂C
+

n∑
i=1

[
αiyi

(
∂w

∂C
· xi −

∂b

∂C

)
+ constant terms

]
(12.11)

The exception to the linearity of α and β with respect to ∂C is that αi and βi

are ≥ 0∀i, therefore non-linearities could occur on the boundary (i.e. αi = 0 for

C = C1 but αi > 0 for C = C2 for arbitrary i). This represents when the identity

of the support vectors and/or the misclassified training exemplars changes.
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This leaves the terms that define the maximum margin hyperplane. Given

constant support vectors, α, SVM mathematically is equivalent to weighted and

regularized linear discriminant analysis. Within the region of C that the set of

non-zero α does not change, it is intuitive to hypothesize that this would induce

a linear change in w and b, but difficult to prove analytically (and outside the

scope of this manuscript). Outside this region, where the set of non-zero α is not

constant, there is no analytical prediction for the structure of the derivative with

respect to C.

Therefore, there is some theoretical evidence that for the predictive error, ‖ξ‖1,
changes approximately linearly with C within local regions for a soft-margin SVM.

However, longer range changes may induce highly non-linear changes in ‖ξ‖1 due

to changes in the identity of support vectors. From a purely theoretical standpoint,

it is difficult to predict the structure of these changes.

12.4.3 Feature Selection Hyperparameters

Unlike the previous two examples, the feature selection hyperparameters are not

trivially incorporated into the log-likelihood functions, and they are discrete as

compared to continuous values. Therefore, we consider the discrete derivatives of

ε with respect to changes in the number of input features, F , and the number of

quantal levels used to calculate mutual information, Q.

First we discuss F . In both feature selection methods, the goal is to order

the input data based on decreasing utility in the discrimination of classes. This

suggests that higher ranked features will hold more information than lower ranked

features. However, since we are developing a theory to determine significance, we

are interested in behavior under the null hypothesis when no features hold dis-

criminative information. Therefore, the ranking of features should be meaningless

and each feature is equally likely to change the learned model as much as any
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other feature. (Due to overfitting and the curse of dimensioanlity, this is not true

in practice.)

To begin, consider the effect of increasing F by one feature on the discrete

accuracy, ε. For each exemplar, there is a probability, q, that the exemplar was

predicted correctly to start with. Further, for each exemplar there is a probability,

p, that the predicted solution will change with the addition of a new feature. This

results in a discrete derivative of:

ε(F )− ε(F + 1) = n(−qp+ (1− q)p) = np(1− 2q) (12.12)

where n is the number of exemplars.

Next, consider increasing F by two features. This result in the following

expression:

ε(F )− ε(F + 2) =n(−qp(1− p) + (1− q)p(1− p)− qp2 + (1− q)(1− p)2)

=n(1− p− q − 4pq).

This considers all possibilities of being correct, changing once or changing twice,

assuming that the probability of change is constant across F . What becomes

clear is that these derivatives do not seem to decrease in magnitude as step size

increases, therefore a local low order Taylor expansion likely will not provide a

good approximation. Therefore, just as in the cases of the regularization pa-

rameter, λ; and the soft margin parameter, C; this random field seems to have

non-Gaussian long-range dependence.

Lastly, consider the effect of Q on cross-validation error. We note that there

was nothing we assumed about F that was specific to the structure of F . Similarly,

under the null hypothesis there is no relationship between the input data and class

membership. Therefore, there is no optimal Q that could be used to describe the

mutual information between the input data and class membership. In that way,

we expect changing Q to result in random changes in the model, and thereby the
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predicted class, just as we assumed with F . The same structure of derivatives is

expected to be seen in Q as it was in F . The one exception is that the value of

p may vary depending on the number of training exemplars used to calculate the

mutual information, and the dimensionality of the input data.

12.4.4 Summary of Analytical Exploration of Dependence

In each of these examples, the analytical prediction of the shape of the dependence

of each hyperparameter, θ, was different. This suggests that there may be no

universal theory that predicts the “spatial” dependence of CV accuracy and/or

goodness of fit on hyperparameter choice. In each of these examples, there also

were sections where analytical approximations or formula-free intuition needed

to be used to yield interpretable results. This suggests that there may not be a

closed form solution that predicts the structure of the dependence. In the next

section, we use simulated null data to produce empirical probability distributions

that could be used for determining significance.

12.5 Empirical validation of “Spatial” Dependence in Null

Data

Given the long-range and non-Gaussian structure suggested by the analytical ex-

ploration, we generated null data to examine the structure of the dependence of

ε(θ) for each θ we explored above. This null data included 150 exemplars with a

dimensionality, m, of 47, 150 and 1000. At random, half of these exemplars were

denoted to be class 1. Each input feature included data sampled independently

from a standard Gaussian distribution. Each machine-learning model was trained

and validated with leave-one-out cross-validation. This was conducted for 10,000

independent datasets. For each of our chosen examples, we compare the observed

long-range structure as compared to a Gaussian random field. The full-width half
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max of the Gaussian random field was matched with the observed first derivative

cross-validation accuracy with respect to changes in θ, assuming a stationary ran-

dom field. Additionally, we used these results to estimate an empirical probability

distribution of CV accuracy achieved across each of these random fields, both with

respect to maximum achieved value and the size of the contiguous region within

the field that achieved this value.

The ultimate goal is to determine the statistical dependence of CV accuracy,

ε(θ), on θ. Therefore, for each type of θ we illustrate the spatial relationship by

(1) addressing stationarity by showing how the expected null CV accuracy varies

across θ, (2) addressing structure by calculating the correlation by exemplars of

ε(θ1) with ε(θ2) for varying |θ1−θ2| and (3) empirically calculating the probability

distribution function (PDF) of the maximum ε(θ̂) achieved over a contiguous

region. For comparison, each of these illustrations are plotted against what they

would be if the random field was stationary and Gaussian with a matching mean

ε(θ̂) and first derivative, ∂ε(θ̂)
∂θ

.

12.5.1 Regularization Hyperparameter, λ

To sample a wide range of feasible λ, we tested 1/λ between values of 0.05 and

100 with a step size of 2.5. We set 1/λ because this is the units typically used

in studies that select a non-unitary λ. This wide range was chosen because in

pilot studies, very high dependence was seen for limited ranges. For each of the

dimensionalities examined, the CV accuracy was stationary in the mean across

all studied values of λ (student’s t-tests, p>0.05).

12.5.2 Soft Margin Hyperparameter, C, in SVM

We sampled a wide range of C from 1/300 to 2 in steps of 1/150. This represents

a wide range of feasible choices for C. For each of the dimensionalities examined,
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the CV accuracy was stationary in the mean across the range of C (student’s

t-tests, p>0.05).

12.5.3 Feature Selection Hyperparameters

For the number of features, F , and quantal levels, Q, we tested all possible choices

for each dataset. First, we examine the use of a t-statistic filter feature selection

prior to regularized logistic regression with a λ of 1. In this setting, we only

modify the choice of F . Similar to all the previous simulations, the CV accuracy

was stationary in the mean across all values of F (student’s t-test, p>0.05).

12.5.4 Summary of Dependence in Null Datasets

These null simulations reveal that in some cases (λ and C), there exist long range

dependencies in the cross-validation accuracy on the choice of θ, therefore the

choice of θ does not effect the overall solution. In other cases (F and Q), the

magnitude of the dependence fell off like a decaying exponential. This behavior

was difficult to predict based on the analytical derivations above, and suggest that

empirical simulations were necessary to understand the nature of the dependency.

Even though the analytical structure of ∂ε(λ)
∂λ

was shown to be an inverse func-

tion, whereas ∂ε(C)
∂C

was expected to be linear, the shape of their resulting correla-

tion and probability distribution function of the field were extremely similar. This

may be due to a floor effect in the sensitivity of ε(θ) with respect to changing θ.

Our analytical exploration showed that long range correlation was possible, but

did not suggest that the magnitude of correlation would be so high.

The similarity of the dependency of ε(θ) to F and Q was predicted by our

analytical reasoning, even though these hyperparameters were not encorporated

explicitly into the objective functions. Our ability to generate an consistent em-

pirical model of the correlation of ε with varying θ that did not depend on m
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suggests that, in some circumstances, null permutations may not be necessary to

assess the significance of observed CV accuracies.

12.6 Empirical Validation of “Spatial Dependence” in

Epilepsy Data

The clean results that were achieved using null data confirm that (1) spatial de-

pendence exists and (2) reporting the best CV accuracy achieved after testing

multiple θ results in an over-inflated CV accuracy. To explore how the nature of

this spatial dependence and bias changes when real world data is used, we exam-

ined the same parameters with real data. The difference between simulated data

and real data is that only one dataset is available and there is latent correlation

structure within X.

In the null data, we generated 10,000 independent datasets. For real data,

however, we do not have the luxuary of having 10,000 independent datasets. In-

stead, we approximate 10,000 independent datasets by permuting the class labels,

Y , without replacement. This preserves the latent structure within X but breaks

the relationship of Y with X. Thereby, we can generate the same empirical cor-

relation plots and probability distribution of CV accuracy that we did with the

null data.

For each type of θ, we discuss the difference between the correlation and prob-

ability distribution of CV accuracy for null data and real data, as well as the

comparative significance of the observed CV accuracies when the relationship be-

tween Y and X was preserved.

Two separate datasets from patients with seizure disorder were used to validate

our method. To assess structure corresponding to the regularization parameter,

λ; and the soft margin parameter, C, in SVM, and the number of features, F ,

to include after t-stastic filtering, we utilized a dataset with 951 patients built
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to discriminate patients with epilepsy (ES) or non-epileptic seizures (NES) based

on 84 features reported in outpatient clinical reports. In the original manuscript

that described a machine learning model trained using this data, missing data

was multiply inputed. For sake of clarity in this manuscript, we treat the first

imputation as the true data. Due to the reliance of primarily binary features in

clinical reports, we use a different dataset with continuous input data to inspect

the effect of feature selection hyperparameter Q. The continuous dataset includes

150 patients and was built to discriminate patients with left versus right temporal

lobe epilepsy (LTLE versus RTLE) and NES based on 47 z-transformed FDG-

PET based features. In this application, a multilayer perceptron neural network

classifier was applied after feature selection to learn the most discriminative model,

as was done for the null permutations above. For more information regarding these

datasets, please refer to the Chapters 7 and 9.

12.6.1 Regularization Hyperparameter, λ

The goal of regularization in this application is not to make an underdetermined

model better determined. In this case, the number of exemplars far exceeds the

number of features; therefore the model probably is well determined. Instead,

regularization is used to limit the size of the final solution to maximize ease of

application of the model.

12.6.2 Soft Margin Hyperparameter, C, in SVM

The benefit of optimizing C in this application is in determining if the insight

that the model should be most sensitive to difficult to classify exemplars leads to

improved classification accuracies over the entire dataset.
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12.6.3 Feature Selection Hyperparameters

Our two datasets provide examples of two important cases: the clinical report

dataset has many more exemplars than total features, whereas the PET dataset

has slightly fewer exemplars per class than total features. Feature selection is

useful in both cases because it limits the size of the final model. For unregularized

models, however, feature selection is critical in the PET dataset to have well

determined and stable estimates of ψ, θ, and overall performance.

First we address optimizing the number of features, θ = F , using t-statistic

filtering prior to modeling with an `2 regularized logistic regression model. Similar

to the null datasets above, we tested all 84 possible values for F . Just as in the

null datasets, the overall mean accuracy for each value of F was stationary ap-

proximately across the whole range of F . The correlation of ε(θ) and the resulting

empirical PDF, however, differed substantially compared to the null permutations.

Figure 12.1: (Left) The correlation of cross-validataion accuracy by subject for the

clinical dataset at one value of F1 compared to F2 where the distance between F1

and F2 is modified. (Right) The log PDF of maximum cross-validataion accuracy

achieved over a range of F .
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12.6.4 Summary of Empirical Validation in Epilepsy Data

12.7 Comparison to Alternative Correction Methods

As discussed above, there are two alternatives to the random field theory method

described here that do not require nested-cross validation: Bonferroni correction

and the training-set bias correction proposed by Tibshirani & Tibshirani. Both

of these corrections do not explicitly take into account the spatial extent of the

maxima achieved, although a simple extension of the Tibshirani & Tibshirani

theory could do this.

First, we illustrate the high degree of overcorrection present in the Bonferroni

correction. The 95% confidence threshold of the maximum CV accuracy for our

null data achieved for a single value of θ is much less conservative than the 95%

confidence threshold suggested by the Bonferroni correction where the number of

θ tested, nθ, was the correction factor. Similarly, if we consider the significance

of the maximum CV accuracy achieved by each classification method for the real

data, we observe that the Bonferroni correction is extremely overconservative.

This was expected because our theory and empirical results suggest that ε(θ1)

is not independent of ε(θ2) for similar θ1 and θ2. Therefore, the nθ is a vast overes-

timate of the number of independent statistical comparisons that were performed.

If we use the αUncorrected = 0.05 cutoff of the probability distribution estimated

with the null data, we can estimate the number of independent statistical com-

parisons through the following reasoning:

For P
[
|ε(θ̂)| ≥ ξ|ε(θ̂) ∼ empirical PDF

]
= αUncorrected,

Calculate P [|e| ≥ ξ|e ∼ Binomial(n, 50%)] = αBonf

αUncorrected

nIndep Tests

= αBonf ⇒ nIndep Tests =
αUncorrected

αBonf

.

In lay language, this states that we find the threshold, ξ, that results in a false

positive error of αUncorrected based on our empirical probability distribution func-
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tion for ε(θ̂). The probability that a binomial random variable, e, with n trials

and a success probability of 50% achieves a value as extreme or more extreme

than ξ is an estimate of αBonf. We can rearrange the original Bonferroni formula

to solve for the number of independent tests, nIndep Tests.

The theory of Tibshirani & Tibshirani states that we can use the average

prediction error on the training set to approximate the bias we incur by choosing

the best cross-validation accuracy (see Formula 1). Their method is a correction

to the estimated ε(θ̂) instead of an estimate of significance. We translate our

estimate of significance into a correction method through the following reasoning:

For P
[
|e| ≥ ε(θ̂)Uncorrected|X, Y, e ∼ empirical PDF

]
= pRFT,

Calculate P
[
|e| ≥ ε(θ̂)Corrected|X, Y, e ∼ Binomial(n, 50%)

]
= pRFT.

In lay language, we estimate the probability, pRFT, that our observed ε(θ̂)Uncorrected,

or a value more extreme, was achieved based on our empirical probability distribu-

tion function for ε(θ̂). We use the inverse binomial distribution with n samples and

a 50% probability of success to estimate what cross-validation error, ε(θ̂)Corrected,

that would result in pRFT, if we did not test multiple θ.

In their formulation of this theory, they considered the bias in selecting the

single best ε(θ). We extend this theory, we consider the bias in selecting the best

ε(θ) achieved over a contiguous set of θ. This makes the comparison with random

field theory more apt, because it incorporates both the magnitude and extant of

the reported ε(θ).

12.8 Verification of Asymptotic Approach of the Optimal

Value of θ

While the previous sections have shown that for a given application, we can correct

accurately for reporting the best, or a cluster of the best, ε(θ), these sections do
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not verify that our method converges on the true correct value for θ, as sample

size increases. To verify this, we create artificial datasets where the true optimal

value for θ is known.

We construct these artificial datasets with a known solution similar to our null

simulations studying the number of features selected in a t-statistic filtering prior

to application of an `2 regularized logistic regression model. Instead of each input

dimension holding no information, we randomly add independent Gaussian signal

to 75 of the 150 input features with a univariate signal to noise ratio of 0.1. This

ensures that a large amount of data is necessary to accurately model each of these

informative dimensions is large, so that we can observe how our method converges

on the correct θ̂ = 75 as n→∞.

12.9 Discussion

The selection of hyperparameters, θ, can have either a minor or huge impact on the

cross-validation error, ε(θ), that is reported. If we assess ε(θ) for multiple θ, then

report the optimal ε(θ̂), our cross-validation accuracies and their corresponding

estimates of significance will be inflated. Using the ideas behind random field

theory, we can estimate accurately both the significance of ε(θ̂) and the sensitivity

of the solution to that particular choice of θ.

