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ABSTRACT OF THE DISSERTATION 
 

Ambiguity in the Mind and the Lexicon 
 

 
by 

 

Sean Trott 

 

Doctor of Philosophy in Cognitive Science 

University of California San Diego, 2022 

Professor Benjamin Bergen, Chair 
 

 

Words contain multitudes. This multiplicity of meanings raises two key questions, 

both of which this thesis attempts to address. First, are word meanings categorical or 

continuous? The results of Chapters 2-4 support a hybrid model, in which word meanings 

occupy a continuous state-space (Elman, 2009), which is further discretized along the 
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boundaries of distinct senses. And second, does the amount and distribution of homophony in 

real lexica reflect a pressure to concentrate meanings in the most efficient, optimal 

wordforms? The results in Chapters 5-7 suggest that homophony can emerge without a direct 

pressure for efficiency––and further, that real lexica might select against homophones, 

particularly among the most frequent wordforms of a lexicon. This pressure could even 

explain other properties of human lexica, such as their large phonological neighborhoods.  
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CHAPTER 1: INTRODUCTION 
 

Words mean different things in different contexts. In some cases (approximately 7% of 

English words, for instance––Rodd et al., 2004), these meanings appear entirely unrelated: the 

“bark” of a dog is utterly unlike the “bark” of a tree. Far more frequently (about 84% of English 

words––Rodd et al., 2004), the same wordform conveys distinct but related meanings: a “lamb” 

can be friendly, but it can also be roasted. Finally, all words have meanings that arguably depend 

on context to some extent: a toddler and a cheetah can both “run”, but the motor routines 

involved in each event––and a comprehender’s representation of those events––likely differ in a 

number of ways (Elman, 2004; Yee & Thompson-Schill, 2016).  

Words, then, contain multitudes. The resulting lexical ambiguity raises two related (but 

distinct) research questions, each of which connect to broader debates in the field of Cognitive 

Science. This thesis attempts to address both questions, which are introduced and described 

briefly in the sections below.1 

Are word meanings categorical or continuous? 

Despite widespread interest in lexical ambiguity across many domains––linguistics 

(Tuggy, 1993), cognitive science (Rodd et al., 2004), lexicography (Krishnamurthy & Nicholls, 

2000), Natural Language Processing (Navigli, 2009; Kilgarriff, 2007; Schneider et al, 2015; 

Karidi et al, 2021), legal studies (Schane, 2002), and more––there remains considerable debate 

about exactly how humans represent this multiplicity of meanings.  

 
1 Note that while both questions relate to lexical ambiguity, the lines of research are fairly distinct in terms of the 
methodologies employed and the theoretical assumptions they make. This issue is discussed at more length in the 
Conclusion chapter. 
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Traditional views of the mental lexicon liken it to a kind of “mental dictionary”, in which 

different word meanings are stored in discrete “entries” (Kempson, 1977). However, others 

(Elman, 2009) have criticized these categorical accounts on several grounds, including the fact 

that they are unable to handle the flexible, context-dependent nature of word meaning. 

Alternative accounts argue instead that word meanings are best characterized as occupying a 

continuous, context-sensitive state space (Elman, 2004). As noted above, this tension echoes 

more general debates in Cognitive Science. What is the nature of mental representations? Is 

semantic knowledge continuous or categorical? In chapters 2-4, I attempt to adjudicate between 

these categorical and continuous accounts of word meaning. 

In Chapter 2, I introduce a novel dataset of human relatedness judgments for ambiguous 

words in distinct contexts. I also show that state-of-the-art language models trained on linguistic 

input alone make systematic errors in how related they find these meanings to be––they 

underestimate the relatedness of words belonging to the same sense, and overestimate the 

relatedness of different sense homonyms (Chapter 2). This suggests that at least as 

operationalized by current language models, continuous accounts fail to explain the categorical 

effect of sense boundaries.  

In Chapter 3, I introduce an expanded version of this dataset that contains contextualized 

sensorimotor judgments about these ambiguous words (modeled on the Lancaster Sensorimotor 

Norms––Lynott et al., 2019). I show that these contextualized judgments encode novel 

information that is not present in either the Lancaster Norms or distributional language models 

(Chapter 3).  

Finally, in Chapter 4, I directly test which account of word meaning best explains human 

behavior on a primed sensibility judgment task. The results from two behavioral experiments, 
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along with a quantitative model, suggest evidence for a “hybrid” theory, in which word meanings 

are both categorical and continuous (Chapter 4). 

Why is language so ambiguous? 

Ambiguity is surprisingly pervasive. Even considering homonyms alone, anywhere from 

approximately 7% (Rodd et al., 2015) to 15% (Trott & Bergen, 2020) of English wordforms have 

at least two unrelated meanings. This is surprising: why would a system ostensibly evolved for 

efficient communication tolerate such rampant ambiguity?    

In Chapter 5, I consider a dominant theory that ambiguity actually makes languages more 

efficient, i.e., that ambiguity is positively selected for. Surprisingly, and contrary to previous 

work (Piantadosi et al, 2012), I find that an explanation for both the amount and concentration of 

homophony in real lexica need not posit a direct selection pressure for recycling the “best” 

wordforms for multiple meanings. Simulated lexica matched for the phonotactics and 

distribution of word lengths actually overestimate the degree of ambiguity––suggesting that, if 

anything, homophones are selected against (Chapter 5).  

In Chapter 6, I ask whether this apparent pressure against homophony can explain other 

properties of real lexica, such as the size of their phonological neighborhoods, which previous 

work (Dautriche et al., 2017) has argued may also be the product of a direct selection pressure. 

Here, I find that implementing a selection pressure against homophones results in the creation of 

larger phonological neighborhoods, suggesting that at least in principle, both phenomena could 

be explained by a common mechanism (Chapter 6). 

Finally, in Chapter 7, I consider the well-known meaning-frequency law (Zipf, 1949): the 

empirical observation that the most frequent wordforms are also the most ambiguous. Previous 

work (Zipf, 1949; Piantadosi et al., 2012) has argued that this law results from competing 
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pressures to make language easier to produce, on the one hand (i.e., a pressure for unification), 

and to make language easier to understand, on the other hand (i.e., a pressure for diversification). 

However, this work has not attempted to quantify the relative size of these pressures, leaving it 

unknown whether they are equal in magnitude or whether one is stronger than the other. Using a 

phonotactic baseline, I find evidence supporting the claim that the distribution of meanings 

across wordforms is shaped by a relatively stronger comprehender-centric pressure to ease the 

cost of frequent disambiguation (Chapter 7). 

Summary 

Multiplicity of meanings appears to be the rule, not an exception. The mere prevalence of 

this phenomenon demands that it be taken seriously––both for theories of how meanings are 

organized and represented in the mind, and for theories of why languages look the way that they 

do. The work in this thesis attempts to address this challenge by investigating two distinct 

questions about lexical ambiguity. 
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CHAPTER 2: RELATEDNESS OF AMBIGUOUS WORDS––IN CONTEXT 
 

 Words mean different things in different contexts. Sometimes these meanings appear to 

be distinct, a phenomenon known as lexical ambiguity. In English, approximately 7% of 

wordforms are homonymous, i.e., they have multiple, unrelated meanings2(e.g., “tree bark” vs. 

“dog bark”), and as many as 84% of wordforms are polysemous, i.e., they have multiple, related 

meanings (e.g., “pet chicken” vs. “roast chicken”) (Rodd et al., 2004). But even unambiguous 

words evoke subtly different interpretations depending on the context of use, i.e., their meanings 

are dynamic and context-dependent (Yee and Thompson-Schill, 2016; Li and Joanisse, 2021). 

While the uses of runs in “the boy runs” vs. “the cheetah runs” may not be considered distinct 

meanings, a human comprehender will likely activate a different mental image when processing 

each sentence (Elman, 2009). 

 These facts present a challenge for computational models of lexical semantics. Any 

downstream task that involves meaning requires models capable of disambiguating among the 

multiple possible meanings of an ambiguous word in a given context. Further, the graded nature 

of human semantic representations can influence how comprehenders construe events and 

participants in those events (Elman, 2009; Li and Joanisse, 2021). In turn, a number of Natural 

Language Processing (NLP) tasks could benefit from context-sensitive representations that go 

beyond discrete sense representations and capture the manner in which humans construe 

events—including sentiment analysis, bias detection, machine translation, and more (Trott et al., 

2020). If an eventual goal of NLP is human-like language understanding, models must be 

equipped with semantic representations that are flexible enough to accommodate the dynamic, 

 
2 Dautriche (2015) estimates the average rate of homonymy across languages to be 4%. 
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context-dependent nature of word meaning—as humans appear to do (Elman, 2009; Li and 

Joanisse, 2021). 

 Yet a crucial prerequisite to developing better models is evaluating those models along 

the relevant dimensions of performance. Thus, at the minimum, we need metrics that evaluate a 

model along two critical dimensions: 

1. Disambiguation: A model’s ability to distinguish between distinct meanings of a word. 

2. Contextual Gradation: A model’s ability to modulate a given meaning in context, in 

ways that reflect the continuous nature of human judgments. 

 A promising development in recent years is the rise of contextualized word embeddings, 

produced using neural language models such as BERT (Devlin et al., 2018), ELMo (Peters et al., 

2018), XLNet (Yang et al., 2019), and more. Advances in these models have yielded improved 

performance on a number of tasks, including Word Sense Disambiguation (WSD) (Boleda et al., 

2019; Loureiro et al., 2020). 