The net result of applying this theory is two fold: (1) better cross-validation

performance can be achieved through improved sampling of θ and mildly increas-

ing the size of the training set and (2) our understanding of the sensitivity of

the solution with respect to changes in θ improves substantially. The benefit of

improved performance is clear, because the applicability of our methods critically

depends on how well our models perform on out-of-sample data. By correct-

ing for multiple testing, we maintain the out-of-sample nature of cross-validation

exemplars. Additionally, instead of needing to choose the default θ for a given
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application, we have established a valid and conservative method for improving

the fit of our models by determining the optimal θ for our specific dataset.

Prior to explicitly measuring the sensitivity to θ, there was little rigorous sta-

tistical understanding for the impact of hyperparameters, which made it difficult

to compare the optimal value of θ across applications. If a significant cluster of

ε(θ) is identified in one application, this could help limit the search space of θ

for other similar applications, thereby reducing the number of computationally

expensive permutation tests.

Additionally, our theory provides a method for comparing the value of θ̂ for dif-

ferent applications. For example, the optimal number of metabolic regions needed

to differentiate of non-epileptic seizures (NES) from left temporal lobe epilepsy

(LTLE) was high than the number needed to differentiate NES from right temporal

lobe epilepsy (RTLE). As discussed in our previous work, this has a clinically and

biologically salient interpretation: the metabolic changes associated with LTLE

involve a larger network of regions than in RTLE. This suggests that RTLE is a

more focal disease, and could be more amenable to surgical resection. Alterna-

tively, even if there are not different rates of post-operative seizure-freedom, these

results suggest that LTLE could be associated with more dysfunction outside the

epileptogenic region. This suggests that resection of the epileptogenic region, but

not associated regions, could provide seizure control and improvements in function

in the associated regions. Without a statistically rigorous theory for comparing

these two values, these observations were speculative. With our increased under-

standing, we can state confidently that the difference in the number of regions

necessary to differentiate LTLE from NES and RTLE from NES was different

statistically with an appropriate amount of confidence.

We clearly illustrated the major limitations in the Tibshirani method and in

Bonferroni correction. Both of these methods ignore the inherent dependence

of ε on θ. By explicitly understanding this dependence, we were able to make
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substantial improvements in these methods.

The substantial difference between the structure of the random field between

the null simulations and the permutation tests showed that this structure may

depend on X. Therefore, null simulations prior to measuring ε(θ) can assist in

planning the sampling of θ and to give researchers a general idea of the struc-

ture of the field. However, permutation tests may be necessary to estimate the

significance of the observed results accurately.

12.9.1 Recommendations for Determining Significance of Observed

Maximum Cross-Validation Accuracy

We showed here that our perspective of using random field theory to correct for

sampling θ outside the context of nested cross-validation does not lead to over-

inflated p-values. If a researcher as already determined that permutation tests

are necessary to estimate empirical probability distributions of chosen summary

parameters, then no additional processing has to occur to apply our methods.

Therefore, it is not necessary to perform both permutation tests and nested cross-

validation. Instead, as we showed here, we recommend pre-determining a regular

grid sampling across the range of feasible values for θ, then performing permu-

tation tests to correct for the multiple testing that occurred by assessing the

cross-validation performance at multiple θ.

If permutation tests are not necessary inherently to the chosen approach of

the researcher, then we recognize that the computational cost of permutations

frequently is much higher than nested cross-validation. Therefore, if the goal of

the classification is solely to produce a single, highly accurate predictive tool,

then our method is unnecessary. If, however, one seeks to develop an accurate

and interpretable model at all stages, then we recommend sampling the cross-

validation performance for a selection of potential θ and correcting for multiple
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testing using our method. Even if the primary interest of the work is not to

learn about θ, the interpretation of the parameters inherent to the model, ψ, are

inexorably linked to θ. Therefore, improving our understanding of θ also improves

our understanding of ψ.

12.9.2 Planning Sampling Schemes for Hyperparameters

In addition to our primary goal, performing null simulations on a proposed set

of θ prior to analysis of real data also allows researchers to make more principled

choices. To define notation, we designate the set of θ that one wants to assess

the performance of as {θ}. In the above work, we assumed that researchers

had predetermined {θ}. However, in addition to determining significance, null

simulations can be used to determine {θ}. For the assumptions of stationarity

of the mean and correlation structure to hold, one must determine a sampling

scheme for θ where the {θ} are evenly spaced. By performing a small set of

null simulations for a proposed {θ}, these assumptions can and should be tested

directly.

In addition to checking stationarity, prior null simulations can determine the

required density of {θ} over the search space, and the minimum performance

necessary to achieve a significant result. As the above examples showed, testing

multiple values of the regularization parameter, λ, did not result in substantial

changes to the performance. Therefore, only a couple of representative values

needed to be tested to characterize the performance over a wide range of λ. The

number of features selected using t-statistic filtering, however, resulted in major

changes to the performance. Especially when the dimensionality of X was 1,000,

it was not necessary to test every possible value of F . Our results suggest that if

one tested every 100 F, then adjacent samples would be less than 50% correlated.

Further, if every possible value for F was chosen, then the observed performance at

one specific value would need to be greater than 90% to be significant, statistically.
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If we believed, due to issues in data quality or consistency, that the maximum

achievable performance was less than 90%, then we should limit the size of {θ}
so that the magnitude of the potential bias from choosing the best performance

for a specific θ̂ is reduced. Therefore, prior null simulations can help researchers

effectively plan their experiments based on the performance they seek to achieve,

and the known correlation structure of performance on θ.

Our method also can be extended trivially to calculate the statistical power

of a given {θ}. Just as the null simulations estimate an empirical probability

distribution for performance, one could use simulations to estimate the probability

distribution for performance if a difference of a given magnitude did indeed exist.

Due to the major differences between the null simulations and the permutation

tests, we expect that these power calculations would be approximate, as are most

power calculations.

12.9.3 Limitations and Future Directions

Our theory relies on the strong assumption and verification that cross-validation

performance is a stationary random field across the range of θ. As we did here,

it is critical to check this assumption prior to the application of our method. In

that way, our perspective of random field theory is not a cure all. If these strong

assumptions are met, then the validation data can be used both to assess out-of-

sample performance and optimize θ. If not, then over-sampling θ and reporting

the best performance remains a dubious practice, at best.

An important limitation to our method, as currently framed, is that {θ} must

be defined independent of the observed performance. If {θ} is selected adaptively

(i.e. Newton’s method), then simply testing the same {θ} would result in an

over-estimate of significance. The effective search area of adaptive methods is

much larger than the actual search area because low-performance regions are left
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untested. Therefore, even though it is tempting, researchers should not test many,

seemingly random values for θ until a desired result is achieved. Even if they use

our method to correct for the {θ} they tested, our estimate of significance would

be inflated. Further work must be done to estimate the significance of results

when adaptive sampling schemes for θ are implemented.

12.10 Conclusion

Our method of applying the ideas of random field theory to determining the signifi-

cance of observed cross-validation accuracies for a range of hyperparameters allows

for improved reported accuracies and understanding of the sensitivity of these ac-

curacies to changes in hyperparameters. This method vastly out-performed the

two alternate methods of correction.
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CHAPTER 13

Discussion & Conclusions

In the above chapters, we described the initial development of CADTs designed

to be applicable to clinical care of seizure disorder, as well as an important section

of novel statistical methods to train those algorithms better. These manuscripts

demonstrate the wide potential and success of these methods, given just a few

years of development.

In part 2 of this work, we addressed a basic challenge to training and optimiz-

ing machine learning models. Even though the methods for learning parameters

inherent to these models are efficient and effective, the effect of hyperparameters

previously were not rigorously studied or understood. Our methods both provide

an effective, if not efficient, method for optimizing hyperparameters as well as

understanding the sensitivity of the observed solution to the choice of hyperpa-

rameters. Previous methods to address this basic issue in machine learning did

not have as strong backing in statistical rigor [367, 368, 366]. While we did not

find succinct analytical expressions that could be predicted a priori based on the

structure of the log-likelihood functions, future work could help provide a mech-

anistic and statistically rigorous explanation for the structure we observed with

our empirical methods. This could reduce the need for computationally expen-

sive empirical simulations. These simulations are the primary limitation to the

application of our method.

We illustrated our theory for a regularly sampled, predetermined range of hy-

perparameters. Of course, this is not the only method for sampling and optimiz-
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ing a hyperparameter of interest. Other adaptive sampling schemes, like Newtons

method described in Didactic Background, are governed by the same theory of a

random field. The methods for determining significance under such a sampling

scheme are undetermined and need more study. Our methods and results provide

a necessary base from which these follow up studies can be conducted.

The motivation for the development of this novel statistical perspective was

difficulties that were encountered when developing the CADTs. When seeking

to train effective CADTs, we were unsatisfied with the lack of statistical rigor in

the previous practices in selecting hyperparameters a priori and the inability of

previous methods to incorporate the spatial dependence of performance on the

hyperparameter. While we do not claim that our method obviates the challenge

we encountered, it does begin to provide an approach to address it.

Prior to Kloppels landmark papers in the analysis of MRIs from patients with

Alzheimers disease with a SVM in 2008 [168, 369], machine-learning tools had

not been applied extensively to high dimensional clinical data with the goal of

assisting in the diagnosis of patients. In subsequent years, the wide applicability

of this perspective has been demonstrated for many diseases including dementia,

neuropsychiatric disorders and radiology [62]. In particular, recent work demon-

strated how a machine-learning tool to detect cancerous lung nodules was as

accurate as expert radiologists, and had a slightly lower false positive rate [156].

Despite the numerous academic manuscripts describing the success of machine

learning, there are few FDA-approved CADTs because there are a number of

practical and theoretical barriers to implementation [62].

In this work, we demonstrated that this machine-learning perspective could

assist at multiple key decision points in the diagnosis of patients with seizure

disorder. Prior to this work, the epilepsy literature focused primarily on utilizing

conventional statistics to study the difference between populations of patients with

and without particular seizure subtypes. The plethora of papers describing the
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difference between healthy controls and patients with NES or ES using clinical

assessments and neuroimaging data provide evidence for this focus on population

statistics [18]. This helps understand the population of interest, but does not

provide as much evidence about the individuals that comprise that population.

Concurrent with our work, there has begun to be a slow shift towards personalized

predictive algorithms that seek to use these differences in populations to diagnose

individual patients.

These personalized predictive algorithms can be applied to many clinically

relevant challenges other than diagnostics. In epilepsy and other disorders, the

same statistical methods could be used to predict which patients may respond

more favorably to particular medical or surgical treatments.

In particular, reliably identifying patients that will become seizure free with

minimal function loss after resective surgery for epilepsy would have a high clinical

impact. For patients with mesial temporal lobe epilepsy, two thirds of patients

have a favorable outcome after surgery. The rate of success in extratemporal

epilepsy is lower. If we could identify patients who would not benefit from surgery

before we operate, that would reduce morbidity, mortality through SUDEP, and

save appreciable cost in treating the epilepsy. The challenge in predicting post-

operative outcome is that relatively few patients undergo surgery, and maintaining

contact with patients to follow their progress 5 or 10 years after surgery is time-

intensive and expensive.

Another high impact application of these types of statistical methods is in

predicting which patients may respond more favorably to which anti-seizure med-

ications. One particularly salient treatment choice occurs when determining if

a patient with infantile spasms should be treated with vigabatrin or high dose

adrenocorticotropic hormone (ACTH). The cost of ACTH is high in both abso-

lute dollars and side effects, but without effective treatment these patients will

have devestating neural damage. However, not all patients respond to ACTH.
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If we could identify which patients could be treated effectively with vigabatrin

or ACTH prior to treatment, then we could save substantial time and money.

The challenge to developing these treatment predictive tools is that there is not a

rich literature describing biomarkers for which patients will respond. Therefore,

we must generate, evaluate and validate any potential predictive biomarker using

high quality data.

However, in order for these personalized predictive methods to be applied

directly in the epilepsy clinic, a number of practical and theoretical barriers

must be addressed. We highlighted the importance of choosing the appropri-

ate control group to reflect the clinical question the CADT seeks to address

[81]. Unfortunately, previous methods focus on differentiating patients with ES

or NES from seizure-naive controls, which does not reflect the clinical challenge

[72, 26, 27, 73, 28, 74]. Previous work also focused on collecting research quality

measures on recruited patient populations to validate their methods. We extended

this work by operating on clinical quality data from an unselected patient popu-

lation [37]. This extension addresses how well these CADTs could perform when

applied to real world data, as clinicians see them. Our use of archived records

from an EHR highlights that the methods we developed here could be applied

to other similar datasets from other tertiary care centers for seizure disorder. In

addition to increasing sample size, and thereby performance (see bias-variance

trade-off in Didactic Background Material) the application of these methods to

data from other centers would allow us to determine how consistent the diagnostic

trends are across practice locations. This would help us know if separate CADTs

must be trained at each location, or if a single, generalizable CADT could be ap-

plied nationally or internationally. Despite these novel and important extensions

of previous work, there are a number of necessary next steps that must be taken

prior to applying CADTs directly within clinical care.

The most salient next step is a prospective assessment of our CADTs, which
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were all trained based on retrospective patient samples. It is incorrect statistically

to state that cross-validation artificially inflates performance and, consequentially,

the significance of results. Prospective assessment tests how well the trends seen

in retrospective data translate to new patients. Especially with psychosomatic

disorders like psychogenic NES, the character of the seizures may change over

time depending on many factors including but not limited to cultural beliefs and

patient education initiatives [370, 371, 372]. For all diseases, the pattern of comor-

bidities and historical factors may change over time due to more effective acute and

chronic treatment of these events. In particular, we hope the current focus on the

treatment and prevention of head injuries will change how many patients develop

either epileptic or non-epileptic seizure disorder after these events [373, 374, 375].

Additionally, by identifying the common comorbidities in psychogenic NES, we

can identify where prevention and education resources can be targeted to reduce

the number of patients that experience their first psychogenic seizure or the bur-

den of psychogenic seizures in general. Lastly and most importantly, when CADTs

are utilized in clinic, the patient serves as a prospective application of the method.

Therefore, prospective validation of CADTs is critically needed to determine how

they will perform in real world clinical application.

Additionally, we note that substantial further development is needed to inte-

grate multiple modalities into a single CADT. The majority of the work above

addressed the initial development of single modality CADTs that are pre-requisites

for the multimodal work. At each stage of the diagnostic process, newly acquired

information must be used to update the prevailing assessment of the patient. By

developing multimodal, update-able algorithms, future work could hope to mirror

the diagnostic process. However, it is important to stress that these tools do not

aim to replace clinical reasoning. Instead, they aim to provide information to the

clinician that would not otherwise be appreciated.

One important question about all of these CADTs is how will they be inte-
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grated into the clinical process, once fully validated? To assess this, we need to

observe directly how clinicians utilize the information as we provide it to them.

This means conducting randomized validation studies where clinicians are pro-

vided information from CADTs, or they conduct the standard of care. This allows

for direct comparison of the diagnostic performance and follow up outcomes in

patients treated with and without the assistance of CADTs. In this way, we could

measure if CADTs have an impact on the public health problems that we described

in the introduction. This level of validation is outside the scope of this graduate

thesis. However, the work described here provides a strong foundation for future

CADTs to address those dismal statistics we outlined in the introduction.
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CHAPTER 15

Abbreviations, Notation & Glossary

15.1 Abbreviations

• 2D: Two dimensional

• 3D: Three dimensional

• AD: Alzheimers disease

• AED: Anti-epileptic medication

• ACTH: Adrenocorticotropic hormone

• ADNI: Alzheimer’s disease neuroimaging intiative

• ADT: Altenating decision tree

• ANOVA: Analysis of variance

• ARRA: American Recovery and Reinvestment Act of 2009

• ASM: Anti-seizure medication

• AUC: Area under the ROC

• AVP: atrial ventricular premature contraction

• BLR: Bayesian Logistic Regression

• BTLE: Bilateral temporal lobe epilepsy
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• CAD: Computer aided diagnostic

• CADT: Computer-aided diagnostic tool

• Caltech: California institute of technology

• CD: Conditional dependence

• CI: Confidence interval

• CL10CV: Cyclical leave-one-out cross validation

• CoD: Curse of dimensionality

• CT: Computed tomography

• DGSOM: David Geffen school of medicine

• DD-FS: Data-driven feature selection

• DDx: Differential diagnosis

• DTI: Diffusion tensor imaging

• DTR: Deep tendon reflexes

• DOPA: Dihydroxyphenylanine

• EDE: European database on epilepsy

• EEG: Electroencephalography

• EHR: Electronic health record

• EKG: Electrocardiogram (acronym from the German)

• EM: Expectation maximization

• ERSD: Event-related spectral perturbation
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• ES: Epileptic seizure

• FBP: Filtered back projection

• FDG-PET: flourodeoxyglucose positron emission tomography

• FLE: Frontal lobe epilepsy

• FS: Feature selection

• FTLD: Fronto-temporal lobar dementia

• GERD: Gasto-esophageal reflux disorder

• GPRD: General practice reserach database

• GUI: Graphical user interface

• IC: Independent component

• ICA: Independent component analysis

• IRB: Institutional Review Board

• L1-LR: L1 regularized logistic regression

• LBBB: left bundle branch block

• LONI: Laboratory of Neuroimaging

• LOOCV: Leave-one-out cross validation

• LTLE: left temporal lobe epilepsy

• LDA: Fisher linear discriminant analysis

• LLE: Local linear embedding

• MA: Manual analysis
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• MCI: Mild cognitive impairment

• MCMC: Markov-chain Monte Carlo

• MCAR: Missing completely at random

• MDS: Multidimensional scaling

• MEG: Magnetoencephalography

• MI: Mutual information or myocardial infarction

• ML: Machine learning

• MLR: Multivariate logistic regression

• MLP: Multilayer perceptron

• MSE: The variance of the data explained by the model.

• MSTP: Medical scientist training program

• MRI: Magnetic Resonance Imaging

• mRMR: Minimum redundancy, maximum relevancy

• NES: Non-epileptic seizure

• NF1: Neurofibromatosis type 1

• NNMF: Non-negative matrix factorization

• NNP: Neurologicall normal patients

• NOS: Not otherwise specified

• NIH: National Institute of Health

• OLE: Occipital lobe epilepsy
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• OSEM: Ordered subset expectation maximization

• PC: Principal component

• PCA: Principal component analysis

• PDF: Probability distribution function

• iPET: interictal PET

• PET: Positron emission tomography

• PGP: Personal genome project

• PI: Post-ictal

• PLE: Parietal lobe epilepsy

• PNES: Psychogenic non-epileptic seizure

• PVC: Ventricular premature contraction

• PWE: Patients with epilepsy

• PWN: Patients with non-epileptic seizures

• QDA: Fisher quadratic discriminant analysis

• RBBB: right bundle branch block

• RFI: Request for information

• RFE: Recursive feature seleimnation

• ROC: Receiver operating curve

• ROI: Region of interest

• ROS: Review of systems
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• sMRI: Structural magnetic resonance imaging

• SD: Standard deviation

• SE: Standard error

• SIBTP: Systems and integrative biology training program

• SNR: Signal to noise ratio

• SOZ: Seizure-onset zone

• SM: Sensorimotor cortex

• SPECT: Single-photon emission computed tomography

• SVM: Support vector machine

• SSE: Sum of the squared error of a model

• TBI: Traumatic brain injury

• TIA: Temporary ischemic attack

• TLE: Temporal lobe epilepsy

• TV: Total variation

• UCLA: University of California, Los Angeles

• US: United States

• VC: Vector concatenation

• vEEG: video-electroencephalography
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15.2 Variable & Notation Definition

• [·, ·] and (·, ·): This is interval notation where square brackets indicate that

the interval includes the boundary (≥ or ≤), whereas soft brackets indicate

exclusion of the boundary (> or <).

• ·̂: Any variable with a hat over it is estimated from the data.

• ‖·‖r: The r norm of a variable, for r ∈ R≥0.

• 5: The gradient or first derivative operator

• ∼: The variable preceeding this symbol is distributed according to the dis-

tribution described after this symbol.

• < ·, · >= ·T ·: The inner product of two vectors or matrices

• ∂kf(β)
∂βk

∣∣∣
β=β0

: the kth partial derivative of the generic function, f , with respect

to β calculated at β0

• α: The false positive rate OR, in the context of an SVM, the Lagrange

vector defining the support vectors

• β: linear weights of the input data to predict the independent predicted

variable OR, equivalently, the vector with which multidimensional data is

projected onto to make a classification

• χ2
ν : A chi-squared distributed variable with ν degrees of freedom, defined as

the sum of the square of ν standard Gaussian random variables.

• D: a generic diagonal matrix

• ε: binary or continuous error of the predicted model

• ∈: The variable preceding this symbol is within the set listed after this

symbol.

269



• i: subject or datapoint-specific index

• j: the covariate or dimensionality-specific index

• E(·): the expectation (or average) of a variable

• Fν1,ν2 : An F-statistic with ν1 and ν2 degrees of freedom, defined by the ratio

of two χ2 variables.

• g(·) or f(·): a generic function of the variable

• G(j, k): the Gini impurity for a given covariate j and threshold k (see Ma-

chine Learning Classifiers).

• H(·) = 52·: The Hessian or second derivative of a vector valued variable

• `: log-likelihood function of the data given the model

• L: likelihood function of the data given the model

• Lr: the distance between two points, as defined by the r-Minkowski metric

where r ∈ R≥0.

• logit(·) = log ·
log(1−·) : the logit transform function

• MI(·, ·): The mutual information between two variables

• m: the dimensionality of X prior to any feature selection (width of X)

• n: the total number of exemplars in a dataset (height of X or length of Y )

• π: The transcendental number that begins with 3.14 or the estimate of the

probability of logistic data

• ψ: The set of parameters that are estimated by optimizing a log-likelihood

or objective function

• P (a|u): The probability of a, given or conditional on u.
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• R≥0: The set of all non-negative real numbers.

• σ: standard deviation of error of a predictive model

• tr(·): the trace of a matrix

• θ: The set of hyperparameters that define the structure of the model, but

are not optimized jointly with ψ.

• w: A separating hyperplane that is perpendicular to β.

• Variance

– V ar(·) = σ2In: The variance matrix of a vector.

– V arS(·) = σ2: The scalar variance of a variable or vector. If · is a

vector, then each element of the vector is considered an independent

sample that can be used to estimate the sample variance.

• X: matrix of input data

– Xi: vector of input data from the ith datapoint

– Xj: vector of the jth covariate of data from all exemplars

• Y : vector of independent predicted or output variable

– yi: value of independent predicted or output variable from the ith dat-

apoint. Note that computer scientists and those that use SVM think of

yi ∈ {±1} whereas statisticians tend to think of yi ∈ {0, 1}. Depend-

ing on the context, we switch between these definitions to maintain

consistency with the prevailing literature.
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15.3 Glossary of Terminology

• Exemplar: Individual point of data, with an associated outcome and input

data

• Expectation: Average or mean of a variable

• Free parameter: see Parameter

• Gaussian Distribution: The standard Gaussian or normal distribution: P (Y =

y|E(Y ) = µ, V ar(Y ) = σ2) = 1√
2πσ

e−
(y−µ)2

2σ2

• Parameter: a variable that is estimated through a statistical optimization

process

• Hyperparameter: a variable that is critical to a model, but is not jointly

optimized with parameters

• Ictal: Another word for seizure.

– Interictal: Between seizures

– Peri-ictal: Around seizures

– Pre-ictal: Before seizures

– Post-ictal: After seizures

• Likelihood function: an explicit mathematical expression of the likelihood

of the data, given the model

• Manifold: A non-linear lower dimensional surface that exists within a higher

dimensional space

• Normal distribution: see Gaussian distribution

• Objective function: an explicit mathematical formulation that is minimized

and/or maximized to estimate free parameters of the mode
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• Loss or penalty function: The function that defines how well your model fits

the training datal

• Overfitting: Using non-generalizable trends in the training data to improve

the log-likelihood or objective function

• Sensitivity: the accuracy of the predicted classification on the diseased pa-

tients or the yi = 1 patients

• Space: the concept of visualizing data as points or vectors with respect to

dimensional axes. Dimensional axes can be thought of as a reference frame

for how to compare data.

– Observational space: dimensional axes defined by the raw measure-

ments made

– Transformed space: dimensional axes are defined by the transformed

measurements

• Specificity: the accuracy of the predicted classification on the not diseased

patients or the yi = 0 patients

• Standard deviation: the square root of variance

• Standard error: an estimation of the unbiased population standard deviation

around an estimate of the mean, defined by SE(X) =
√

V ar(X)
n

.

• Variance: A quantification of the spread of a variable, X, around its mean,

E(X) defined by V ar(X) = E(XXT ) = 1
n−1

∑n
i=1 (xi − E(X))2

• Supervised algorithm: An algorithm that uses the class information, Y , from

the training set to inform the solution.

• Unsupervised algorithm: An algorithm that does not use class information,

Y , from the training set to find a solution.
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• Semi-supervised algorithm: An algorithm that includes input data both with

known and unknown class information to find a solution.

• Voxel: Volumetric pixel

274



References

[1] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323–6, 2000.

[2] United States Department of Health Prevention and Human Services. Cen-
ters for Disease Control and. National ambulatory medical care survey.,
2009.

[3] Carlton Chu, Ai-Ling Hsu, Kun-Hsien Chou, Peter Bandettini, and Ching-
Po Lin. Does feature selection improve classification accuracy? impact of
sample size and feature selection on classification using anatomical magnetic
resonance images. Neuroimage, 2011.

[4] H. Akima. Algorithm 761: scattered-data surface fitting that has the accu-
racy of a cubic polynomial. ACM Transactions on Mathematical Software,
22:362–371, 1996.

[5] Peng H.C. Ding, C. Minimum redundancy feature selection from microarray
gene expression data. J Bioinform Comput Biol, 3(2):185–205, 2005.

[6] Long F. Ding C. Peng, H. Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Trans Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

[7] W. T. Kerr, S. T. Nguyen, A. Y. Cho, E. P. Lau, D. H. Silverman, P. K.
Douglas, N. M. Reddy, A. Anderson, J. Bramen, N. Salamon, J. M. Stern,
and M. S. Cohen. Computer-aided diagnosis and localization of lateralized
temporal lobe epilepsy using interictal fdg-pet. Front Neurol, 4:31, 2013.

[8] W. T. Kerr, A. Anderson, E. P. Lau, A. Y. Cho, H. Xia, J. Bramen, P. K.
Douglas, E. S. Braun, J. M. Stern, and M. S. Cohen. Automated diagnosis
of epilepsy using eeg power spectrum. Epilepsia, 53(11):e189–92, 2012.

[9] M. Reuber and C. E. Elger. Psychogenic nonepileptic seizures: review and
update. Epilepsy Behav, 4(3):205–16, 2003.

[10] A. T. Berg, S. F. Berkovic, M. J. Brodie, J. Buchhalter, J. H. Cross, W. van
Emde Boas, J. Engel, J. French, T. A. Glauser, G. W. Mathern, S. L. Moshe,
D. Nordli, P. Plouin, and I. E. Scheffer. Revised terminology and concepts
for organization of seizures and epilepsies: report of the ilae commission on
classification and terminology, 2005-2009. Epilepsia, 51(4):676–85, 2010.

[11] . Center for Disease Control. Epilepsy, 2011.

275



[12] S. Arroyo, M. J. Brodie, G. Avanzini, C. Baumgartner, C. Chiron, O. Du-
lac, J. A. French, and J. M. Serratosa. Is refractory epilepsy preventable?
Epilepsia, 43(4):437–44, 2002.

[13] P. R. Camfield and C. S. Camfield. Antiepileptic drug therapy: when is
epilepsy truly intractable? Epilepsia, 37 Suppl 1:S60–5, 1996.

[14] J. A. French. Refractory epilepsy: clinical overview. Epilepsia, 48 Suppl
1:3–7, 2007.

[15] P. Kwan and M. J. Brodie. Early identification of refractory epilepsy. N
Engl J Med, 342(5):314–9, 2000.

[16] F. Semah, M. C. Picot, C. Adam, D. Broglin, A. Arzimanoglou, B. Bazin,
D. Cavalcanti, and M. Baulac. Is the underlying cause of epilepsy a major
prognostic factor for recurrence? Neurology, 51(5):1256–62, 1998.

[17] M. J. Jackson. Concise guidance: diagnosis and management of the epilep-
sies in adults. Clin Med, 14(4):422–7, 2014.

[18] P. Dickinson and K. J. Looper. Psychogenic nonepileptic seizures: a current
overview. Epilepsia, 53(10):1679–89, 2012.

[19] S. R. Benbadis, E. O’Neill, W. O. Tatum, and L. Heriaud. Outcome of pro-
longed video-eeg monitoring at a typical referral epilepsy center. Epilepsia,
45(9):1150–3, 2004.

[20] D. F. Ghougassian, W. d’Souza, M. J. Cook, and T. J. O’Brien. Evaluating
the utility of inpatient video-eeg monitoring. Epilepsia, 45(8):928–32, 2004.

[21] C. M. Michel, G. Lantz, L. Spinelli, R. G. De Peralta, T. Landis, and
M. Seeck. 128-channel eeg source imaging in epilepsy: clinical yield and
localization precision. J Clin Neurophysiol, 21(2):71–83, 2004.

[22] K.K. Lee and N. Salamon. [18f] fluorodeoxyglucosepositron-emission tomog-
raphy and mr imaging coregistration for presurgical evaluation of medically
refractory epilepsy. AJNR Am J Neuroradiol, 30:1811–1816, 2009.

[23] N. Salamon, J. Kung, S. J. Shaw, J. Koo, S. Koh, J. Y. Wu, J. T.
Lerner, R. Sankar, W. D. Shields, Jr. Engel, J., I. Fried, H. Miyata, W. H.
Yong, H. V. Vinters, and G. W. Mathern. Fdg-pet/mri coregistration im-
proves detection of cortical dysplasia in patients with epilepsy. Neurology,
71(20):1594–601, 2008.

[24] C. Tonini, E. Beghi, A. T. Berg, G. Bogliun, L. Giordano, R. W. Newton,
A. Tetto, E. Vitelli, D. Vitezic, and S. Wiebe. Predictors of epilepsy surgery
outcome: a meta-analysis. Epilepsy Res, 62(1):75–87, 2004.

276



[25] S. Wiebe, W. T. Blume, J. P. Girvin, and M. Eliasziw. A randomized, con-
trolled trial of surgery for temporal-lobe epilepsy. N Engl J Med, 345(5):311–
8, 2001.

[26] N. Farid, H. M. Girard, N. Kemmotsu, M. E. Smith, S. W. Magda, W. Y.
Lim, R. R. Lee, and C. R. McDonald. Temporal lobe epilepsy: quantitative
mr volumetry in detection of hippocampal atrophy. Radiology, 264(2):542–
550, 2012.

[27] N. K. Focke, M. Yogarajah, M. R. Symms, O. Gruber, W. Paulus, and
J. S. Duncan. Automated mr image classification in temporal lobe epilepsy.
Neuroimage, 59(1):356–62, 2012.

[28] S. Keihaninejad, R. A. Heckemann, I. S. Gousias, J. V. Hajnal, J. S. Duncan,
P. Aljabar, D. Rueckert, and A. Hammers. Classification and lateralization
of temporal lobe epilepsies with and without hippocampal atrophy based on
whole-brain automatic mri segmentation. PLoS One, 7(4):e33096, 2012.

[29] S. Corkin, D. G. Amaral, R. G. Gonzalez, K. A. Johnson, and B. T. Hy-
man. H. m.’s medial temporal lobe lesion: findings from magnetic resonance
imaging. J Neurosci, 17(10):3964–79, 1997.