 WSD satisfies the Disambiguation Criterion above, but not the Contextual Gradation 

Criterion. In fact, there is still a dearth of metrics for assessing the degree to which 

contextualized representations match human judgments about the way in which context shapes 

meaning. 

 In the Related Work section, we describe several related datasets that satisfy at least one 

of these criteria. Then, we introduce and describe the dataset construction process for RAW-C: 

Relatedness of Ambiguous Words—in Context.3 We also describe the procedure we followed for 

collecting human relatedness norms for each sentence pair. In the remaining sections, we report 

the results of several analyses that probe how well contextualized embeddings from two neural 

 
3 The dataset can be found on GitHub: https:// github.com/seantrott/raw-c. 
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language models (BERT and ELMo) predict these norms, then explore possible shortcomings in 

current models, and propose avenues for future work. 

Related Work 

Most existing datasets fulfill either the Disambiguation or the Contextual Gradation criterion, but 

few datasets fulfill both (see Haber and Poesio (2020a) for an exception). 

 Several datasets contain human relatedness and similarity judgments for distinct words in 

isolation. Others are used for Word Sense Disambiguation, and contain ambiguous words in 

different sentence contexts, along with annotated sense labels; as noted in the Introduction, WSD 

fulfills the Disambiguation Criterion, but not the Contextual Gradation Criterion. Several recent 

datasets contain graded relatedness judgments for words in different contexts. However, none 

focus specifically on graded relatedness judgments for ambiguous words, controlling both the 

inflection and part of speech of the target word in question. Finally, one dataset (Haber and 

Poesio, 2020) contains similarity judgments for polysemous words in context, but is more 

limited in size and does not match the sentence frame across the two uses. 

De-contextualized Word Similarity and Relatedness 

 Several datasets contain human judgments of the similarity or relatedness of (mostly 

English) word pairs, in isolation (see Taieb et al. (2020) for a review). This includes SimLex-999 

(Hill et al., 2015), SimVerb-3500 (Gerz et al., 2016), WordSim-353 (Finkelstein et al., 2001), 

MTurk-771 (Halawi et al., 2012), MEN (Bruni et al., 2014), and more. These datasets are 

primarily used for evaluating the quality of static semantic representations, including distributed 

semantic models such as GloVe (Pennington et al., 2014), as well as representations that use 

knowledge bases like WordNet (Faruqui and Dyer, 2015). 
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 However, these resources are (by definition, as decontextualized judgments) not directly 

amenable to evaluating how well a model incorporates context into its semantic representation of 

a given word. 

Word Sense Disambiguation 

 In Word Sense Disambiguation (WSD), a classifier predicts the “sense” of an ambiguous 

word in a given context, often using a contextualized embedding. WSD relies on annotated sense 

labels, which in turn requires determining whether any given pair of word uses belong to the 

same or distinct senses—i.e., whether to “lump” or “split”. There is considerable debate about 

how granular word sense inventories should be (Hanks, 2000; Brown, 2008a);4 resources range 

in granularity from WordNet (Fellbaum, 1998) to the Coarse Sense Inventory, or CSI (Lacerra et 

al., 2020). Recent work using coarse-grained sense inventories has achieved success rates of 85% 

and beyond (Lacerra et al., 2020; Loureiro et al., 2020). 

 In terms of the criteria listed above, WSD satisfies the Disambiguation Criterion, but not 

the Contextual Gradation Criterion. WSD only captures a model’s ability to distinguish between 

distinct senses; it does not assess how meaning is modulated within a given sense category, e.g., 

that a human comprehender might consider the meaning of runs in “the cheetah runs” as more 

similar to “the jaguar runs” than to “the toddler runs”, or that some uses of a sense might be more 

prototypical than others. 

Contextualized Word Similarity and Relatedness 

There have been several recent efforts to address this gap in the literature: 

 The Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) contains 

similarity judgments for 2,003 English word pairs in a sentence context. Approximately 12% of 

 
4 This also raises deeper philosophical issues about exactly what qualifies as a “sense” (Hanks, 2000; Tuggy, 1993; 

Geeraerts, 1993; Kilgarriff, 2007); answering these questions is beyond the scope of this paper. 
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the pairs contain the same word (e.g., “pack his bags” vs. “pack of zombies”), though not always 

in the same part of speech; in most cases, the words compared are different (e.g., “left” vs. 

“abandon”). This dataset is a useful step towards contextualized similarity judgments, but 

because most pairs contain different words (or the same word in different parts of speech), static 

word embeddings such as Word2Vec can still perform quite well without considering the context 

at all (Pilehvar and CamachoCollados, 2018). 

 The Word in Context (WiC) dataset (Pilehvar and Camacho-Collados, 2018) contains a 

set of over 7,000 sentence pairs with an overlapping English word, labeled according to whether 

the use of that word corresponds to same or different senses. As Pilehvar and Camacho-Collados 

(2018) note, the structure of the dataset requires some form of contextualized meaning 

representation to perform above a random baseline, which makes it more suitable for 

interrogating contextualized embeddings. However, the task is a binary classification task along 

the lines of WSD, making it harder to assess the Contextual Gradation Criterion. 

 The CoSimLex dataset (Armendariz et al., 2020), created with the Graded Word 

Similarity in Context (GWSC) task, contains graded similarity judgments for a number of word 

pairs across English (340), Croatian (112), Slovene (111), and Finnish (24). Each pair of words 

is rated in two separate contexts, yielding 1174 scores in total. Sentence contexts were extracted 

from each language’s Wikipedia. Unlike WiC, the word pairs do not actually contain the same 

word—rather, for any given word pair (e.g., “beach” and “seashore”), there are at least two pairs 

of sentence contexts with associated similarity judgments. Thus, this dataset can be used to 

assess graded differences in contextualized meaning representations, but not directly for the 

same ambiguous word. 

Contextualized Similarity of Ambiguous Words 
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Finally, one dataset (Haber and Poesio, 2020a,b) contains graded similarity judgments (as well as 

copredication acceptability judgments) for a number of polysemous words in distinct sentential 

contexts, meeting both Contextual Gradation and the Disambiguation criteria. 

 The main limitations of this dataset are its size (it contains examples for only 10 

polysemes), as well as the fact that the sentence frames are also not always controlled for each 

polysemous word. 

Summary 

Most datasets reviewed above allow practitioners to evaluate models on their ability to 

disambiguate (i.e., the Disambiguation Criterion) or their ability to capture graded differences in 

word relatedness (i.e., the Contextual Gradation Criterion); one dataset (Haber and Poesio, 2020) 

meets both criteria. But to our knowledge, no datasets contain graded relatedness judgments for 

ambiguous words in tightly controlled sentence contexts, with inflection and part-of-speech 

controlled across each use. In Section 3 below, we describe the procedure we followed for 

constructing such a dataset. 

RAW-C: Relatedness of Ambiguous Words, in Context 

Items were adapted from stimuli used in past psycholinguistic studies, which contrasted 

behavioral responses to homonymous and polysemous words, either in isolated lexical decision 

tasks (Klepousniotou and Baum, 2007) or in a disambiguating context (Klepousniotou, 2002; 

Klepousniotou et al., 2008; Brown, 2008b). We selected 115 words in total. For each ambiguous 

word (e.g., “bat”), we created four sentences: two each for two distinct meanings of the word. 

We attempted to match the sentence frames as closely as possible, in most cases altering only a  

single word5 across the four sentences to disambiguate the intended meaning: 

 
5 There were 13 words for which at least one of the four sentences used a different article (“a” vs. “an”), in addition 

to having a different disambiguating word. 
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1. He saw a fruit bat. 

2. He saw a furry bat. 

3. He saw a wooden bat. 

4. He saw a baseball bat. 

 We also labeled each word according to whether the two distinct meanings were judged 

by lexicographers to be Polysemous or Homonymous. Distinguishing homonymy from polysemy 

is notoriously challenging (Valera, 2020); common tests include determining whether the two 

meanings share an etymology (polysemy) or not (homonymy), or determining whether the two 

meanings are conceptually related (polysemy) or not (homonymy). Both tests can be criticized 

on multiple grounds (Tuggy, 1993; Valera, 2020), and do not always point in the same direction 

(e.g., etymologically related words sometimes drift apart, resulting in apparent homonymy). For 

our annotation, we consulted both the online Merriam-Webster Dictionary (https://www. 

merriam-webster.com/) and the Oxford English Dictionary, or OED (https://www.oed.com/), and 

identified whether each dictionary listed the two meanings in question in separate lexical entries 

(homonymy), or as different senses under the same lexical entry (polysemy).6 For example, both 

dictionaries list the animal and meat senses of the word “lamb” as different senses under the 

same lexical entry, whereas they list the animal and artifact senses of the word “bat” under 

different lexical entries. There was one word (“drill”) on which the two dictionaries did not 

agree; in this case, we labeled the two meanings (“electric drill” vs. “grueling drill”) as 

homonymy (as per the OED). 

 
6 Our primary goal with this labelling was not to definitively distinguish homonymy from polysemy; as noted 

above, there is no single, universal criterion for doing so, and different criteria might be more or less relevant for 
different purposes. It was simply to specify how lexicographers treat the different words, in case that information is 
useful for users of the resource. 



12 
 

 There were also three words for which neither dictionary distinguished the two meanings 

(either in terms of homonymy or polysemy). For example, “best-selling novel” and “thick novel” 

refer to cultural and physical artifacts, respectively, but are not listed as distinct senses. Again, 

this highlights the challenge of distinguishing outright ambiguity from context-dependence; these 

items were included in the annotation study described below, but were excluded from the final 

set of norms, thus resulting in 112 target words altogether.7 Each word was used in four 

sentences, for a total of six sentence pairs. 84 of the target words were nouns, and 28 were verbs 

(note that Part-of-Speech was always held constant within each word). 

Human Annotation 

Participants 

81 participants were recruited through UC San Diego’s undergraduate subject pool for 

Psychology, Cognitive Science, and Linguistics students. Participants received class credit for 

participation. Three participants were removed for failing the bot checks at the beginning of the 

study, and one was removed for failing the catch trials embedded in the experiment, leaving 77 

participants in total (59 Female, 16 Male, 2 Non-binary). The median age of participants was 20 

(M = 20.22, SD = 2.7), with ages ranging from 18 to 38. 74 participants self-reported as being 

native speakers of English. 

Materials 

 
7 The existence of these “Unsure” items, as well as items for which the two dictionaries disagreed on the issue of 

homonymy vs. polysemy, raises the question of whether empirical measurements such as relatedness judgments (or 
even cosine distance) could help inform lexicographic decisions. As a proof of concept, we trained a logistic 
regression classifier (using leave-one-out cross-validation) to predict whether two contexts of use belonged to the 
Same Sense, using Mean Relatedness. The classifier successfully categorized 86.76% of held-out test items as 
belonging to the same or different senses. Further, for different sense items only, a trained classifier successfully 
categorized 79% of held-out test items as polysemous or homonymous. While only a proof of concept, this 
demonstration suggests a promising avenue for future research. 
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We used the original set of 115 words described in Section 3, i.e., including the three items 

labeled “Unsure”. Each word had four sentences; accounting for order, this resulted in twelve 

possible sentence pairs (six pairs, with two orders each) for each word, for a total 1380 items. 

Procedure 

After giving consent, participants answered two questions designed to filter out bots (e.g., 

“Which of the following is not a place to swim?”, with the correct answer being “Chair”). They 

were then given instructions, which included a description of how the meaning of a word can 

change in different contexts. 

 On each page of the study, participants were shown a pair of sentences, with the target 

word bolded (see Figure 1 for an example). They were asked to indicate how related the uses of 

that word were across the two sentences, with a labeled Likert scale ranging from “totally 

unrelated” to “same meaning”. 

 

Figure 1: Example item from study. 

 We included two “catch” trials in the study to identify participants who did not pay 

attention. In one, the two sentences were identical, such that the correct answer is “same 

meaning”; the other featured a homonym with two different parts of speech (rose.v and rose.n), 

such that the correct answer was “totally unrelated”. 
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 Excluding the catch trials, participants saw 115 sentence pairs total; no word was 

repeated twice across trials for the same participant. The comparisons any given subject saw for 

a given word were randomly sampled from the 12 possible sentence pairs, and the order of trials 

was randomized.8 

Analysis and Results 

The analyses run below were performed on the 112 target words (i.e., excluding the “Unsure” 

items). Human annotations were assigned to a scale from 0 (“totally unrelated”) to 4 (“same 

meaning”). 

Analysis of Sentence Pairs 

Before analyzing the responses of human annotators, we first sought to characterize how well 

two neural language models captured the categorical structure in the dataset—i.e., whether their 

contextualized representations could be used to distinguish same-sense from different-sense uses 

of the same word, as well as words labeled as different-sense Homonyms from different-sense 

Polysemes. 

 We ran every sentence through two language models: ELMo, using the Python AllenNLP 

package (Gardner et al., 2017), and BERT, using the bert-embedding package.9 Then, for each 

sentence pair, we computed the Cosine Distance between the contextualized representations of 

the target wordform (e.g., bat in “He saw the furry bat” and “He saw the wooden bat”). The 

distribution of Cosine Distances is visualized in Figure 2. 

 
8 Based on the suggestion of an anonymous reviewer, we also ran a follow-up norming study to collect estimates 
of sense frequency bias (sometimes called dominance); sense dominance is known to play an important role in 
the processing of ambiguous words (Klepousniotou and Baum, 2007; Rayner et al., 1994; Binder and Rayner, 
1998; Leinenger and Rayner, 2013). These dominance norms are included in the final dataset. 
9 https://pypi.org/project/ bert-embedding/ 
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Figure 2: Cosine Distances between the target word’s contextualized embeddings for both 

language models, plotted by Same Sense (True vs. False) and Ambiguity Type (Homonymy vs. 

Polysemy). 

 We also performed several statistical analyses, using the lme4 package in R (Bates et al., 

2015). In each case, we compared a full model to a reduced model using a log-likelihood ratio 

test. All models had Cosine Distance as a dependent variable, and included Part-of-Speech as a 

fixed effect, random intercepts for Word and Language Model (i.e., ELMo vs. BERT), and by-

Word random slopes for the effect of Same Sense. 

 Adding a fixed effect of Same Sense significantly improved model fit [χ2(1) = 143.72,p < 

.001], with same-sense uses significantly closer than different-sense uses [β = −.099,SE = 0.005]. 

However, adding an interaction between Same Sense and Ambiguity Type (as well as fixed 

effects of both) did not significantly improve the fit above a model omitting the interaction [χ2(1) 

= 2.19,p = 0.14]. In other words, both language models could differentiate same-sense and 

different-sense uses of an ambiguous word, but their ability to discriminate between Homonymy 

and Polysemy was marginal at best. 
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Analysis of Human Annotations 

Our primary goal was understanding the distribution of human relatedness annotations—both in 

terms of how it reflects the underlying categorical structure of the dataset (e.g., Homonymy vs. 

Polysemy), as well as the Cosine Distance measures from each language model. As in the section 

above, we constructed a series of linear mixed effects models and performed log-likelihood ratio 

tests for each model comparison; in each case, the dependent variable was Relatedness. All 

models included a fixed effect of Part-of-Speech, by-subject and by-word random slopes for the 

effect of Same Sense, by-subject random slopes for the effect of Ambiguity Type, and random 

intercepts for subjects and items. 

 First, we asked whether participants’ relatedness judgments varied across same-sense and 

differentsense sentence pairs. We added a fixed effect of Same Sense to the base model 

described above, along with fixed effects for the Cosine Distance measures from BERT and 

ELMo. This model explained significantly more variance than a model omitting only Same 

Sense [χ2(1) = 207.11,p < .001], with same-sense uses receiving higher relatedness judgments on 

average [β = 1.94,SE = 0.1]. The median relatedness judgment for samesense uses was 4 (M = 

3.46,SD = 1.02), while the median relatedness judgment for differentsense uses was 1 (M = 

1.31,SD = 1.45). 

 Second, we asked whether participants’ judgments were sensitive to the distinction 

between Homonymy and Polysemy. We added an interaction between Same Sense and 

Ambiguity Type (along with a fixed effect of Ambiguity Type) to the model described above. 

The interaction significantly improved model fit [χ2(1) = 25.45,p < .001]. The median 

relatedness for both same-sense homonyms and polysemes was 4, whereas the median 

relatedness for different-sense homonyms (0) was lower than that for different-sense polysemes 
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(2). Further, as depicted in Figure 3, there was considerably more variance across polysemous 

words than homonymous words—this makes sense, given that some polysemous meanings are 

highly related (e.g., “pet chicken” vs. “roast chicken”), while others are more distant (e.g., 

“desperate act” vs. “magic act”). 

 

Figure 3: Mean relatedness judgments for each sentence pair, plotted by by Same Sense (True vs. 

False) and Ambiguity Type (Homonymy vs. Polysemy). 

 Third, we asked whether the Cosine Distance measures explained independent variance 

above and beyond that explained by Same Sense and Ambiguity Type. A full model including all 

factors explained more variance than a model excluding only the Cosine Distance measure from 

BERT [χ2(1) = 36.19,p < .001], as well as a model excluding only the Cosine Distance measure 

from ELMo [χ2(1) = 16.92,p < .001]. This indicates that Relatedness does not vary purely as a 

function of the categorical structure in the dataset—the graded relatedness judgments were 

sensitive to subtle differences in context. 
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Inter-annotator agreement was assessed by calculating the average Spearman’s rank correlation 

between each participant’s responses and the Mean Relatedness for the set of 112 items observed 

by that participant—where Mean Relatedness was calculated after omitting responses by the 

participant in question. This answers the question: to what extent do each participant’s responses 

correlate with the consensus rating by the 76 other participants? Using this method, the average 

correlation was ρ = 0.79, with a median of ρ = 0.81 (SD = .07). The lowest agreement was ρ = 

0.55, and the highest was ρ = 0.88. 

Evaluation of Language Models 

To evaluate the language models, we collapsed across the single-trial data and computed the 

Mean and Median Relatedness for each unique sentence pair. The distribution of Mean 

Relatedness judgments is depicted in Figure 3. 

 As in past work (Hill et al., 2015), we computed the Spearman’s rank correlation between 

the distribution of Cosine Distance measures (from each model) and the Mean Relatedness for a 

given sentence pair. BERT performed slightly better than ELMo (BERTρ = −0.58,ELMoρ = 

−0.53).10 Putting this in context, both models performed considerably worse than the average 

inter-annotator agreement score (ρ = 0.79). 