[30] R. Mayeux, J. Brandt, J. Rosen, and D. F. Benson. Interictal memory and
language impairment in temporal lobe epilepsy. Neurology, 30(2):120–5,
1980.

[31] W. B. Scoville and B. Milner. Loss of recent memory after bilateral hip-
pocampal lesions. J Neurol Neurosurg Psychiatry, 20(1):11–21, 1957.

[32] Jr. Engel, J., M. P. McDermott, S. Wiebe, J. T. Langfitt, J. M. Stern,
S. Dewar, M. R. Sperling, I. Gardiner, G. Erba, I. Fried, M. Jacobs, H. V.
Vinters, S. Mintzer, and K. Kieburtz. Early surgical therapy for drug-
resistant temporal lobe epilepsy: a randomized trial. JAMA, 307(9):922–30,
2012.

[33] G. W. Mathern. Challenges in the surgical treatment of epilepsy patients
with cortical dysplasia. Epilepsia, 50 Suppl 9:45–50, 2009.

[34] G. W. Mathern, C. C. Giza, S. Yudovin, H. V. Vinters, W. J. Peacock, D. A.
Shewmon, and W. D. Shields. Postoperative seizure control and antiepilep-
tic drug use in pediatric epilepsy surgery patients: the ucla experience,
1986-1997. Epilepsia, 40(12):1740–9, 1999.

[35] D. J. Dlugos. The early identification of candidates for epilepsy surgery.
Arch Neurol, 58(10):1543–6, 2001.

277



[36] Jr. LaFrance, W. C., G. A. Baker, R. Duncan, L. H. Goldstein, and M. Reu-
ber. Minimum requirements for the diagnosis of psychogenic nonepileptic
seizures: a staged approach: a report from the international league against
epilepsy nonepileptic seizures task force. Epilepsia, 54(11):2005–18, 2013.

[37] W.T. Kerr, C.T. Braesch, E.J. Janio, J.M. Le, J.M. Hori, A.B. Patel, N.L.
Gallardo, J. Bauirjan, A.M. Chau, S.E. Barritt, E. S. Hwang, E.C. Davis,
A.Y. Cho, J. Gordon, D. Torres-Barba, J. Jr. Engel, M.S. Cohen, and
J.M. Stern. Accurate differentiation of epileptic and non-epileptic seizures
through quantitative combination of findings in the clinical history. Epilepsy
& Behavior, page [submitted], 2015.

[38] Jr. LaFrance, W. C. and O. Devinsky. The treatment of nonepileptic
seizures: historical perspectives and future directions. Epilepsia, 45 Suppl
2:15–21, 2004.

[39] B. F. Shneker and J. O. Elliott. Primary care and emergency physician
attitudes and beliefs related to patients with psychogenic nonepileptic spells.
Epilepsy Behav, 13(1):243–7, 2008.

[40] T. S. Walczak, S. Papacostas, D. T. Williams, M. L. Scheuer, N. Lebowitz,
and A. Notarfrancesco. Outcome after diagnosis of psychogenic nonepileptic
seizures. Epilepsia, 36(11):1131–7, 1995.

[41] N. M. Bodde, J. L. Brooks, G. A. Baker, P. A. Boon, J. G. Hendriksen, and
A. P. Aldenkamp. Psychogenic non-epileptic seizures–diagnostic issues: a
critical review. Clin Neurol Neurosurg, 111(1):1–9, 2009.

[42] M. Reuber, G. Fernandez, J. Bauer, C. Helmstaedter, and C. E. Elger.
Diagnostic delay in psychogenic nonepileptic seizures. Neurology, 58(3):493–
5, 2002.

[43] R. C. Martin, F. G. Gilliam, M. Kilgore, E. Faught, and R. Kuzniecky.
Improved health care resource utilization following video-eeg-confirmed di-
agnosis of nonepileptic psychogenic seizures. Seizure, 7(5):385–90, 1998.

[44] Jr. Engel, J. Surgery for seizures. N Engl J Med, 334(10):647–52, 1996.

[45] Jr. King, J. T., M. R. Sperling, A. C. Justice, and M. J. O’Connor. A cost-
effectiveness analysis of anterior temporal lobectomy for intractable tempo-
ral lobe epilepsy. J Neurosurg, 87(1):20–8, 1997.

[46] J. T. Langfitt, R. G. Holloway, M. P. McDermott, S. Messing, K. Sarosky,
A. T. Berg, S. S. Spencer, B. G. Vickrey, M. R. Sperling, C. W. Bazil,
and S. Shinnar. Health care costs decline after successful epilepsy surgery.
Neurology, 68(16):1290–8, 2007.

278



[47] C. E. Begley, M. Famulari, J. F. Annegers, D. R. Lairson, T. F. Reynolds,
S. Coan, S. Dubinsky, M. E. Newmark, C. Leibson, E. L. So, and W. A.
Rocca. The cost of epilepsy in the united states: an estimate from
population-based clinical and survey data. Epilepsia, 41(3):342–51, 2000.

[48] J. A. Cramer, Z. J. Wang, E. Chang, A. Powers, R. Copher, D. Cherepanov,
and M. S. Broder. Healthcare utilization and costs in adults with stable and
uncontrolled epilepsy. Epilepsy Behav, 31:356–62, 2014.

[49] L. Gao, L. Xia, S. Q. Pan, T. Xiong, and S. C. Li. Burden of epilepsy: A
prevalence-based cost of illness study of direct, indirect and intangible costs
for epilepsy. Epilepsy Res, 110:146–56, 2015.

[50] A. N. Wilner, B. K. Sharma, A. Thompson, A. Soucy, and A. Krueger.
Diagnoses, procedures, drug utilization, comorbidities, and cost of health
care for people with epilepsy in 2012. Epilepsy Behav, 41:83–90, 2014.

[51] G. A. Baker, A. Jacoby, D. Buck, C. Stalgis, and D. Monnet. Quality of life
of people with epilepsy: a european study. Epilepsia, 38(3):353–62, 1997.

[52] L. S. Boylan, L. A. Flint, D. L. Labovitz, S. C. Jackson, K. Starner, and
O. Devinsky. Depression but not seizure frequency predicts quality of life
in treatment-resistant epilepsy. Neurology, 62(2):258–61, 2004.

[53] J. P. Szaflarski, C. Hughes, M. Szaflarski, D. M. Ficker, W. T. Cahill, M. Li,
and M. D. Privitera. Quality of life in psychogenic nonepileptic seizures.
Epilepsia, 44(2):236–42, 2003.

[54] J. P. Szaflarski, M. Szaflarski, C. Hughes, D. M. Ficker, W. T. Cahill, and
M. D. Privitera. Psychopathology and quality of life: psychogenic non-
epileptic seizures versus epilepsy. Med Sci Monit, 9(4):CR113–8, 2003.

[55] J. M. Travaline, R. Ruchinskas, and Jr. D’Alonzo, G. E. Patient-physician
communication: why and how. J Am Osteopath Assoc, 105(1):13–8, 2005.

[56] F. Brigo. An evidence-based approach to proper diagnostic use of the elec-
troencephalogram for suspected seizures. Epilepsy Behav, 21(3):219–22,
2011.

[57] Sethuraman G. Kotagal U. Buncher R. Gilbert, D.L. Meta-analysis of eeg
test performance shows wide variation among studies. Neurology, 60:564–
570, 2003.

[58] T. R. Henry, M. Chupin, S. Lehericy, J.P. Strupp, M.A. Sikora, Z.Y. Sha,
K. Ugurbil, and P-F. Van de Moortele. Hippocampal sclerosis in temporal
lobe epilepsy: Findings at 7 t. Radiology, 261(1):199–209, 2011.

279



[59] T. R. Henry, T. L. Babb, Jr. Engel, J., J. C. Mazziotta, M. E. Phelps, and
P. H. Crandall. Hippocampal neuronal loss and regional hypometabolism
in temporal lobe epilepsy. Ann Neurol, 36(6):925–7, 1994.

[60] T. R. Henry, H. T. Chugani, B. W. Abou-Khalil, W. H. Theodore, and B. E.
Swartz. Positron emission tomography in presurgical evaluation of epilepsy.
Surgical treatment of the epilepsies. Raven Press, New York, 2nd ed. edition,
1993.

[61] R. S. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee,
and Jr. Engel, J. Epileptic seizures and epilepsy: definitions proposed by
the international league against epilepsy (ilae) and the international bureau
for epilepsy (ibe). Epilepsia, 46(4):470–2, 2005.

[62] Shaefer-Prokop C.M. Prokop M. van Ginneken, B. Computer-aided diagno-
sis: How to move from the laboratory to the clinic. Radiology, 261(3):719–
732, 2011.

[63] T. U. Syed, Jr. LaFrance, W. C., E. S. Kahriman, S. N. Hasan, V. Ra-
jasekaran, D. Gulati, S. Borad, A. Shahid, G. Fernandez-Baca, N. Garcia,
M. Pawlowski, T. Loddenkemper, S. Amina, and M. Z. Koubeissi. Can
semiology predict psychogenic nonepileptic seizures? a prospective study.
Ann Neurol, 69(6):997–1004, 2011.

[64] R. Duncan, C. D. Graham, and M. Oto. Neurologist assessment of reactions
to the diagnosis of psychogenic nonepileptic seizures: relationship to short-
and long-term outcomes. Epilepsy Behav, 41:79–82, 2014.

[65] K. K. McMillan, M. J. Pugh, H. Hamid, M. Salinsky, J. Pugh, P. H.
Noel, E. P. Finley, L. K. Leykum, H. J. Lanham, and Jr. LaFrance, W. C.
Providers’ perspectives on treating psychogenic nonepileptic seizures: frus-
tration and hope. Epilepsy Behav, 37:276–81, 2014.

[66] M. Ayala, M. Cabrerizo, P. Jayakar, and M. Adjouadi. Subdural eeg classi-
fication into seizure and nonseizure files using neural networks in the gamma
frequency band. J Clin Neurophysiol, 28:20–29, 2011.

[67] J. Jacobs, K. Kobayashi, and J. Gotman. High-frequency changes during
interictal spikes detected by time-frequency analysis. Clin Neurophysiol,
122(1):32–42, 2011.

[68] L. Kuhlmann, A. N. Burkitt, M. J. Cook, K. Fuller, D. B. Grayden, L. Sei-
derer, and I. M. Mareels. Seizure detection using seizure probability esti-
mation: comparison of features used to detect seizures. Ann Biomed Eng,
37(10):2129–45, 2009.

280



[69] M. E. Saab and J. Gotman. A system to detect the onset of epileptic seizures
in scalp eeg. Clin Neurophysiol, 116(2):427–42, 2005.

[70] A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis. Epileptic seizure detection
in eegs using time-frequency analysis. IEEE Transactions on Information
Technology in Biomedicine, 13(5):703–710, 2009.

[71] J. Jacobs, R. Zelmann, J. Jirsch, R. Chander, C. E. Dubeau, and J. Gotman.
High frequency oscillations (80-500 hz) in the preictal period in patients with
focal seizures. Epilepsia, 50(7):1780–92, 2009.

[72] Gao J-M. Lie D.Y.C. Zhang Y. Oommen K.J. Bao, F.S. Automated epilepsy
diagnosis using interictal scalp eeg. In 31st Annual International Conference
of the IEEE EMBS, pages 6603–6607.

[73] H. Isik and E. Sezer. Diagnosis of epilepsy from electroencephalography
signals using multilayer perceptron and elman artificial neural networks and
wavelet transform. J Med Syst, 36(1):1–13, 2010.

[74] E. Sezer, H. Isik, and E. Saracoglu. Employment and comparison of different
artificial neural networks for epilepsy diagnosis from eeg signals. J Med Syst,
36(1):347–62, 2010.

[75] F. G. Woermann and C. Vollmar. Clinical mri in children and adults with
focal epilepsy: a critical review. Epilepsy Behav, 15(1):40–9, 2009.

[76] A. Bernasconi and N. Bernasconi. Unveiling epileptogenic lesions: the con-
tribution of image processing. Epilepsia, 52 Suppl 4:20–4, 2011.

[77] A. Bernasconi, N. Bernasconi, B. C. Bernhardt, and D. Schrader. Advances
in mri for ’cryptogenic’ epilepsies. Nat Rev Neurol, 7(2):99–108, 2011.

[78] F. G. Woermann, S. M. Sisodiya, S. L. Free, and J. S. Duncan. Quantitative
mri in patients with idiopathic generalized epilepsy. evidence of widespread
cerebral structural changes. Brain, 121 ( Pt 9):1661–7, 1998.

[79] Z. Haneef, A. Lenartowicz, H. J. Yeh, Jr. Engel, J., and J. M. Stern. Effect
of lateralized temporal lobe epilepsy on the default mode network. Epilepsy
Behav, 25(3):350–7, 2012.

[80] H. O. Luders, I. Najm, D. Nair, P. Widdess-Walsh, and W. Bingman. The
epileptogenic zone: general principles. Epileptic Disord, 8 Suppl 2:S1–9,
2006.

[81] W.T. Kerr, A.Y. Cho, A. Anderson, P.K. Douglas, E. P. Lau, E. S. Hwang,
K. R. Raman, A. Trefler, S. T. Nguyen, N. M. Reddy, D. H. Silverman, and
M. S. Cohen. Balancing clinical and pathologic relevence in the machine

281



learning diagnosis of epilepsy. In International Workshop Pattern Recogni-
tion in Neuroimaging. IEEE.

[82] F. T. Sun, M. J. Morrell, and Jr. Wharen, R. E. Responsive cortical stim-
ulation for the treatment of epilepsy. Neurotherapeutics, 5(1):68–74, 2008.

[83] C. la Fougere, A. Rominger, S. Forster, J. Geisler, and P. Bartenstein. Pet
and spect in epilepsy: a critical review. Epilepsy Behav, 15(1):50–5, 2009.

[84] F. Mauguiere and P. Ryvlin. The role of pet in presurgical assessment of
partial epilepsies. Epileptic Disord, 6(3):193–215, 2004.

[85] T. J. O’Brien, K. Miles, R. Ware, M. J. Cook, D. S. Binns, and R. J.
Hicks. The cost-effective use of 18f-fdg pet in the presurgical evaluation of
medically refractory focal epilepsy. J Nucl Med, 49(6):931–7, 2008.

[86] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robin-
son, and M. R. Munafo. Power failure: why small sample size undermines
the reliability of neuroscience. Nat Rev Neurosci, 14(5):365–76, 2013.

[87] K. Friston. Ten ironic rules for non-statistical reviewers. Neuroimage,
61(4):1300–10, 2012.

[88] M. Ingre. Why small low-powered studies are worse than large high-powered
studies and how to protect against ”trivial” findings in research: comment
on friston (2012). Neuroimage, 81:496–8, 2013.

[89] W. T. Kerr, E. P. Lau, G. E. Owens, and A. Trefler. The future of medical
diagnostics: large digitized databases. Yale J Biol Med, 85(3):363–77, 2012.

[90] M. Balish, P. S. Albert, and W. H. Theodore. Seizure frequency in in-
tractable partial epilepsy: a statistical analysis. Epilepsia, 32(5):642–9,
1991.

[91] M. J. Hayat and M. Higgins. Understanding poisson regression. J Nurs
Educ, 53(4):207–15, 2014.

[92] F. Kianifard and P. P. Gallo. Poisson regression analysis in clinical research.
J Biopharm Stat, 5(1):115–29, 1995.

[93] E. Briscoe and J. Feldman. Conceptual complexity and the bias/variance
tradeoff. Cognition, 118(1):2–16, 2011.

[94] Q. Noirhomme, D. Lesenfants, F. Gomez, A. Soddu, J. Schrouff, G. Gar-
raux, A. Luxen, C. Phillips, and S. Laureys. Biased binomial assessment of
cross-validated estimation of classification accuracies illustrated in diagnosis
predictions. Neuroimage Clin, 4:687–94, 2014.

282



[95] M. Kottas, O. Kuss, and A. Zapf. A modified wald interval for the area
under the roc curve (auc) in diagnostic case-control studies. BMC Med Res
Methodol, 14:26, 2014.