 We also computed the R2 of a linear regression including the Cosine Distance measures 

from both BERT and ELMo. Combined, both measures explained roughly 37% of the variance 

in Mean Relatedness judgments (R2 = 0.37). Surprisingly, this was only slightly more than half 

the variance explained by a linear regression including only the interaction between Same Sense 

and Ambiguity Type (R2 = 0.66), as well as a regression including all factors (R2 = 0.71). 

 
10 Note that larger values of Cosine Distance indicate a larger distance between two vectors; thus, a negative 

correlation is expected between relatedness and Cosine Distance. 
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 By visualizing the residuals from the linear regression with only BERT and ELMo (see 

Figure 4), we see that Cosine Distance appears to systematically underestimate how related 

participants find same-sense judgments to be (for both Polysemy and Homonymy). Further, we 

see that Cosine Distance systematically overestimates how related participants find different-

sense Homonyms to be. 

 

Figure 4: Residuals of a linear regression including Cosine Distance measures from both BERT 

and ELMo, plotted by by Same Sense (True vs. False) and Ambiguity Type (Homonymy vs. 

Polysemy).  

Discussion 

Word meanings are dynamic, dependent on the contexts in which those words appear—and some 

words are even ambiguous, generating distinct, incompatible interpretations in different 

situations (e.g., “fruit bat” vs. “baseball bat”). 

 RAW-C contains graded relatedness judgments (by human annotators) for ambiguous 

English words in distinct sentential contexts. Importantly, the ambiguous wordform (e.g., “bat”) 

is always matched for both part-of-speech and inflection across each sentence pair; 84 of the 

Homonymy

Polysemy

−2 0 2
Residuals (relatedness ~ ELMo + BERT)

Am
bi

gu
ity

 ty
pe

same
FALSE
TRUE



20 
 

target words are nouns, and 28 are verbs. Each word has relatedness judgments for six different 

sentences pairs (four unique sentences): two same-sense pairs, and four different-sense pairs. 

Same sense pairs convey the same meaning, according to Merriam-Webster and the OED (e.g., 

“fruit bat” and “furry bat”), while different sense pairs correspond to meanings listed in either 

distinct lexical entries (e.g., “fruit bat” and “wooden bat”) or distinct sub-entries (e.g., 

“marinated lamb” and “baby lamb”). Furthermore, different-sense pairs are labeled according to 

whether they are related via homonymy or polysemy, a relevant distinction for both 

lexicographers and psycholinguists—recent evidence suggests that polysemous and 

homonymous meanings are represented differently in the mental lexicon (Klepousniotou, 2002; 

Klepousniotou and Baum, 2007). Finally, the sentential context is always tightly controlled; in 

most pairs, only one word differs across the two sentences (e.g., “fruit” vs. “furry”). 

 In Section 5, we reported several primary findings. First, contextualized representations 

from both BERT and ELMo capture the distinction between same-sense and different-sense uses 

of a word, but their ability to distinguish between homonymy and polysemy is marginal at best. 

This contrasts with other recent work (Nair et al., 2020), suggesting that BERT is able to 

differentiate between homonymy and polysemy. One possible explanation for this difference in 

results is that Nair et al. (2020) used naturally-occurring sentences from Semcor (Miller et al., 

1993), whereas our sentence contexts were more tightly controlled. Our results indicate that even 

the presence of a single disambiguating word can trigger nuanced differences in semantic 

representation in humans, but not necessarily in current neural language models. Second, we 

found that both BERT and ELMo explain independent sources of variance in human relatedness 

judgments, above and beyond Same Sense and Ambiguity Type (i.e., homonymy vs. polysemy). 

This is encouraging, because it demonstrates a direct benefit of graded (rather than categorical) 
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judgments; for example, among the broad category of different-sense polysemous pairs, some are 

closely related (e.g., “marinated lamb” and “baby lamb”), and others are considerably less 

closely related (e.g., “hostile atmosphere” and “gaseous atmosphere”). Overall, contextualized 

embeddings from BERT were better at predicting human relatedness judgments than those from 

ELMo—this is consistent with past work (Wiedemann et al., 2019) suggesting that BERT 

outperforms ELMo on tasks involving sense disambiguation. 

 Importantly, however, both BERT and ELMo failed to capture variance in relatedness 

judgments that is captured by Same Sense and Ambiguity Type. As depicted in Figure 4, Cosine 

Distance tended to underestimate how related humans find same-sense uses to be, and 

overestimate how related humans find different-senses to be. This is not entirely surprising, 

given that neither BERT nor ELMo are equipped with discrete sense representations—at most, 

they produce contextualized embeddings that are amenable to supervised classification or 

unsupervised clustering. Yet this also illustrates that—at least on this task—humans do appear to 

draw on some manner of (likely fuzzy) categorical representation, such that the difference 

between two contexts of use is compressed for same-sense meanings, and exaggerated for 

different-sense meanings (particularly for homonyms). This suggests several exciting avenues 

for future work: can neural language models such as BERT be augmented with semantic 

knowledge or representational schemes that improve their performance on RAW-C or similar 

tasks? Both possibilities are explored in Section 6.1 below. 

Future Work 

As Bender and Koller (2020) note, most language models are trained on linguistic form alone. In 

contrast, human language knowledge is grounded in our embodied experience of the world (Bisk 

et al., 2020). To the extent that human sense representations are guided by distinct sensorimotor 
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or social-interactional associations, equipping language models with this information ought to 

facilitate their ability to distinguish between distinct meanings of a word (i.e., the 

Disambiguation Criterion) and modulate a given meaning in context (i.e., the Contextual 

Gradation Criterion). 

 Practitioners could also look to (and in turn, inform) models of the human mental lexicon 

(Nair et al., 2020). Several promising models attempt to address the continuous nature of word 

meaning, as well as the issue of apparent category boundaries (i.e., word senses) (Rodd et al., 

2004; Elman, 2009); at this stage, the role of continuity vs. categorical structure in human sense 

representations remains an open question. Models such as SenseBERT (Levine et al., 2020) 

incorporate high-level sense knowledge into internal representations from the beginning, and 

find improvements on several WSD tasks—would this approach, or others like it, yield an 

improvement on RAW-C as well? 

Limitations of Dataset 

RAW-C has multiple limitations, some of which could also be addressed in future work. First, 

the broad category of “polysemy” is often subdivided into different mechanisms or manners of 

conceptual relation, such as metaphor and metonymy. This distinction is also believed to be 

cognitively relevant, with some evidence that metaphorically related senses are represented 

differently than metonymically related ones (Klepousniotou, 2002; Klepousniotou and Baum, 

2007; Lopukhina et al., 2018; Yurchenko et al., 2020). Future work could annotate polysemous 

word pairs for whether they are related by metaphor, metonymy, or another class of semantic 

relation—annotations could even be made as granular as the specific semantic relation involved 

(e.g., Animal for Meat) (Srinivasan and Rabagliati, 2015). This finer-grained coding could be 

used to assess exactly which kinds of semantic relation correlate with the distributional profile of 
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word tokens—i.e., are accessible from linguistic form alone—and which require some external 

module, whether in the form of grounded world knowledge or a structured knowledge base. 

 Another possible limitation is the fact that RAWC contains experimentally controlled 

minimal pairs, instead of naturally-occurring sentences (Nair et al., 2020; Haber and Poesio, 

2020a,b). On the one hand, naturalistic sentences are useful for evaluating models on WSD “in 

the wild” (and indeed, there are a number of useful datasets for this purpose). On the other hand, 

controlled datasets are useful if one’s goal is to better understand a particular model or linguistic 

phenomenon— especially if this also allows a direct comparison with human annotations. For 

example, our analyses suggest that human sense representations must involve some additional 

levels of processing or information beyond the statistical regularities in word co-occurrence 

captured by BERT and ELMo. Moving forward, we hope that experimentally controlled datasets 

such as RAW-C will serve as a useful complement to existing, more naturalistic datasets. 

Conclusion 

We have presented a novel dataset for evaluating contextualized language models: RAW-C 

(Relatedness of Ambiguous Words, in Context). This resource contains both categorical 

annotations, derived from expert lexicographers (MerriamWebster and the OED), as well as 

graded relatedness judgments from human participants. We found that contextualized 

representations from BERT and ELMo captured some variance (R2 = .37) in these relatedness 

judgments, but that the distinction between same-sense and different-sense uses, as well as 

between homonymy and polysemy, explains considerably more (R2 = .66). Finally, we argued 

that this gap in performance represents an exciting opportunity for further development, and for 

crosspollination between experimental psycholinguistics and NLP. 

Acknowledgments 



24 
 

 Chapter 2, in full, is a reprint of the material as it appears in the Proceedings of the 59th 

Annual Meeting of the Association for computational Linguistics and the 11th International Joint 

Conference on Natural Language Processing, in 2021 (August). Trott, Sean; Bergen, Benjamin. 

The dissertation author was the primary investigator and author of this paper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



25 
 

CHAPTER 3: CONTEXTUALIZED SENSORIMOTOR NORMS 

 
Most large language models (LMs) are trained on linguistic input alone. This approach may be 

fundamentally limited when it comes to language understanding (Bender and Koller, 2020; Bisk 

et al., 2020; Tamari et al., 2020), as the meaning of a word arguably depends on factors beyond 

which words it co-occurs with. In particular, humans appear to ground a word’s meaning in a 

rich network of sensorimotor associations (Pulvermüller, 1999; Bergen, 2012; Bergen and 

Feldman, 2008; Barsalou, 1999; Winter and Bergen, 2012; Barsalou, 2008; Glenberg and 

Kaschak, 2002). For example, our understanding of the word “table” incorporates not just the 

words that frequently co-occur with “table”, but also our embodied experience of tables: how 

they look, how they feel, which parts of our body we use to interact with them, and more. If 

human-like language understanding depends on grounding words in non-linguistic associations 

(Harnad, 1990), then LMs trained on text alone will never reach human levels of understanding 

(Bender and Koller, 2020). 

 One promising solution is to use human judgments of a word’s sensorimotor 

associations, such as the Lancaster Sensorimotor Norms (Lynott et al., 2019) (hereafter LS 

Norms), to help ground LM representations, as well as evaluate the extent to which those 

representations capture sensorimotor properties of word meaning. The LS Norms provide human 

ratings about the extent to which an isolated word (e.g., “table”) is strongly associated with 

various sensory modalities (e.g., Vision vs. Touch) and action effectors (e.g., Hand/Arm vs. 

Foot/Leg). Recent work (Kennington, 2021; Wan et al., 2020b,a) has found that integrating these 

norms improves the performance of language models on several NLP tasks, such as GLUE 

(Wang et al., 2018) and metaphor detection (Wan et al., 2020a). 
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 Despite the promise and early success of this approach, it faces a key limitation: 

resources like the LS Norms typically contain just a single set of judgments for each word. In 

practice, however, many words are ambiguous (Rodd et al., 2004; Haber and Poesio, 2021). In 

English, anywhere from 7% (Rodd et al., 2004) to 15% (Trott and Bergen, 2020) of words have 

multiple, unrelated meanings—and as many as 84% are polysemous, i.e., they have multiple, 

related meanings (Rodd et al., 2004). For example, the word “table” may refer to a piece of 

furniture or to a database organized into rows and columns. Further, even very similar uses of a 

word, like “lemon”, in its fruit-denoting sense, evoke different sensorimotor associations in 

different contexts (e.g., “She peeled the lemon” vs. “She put the lemon in the bag”) (Yee and 

Thompson-Schill, 2016; Elman, 2009; Trott et al., 2020). Accordingly, there is evidence that 

ratings of sensorimotor strength or concreteness can vary considerably depending on whether a 

word is presented alone or in context (Scott et al., 2019), or as a function of which context a 

word is presented in (Reijnierse et al., 2019). This suggests that any effort to ground words 

should account for the fact that most words are ambiguous, with dynamic, context-sensitive 

meanings subject to construal. Further, attempts to evaluate grounded language models must 

consider not only how well they capture the sensorimotor properties of a word in isolation, but 

also how successfully they capture context-dependent variation in a word’s sensorimotor profile. 

 In Section 2, we first describe related resources, as well as work on grounding large LMs 

using psycholinguistic resources and multimodal input. In Section 3, we introduce the 

Contextualized Sensorimotor Norms (CS Norms), a dataset of sensorimotor judgments about 

ambiguous words in context. In Section 4, we provide descriptive statistics about the CS Norms, 

as well as comparisons to other factors such as the dominance of a particular sense. In Section 5, 

we show that a metric derived from the CS Norms—the Sensorimotor Distance between two 
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contexts of use—improves our ability to predict contextualized relatedness judgments, above 

and beyond a similar metric derived from BERT (Devlin et al., 2019). Finally, in Section 6, we 

discuss limitations of these norms, as well as avenues for future research. 

Related Resources 

There are a number of existing lexical resources with information about the concreteness or 

sensorimotor strength of words (Coltheart, 1981; Brysbaert et al., 2014b). For example, the 

Brysbaert concreteness norms contain concreteness judgments for approximately 37,000 English 

words (Brysbaert et al., 2014b); concreteness ratings have also been collected for Dutch 

(Brysbaert et al., 2014a), Croatian (Coso et al.´ , 2019), and more. 

 Judgments of concreteness or overall sensorimotor strength are limited in that they do not 

account for which sensorimotor features are particularly salient. More recently, researchers have 

collected ratings about multiple semantic features for each word, including its sensorimotor 

associations (Lynott et al., 2019), as well as even more fine-grained judgments within each 

modality (e.g., for Vision, whether the referent is Fast or Slow; for Touch, whether it is Hot or 

Cold) (Binder et al., 2016). Of these, the largest dataset is the Lancaster Sensorimotor Norms 

(Lynott et al., 2019), which includes 11-dimensional judgments for about 40,000 English words. 

This approach has been extended to other languages, such as French (Miceli et al., 2021) and 

Dutch (Speed and Brybaert, 2021). Again, in each case, the words were presented without 

context. 

 Finally, several datasets have collected concreteness judgments about words in context 

(Scott et al., 2019; Reijnierse et al., 2019). However, to our knowledge, no dataset includes 

judgments about which sensorimotor features are particularly salient in different linguistic 

contexts. 
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Grounding LMs with Psycholinguistic Resources 

Recent work in NLP has begun to incorporate these psycholinguistic resources. One 

approach attempts to predict these judgments about concreteness or salient sensorimotor 

features from LM representations, with varying degrees of success (Thompson and Lupyan, 

2018; Turton et al., 2020; Chersoni et al., 2020; Utsumi, 2020). Another approach uses 

sensorimotor features to augment the ability of an LM on an applied task, such as the GLUE 

benchmark (Kennington, 2021) or metaphor detection (Wan et al., 2020b). As mentioned in 

Section 1, these experiments are limited in that the sensorimotor features themselves were 

obtained for words in isolation. 

Grounding LMs with Multimodal Input 

An alternative approach is to ground LM representations more directly in multimodal input. 

Most of this work has emphasized the visual modality, linking words to static images (Kiros 

et al., 2018; Su et al., 2020) or video (Zellers et al., 2021b). This paradigm shows 

considerable promise, though it is naturally limited by resource constraints; obtaining 

reliable multimodal data and aligning it to language can be both time-consuming and costly. 

Summary 

There is considerable interest in grounding among both psycholinguists and NLP 

practitioners. To that end, psycholinguists have developed large linguistic resources, which 

some NLP researchers have used to improve LMs. 

  Still, one limitation of the majority of existing resources is that they do not contain 

judmgents about different sensorimotor features for words in different contexts. Because 

most words are ambiguous, this makes it difficult to know which meaning the sensorimotor 

judgments reflect, which in turn reduces the precision and utility of these resources. 
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Contextualized Sensorimotor Norms 

Our primary goal was to collect sensorimotor judgments about ambiguous words, appearing in 

controlled sentential contexts. We used sentences from the RAW-C (Relatedness of Ambiguous 

Words–in Context) dataset (Trott and Bergen, 2021). RAWC contains relatedness judgments for 

672 English sentence pairs, each containing the same target word (e.g., “bat”) in either the same 

meaning (e.g., 

“furry bat” vs. “fruit bat”) or different meaning (e.g., “furry bat” vs. “wooden bat”); it also 

contains dominance judgments about the relative salience of each meaning. There were 448 

unique sentences in total (112 target words, with 4 sentences each). 

 We collected judgments about the sensorimotor associations evoked by the target word in 

each of the 448 sentences. This provided a more direct analogue to the Lancaster Sensorimotor 

Norms (Lynott et al., 2019), in which participants observed a particular lexical item (e.g., “bat”) 

and provided ratings about its associated sensory modalities (e.g., Vision) or action effectors 

(e.g., Hand/Arm). 

Participants 

 Our goal was to collect a minimum of 10 judgments per sentence. Thus, we recruited 

participants until each sentence had at least 10 observations, after applying the exclusion criteria. 

 A total of 377 participants were recruited through UC San Diego’s undergraduate subject 

pool for Psychology, Cognitive Science, and Linguistics students. Participants received class 

credit for participation. After excluding non-native speakers of English, participants who failed 

to pass the bot checks, and participants whose inter-annotator agreement score was sufficiently 

low, we were left with 283 participants. Of these, 223 identified as female (47 male, 8 
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nonbinary, and 5 preferred not to answer). The mean self-reported age was 20.4 (median = 20, 

SD = 

2.98), and ranged from 18 to 43. 

Procedure 

 We adapted the procedure directly from Lynott et al. (2019), with the main modification 

being that participants now saw words in sentential contexts. Participants were randomly 

assigned to one of two Judgment Types: 1) Perception, in which they provided ratings about a 

word’s associated sensory modalities (Vision, Hearing, Touch, Interoception, Smell, and Taste); 

and 2) Action, in which they rated a word’s associated action effectors (Hand/Arm, Foot/Leg, 

Mouth/Throat, Head, and Torso). In total, 132 participants were assigned to the Perception 

Judgment Type, and 151 were assigned to the Action Judgment Type. 

 After giving consent, participants answered two bot check questions. They were then told 

that they would read a series of sentences, each containing a bolded word (e.g., “It was a wooden 

table”), and that their task was to rate the degree to which they experienced the concept denoted 

by that word with either six sensory modalities (in the Perception Judgment Type) or five action 

effectors (in the Action Judgment Type). Ratings ranged from 0 (not at all experienced with that 

sense/effector) to 5 (experienced greatly with that sense/effector). 