[96] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):272–297, 1995.

[97] G.F. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE
Transactions on Information Theory, 14(1):55–63, 1968.

[98] B. Mwangi, T. S. Tian, and J. C. Soares. A review of feature reduction
techniques in neuroimaging. Neuroinformatics, 12(2):229–44, 2014.

[99] W. T. Kerr, P. K. Douglas, A. Anderson, and M. S. Cohen. The utility of
data-driven feature selection: Re: Chu et al. 2012. Neuroimage, page [in
press], 2013.

[100] A. Hyvarinen. Fast and robust fixed-point algorithms for independent com-
ponent analysis. Ieee Transactions on Neural Networks, 10(3):626–634,
1999.

[101] A. Anderson, I. D. Dinov, J. E. Sherin, J. Quintana, A. L. Yuille, and
M. S. Cohen. Classification of spatially unaligned fmri scans. Neuroimage,
49(3):2509–19, 2010.

[102] A. Anderson, J. S. Labus, E. P. Vianna, E. A. Mayer, and M. S. Cohen.
Common component classification: what can we learn from machine learn-
ing? Neuroimage, 56(2):517–24, 2011.

[103] P. Comon. Independent component analysis, a new concept. Signal Pro-
cessing, 36(3):287–314, 1994.

[104] C. Jutten and J. Herault. Blind separation of sources .1. an adaptive algo-
rithm based on neuromimetic architecture. Signal Processing, 24(1):1–10,
1991.

[105] S. A. Meda, B. Narayanan, J. Liu, N. I. Perrone-Bizzozero, M. C. Stevens,
V. D. Calhoun, D. C. Glahn, L. Shen, S. L. Risacher, A. J. Saykin, and
G. D. Pearlson. A large scale multivariate parallel ica method reveals
novel imaging-genetic relationships for alzheimer’s disease in the adni co-
hort. Neuroimage, 60(3):1608–21, 2012.

[106] R. C. Thornton, R. Rodionov, H. Laufs, S. Vulliemoz, A. Vaudano,
D. Carmichael, S. Cannadathu, M. Guye, A. McEvoy, S. Lhatoo, F. Bar-
tolomei, P. Chauvel, B. Diehl, F. De Martino, R. D. Elwes, M. C. Walker,
J. S. Duncan, and L. Lemieux. Imaging haemodynamic changes related to

283



seizures: comparison of eeg-based general linear model, independent com-
ponent analysis of fmri and intracranial eeg. Neuroimage, 53(1):196–205,
2010.

[107] M. Chagoyen, P. Carmona-Saez, H. Shatkay, J. M. Carazo, and A. Pascual-
Montano. Discovering semantic features in the literature: a foundation for
building functional associations. BMC Bioinformatics, 7:41, 2006.

[108] A. Anderson, P. K. Douglas, W. T. Kerr, V. S. Haynes, A. L. Yuille, J. Xie,
Y. N. Wu, J. A. Brown, and M. S. Cohen. Non-negative matrix factorization
of multimodal mri, fmri and phenotypic data reveals differential changes in
default mode subnetworks in adhd. Neuroimage, 102 Pt 1:207–19, 2014.

[109] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
J Mach Learn Res, 3:1157–1182, 2003.

[110] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for can-
cer classification using support vector machines. Machine Learning, 46(1-
3):389–422, 2002.

[111] S. Haufe, F. Meinecke, K. Gorgen, S. Dahne, J. D. Haynes, B. Blankertz,
and F. Biessmann. On the interpretation of weight vectors of linear models
in multivariate neuroimaging. Neuroimage, 87:96–110, 2014.

[112] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblin-
ear: a library for large linear classification. Journal of Machine Learning
Research, 9:1871–1874, 2008.

[113] E.D. Dohmatob, A. Gramfort, B. Thirion, and G. Varoquaux. Benchmark-
ing solvers for tv-1 least-squares and logistic regression in brain imaging,
2014.

[114] M. Dubois, F. Hadj-Selem, T. Lofstedt, M. Perrot, C. Fischer, V. Frouin,
and E. Duchesnay. Predictive support recovery with tv-elastic net penalty
and logistic regression: An application to structural mri, 2014.

[115] A. Labate, A. Cerasa, M. Mula, L. Mumoli, M. C. Gioia, U. Aguglia,
A. Quattrone, and A. Gambardella. Neuroanatomic correlates of psy-
chogenic nonepileptic seizures: a cortical thickness and vbm study. Epilep-
sia, 53(2):377–85, 2012.

[116] European database on epilepsy, 2007.

[117] P.S. Aisen. Adni 2 study, 2008.

[118] Y. C. Chen, J. C. Wu, I. Haschler, A. Majeed, T. J. Chen, and T. Wet-
ter. Academic impact of a public electronic health database: bibliometric

284



analysis of studies using the general practice research database. PLoS One,
6(6):e21404, 2011.

[119] G.M. Church. Personal genome project mission, 2012.

[120] M. Hunter, R. L. Smith, W. Hyslop, O. A. Rosso, R. Gerlach, J. A. Rostas,
D. B. Williams, and F. Henskens. The australian eeg database. Clin EEG
Neurosci, 36(2):76–81, 2005.

[121] J. E. Lunshof, R. Chadwick, D. B. Vorhaus, and G. M. Church. From
genetic privacy to open consent. Nat Rev Genet, 9(5):406–11, 2008.

[122] A. Provost. Australian eeg database, 2011.

[123] D. Schrader, R. Shukla, R. Gatrill, K. Farrell, and M. Connolly. Epilepsy
with occipital features in children: factors predicting seizure outcome and
neuroimaging abnormalities. Eur J Paediatr Neurol, 15(1):15–20, 2011.

[124] M.W. Weiner. Letter of welcome from the adni principal investigator, 2009.

[125] United States Congress. American recovery and reinvestment act, 2009.

[126] NIH. Final nih statement on sharing research data, 2003.

[127] NIH. Expansion of sharing and standardization of nih-funded human brain
imaing data, 2011.

[128] B. Brockstein, T. Hensing, G. W. Carro, J. Obel, J. Khandekar, L. Kaminer,
C. Van De Wege, and R. de Wilton Marsh. Effect of an electronic health
record on the culture of an outpatient medical oncology practice in a four-
hospital integrated health care system: 5-year experience. J Oncol Pract,
7(4):e20–4, 2011.

[129] GPRD. General practice research database, 2012.

[130] Gutthann S.P. Rodrigues, L.A.G. Use of the uk general practice research
database for pharmacoepidemiology. Br J Clin Pharmacol, 45:419–425,
1998.

[131] Z. Wang, A. D. Shah, A. R. Tate, S. Denaxas, J. Shawe-Taylor, and H. Hem-
ingway. Extracting diagnoses and investigation results from unstructured
text in electronic health records by semi-supervised machine learning. PLoS
One, 7(1):e30412, 2012.

[132] E. R. Weitzman, L. Kaci, and K. D. Mandl. Sharing medical data for health
research: the early personal health record experience. J Med Internet Res,
12(2):e14, 2010.

285



[133] P. A. Teixeira, P. Gordon, E. Camhi, and S. Bakken. Hiv patients’ will-
ingness to share personal health information electronically. Patient Educ
Couns, 84(2):e9–12, 2011.

[134] R. Whiddett, I. Hunter, J. Engelbrecht, and J. Handy. Patients attitudes
towards sharing their health information. International Journal of Medical
Informatics, 75:530–541, 2005.

[135] B. Malin, K. Benitez, and D. Masys. Never too old for anonymity: a sta-
tistical standard for demographic data sharing via the hipaa privacy rule. J
Am Med Inform Assoc, 18(1):3–10, 2011.

[136] Rebecca Skloot. The immortal life of Henrietta Lacks. Crown Publishers,
New York, 2010.

[137] Congress. Health insurance portability and accountability act, 1996.

[138] WMA General Assembly. World medical association declaration of helsinki:
Ethical principles for medical research involving human subjects, 2008 2008.

[139] Crawford K. Neu, S.C. Loni deidentification debablet, 2005.

[140] R.R. Schaller. Moore’s law: Past, present and future. IEEE Spectrum,
34(6):52–59, 1997.

[141] K. Rupp. The economic limit to moore’s law. IEEE Trans Semiconductor
Manufacturing, 24(1):1–4, 2011.

[142] P. Coupe, S. F. Eskildsen, J. V. Manjon, V. Fonov, and D. L. Collins. Si-
multaneous segmentation and grading of anatomical structures for patient’s
classification: Application to alzheimer’s disease. Neuroimage, 2011.

[143] M. Liu, D. Zhang, and D. Shen. Ensemble sparse classification of alzheimer’s
disease. Neuroimage, 60(2):1106–1116, 2012.

[144] Dorizzi B.-Boudy J. Andreao, R.V. Ecg signal analysis through hidden
markov models. IEEE Trans. Biomed. Eng, 53:1541–1549, 2006.

[145] O’Dwyer M.-Reilly R.B. Chazal, R. Automated classification of heartbeats
using ecg morphology and heartbeat interval features. IEEE Trans. Biomed.
Eng, 51:1196–1206, 2004.

[146] F. M. Cuthill and C. A. Espie. Sensitivity and specificity of procedures for
the differential diagnosis of epileptic and non-epileptic seizures: a systematic
review. Seizure, 14(5):293–303, 2005.

[147] Reilly-R.B. de Chazal, F. A patient adapting heart beat classifier using
ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng,
53:2535–2543, 2006.

286



[148] Khazaee A.-Ranaee V. Ebrahimzadeh, A. Classification of electrocardio-
gram signals using supervised classifiers and efficient features. Comput.
Methods Programs Biomed., 99:179–194, 2010.

[149] F. Hoeft, B. D. McCandliss, J. M. Black, A. Gantman, N. Zakerani,
C. Hulme, H. Lyytinen, S. Whitfield-Gabrieli, G. H. Glover, A. L. Reiss, and
J. D. Gabrieli. Neural systems predicting long-term outcome in dyslexia.
Proc Natl Acad Sci U S A, 108(1):361–6, 2011.

[150] Kiranyaz S.-Gabbouj M. Ince, T. A generic and robust system for au-
tomated patient-specific classification of electrocardiogram signals. IEEE
Trans. Biomed. Eng, 56:1415–1526, 2009.

[151] Chakraborty C.-Ray A.K. JoyMartis, R. A two-stage mechanism for reg-
istration and classification of ecg using gaussian mixture model. Pattern
Recognit, 42:2979–2988, 2009.

[152] Peterson C.-Braccini G. Edenbrandt L. Sornmo L. Langerholm, M. Cluster-
ing ecg complexes using hermite functions and self-organizing maps. IEEE
Trans. Biomed. Eng, 47:839–847, 2000.

[153] Mitra M.-Chaudhuri B.B. Mitra, S. A rough set-based inference enginer for
ecg classification. IEEE Trans. Instrum. Meas., 55:2198–2206, 2006.

[154] D. San-juan, A. T. Claudia, G. A. Maricarmen, M. M. Adriana, J. S.
Richard, and A. V. Mario. The prognostic role of electrocorticography in
tailored temporal lobe surgery. Seizure, 20(7):564–9, 2011.

[155] Wu Y.H.-Hu W.C. Shyu, L.Y. Using wavelet transform and fuzzy neural
network for vpc detection from the holter ecg. IEEE Trans. Biomed. Eng,
51:1269–1273, 2004.

[156] van Klaveren-R.J. de Bock G.H. Zhao Y. Vernhout R. Leusveld A. Scholten
E. Verschakelen J. Mali W. de Koning H. Oudkerk M. Wang, Y. No benefit
for consensus double reading at baseline screening for lunch cancer with the
use of semiautomated volumetry software. Radiology, 262(1):320–326, 2012.

[157] Chou-K.T. Yu, S. N. Selection of significant for ecg beat classification.
Expert Syst Appl, 36:2088–2096, 2009.

[158] A. E. Zadeh and A. Khazaee. High efficient system for automatic classifi-
cation of the electrocardiogram beats. Ann Biomed Eng, 39(3):996–1011,
2011.

[159] N. Cowan. The magical number 4 in short-term memory: a reconsideration
of mental storage capacity. Behav Brain Sci, 24(1):87–114; discussion 114–
85, 2001.

287



[160] G. Veneri, E. Pretegiani, P. Federighi, F. Rosini, A. Federico, and A. Rufa.
Evaluating human visual search performance by monte carlo methods and
heuristic model. In 10th IEEE International Conf Information and Appli-
cations in Biomedicine.

[161] Y. Harrison and J. A. Horne. The impact of sleep deprivation on decision
making: a review. J Exp Psychol Appl, 6(3):236–49, 2000.

[162] P. Kohl, D. Noble, L.R. Winslow, and P.J. Hunter. Computational mod-
eling of biological systems: Tools and visions. Philosophical Transactions:
Mathematical, Physical and Engineering Sciences, 358(1766):579–610, 2000.

[163] S. J. Wang, B. Middleton, L. A. Prosser, C. G. Bardon, C. D. Spurr, P. J.
Carchidi, A. F. Kittler, R. C. Goldszer, D. G. Fairchild, A. J. Sussman, G. J.
Kuperman, and D. W. Bates. A cost-benefit analysis of electronic medical
records in primary care. Am J Med, 114(5):397–403, 2003.

[164] T. Balli and R. Palaniappan. Classification of biological signals using linear
and nonlinear features. Physiol Meas, 31(7):903–20, 2010.

[165] J. N. Gelinas, A. W. Battison, S. Smith, M. B. Connolly, and P. Steinbok.
Electrocorticography and seizure outcomes in children with lesional epilepsy.
Childs Nerv Syst, 27(3):381–90, 2011.

[166] R. Rodrigues Tda, E. B. Sternick, and C. Moreira Mda. Epilepsy or syn-
cope? an analysis of 55 consecutive patients with loss of consciousness,
convulsions, falls, and no eeg abnormalities. Pacing Clin Electrophysiol,
33(7):804–13, 2010.

[167] I.G. Fita, A. Enciu, and B.P. Stanoiu. New insights on alzheimer’s disease
diagnostic. Rom J Morphol Embryol, 52(3 Suppl):975–979, 2011.

[168] S. Kloppel, C. M. Stonnington, J. Barnes, F. Chen, C. Chu, C. D. Good,
I. Mader, L. A. Mitchell, A. C. Patel, C. C. Roberts, N. C. Fox, Jr. Jack,
C. R., J. Ashburner, and R. S. Frackowiak. Accuracy of dementia diagno-
sis: a direct comparison between radiologists and a computerized method.
Brain, 131(Pt 11):2969–74, 2008.

[169] Z. Dai, C. Yan, Z. Wang, J. Wang, M. Xia, K. Li, and Y. He. Discriminative
analysis of early alzheimer’s disease using multi-modal imaging and multi-
level characterization with multi-classifier (m3). Neuroimage, 2011.

[170] Su-S-C. Huang C-H. Wang J.J. Xu W-C. Wei Y-Y. Lee S.T. Lee, J-D.
Combination of multiple features in support vector machine with principle
component analysis in application for alzheimer’s disease diagnosis. Lecture
notes in computer science, 5864:512–519, 2009.

288



[171] M. Jiang, Y. Chen, M. Liu, S. T. Rosenbloom, S. Mani, J. C. Denny, and
H. Xu. A study of machine-learning-based approaches to extract clinical
entities and their assertions from discharge summaries. J Am Med Inform
Assoc, 18(5):601–6, 2011.

[172] Shah N.-Hanson-P. Balasubramaniam S.-Smith S.A. Pakhomov, S.V. Auto-
matic quality of life prediction using electronic medical records. In American
Medical Informatics Association Symposium, pages 545–549.

[173] S.B. McGrayne. The theory that would not die: How Bayes’ rule cracked
the Enigma code, hunted down Russian submarines, and emerged triumphant
from two centuries of controversy. Yale University Press, Devon, Pennsyl-
vania, 2011.