 Each participant rated approximately 60 sentences overall, randomly sampled from the 

set of 448 sentences. No participant saw the same target word twice. On each trial, the sentence 

was displayed at the top of the page, with the target word bolded. Underneath the sentence, the 

instructions read: “To what extent do you experience WORD:” (for Perception) or “To what 

extent do you experience WORD by performing an action with the:” (for Action), where 

“WORD” was replaced with the target word. Underneath the instructions were six (for 
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Perception) or five (for Action) rating scales, corresponding to each possible sensory modality or 

action effector. For the Action Judgment Type, the scale was accompanied by a labeled diagram 

of the body, as in Lynott et al. (2019). 

 To reach the target of 10 respondents to each word in both Action and Perception tasks, 

we collected data in two stages. In the first stage (Group 1), participants were randomly assigned 

to either the Perception or Action Judgment Types, and the sentences they observed were 

randomly sampled from the set of possible sentences for each word. After we had collected 

responses from 264 participants in this way, there were still a number of sentences that had very 

few observations, simply by chance—as well as many with more than ten observations. Thus, in 

the second stage (Group 2), participants were assigned a mix of Low-N (sentences with fewer 

than 10 ratings) and High-N (sentences with 10 or more ratings) items. The goal was to speed 

data collection; to control for potential differences across groups, we compared their 

distributions of inter-annotator agreement scores, and found no evidence that the different data 

collection procedures induced different response behavior.  

 Finally, after providing ratings, participants reported their self-identified gender and age, 

as well as whether or not they were a native speaker of English. 

 The data collection was conducted online using JsPsych (De Leeuw, 2015). 

Inter-Annotator Agreement 

  We sought to establish the degree to which different participants agreed about their 

ratings for each sentence, both to characterize the dataset and to exclude participants whose 

ratings diverged substantively from the rest of the sample. Following past work (Trott and 

Bergen, 2021), we used a leave-one-out scheme: for each participant, we computed the 
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Spearman’s rank correlation between that participant’s responses and the mean ratings for those 

items from the rest of the sample (excluding the participant’s ratings). 

  Importantly, we did this in two stages. First, we computed the distribution of agreement 

scores for the 264 participants in Group 1, i.e., the participants for whom each sentence was truly 

randomly sampled from the set of 448 sentences. Based on this distribution of inter-annotator 

agreement scores, we excluded a total of 18 participants, whose scores were more than two 

standard deviations below the mean for that Judgment Type. Among the final set of 246 

participants in this group, the mean inter-annotator rank correlation was 0.47 for Action 

judgments (SD = 0.1) and 0.64 for Perception judgments (SD = 0.11). 

  Then we considered the 39 participants from Group 2, who provided ratings for a 

restricted set of sentences, i.e., sentences which either had below 10 judgments from Group 1 

(low-N) or had more than 10 judgments from Group 1 (high-N). For each participant in Group 2, 

we compared the ratings for the high-N items to the mean response for those items among Group 

1. After excluding participants with low inter-annotator agreement, we were left with a total of 

37 participants in Group 2. The mean rank correlation was 0.5 for Action Judgments (SD = 0.11) 

and 0.64 for Perception judgments (SD = 0.1). 

  Finally, we combined the set of inter-annotator agreement scores from both groups, and 

constructed a linear regression with Rank Correlation as the dependent variable, and main effects 

of Judgment Type (Action vs. Perception) and Group (Group 1 vs. Group 2), as well as their 

interaction. There was no significant difference in agreement across groups (p > .1), but 

agreement was significantly higher for Perception ratings than Action ratings [β = 0.17,SE = 

0.01,p < .001]. 
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Creating the Norms 

Once we had obtained a minimum of ten ratings per sentence (per judgment type), we 

averaged across these ratings to produce a mean and standard deviation for each dimension. 

For example, the sentence “He saw the furry bat” would contain the mean (and standard 

deviation) of judgments about the salience of each sensorimotor feature.11 

 

Characterizing the Contextualized Sensorimotor Norms 

Our first goal was to characterize the Contextualized Sensorimotor Norms (CS Norms). The 

norms provide an 11-dimensional vector for each sentential context in which a word 

appears: the mean sensorimotor strength for 11 dimensions (6 sensory modalities, and 5 

action effectors) for a target word in a given context. 

Comparing Sensorimotor Dimensions 

As a first step, we visualized the distribution of sensorimotor judgments for each dimension 

(see Figure 5). Consistent with the original LS Norms (Lynott et al., 2019) and work on the 

English lexicon more generally (Majid, 2020), judgments tended to be highest for the Vision 

dimension, and lowest for Olfaction and Taste. 

 
11 The norms (along with the individualized responses, analysis code, and a Data Sheet) can be found on 

GitHub: https://github.com/seantrott/cs_norms. 
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Figure 5: Distribution of mean sensorimotor strength judgments for each dimension. 

 

  We then asked which dimensions were correlated with which other dimensions. 

Consistent with past work (Lynott et al., 2019), we found particularly strong positive 

correlations between Olfaction and Taste, as well as Foot/Leg and Torso (see Figure 6). 
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Figure 6: Pearson's correlation coefficients between the strength of each dimension. 

Variance Across Contexts 

  A key motivation for the CS Norms was to account for potential variation within each 

word in terms of which sensorimotor features were most salient across distinct sentential 

contexts. 

  We first quantified this variation by normalizing the sensorimotor features for each 

context of use to the mean norms for that word from the LS Norms. For example, the LS 

norms have a single 11-dimensional vector for the word “market”; for each of the four 

sentential contexts in which “market” appeared, we calculated the difference in mean ratings 

across our norms and the LS Norms. This provides an estimate of the degree to which the 

human judgments were impacted by the sentential context, as opposed to a representation of 

the word’s meaning in isolation (as in the LS Norms). 
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Figure 7: Deviation from the Lancaster Sensorimotor Norms for a specific word, "market", 

faceted by the distinct sentential contexts in which the word appears. 

 Figure 7 depicts these deviations from the LS Norms for a specific word, “market”. This 

word was chosen because it displayed particularly high variation in its overall sensorimotor 

strength across contexts. The deviations from the LS Norms appear to track the two senses of the 

word being profiled. The two sentences corresponding to the location sense of “market” (i.e., 

“fish market” and “flea market”) appeared to be closer to the LS Norms (i.e., the deviations were 

smaller on average); the notable exceptions were the Olfactory and Mouth/Throat dimensions for 

the “fish market” context, and the Foot/Leg dimension for the “flea market” context. In contrast, 

the sentences corresponding to the financial sense of “market” (i.e., “housing market” and “stock 

market”) were considerably lower in sensorimotor strength across almost all dimensions, 

He liked the housing market. He liked the stock market.

He liked the fish market. He liked the flea market.
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especially Vision. This makes sense, given that this meaning is more metaphorical or abstract 

than the location meaning of “market”: apart from representations of their performance, neither 

housing markets nor stock markets can be visually perceived in the way that fish markets and 

flea markets can. 

 

Sense Dominance and Deviation from the Lancaster Norms 

 One well-documented property of ambiguous words is that their multiple meanings are 

not always balanced: one sense is sometimes more cognitively salient than the other. This is 

called sense dominance. The degree of dominance is known to play an important role in the 

processing of ambiguous words, particularly for homonyms: empirical evidence suggests that 

comprehenders almost always activate the more dominant sense of a homonym, even when the 

linguistic context supports the subordinate meaning (Rayner et al., 1994; Binder and Rayner, 

1998; Duffy et al., 1988). We used the measure of Sense Dominance in the RAW-C dataset to 

answer two additional questions about how and why the CS Norms deviate from the 

decontextualized LS Norms. 

 First, do the decontextualized LS Norms primarily reflect the more dominant meaning of 

an ambiguous word? To answer this, we calculated the cosine distance between the 

decontextualized LS Norm for each word and the sensorimotor norms for that same word in 

context. We called this Distance to Lancaster. Using the lme4 package (Bates et al., 2015) in R, 

we fit a linear mixed effects model predicting Distance to Lancaster, with Dominance as a fixed 

effect (and random intercepts for words); this model explained more variance than a model 

omitting only Dominance [χ2(1) = 10.93,p = .001]. More dominant senses were closer to the 
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decontextualized norm on average [β = −0.01,SE = 0.003,p = .001], consistent with the 

prediction that the LS Norms are more influenced by properties of the dominant sense. 

 Second, do more dominant senses have stronger or weaker sensorimotor ratings, on 

average, than the decontextualized rating for that word? For each sentential context, we 

computed the average difference between each dimension and the corresponding LS Norms, 

such that a positive value reflects a more concrete context. A model predicting this measure was 

significantly improved by the addition of Dominance [χ2(1) = 38.24,p < .001]. Dominant senses 

tended to have stronger sensorimotor ratings, on average, than the decontextualized ratings for 

that same word [β = 0.09,SE = 0.01,p = .001]. 

 

Sense Dominance and Sensorimotor Strength 

 We also sought to replicate previous work suggesting that more dominant meanings tend 

to be more concrete (Gilhooly and Logie, 1980). Following Lynott et al. (2019), we created a 

composite variable called Contextualized Sensorimotor Strength, which measured the maximum 

strength across the 11 sensorimotor features for each context of use. 

 Then, we built a linear mixed effects model with Dominance as a dependent variable, 

fixed effects of Contextualized Sensorimotor Strength, random intercepts for each word, and two 

covariates reflecting the decontextualized sensorimotor strength for each word (i.e., from the 

Lancaster Sensorimotor Norms dataset). The full model explained significantly more variance 

than the same model omitting only Contextualized Sensorimotor Strength [χ2(1) = 18.38,p < 

.001]. Consistent with past work (Gilhooly and Logie, 1980), contexts of use with higher 

sensorimotor strength were also rated as more dominant [β = 0.26,SE = 0.06,p < .001]. (Of 

course, this finding does not explain why more concrete meanings are more dominant than 
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meanings with less sensorimotor strength; it could be driven by correlations with meaning 

frequency or even age of acquisition (Gilhooly and Logie, 1980).) 

 

Sensorimotor Distance 

Another question concerns the relationship between contexts of use. Each context of use for 

a given wordform is associated with its own sensorimotor norms, i.e., the mean ratings for 

each sensorimotor dimension for a given context; because of this, the similarity or 

dissimilarity between these contexts can be quantified by calculating the cosine distance 

between these vectors (Wingfield and Connell, 2021). Thus, we calculated the cosine 

distance—referred to here as the Sensorimotor Distance—between the vectors 

corresponding to each sentence pair for each word (672 sentence pairs total). Larger 

distances reflect more dissimilar contexts of use, while smaller distances reflect more 

similar contexts. Note that this includes comparisons between contexts corresponding to the 

same sense and those corresponding to different senses. 

 We then asked whether Sensorimotor Distance was correlated with other 

psychologically relevant features, such as whether the two contexts of use corresponded to 

the same sense or different senses (i.e., Sense Boundary). Based on the preliminary findings 

in Section 4.2, we predicted that different sense uses would have less similar sensorimotor 

features. 
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Figure 8: Distribution of sensorimotor distances as a function of same/different sense, as well as 

the type of ambiguity. Same sense uses have more similar sensorimotor profiles than different 

sense contexts. 

 

Indeed, as depicted in Figure 8, Sensorimotor Distance was considerably larger for Different 

Sense than Same Sense contexts. The addition of Sense Boundary to a mixed effects model 

predicting Sensorimotor Distance improved model fit beyond a model with only Distributional 

Distance and Ambiguity Type (and random intercepts for words) [χ2(1) = 34.86,p < .001]. This 

is also consistent with Figure 3, in which the two location senses of “market” were more similar 

to each other than either was to the two financial senses. 
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Predictive Utility 

  We were also interested in the predictive utility of the information provided by the CS 

Norms, above and beyond other commonly used factors. To what extent do these contextualized 

ratings encode information that large language models (e.g., BERT) or decontextualized 

sensorimotor norms (e.g., LS Norms) fail to capture? 

  We sought to predict the relatedness of sentence pairs. RAW-C contains judgments of 

sense relatedness for each unique sentence pair within each of the 112 words, with a total of 672 

sentence pairs (Trott and Bergen, 2021). It is also annotated for whether the two contexts of use 

correspond to the same or different sense (Sense Boundary), and whether the relationship type is 

one of homonymy or polysemy (Ambiguity Type). Additionally, past work (Trott and Bergen, 

2021) found that relatedness was negatively correlated with the cosine distance between BERT’s 

contextualized embeddings for the target word in each sentence; here, we call this measure the 

Distributional Distance. 

  We asked whether a linear mixed effects model equipped with those previous factors 

(Distributional Distance,12 Sense Boundary, Ambiguity Type, and their interaction, as well as 

random intercepts for words) could be improved by the addition of Sensorimotor Distance. 

Indeed, Sensorimotor Distance significantly improved model fit [χ2(1) = 36.74,p < .001]. As 

expected, Sensorimotor Distance was negatively associated with Relatedness [β = −1.81,SE = 

0.22,p < .001]: words with more dissimilar sensorimotor vectors were rated as less related, on 

average. 

 
12 Distributional Distance was calculated by taking the cosine distance between the final layers of BERT’s 

contextualized embeddings for the target word in each sentence, using the bert-embedding package (https://pypi.org/ 
project/bert-embedding/). 
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  We then compared the Akaike Information Criterion, or AIC, of a number of different 

models predicting Relatedness. The models were constructed to probe the explanatory value of 

the distance measures, as well as the categorical condition variables (e.g., Sense Boundary). 

Each statistical model under consideration contained at least one of the following variables: 

Sensorimotor Distance (SM), BERT Distance (BERT), Sense Boundary (S), Ambiguity Type 

(AT), and an interaction between Sense Boundary and Ambiguity Type (S * AT). 

  Crucially, the inclusion of Sensorimotor Distance consistently improved model fit. In 

other words, the CS Norms appear to capture information that is at least partially independent 

from the information encoded by factors such as BERT Distance, Sense Boundary, and 

Ambiguity Type. Of course, it is also important to note that Sense Boundary was by far the best 

predictor of Relatedness, suggesting that neither distributional similarity nor sensorimotor 

similarity are sufficient to account for the possible effect of categorical sense representations 

(see Figure 9). 



43 
 

 

Figure 9: Rescaled AIC values for models predicting Relatedness using an assortment of factors: 

Sense Boundary (S), Ambiguity Type (AT), Distributional Distance (BERT), and Sensorimotor 

Distance (SM). A lower AIC score corresponds to better model fit. 

Comparison to Lancaster Sensorimotor Norms 
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  Crucially, a linear mixed effects model including both Contextualized Sensorimotor 

Distance and Decontextualized Distance explained more variance than a model omitting only 

Contextualized Sensorimotor Distance [χ2(1) = 142.07,p < .001]. This indicates that the 

contextualized measure (i.e., from the CS Norms) encodes additional information beyond what 

can be inferred by simply identifying the sensorimotor properties of other words in the context. 

Discussion 

Embodied experience appears to be crucial for how humans learn and understand language 

(Bergen, 2012; Pulvermüller, 1999; Barsalou, 1999), yet most large language models (LMs) are 

exposed to linguistic input alone (Bender and Koller, 2020). One solution is to augment and 

evaluate LM representations using psycholinguistic resources, such as human judgments of the 

sensorimotor features associated with a word (Lynott et al., 2019). However, this approach must 

also contend with the challenge of lexical ambiguity. Words mean different things in different 

contexts (Rodd et al., 2004; Trott et al., 2020), yet many lexical resources collect judgments 

about words in isolation. 

 We attempted to address this challenge by collecting judgments about the salience of 

various sensory modalities (e.g., Vision) and action effectors (e.g., Torso) for the same English 

word, in distinct sentential contexts (e.g., “flea market” vs. “housing market”). We called this 

dataset the Contextualized Sensorimotor Norms (CS Norms). 

 These contextualized norms capture variance in sensorimotor associations beyond the 

information already provided by the Lancaster Sensorimotor Norms. We also replicated past 

work (Gilhooly and Logie, 1980) suggesting that the psychological dominance of a meaning is 

correlated with its sensorimotor strength. Third, we found that the sensorimotor distance 

between contexts of use was correlated with the existence of sense boundary. We also 
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demonstrated the predictive utility of the CS Norms above and beyond large LMs such as BERT 

and the decontextualized LS Norms. 

 Beyond its use for NLP applications, the CS Norms could also be used to address 

questions of theoretical interest, such as the relative contribution of different sources of 

information (e.g., distributional vs. sensorimotor associations) to semantic representations in the 

mental lexicon (Andrews et al., 2014; Davis and Yee, 2021), as well as a role for discrete, 

symbolic representations (e.g., sense boundaries). For example, as with the LS Norms, 

researchers could use sentences from this dataset as stimuli in behavioral or neuroscientific 

experiments. 

Limitations 

This dataset is not without limitations. 

 First, it is restricted in size and breadth: 448 sentences (112 words, with 4 sentences 

each), in English only. In contrast, the Lancaster Sensorimotor Norms contain judgments of 

almost 40,000 English words (Lynott et al., 2019), and have now been extended to French 

(Miceli et al., 2021), Dutch (Speed and Brybaert, 2021), and more. Having demonstrated the 

utility of the CS Norms on a small subset of English words, one obvious direction for future 

research would be to expand this dataset—including more words, more senses and sentences per 

word, a wider variety of sentences (i.e., both experimentally controlled and naturalistic 

sentences), and additional languages. Similarly, existing datasets on lexical ambiguity (Haber 

and Poesio, 2021; Karidi et al., 2021; Schlechtweg et al., 2021; Erk et al., 2013) could be 

augmented with sensorimotor judgments. Further, because the original RAW-C items were 

adapted from psycholinguistic studies (Trott and Bergen, 2021), those items might be skewed 
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towards the phenomena those researchers were interested in; for example, it is possible that 

certain polysemous relationships (metaphor and metonymy) may be overrepresented. 

 A second, related problem is that the participants were sourced from an undergraduate 

population, which is likely non-representative of the broader population at large (Henrich et al., 

2010). Similarly, the sentences themselves were hand-crafted, and thus do not reflect the full 

diversity of contexts these meanings might enjoy in naturalistic usage. Future work should 

attempt to ensure diversity in both the sample of annotators and the sentences under 

consideration. 