[174] M. A. Oquendo, E. Baca-Garcia, A. Artes-Rodriguez, F. Perez-Cruz, H. C.
Galfalvy, H. Blasco-Fontecilla, D. Madigan, and N. Duan. Machine learning
and data mining: strategies for hypothesis generation. Mol Psychiatry, 2012.

[175] Y. Cho, J. K. Seong, Y. Jeong, and S. Y. Shin. Individual subject classifi-
cation for alzheimer’s disease based on incremental learning using a spatial
frequency representation of cortical thickness data. Neuroimage, 2011.

[176] Suchard M.A. Huelsenbeck, J.P. A nonparametric method for accommodat-
ing and testing across-site rate variation. Systematic Biology, 56:975–987,
2007.

[177] Agile diagnosis, 2012.

[178] B. Goldman. Doctors make mistakes: Can we talk about that? In TED.
TED.

[179] E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with
ensembles, artificial variables, and redundancy elimination. Journal of Ma-
chine Learning Research, 10:1341–1366, 2009.

[180] M. Esterman, Y. C. Chiu, B. J. Tamber-Rosenau, and S. Yantis. Decoding
cognitive control in human parietal cortex. Proc Natl Acad Sci U S A,
106(42):17974–9, 2009.

[181] J. D. Johnson, S. G. McDuff, M. D. Rugg, and K. A. Norman. Recollec-
tion, familiarity, and cortical reinstatement: a multivoxel pattern analysis.
Neuron, 63(5):697–708, 2009.

[182] F. De Martino, G. Valente, N. Staeren, J. Ashburner, R. Goebel, and
E. Formisano. Combining multivariate voxel selection and support vector
machines for mapping and classification of fmri spatial patterns. Neuroim-
age, 43(1):44–58, 2008.

289



[183] C. Ecker, V. Rocha-Rego, P. Johnston, J. Mourao-Miranda, A. Marquand,
E. M. Daly, M. J. Brammer, C. Murphy, and D. G. Murphy. Investigating
the predictive value of whole-brain structural mr scans in autism: a pattern
classification approach. Neuroimage, 49(1):44–56, 2010.

[184] D. Dai, J. Wang, J. Hua, and H. He. Classification of adhd children through
multimodal magnetic resonance imaging. Front Syst Neurosci, 6:63, 2012.

[185] S. Song, Z. Zhan, Z. Long, J. Zhang, and L. Yao. Comparative study of svm
methods combined with voxel selection for object category classification on
fmri data. PLoS One, 6(2):e17191, 2011.

[186] J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and
P. Pietrini. Distributed and overlapping representations of faces and objects
in ventral temporal cortex. Science, 293(5539):2425–30, 2001.

[187] N. Kriegeskorte, R. Goebel, and P. Bandettini. Information-based func-
tional brain mapping. Proc Natl Acad Sci U S A, 103(10):3863–8, 2006.

[188] M. Bjornsdotter, K. Rylander, and J. Wessberg. A monte carlo method for
locally multivariate brain mapping. Neuroimage, 56(2):508–16, 2011.

[189] Y. Liu, H.H. Zhang, C. Park, and J. Ahn. The lq support vector machine.
Contemporary Mathematics, 443:35–48, 2007.

[190] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[191] M.J. KcKeown, S. Makeig, G.G. Brown, Jung T.-P., S.S. Kindermann, A.J.
Bell, and T.J. Sejnowski. Analysis of fmri data by blind separation into
independent spatial components, 1997.

[192] C. Hinrichs, V. Singh, L. Mukherjee, G. F. Xu, M. K. Chung, S. C. John-
son, and ADNI. Spatially augmented lpboosting for ad classification with
evaluations on the adni dataset. Neuroimage, 48(1):138–149, 2009.

[193] P.K. Douglas, S. Harris, A. Yuille, and M.S. Cohen. Performance compari-
son of machine learning algorithms and number of independent components
used in fmri decoding of belief vs disbelief. Neuroimage, 56(2):544–553,
2010.

[194] K. Franke, G. Ziegler, S. Kloppel, and C. Gaser. Estimating the age of
healthy subjects from t1-weighted mri scans using kernel methods: exploring
the influence of various parameters. Neuroimage, 50(3):883–92, 2010.

[195] K. Franke, E. Luders, A. May, M. Wilke, and C. Gaser. Brain maturation:
predicting individual brainage in children and adolescents using structural
mri. Neuroimage, 63(3):1305–12, 2012.

290



[196] J. H. Yang and V. Honavar. Feature subset selection using a genetic algo-
rithm. Ieee Intelligent Systems & Their Applications, 13(2):44–49, 1998.

[197] P. J. Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82(4):711–732, 1995.

[198] T. G. Dietterich. Ensemble methods in machine learning. Multiple Classifier
Systems, 1857:1–15, 2000.

[199] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

[200] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A
statistical view of boosting. Annals of Statistics, 28(2):337–374, 2000.

[201] N. Kwak and C. H. Choi. Input feature selection for classification problems.
Ieee Transactions on Neural Networks, 13(1):143–159, 2002.

[202] J. M. Leiva-Murillo and A. Artes-Rodriguez. Maximization of mutual infor-
mation for supervised linear feature extraction. Ieee Transactions on Neural
Networks, 18(5):1433–1441, 2007.

[203] H. Liu and R. Setiono. Feature selection via discretization. Ieee Transac-
tions on Knowledge and Data Engineering, 9(4):642–645, 1997.

[204] R. Setiono and H. Liu. Neural-network feature selector. Ieee Transactions
on Neural Networks, 8(3):654–662, 1997.

[205] H. B. Zhang and G. Y. Sun. Feature selection using tabu search method.
Pattern Recognition, 35(3):701–711, 2002.

[206] Y. Saeys, I. Inza, and P. Larranaga. A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[207] K. H. Brodersen, T. M. Schofield, A. P. Leff, C. S. Ong, E. I. Lomakina,
J. M. Buhmann, and K. E. Stephan. Generative embedding for model-based
classification of fmri data. PLoS Comput Biol, 7(6):e1002079, 2011.

[208] A. Anderson, J. Bramen, P. K. Douglas, A. Lenartowicz, A. Cho, C. Cul-
bertson, A. L. Brody, A. L. Yuille, and M. S. Cohen. Large sample group
independent component analysis of functional magnetic resonance imaging
using anatomical atlas-based reduction and bootstrapped clustering. Int J
Imaging Syst Technol, 21(2):223–231, 2011.

[209] J.B. Colby, J.D. Rudie, J.A. Brown, P.K. Douglas, M. S. Cohen, and Z. She-
hzad. Insights into multimodal imaging classification of adhd. Frontiers in
Systems Neuroscience, In press, 2012.

291



[210] M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon. Default-mode
network activity distinguishes alzheimer’s disease from healthy aging: ev-
idence from functional mri. Proc Natl Acad Sci U S A, 101(13):4637–42,
2004.

[211] M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse
decomposition in a signal dictionary. Neural Computation, 13(4):863–882,
2001.

[212] J. Sui, T. Adali, G. D. Pearlson, and V. D. Calhoun. An ica-based method
for the identification of optimal fmri features and components using com-
bined group-discriminative techniques. Neuroimage, 46(1):73–86, 2009.

[213] A. R. Franco, M. V. Mannell, V. D. Calhoun, and A. R. Mayer. Impact
of analysis methods on the reproducibility and reliability of resting-state
networks. Brain Connect, 3(4):363–74, 2013.

[214] I. Osorio, A. Lyubushin, and D. Sornette. Automated seizure detection:
unrecognized challenges, unexpected insights. Epilepsy Behav, 22 Suppl
1:S7–17, 2011.

[215] J. C. Sackellares. Seizure prediction. Epilepsy Currents, 8(3):55–59, 2008.

[216] O. A. Rosso, A. Mendes, R. Berretta, J. A. Rostas, M. Hunter, and
P. Moscato. Distinguishing childhood absence epilepsy patients from con-
trols by the analysis of their background brain electrical activity (ii): a
combinatorial optimization approach for electrode selection. J Neurosci
Methods, 181(2):257–67, 2009.

[217] E. Santiago-Rodriguez, T. Harmony, L. Cardenas-Morales, A. Hernandez,
and A. Fernandez-Bouzas. Analysis of background eeg activity in patients
with juvenile myoclonic epilepsy. Seizure, 17(5):437–45, 2008.

[218] L. M. Binder and M. C. Salinsky. Psychogenic nonepileptic seizures. Neu-
ropsychol Rev, 17(4):405–12, 2007.

[219] H. Patel, E. Scott, D. Dunn, and B. Garg. Nonepileptic seizures in children.
Epilepsia, 48(11):2086–92, 2007.

[220] M. A. Rogawski and W. Loscher. The neurobiology of antiepileptic drugs.
Nat Rev Neurosci, 5(7):553–64, 2004.

[221] C.M. Schneider-Mizell, J.M. Parent, E. Ben-Jacob, M.R. Zochowski, and
L.M. Sander. From network structure to network reorganization: implica-
tions for adult neurogenesis. Physical Biology, 7:1–11, 2010.

292



[222] C. Person, L. Koessler, V. Louis-Dorr, D. Wolf, L. Maillard, and P.Y. Marie.
Analysis of the relationship between interictal electrical source imaging and
pet hypometabolism. In IEEE Eng Med Biol Soc, pages 3723–3726.

[223] C. Hoppe and C. E. Elger. Depression in epilepsy: a critical review from a
clinical perspective. Nat Rev Neurol, 7(8):462–72, 2011.

[224] A. B. Ettinger. Psychotropic effects of antiepileptic drugs. Neurology,
67(11):1916–25, 2006.

[225] S. Vincentiis, K. D. Valente, S. Thome-Souza, E. Kuczinsky, L. A. Fiore,
and N. Negrao. Risk factors for psychogenic nonepileptic seizures in children
and adolescents with epilepsy. Epilepsy Behav, 8(1):294–8, 2006.

[226] G. L. Holmes, J. C. Sackellares, J. McKiernan, M. Ragland, and F. E.
Dreifuss. Evaluation of childhood pseudoseizures using eeg telemetry and
video tape monitoring. J Pediatr, 97(4):554–8, 1980.

[227] A. M. Kanner, S. C. Schachter, J. J. Barry, D. C. Hersdorffer, M. Mula,
M. Trimble, B. Hermann, A. E. Ettinger, D. Dunn, R. Caplan, P. Ryvlin,
and F. Gilliam. Depression and epilepsy, pain and psychogenic non-epileptic
seizures: clinical and therapeutic perspectives. Epilepsy Behav, 24(2):169–
81, 2012.

[228] M. Hall, E. Frank, G. L. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD Explorations,
11(1):10–18, 2009.

[229] J. D. Bremner, M. Narayan, E. R. Anderson, L. H. Staib, H. L. Miller, and
D. S. Charney. Hippocampal volume reduction in major depression. Am J
Psychiatry, 157(1):115–8, 2000.

[230] T. Frodl, E. M. Meisenzahl, T. Zetzsche, C. Born, C. Groll, M. Jager,
G. Leinsinger, R. Bottlender, K. Hahn, and H. J. Moller. Hippocampal
changes in patients with a first episode of major depression. Am J Psychi-
atry, 159(7):1112–8, 2002.

[231] M. A. Mikati. Kliegman: Nelson Textbook of Pediatrics. Saunders, Philadel-
phia, 19th edition, 2011.

[232] A. M. Isom, G. A. Gudelsky, S. C. Benoit, and N. M. Richtand. Antipsy-
chotic medications, glutamate, and cell death: A hidden, but common med-
ication side effect? Med Hypotheses, 80(3):252–8, 2013.

[233] W. T. Kerr and E. P. Lau. Poisson noise obscures hypometabolic lesions in
pet. Yale J Biol Med, 85(4):541–9, 2012.

293



[234] J. W. Pan, A. Williamson, I. Cavus, H. P. Hetherington, H. Zaveri, O. A.
Petroff, and D. D. Spencer. Neurometabolism in human epilepsy. Epilepsia,
49 Suppl 3:31–41, 2008.

[235] J. T. Lerner, N. Salamon, J. S. Hauptman, T. R. Velasco, M. Hemb, J. Y.
Wu, R. Sankar, W. Donald Shields, Jr. Engel, J., I. Fried, C. Cepeda, V. M.
Andre, M. S. Levine, H. Miyata, W. H. Yong, H. V. Vinters, and G. W.
Mathern. Assessment and surgical outcomes for mild type i and severe type
ii cortical dysplasia: a critical review and the ucla experience. Epilepsia,
50(6):1310–35, 2009.

[236] J. Anderson and K. Hamandi. Understanding juvenile myoclonic epilepsy:
Contributions from neuroimaging. Epilepsy Res, 2011.

[237] T. Butler, M. Ichise, A. F. Teich, E. Gerard, J. Osborne, J. French, O. Devin-
sky, R. Kuzniecky, F. Gilliam, F. Pervez, F. Provenzano, S. Goldsmith,
S. Vallabhajosula, E. Stern, and D. Silbersweig. Imaging inflammation in a
patient with epilepsy due to focal cortical dysplasia. J Neuroimaging, 2011.

[238] F. Chassoux, S. Rodrigo, F. Semah, F. Beuvon, E. Landre, B. Devaux,
B. Turak, C. Mellerio, J.-F. Meder, F.-X. Roux, C. Daumas-Dupont, P. Mer-
let, O. Dulac, and C. Chiron. Fdg-pet improves surgical outcome in negative
mri taylor-type focal cortical dysplasias. Neurology, 75:2168–2175, 2010.

[239] J. Duncan. The current status of neuroimaging for epilepsy. Curr Opin
Neurol, 22(2):179–84, 2009.

[240] T. R. Henry and D. D. Roman. Presurgical epilepsy localization with inter-
ictal cerebral dysfunction. Epilepsy Behav, 20(2):194–208, 2011.

[241] Y. H. Kim, H. C. Kang, D. S. Kim, S. H. Kim, K. W. Shim, H. D. Kim, and
J. S. Lee. Neuroimaging in identifying focal cortical dysplasia and prognostic
factors in pediatric and adolescent epilepsy surgery. Epilepsia, 52(4):722–7,
2011.

[242] A. Kumar, C. Juhasz, E. Asano, S. Sood, O. Muzik, and H. T. Chugani.
Objective detection of epileptic foci by 18f-fdg pet in children undergoing
epilepsy surgery. J Nucl Med, 51(12):1901–7, 2010.

[243] N. Madan and P. E. Grant. New directions in clinical imaging of cortical
dysplasias. Epilepsia, 50 Suppl 9:9–18, 2009.

[244] A. A. Cohen-Gadol, B. G. Wilhelmi, F. Collignon, J. B. White, J. W. Brit-
ton, D. M. Cambier, T. J. Christianson, W. R. Marsh, F. B. Meyer, and
G. D. Cascino. Long-term outcome of epilepsy surgery among 399 patients
with nonlesional seizure foci including mesial temporal lobe sclerosis. J
Neurosurg, 104(4):513–24, 2006.

294



[245] A. E. Elsharkawy, F. Behne, F. Oppel, H. Pannek, R. Schulz, M. Hoppe,
G. Pahs, C. Gyimesi, M. Nayel, A. Issa, and A. Ebner. Long-term outcome
of extratemporal epilepsy surgery among 154 adult patients. J Neurosurg,
108(4):676–86, 2008.

[246] M. A. Murphy, T. J. O’Brien, K. Morris, and M. J. Cook. Multimodality
image-guided surgery for the treatment of medically refractory epilepsy. J
Neurosurg, 100(3):452–62, 2004.

[247] M. Defrise, D.W. Townsend, and F. Deconinck. Statistical noise in three-
dimensional positron tomography. Phys Med Biol, 35(1):131–138, 1990.

[248] L. D. Nickerson, S. Narayana, J. L. Lancaster, P. T. Fox, and J. H. Gao.
Estimation of the local statistical noise in positron emission tomography
revisited: practical implementation. Neuroimage, 19(2 Pt 1):442–56, 2003.

[249] K. M. Hanson. On the optimality of the filtered backprojection algorithm.
J Comput Assist Tomogr, 4(3):361–3, 1980.

[250] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using
ordered subsets of projection data. IEEE Trans Med Imaging, 13(4):601–9,
1994.

[251] T. F. Budinger. Pet instrumentation: what are the limits? Semin Nucl
Med, 28(3):247–67, 1998.

[252] D. W. Townsend. Physical principles and technology of clinical pet imaging.
Ann Acad Med Singapore, 33(2):133–45, 2004.

[253] K. Lange and R. Carson. Em reconstruction algorithms for emission and
transmission tomography. J Comput. Assist. Tomog., 8:306–316, 1984.

[254] Kenneth Lange. Optimization, volume 2. Springer, New York, USA, 2004.

[255] W. Chen, D. H. Silverman, S. Delaloye, J. Czernin, N. Kamdar, W. Pope,
N. Satyamurthy, C. Schiepers, and T. Cloughesy. 18f-fdopa pet imaging of
brain tumors: comparison study with 18f-fdg pet and evaluation of diagnos-
tic accuracy. J Nucl Med, 47(6):904–11, 2006.

[256] C. S. Lee, A. Samii, V. Sossi, T. J. Ruth, M. Schulzer, J. E. Holden,
J. Wudel, P. K. Pal, R. de la Fuente-Fernandez, D. B. Calne, and A. J.
Stoessl. In vivo positron emission tomographic evidence for compensatory
changes in presynaptic dopaminergic nerve terminals in parkinson’s disease.
Ann Neurol, 47(4):493–503, 2000.

[257] J. Booij, G. Tissingh, A. Winogrodzka, and E. A. van Royen. Imaging of
the dopaminergic neurotransmission system using single-photon emission to-
mography and positron emission tomography in patients with parkinsonism.
Eur J Nucl Med, 26(2):171–82, 1999.

295



[258] J. Booij and H. W. Berendse. Monitoring therapeutic effects in parkin-
son’s disease by serial imaging of the nigrostriatal dopaminergic pathway. J
Neurol Sci, 310(1-2):40–3, 2011.

[259] T. W. Lin, M. A. de Aburto, M. Dahlbom, L. L. Huang, M. M. Marvi,
M. Tang, J. Czernin, M. E. Phelps, and D. H. Silverman. Predicting seizure-
free status for temporal lobe epilepsy patients undergoing surgery: prognos-
tic value of quantifying maximal metabolic asymmetry extending over a
specified proportion of the temporal lobe. J Nucl Med, 48(5):776–82, 2007.

[260] D. H. Silverman, C. L. Geist, H. A. Kenna, K. Williams, T. Wroolie, B. Pow-
ers, J. Brooks, and N. L. Rasgon. Differences in regional brain metabolism
associated with specific formulations of hormone therapy in postmenopausal
women at risk for ad. Psychoneuroendocrinology, 36(4):502–13, 2011.

[261] J. Fox. Applied Regression Analysis, Linear Models, and Related Methods.
Sage Publications, 1 edition, 1997.

[262] J. Fox. Applied regression analysis and general linear models. Sage Publi-
cations, Inc, 2nd edition, 2008.

[263] G.K. Robinson. That blup is a good thing: The estimation of random
effects. Statistical Science, 6(1):15–32, 1991.

[264] S. Kim, L. Shen, A. J. Saykin, and J. D. West. Visual exploration of genetic
association with voxel-based imaging phenotypes in an mci/ad study. Conf
Proc IEEE Eng Med Biol Soc, 2009:3849–52, 2009.

[265] K. Sahaya, S. A. Dholakia, and P. K. Sahota. Psychogenic non-epileptic
seizures: a challenging entity. J Clin Neurosci, 18(12):1602–7, 2011.

[266] F. Brigo, M. Storti, P. Lochner, F. Tezzon, A. Fiaschi, L. G. Bongiovanni,
and R. Nardone. Tongue biting in epileptic seizures and psychogenic events:
an evidence-based perspective. Epilepsy Behav, 25(2):251–5, 2012.

[267] R. J. Wilkus, C. B. Dodrill, and P. M. Thompson. Intensive eeg moni-
toring and psychological studies of patients with pseudoepileptic seizures.
Epilepsia, 25(1):100–7, 1984.

[268] U. Seneviratne, D. Rajendran, M. Brusco, and T. G. Phan. How good are
we at diagnosing seizures based on semiology? Epilepsia, 2012.

[269] U. Seneviratne, D. Reutens, and W. D’Souza. Stereotypy of psychogenic
nonepileptic seizures: insights from video-eeg monitoring. Epilepsia,
51(7):1159–68, 2010.

[270] J. O. Elliott and C. Charyton. Biopsychosocial predictors of psychogenic
non-epileptic seizures. Epilepsy Res, 108(9):1543–53, 2014.

296



[271] H. Luders, J. Acharya, C. Baumgartner, S. Benbadis, A. Bleasel, R. Burgess,
D. S. Dinner, A. Ebner, N. Foldvary, E. Geller, H. Hamer, H. Holthausen,
P. Kotagal, H. Morris, H. J. Meencke, S. Noachtar, F. Rosenow,
A. Sakamoto, B. J. Steinhoff, I. Tuxhorn, and E. Wyllie. Semiological
seizure classification. Epilepsia, 39(9):1006–13, 1998.

[272] T. U. Syed, A. M. Arozullah, K. L. Loparo, R. Jamasebi, G. P. Suciu,
C. Griffin, R. Mani, I. Syed, T. Loddenkemper, and A. V. Alexopoulos. A
self-administered screening instrument for psychogenic nonepileptic seizures.
Neurology, 72(19):1646–52, 2009.

[273] L. Szabo, Z. Siegler, L. Zubek, Z. Liptai, I. Korhegyi, B. Bansagi, and
A. Fogarasi. A detailed semiologic analysis of childhood psychogenic
nonepileptic seizures. Epilepsia, 53(3):565–70, 2012.

[274] V. Patterson, P. Pant, N. Gautam, and A. Bhandari. A bayesian tool for
epilepsy diagnosis in the resource-poor world: development and early vali-
dation. Seizure, 23(7):567–9, 2014.

[275] D.B. Rubin. Inference and missing data (with discussion). Biometrika,
63:581–592, 1976.

[276] D.B. Rubin. Multiple imputation for non-response in surveys. John Wiley
& Sons, New York, 1987.

[277] S. R. Benbadis. A spell in the epilepsy clinic and a history of ”chronic pain”
or ”fibromyalgia” independently predict a diagnosis of psychogenic seizures.
Epilepsy Behav, 6(2):264–5, 2005.

[278] R. Dixit, A. Popeschu, A. Bagic, G. Ghearing, and R. Henrdrickson. Medical
comorbidities in patients with psychogenic nonepileptic spells (pnes) referred
for video-eeg monitoring. Epilepsy & Behavior, 28:137–140, 2013.

[279] B. A. Dworetzky, A. Strahonja-Packard, C. W. Shanahan, J. Paz,
B. Schauble, and E. B. Bromfield. Characteristics of male veterans with
psychogenic nonepileptic seizures. Epilepsia, 46(9):1418–22, 2005.

[280] K. R. Kaufman, A. Mohebati, and A. Sotolongo. Pseudoseizures and hys-
terical stridor. Epilepsy Behav, 5(2):269–72, 2004.

[281] M. Arthuis, J. A. Micoulaud-Franchi, F. Bartolomei, A. McGonigal, and
E. Guedj. Resting cortical pet metabolic changes in psychogenic non-
epileptic seizures (pnes). J Neurol Neurosurg Psychiatry, 2014.

[282] J. R. Ding, D. An, W. Liao, J. Li, G. R. Wu, Q. Xu, Z. Long, Q. Gong,
D. Zhou, O. Sporns, and H. Chen. Altered functional and structural
connectivity networks in psychogenic non-epileptic seizures. PLoS One,
8(5):e63850, 2013.

297



[283] J. Hovorka, T. Nezadal, E. Herman, I. Nemcova, and M. Bajacek. Psy-
chogenic non-epileptic seizures, prospective clinical experience: diagnosis,
clinical features, risk factors, psychiatric comorbidity, treatment outcome.
Epileptic Disord, 9 Suppl 1:S52–8, 2007.

[284] M. Reuber, G. Fernandez, C. Helmstaedter, A. Qurishi, and C. E. Elger.
Evidence of brain abnormality in patients with psychogenic nonepileptic
seizures. Epilepsy Behav, 3(3):249–254, 2002.

[285] S. J. van der Kruijs, N. M. Bodde, M. J. Vaessen, R. H. Lazeron, K. Vonck,
P. Boon, P. A. Hofman, W. H. Backes, A. P. Aldenkamp, and J. F. Jansen.
Functional connectivity of dissociation in patients with psychogenic non-
epileptic seizures. J Neurol Neurosurg Psychiatry, 83(3):239–47, 2012.

[286] P. de Timary, P. Fouchet, M. Sylin, J. P. Indriets, T. de Barsy, A. Lefeb-
vre, and K. van Rijckevorsel. Non-epileptic seizures: delayed diagnosis in
patients presenting with electroencephalographic (eeg) or clinical signs of
epileptic seizures. Seizure, 11(3):193–7, 2002.

[287] A. A. Asadi-Pooya, M. Emami, and Y. Emami. Ictal injury in psychogenic
non-epileptic seizures. Seizure, 23(5):363–6, 2014.

[288] E. Peguero, B. Abou-Khalil, T. Fakhoury, and G. Mathews. Self-injury and
incontinence in psychogenic seizures. Epilepsia, 36(6):586–91, 1995.

[289] S. R. Benbadis, V. Agrawal, and W. O. th Tatum. How many patients with
psychogenic nonepileptic seizures also have epilepsy? Neurology, 57(5):915–
7, 2001.

[290] R. P. Lesser. Psychogenic seizures. Neurology, 46(6):1499–507, 1996.

[291] K. R. Sigurdardottir and E. Olafsson. Incidence of psychogenic seizures in
adults: a population-based study in iceland. Epilepsia, 39(7):749–52, 1998.

[292] Frank E. Hall-M.A. Holmes G.-Pfahringer B. Ruetemann P. Witten-I.H.
Bouckaert, R.R. Weka-experiences with a java open-source project. J Mach
Learn Res, 11:2533–2541, 2010.

[293] W.T. Kerr, A. Anderson, H. Xia, E.S. Braun, E.P Lau, A.Y. Cho, and M. S.
Cohen. Parameter selection in mutual information-based feature selection
in automated diagnosis of multiple epilepsies using scalp eeg, 2012.

[294] R. L. Marchetti, D. Kurcgant, J. Gallucci Neto, M. A. Von Bismark, and
L. A. Fiore. Evaluating patients with suspected nonepileptic psychogenic
seizures. J Neuropsychiatry Clin Neurosci, 21(3):292–8, 2009.

298



[295] R. L. Marchetti, D. Kurcgant, J. G. Neto, M. A. von Bismark, L. B.
Marchetti, and L. A. Fiore. Psychiatric diagnoses of patients with psy-
chogenic non-epileptic seizures. Seizure, 17(3):247–53, 2008.

[296] D. E. Cragar, D. T. Berry, T. A. Fakhoury, J. E. Cibula, and F. A. Schmitt.
A review of diagnostic techniques in the differential diagnosis of epileptic
and nonepileptic seizures. Neuropsychol Rev, 12(1):31–64, 2002.

[297] M. Privitera. Current challenges in the management of epilepsy. Am J
Manag Care, 17 Suppl 7:S195–203, 2011.

[298] R. C. Delaney, A. J. Rosen, R. H. Mattson, and R. A. Novelly. Memory
function in focal epilepsy: a comparison of non-surgical, unilateral temporal
lobe and frontal lobe samples. Cortex, 16(1):103–17, 1980.

[299] H. Kim, S. Yi, E. I. Son, and J. Kim. Differential effects of left versus right
mesial temporal lobe epilepsy on wechsler intelligence factors. Neuropsy-
chology, 17(4):556–65, 2003.

[300] W. Liao, Z. Zhang, Z. Pan, D. Mantini, J. Ding, X. Duan, C. Luo, Z. Wang,
Q. Tan, G. Lu, and H. Chen. Default mode network abnormalities in mesial
temporal lobe epilepsy: a study combining fmri and dti. Hum Brain Mapp,
32(6):883–95, 2011.

[301] C. McCormick, M. Quraan, M. Cohn, T. A. Valiante, and M. P. McAndrews.
Default mode network connectivity indicates episodic memory capacity in
mesial temporal lobe epilepsy. Epilepsia, 2013.

[302] V. L. Morgan, B. P. Rogers, H. H. Sonmezturk, J. C. Gore, and B. Abou-
Khalil. Cross hippocampal influence in mesial temporal lobe epilepsy mea-
sured with high temporal resolution functional magnetic resonance imaging.
Epilepsia, 52(9):1741–9, 2011.

[303] V. L. Morgan, H. H. Sonmezturk, J. C. Gore, and B. Abou-Khalil. Lateral-
ization of temporal lobe epilepsy using resting functional magnetic resonance
imaging connectivity of hippocampal networks. Epilepsia, 2012.

[304] F. Pittau, C. Grova, F. Moeller, F. Dubeau, and J. Gotman. Patterns of
altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia,
53(6):1013–23, 2012.

[305] Z. Zhang, G. Lu, Y. Zhong, Q. Tan, W. Liao, Z. Wang, K. Li, H. Chen, and
Y. Liu. Altered spontaneous neuronal activity of the default-mode network
in mesial temporal lobe epilepsy. Brain Res, 1323:152–60, 2010.

[306] F. R. Pereira, A. Alessio, M. S. Sercheli, T. Pedro, E. Bilevicius, J. M.
Rondina, H. F. Ozelo, G. Castellano, R. J. Covolan, B. P. Damasceno, and

299



F. Cendes. Asymmetrical hippocampal connectivity in mesial temporal lobe
epilepsy: evidence from resting state fmri. BMC Neurosci, 11:66, 2010.

[307] S. R. Benbadis, W. O. th Tatum, F. R. Murtagh, and F. L. Vale. Mri evi-
dence of mesial temporal sclerosis in patients with psychogenic nonepileptic
seizures. Neurology, 55(7):1061–2, 2000.

[308] P. S. Chandra, N. Salamon, J. Huang, J. Y. Wu, S. Koh, H. V. Vinters,
and G. W. Mathern. Fdg-pet/mri coregistration and diffusion-tensor imag-
ing distinguish epileptogenic tubers and cortex in patients with tuberous
sclerosis complex: a preliminary report. Epilepsia, 47(9):1543–9, 2006.

[309] S. Rastogi, C. Lee, and N. Salamon. Neuroimaging in pediatric epilepsy: a
multimodality approach. RadioGraphics, 28:1079–1095, 2008.

[310] C. Juhasz, F. Nagy, C. Watson, E. A. da Silva, O. Muzik, D. C. Chugani,
J. Shah, and H. T. Chugani. Glucose and [11c]flumazenil positron emis-
sion tomography abnormalities of thalamic nuclei in temporal lobe epilepsy.
Neurology, 53(9):2037–45, 1999.

[311] P. Matheja, T. Kuwert, P. Ludemann, M. Weckesser, C. Kellinghaus,
G. Schuierer, B. Diehl, E. B. Ringelstein, and O. Schober. Temporal hy-
pometabolism at the onset of cryptogenic temporal lobe epilepsy. Eur J
Nucl Med, 28(5):625–32, 2001.

[312] S. F. Barrington, M. Koutroumanidis, A. Agathonikou, P. K. Marsden, C. D.
Binnie, C. E. Polkey, M. N. Maisey, and C. P. Panayiotopoulos. Clinical
value of ”ictal” fdg-positron emission tomography and the routine use of
simultaneous scalp eeg studies in patients with intractable partial epilepsies.
Epilepsia, 39(7):753–66, 1998.

[313] E. L. So, T. J. O’Brien, B. H. Brinkmann, and B. P. Mullan. The eeg
evaluation of single photon emission computed tomography abnormalities
in epilepsy. J Clin Neurophysiol, 17(1):10–28, 2000.

[314] S. Arnold, G. Schlaug, H. Niemann, A. Ebner, H. Luders, O. W. Witte, and
R. J. Seitz. Topography of interictal glucose hypometabolism in unilateral
mesiotemporal epilepsy. Neurology, 46(5):1422–30, 1996.

[315] V. Bouilleret, S. Dupont, L. Spelle, M. Baulac, Y. Samson, and F. Semah.
Insular cortex involvement in mesiotemporal lobe epilepsy: a positron emis-
sion tomography study. Ann Neurol, 51(2):202–8, 2002.

[316] D. J. Dlugos, J. Jaggi, W. M. O’Connor, X. S. Ding, M. Reivich, M. J.
O’Connor, and M. R. Sperling. Hippocampal cell density and subcortical
metabolism in temporal lobe epilepsy. Epilepsia, 40(4):408–13, 1999.

300



[317] T. R. Henry, J. C. Mazziotta, and Jr. Engel, J. Interictal metabolic anatomy
of mesial temporal lobe epilepsy. Arch Neurol, 50(6):582–9, 1993.

[318] T. R. Henry, J. C. Mazziotta, Jr. Engel, J., P. D. Christenson, J. X. Zhang,
M. E. Phelps, and D. E. Kuhl. Quantifying interictal metabolic activity in
human temporal lobe epilepsy. J Cereb Blood Flow Metab, 10(5):748–57,
1990.

[319] E. M. Lee, K. C. Im, J. H. Kim, J. K. Lee, S. H. Hong, Y. J. No, S. A. Lee,
J. S. Kim, and J. K. Kang. Relationship between hypometabolic patterns
and ictal scalp eeg patterns in patients with unilateral hippocampal sclerosis:
An fdg-pet study. Epilepsy Res, 84(2-3):187–93, 2009.

[320] N. Nelissen, W. Van Paesschen, K. Baete, K. Van Laere, A. Palmini,
H. Van Billoen, and P. Dupont. Correlations of interictal fdg-pet metabolism
and ictal spect perfusion changes in human temporal lobe epilepsy with hip-
pocampal sclerosis. Neuroimage, 32(2):684–95, 2006.

[321] V. Rusu, F. Chassoux, E. Landre, V. Bouilleret, F. Nataf, B. C. Devaux,
B. Turak, and F. Semah. Dystonic posturing in seizures of mesial temporal
origin: electroclinical and metabolic patterns. Neurology, 65(10):1612–9,
2005.

[322] B. Sadzot, R. M. Debets, P. Maquet, C. W. van Veelen, E. Salmon, W. van
Emde Boas, D. N. Velis, A. C. van Huffelen, and G. Franck. Regional brain
glucose metabolism in patients with complex partial seizures investigated
by intracranial eeg. Epilepsy Res, 12(2):121–9, 1992.

[323] M. R. Sperling, R. C. Gur, A. Alavi, R. E. Gur, S. Resnick, M. J. O’Connor,
and M. Reivich. Subcortical metabolic alterations in partial epilepsy.
Epilepsia, 31(2):145–55, 1990.

[324] S. Takaya, T. Hanakawa, K. Hashikawa, A. Ikeda, N. Sawamoto,
T. Nagamine, K. Ishizu, and H. Fukuyama. Prefrontal hypofunction in pa-
tients with intractable mesial temporal lobe epilepsy. Neurology, 67(9):1674–
6, 2006.

[325] T. R. Barrick, C. E. Mackay, S. Prima, F. Maes, D. Vandermeulen, T. J.
Crow, and N. Roberts. Automatic analysis of cerebral asymmetry: an ex-
ploratory study of the relationship between brain torque and planum tem-
porale asymmetry. Neuroimage, 24(3):678–91, 2005.

[326] Y. Iturria-Medina, A. Perez Fernandez, D. M. Morris, E. J. Canales-
Rodriguez, H. A. Haroon, L. Garcia Penton, M. Augath, L. Galan Garcia,
N. Logothetis, G. J. Parker, and L. Melie-Garcia. Brain hemispheric struc-
tural efficiency and interconnectivity rightward asymmetry in human and
nonhuman primates. Cereb Cortex, 21(1):56–67, 2011.

301



[327] A. Kucyi, M. Moayedi, I. Weissman-Fogel, M. Hodaie, and K. D. Davis.
Hemispheric asymmetry in white matter connectivity of the temporoparietal
junction with the insula and prefrontal cortex. PLoS One, 7(4):e35589, 2012.

[328] A. W. Toga and P. M. Thompson. Mapping brain asymmetry. Nat Rev
Neurosci, 4(1):37–48, 2003.

[329] J. Zhou, E. D. Gennatas, J. H. Kramer, B. L. Miller, and W. W. Seeley. Pre-
dicting regional neurodegeneration from the healthy brain functional con-
nectome. Neuron, 73(6):1216–27, 2012.

[330] A. F. Struck, L. T. Hall, J. M. Floberg, S. B. Perlman, and D. A. Dulli. Sur-
gical decision making in temporal lobe epilepsy: a comparison of [(18)f]fdg-
pet, mri, and eeg. Epilepsy Behav, 22(2):293–7, 2011.

[331] K. Dabbs, T. Becker, J. Jones, P. Rutecki, M. Seidenberg, and B. Hermann.
Brain structure and aging in chronic temporal lobe epilepsy. Epilepsia,
53(6):1033–43, 2012.

[332] E. Jung da and J. S. Lee. Multimodal neuroimaging in presurgical evalua-
tion of childhood epilepsy. Korean J Pediatr, 53(8):779–85, 2010.

[333] R. S. Liu, L. Lemieux, G. S. Bell, S. M. Sisodiya, P. A. Bartlett, S. D.
Shorvon, J. W. Sander, and J. S. Duncan. The structural consequences of
newly diagnosed seizures. Ann Neurol, 52(5):573–80, 2002.

[334] D. C. Reutens, J. M. Stevens, D. Kingsley, B. Kendall, I. Moseley, M. J.
Cook, S. Free, D. R. Fish, and S. D. Shorvon. Reliability of visual inspec-
tion for detection of volumetric hippocampal asymmetry. Neuroradiology,
38(3):221–5, 1996.

[335] M. H. Schmidt and B. Pohlmann-Eden. Neuroimaging in epilepsy: the state
of the art. Epilepsia, 52 Suppl 4:49–51, 2011.

[336] B. E. Swartz, U. Tomiyasu, A. V. Delgado-Escueta, M. Mandelkern, and
A. Khonsari. Neuroimaging in temporal lobe epilepsy: test sensitivity and
relationships to pathology and postoperative outcome. Epilepsia, 33(4):624–
34, 1992.

[337] W. Van Paesschen, J. S. Duncan, J. M. Stevens, and A. Connelly. Longitu-
dinal quantitative hippocampal magnetic resonance imaging study of adults
with newly diagnosed partial seizures: one-year follow-up results. Epilepsia,
39(6):633–9, 1998.

[338] K. Benedek, C. Juhasz, O. Muzik, D. C. Chugani, and H. T. Chugani.
Metabolic changes of subcortical structures in intractable focal epilepsy.
Epilepsia, 45(9):1100–5, 2004.

302



[339] D. E. Blum, T. Ehsan, D. Dungan, J. P. Karis, and R. S. Fisher. Bilateral
temporal hypometabolism in epilepsy. Epilepsia, 39(6):651–9, 1998.

[340] V. Brodbeck, L. Spinelli, A. M. Lascano, C. Pollo, K. Schaller, M. I. Vargas,
M. Wissmeyer, C. M. Michel, and M. Seeck. Electrical source imaging for
presurgical focus localization in epilepsy patients with normal mri. Epilep-
sia, 51(4):583–91, 2010.

[341] R. P. Carne, T. J. O’Brien, C. J. Kilpatrick, L. R. MacGregor, R. J. Hicks,
M. A. Murphy, S. C. Bowden, A. H. Kaye, and M. J. Cook. Mri-negative pet-
positive temporal lobe epilepsy: a distinct surgically remediable syndrome.
Brain, 127(Pt 10):2276–85, 2004.

[342] S. Chinchure, C. Kesavadas, and B. Thomas. Structural and functional
neuroimaging in intractable epilepsy. Neurol India, 58(3):361–70, 2010.

[343] R. M. Debets, B. Sadzot, J. W. van Isselt, G. J. Brekelmans, L. C. Meiners,
A. O. van Huffelen, G. Franck, and C. W. van Veelen. Is 11c-flumazenil
pet superior to 18fdg pet and 123i-iomazenil spect in presurgical evaluation
of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry, 62(2):141–50,
1997.

[344] A. Drzezga, S. Arnold, S. Minoshima, S. Noachtar, J. Szecsi, P. Winkler,
W. Romer, K. Tatsch, W. Weber, and P. Bartenstein. 18f-fdg pet studies
in patients with extratemporal and temporal epilepsy: evaluation of an
observer-independent analysis. J Nucl Med, 40(5):737–46, 1999.

[345] W. D. Gaillard, S. Bhatia, S. Y. Bookheimer, S. Fazilat, S. Sato, and W. H.
Theodore. Fdg-pet and volumetric mri in the evaluation of patients with
partial epilepsy. Neurology, 45(1):123–6, 1995.

[346] B. Jupp, J. Williams, D. Binns, R. J. Hicks, L. Cardamone, N. Jones,
S. Rees, and T. J. O’Brien. Hypometabolism precedes limbic atrophy and
spontaneous recurrent seizures in a rat model of tle. Epilepsia, 53(7):1233–
44, 2012.

[347] R. C. Knowlton, R. A. Elgavish, A. Bartolucci, B. Ojha, N. Limdi, J. Blount,
J. G. Burneo, L. Ver Hoef, L. Paige, E. Faught, P. Kankirawatana, K. Riley,
and R. Kuzniecky. Functional imaging: Ii. prediction of epilepsy surgery
outcome. Ann Neurol, 64(1):35–41, 2008.

[348] R. C. Knowlton, K. D. Laxer, G. Ende, R. A. Hawkins, S. T. Wong, G. B.
Matson, H. A. Rowley, G. Fein, and M. W. Weiner. Presurgical multi-
modality neuroimaging in electroencephalographic lateralized temporal lobe
epilepsy. Ann Neurol, 42(6):829–37, 1997.

303



[349] C. J. Liew, Y. M. Lim, R. Bonwetsch, S. Shamim, S. Sato, P. Reeves-Tyer,
P. Herscovitch, I. Dustin, A. Bagic, G. Giovacchini, and W. H. Theodore.
18f-fcway and 18f-fdg pet in mri-negative temporal lobe epilepsy. Epilepsia,
50(2):234–9, 2009.

[350] P. Ryvlin, L. Cinotti, J. C. Froment, D. Le Bars, P. Landais, M. Chaze,
G. Galy, F. Lavenne, J. P. Serra, and F. Mauguiere. Metabolic patterns
associated with non-specific magnetic resonance imaging abnormalities in
temporal lobe epilepsy. Brain, 114 ( Pt 6):2363–83, 1991.

[351] W. H. Theodore, D. Katz, C. Kufta, S. Sato, N. Patronas, P. Smothers, and
E. Bromfield. Pathology of temporal lobe foci: correlation with ct, mri, and
pet. Neurology, 40(5):797–803, 1990.

[352] S. G. Uijl, F. S. Leijten, J. B. Arends, J. Parra, A. C. van Huffelen, and
K. G. Moons. The added value of [18f]-fluoro-d-deoxyglucose positron emis-
sion tomography in screening for temporal lobe epilepsy surgery. Epilepsia,
48(11):2121–9, 2007.

[353] C. H. Yun, S. K. Lee, S. Y. Lee, K. K. Kim, S. W. Jeong, and C. K. Chung.
Prognostic factors in neocortical epilepsy surgery: multivariate analysis.
Epilepsia, 47(3):574–9, 2006.

[354] A. Chauvin, K. J. Worsley, P. G. Schyns, M. Arguin, and F. Gosselin.
Accurate statistical tests for smooth classification images. J Vis, 5(9):659–
67, 2005.

[355] K. J. Worsley, A. C. Evans, S. Marrett, and P. Neelin. A three-dimensional
statistical analysis for cbf activation studies in human brain. J Cereb Blood
Flow Metab, 12:900–918, 1992.

[356] T. R. Henry, D. A. Ross, L. A. Schuh, and I. Drury. Indications and outcome
of ictal recording with intracerebral and subdural electrodes in refractory
complex partial seizures. J Clin Neurophysiol, 16(5):426–38, 1999.

[357] S. Shehab, M. Simkins, P. Dean, and P. Redgrave. The dorsal midbrain
anticonvulsant zone–i. effects of locally administered excitatory amino acids
or bicuculline on maximal electroshock seizures. Neuroscience, 65(3):671–9,
1995.

[358] Jr. LaFrance, W. C. and S. R. Benbadis. Differentiating frontal lobe epilepsy
from psychogenic nonepileptic seizures. Neurol Clin, 29(1):149–62, ix, 2011.

[359] K. M. Sauro, S. Macrodimitris, C. Krassman, S. Wiebe, N. Pillay, P. Fed-
erico, W. Murphy, and N. Jette. Quality indicators in an epilepsy monitoring
unit. Epilepsy Behav, 33:7–11, 2014.

304



[360] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,
1992.

[361] S. Yu-Sung, A. Gelman, J. Hill, and M. Yajima. Multiple imputation with
diagnostics (mi) in r: Opening windows into the black box. J Stat. Softw.,
45(2):1–31, 2011.

[362] D.B. Rubin. Multiple imputation after 18+ years (with discussion). JASA,
91:473–489, 1996.

[363] Morton S.C. Hall, P. On the estimation of entropy. Ann. Inst. Statist. Math,
45(1):69–88, 1993.

[364] Grosse E. Shyu-W.M. Cleveland, W.S. Chapter 8:Local regression models.
Wadsworth & Brooks/Cole, 1992.

[365] K. J. Worsley, J. E. Taylor, F. Tomaiuolo, and J. Lerch. Unified univariate
and multivariate random field theory. Neuroimage, 23 Suppl 1:S189–95,
2004.

[366] Tibshirani R. Tibshirani, R.J. A bias corection for the minimum error rate
in cross-validation. Ann. Appl. Stat, 3(2):822–829, 2009.

[367] C.E. Bonferroni. Il calcolo delle assicurazioni su gruppi di teste. Studi in
Onore del Professore Salvatore Ortu Carboni. Rome: Italy, 1935.

[368] C.E. Bonferroni. Teoria statistica delle classi e calcolo della probabilita.
Pubblicazioni del R Instituto Superiore di Scienze Economiche e Commer-
ciali di Firenze, 8:3–62, 1936.

[369] S. Kloppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D.
Rohrer, N. C. Fox, Jr. Jack, C. R., J. Ashburner, and R. S. Frackowiak.
Automatic classification of mr scans in alzheimer’s disease. Brain, 131(Pt
3):681–9, 2008.

[370] P. Agarwal, M. M. Mehndiratta, A. R. Antony, N. Kumar, R. N. Dwivedi,
P. Sharma, and S. Kumar. Epilepsy in india: nuptiality behaviour and
fertility. Seizure, 15(6):409–15, 2006.

[371] D. M. An, X. T. Wu, B. Yan, J. Mu, and D. Zhou. Clinical features of
psychogenic nonepileptic seizures: a study of 64 cases in southwest china.
Epilepsy Behav, 17(3):408–11, 2010.

[372] W. Silva, B. Giagante, R. Saizar, L. D’Alessio, S. Oddo, D. Consalvo,
P. Saidon, and S. Kochen. Clinical features and prognosis of nonepilep-
tic seizures in a developing country. Epilepsia, 42(3):398–401, 2001.

305



[373] L. C. Frey. Epidemiology of posttraumatic epilepsy: a critical review.
Epilepsia, 44 Suppl 10:11–7, 2003.

[374] A. Pakalnis and J. Paolicchi. Psychogenic seizures after head injury in
children. J Child Neurol, 15(2):78–80, 2000.

[375] L. E. Westbrook, O. Devinsky, and R. Geocadin. Nonepileptic seizures after
head injury. Epilepsia, 39(9):978–82, 1998.

306