 Third, as others have noted (Bender and Koller, 2020; Bisk et al., 2020; Tamari et al., 

2020; Borghi et al., 2019), grounding goes beyond sensorimotor associations. Linguistic 

meaning is also grounded in social experience and interaction. Recent work has attempted to 

incorporate these social aspects of grounding, either by integrating social information into 

distributional models (Johns, 2021) or simply by including more dimensions in the grounded 

feature representations (Binder et al., 2016). 

 Finally, recent work has enjoyed some success in learning grounded feature vectors 

directly from LM representations, typically for words rated in isolation (Turton et al., 2020; 

Chersoni et al., 2020; Utsumi, 2020). One question is whether contextualized embeddings, 

derived from a large LM such as BERT, are sensitive enough to capture the fine-grained 

distinctions that the CS Norms encode across sentential contexts for the same word. Of course, it 

is possible that the CS Norms dataset is simply too small to successfully augment a LM like 

BERT. However, the norms could also be used as a “challenge set”, i.e., to evaluate how much 

information about sensorimotor properties of a word are in principle derivable from an LM’s 
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representations. For example, the performance of an ungrounded model like BERT could be 

compared to recent multi-modal models (Zellers et al., 2021a,b). 

Conclusion 

We have presented a novel resource: human judgments about the strength or salience of various 

sensorimotor features for 112 English words, each appearing in four distinct sentential contexts. 

This resource was extended from past work (Trott and Bergen, 2021), and thus also contains 

information about the relatedness between sentential contexts for the same word. We provided 

several demonstrations of the dataset’s utility, above and beyond judgments of these words in 

isolation (Lynott et al., 2019), as well as large LMs such as BERT. 
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CHAPTER 4: ARE WORD MEANINGS CATEGORICAL OR CONTINUOUS? 
 

 

Words mean different things in different contexts. In some cases (approximately 7% of 

words in English, for instance—Rodd at al., 2004), the same sequence of characters or sounds 

can denote meanings that appear entirely unrelated (e.g., “river bank” vs. “financial bank”). This 

phenomenon is typically called homonymy (Valera, 2020). Far more frequent (about 84% of 

English words, per Rodd et al., 2004) is polysemy––in which related meanings (e.g., “pet 

chicken” vs. “roast chicken”) are interpreted as corresponding to different senses of a single 

word. In the limit, all words arguably have meanings that depend on context to some extent, 

even if not considered outright ambiguous (Hoffman et al, 2013; Elman, 2004; Yee & 

Thompson-Schill, 2016). For example, the word “runs” evokes subtly different actions in “the 

boy runs” and “the cheetah runs” (Elman, 2004); similarly, comprehenders might activate 

different sensorimotor representations of the word “lemon” in “she cut the lemon” and “she 

juggled the lemon” (Yee & Thompson-Schill, 2016).  

Each of these phenomena––homonymy, polysemy, and context-dependence––is 

pervasive across the world’s languages (Dautriche, 2015; Valera, 2020). Accordingly, 

multiplicity of meanings has driven research across many different disciplines, including 

linguistics (Tuggy, 1993; Valera, 2020), cognitive science and psycholinguistics (Rodd et al, 

2004; Elman, 2004), lexicography (Krishnamurthy & Nicholls, 2000), Natural Language 

Processing (Navigli, 2009; Kilgarriff, 2007; Schneider et al, 2015; Karidi et al, 2021), and legal 

studies (Schane, 2002), to name just a few. Knowing what the range of meanings is for any given 

word, or the different patterns that meaning-varying words in general display, is crucial for 

theories of language knowledge, use, and acquisition.  
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Yet despite widespread interest, there remains considerable disagreement about exactly 

how humans represent the multiplicity of word meanings. On some accounts, humans store 

different lexical representations for wordforms with unrelated meanings (i.e., homonyms), but 

not for wordforms with multiple, related senses (i.e., polysemes) (e.g., Cruse, 1986); other 

accounts argue that humans maintain distinct representations for both homonyms and polysemes 

(Kempson, 1977). And still others eschew the notion of discrete lexical representations 

altogether, arguing instead that word meanings are best characterized as occupying a continuous, 

context-sensitive state-space (Elman, 2004; Elman, 2009). Importantly, these different accounts 

also echo more general issues in Cognitive Science. To what extent is human semantic 

knowledge constituted by discrete, symbolic representations vs. gradient, sub-symbolic systems 

(Miikkulainen & Elman, 1993)? Are concepts organized by their prototypes or exemplars (Malt, 

1989)? Notably, while there have been attempts to adjudicate between a subset of these accounts, 

none of them is entirely consistent with current empirical evidence, and none can be strictly 

disconfirmed.   

In the sections below, we first describe the testable predictions made by each of these 

competing accounts, as well as their theoretical limitations. We also introduce and elaborate on 

two novel “hybrid” accounts, which reconcile discrete sense representations with a continuous 

view of meaning, and which are designed to overcome the limitations of existing theories. We 

then report on two behavioral experiments able to adjudicate among them, paired with an 

analytical approach that relies on recent advances in neural language models (Devlin et al, 2018). 

The results are best explained by a hybrid account that allows for effects of both continuous (i.e., 

distance in state-space) and categorical (i.e., sense boundaries) factors. Finally, we compare the 

predictive power of several computational models of the novel hybrid accounts. 
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The Mental Dictionary Framework 

Many accounts of how word meanings are stored and represented can be grouped under the 

broader umbrella of the Mental Dictionary Framework. Under this view, the mental lexicon is 

conceptualized as a dictionary, held in long-term memory (Pinker, 1997; Elman, 2004). Each 

wordform maps onto a lexical entry, which contains information about the word’s basic semantic 

and syntactic properties. Accordingly, ambiguous wordforms (like homonyms) map onto 

multiple, distinct entries, as they would in a literal dictionary. Critically, the categorical 

boundary between distinct word meanings is theorized to exert an influence on psychological 

processing above and beyond the context-dependent nature of word meaning. Put another way: 

there is a qualitative distinction between outright ambiguity (e.g., “delicious port” vs. “windy 

port”) and mere under-specification (e.g., “big building” vs. “big ant”). 

 Within this Mental Dictionary Framework, there are at least two dominant theoretical 

accounts. The primary distinction between these accounts is in how they treat polysemy––i.e., 

words with multiple, related meanings––namely, whether polysemous meanings are represented 

differently from homonymous meanings. According to Sense Enumeration Accounts, polysemy 

is represented much like homonymy: all ambiguous words map onto multiple, distinct lexical 

entries (Kempson, 1977). That is, just as “financial bank” and “river bank” would constitute 

distinct entries, so too would “pet chicken” and “roast chicken”. Sense Enumeration Accounts 

are considered by some (Klepousniotou, 2002; Pustejovsky, 1995) to be uneconomical; because 

polysemy is extremely pervasive (Rodd et al, 2004), storing each polysemous meaning 

separately results in a proliferation of lexical entries. Nonetheless, the chief advantage of Sense 
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Enumeration Accounts is that they sidestep the difficulty of addressing irregular forms of 

polysemy, i.e., cases in which multiple meanings are related but not in a systemic fashion 

(Kempson, 1977; Rice, 1992). Sense Enumeration Accounts make two concrete predictions 

about cognitive processing. First, pairs of related senses (e.g., “pet chicken” vs. “roast chicken”) 

should be distinguishable in behavior from pairs of same sense uses (e.g., “roast chicken” vs. 

“marinated chicken”). And second, because polysemy is represented in the same fashion as 

homonymy, the behavior of words with what are classified as related senses should not be 

distinguishable from those with homonymous senses. 

 Core Representation Accounts also view the lexicon as storing discrete entries. But 

unlike Sense Enumeration Accounts, they do not view multiple related senses as separate lexical 

entries, instead deriving or generating meanings during online language processing from a single 

“core” representation (Cruse, 1986; Pustejovsky, 1995; Pustejovsky & Bouillon, 1995; 

Pustejovsky, 2002). For Core Representation Accounts, the mental lexicon contains not only 

lexical entries, but also rules––much like grammar––for systematically extending word senses as 

a function of context. The generative lexicon (Pustejovsky, 1995) is one well-known example of 

a Core Representation Account; Pustejovsky (2002) motivates this additional component by 

appealing both to parsimony and the underlying systematicity by which meanings are extended. 

In a generative lexicon, lexical entries are associated with some minimal semantic configuration–

–what Pustejovsky calls their qualia structure––which affords (or precludes) particular 

inferences when composed with other lexical items. For instance, the wordform “bake” would 

unambiguously denote a change-of-state process, but the interpretation of this process as change-

of-state or creation would be constrained by the speaker’s choice of direct object (e.g., “potato” 

vs. “cake”). This in turn places constraints on the interpretation of the verb. Core Representation 



52 
 

Accounts thus make distinct predictions from Sense Enumeration Accounts. Most notably, 

because polysemous meanings are represented in a different fashion from homonymous 

meanings, polysemy and homonymy should elicit measurably distinct behavior in 

comprehenders. Further, under a stronger interpretation13 of Core Representation Accounts, same 

sense uses of a word (e.g., "wrapping paper" and “shredded paper”) should not exhibit enhanced 

facilitation (e.g., in priming, memory, etc.) above and beyond a neutral baseline (e.g., “____ 

paper”); since the shared core is activated each time the wordform is encountered, even in the 

baseline condition, the target meaning should be equally accessible (Klein & Murphy, 2001; 

Klein & Murphy, 2002).     

Experimental research offers mixed evidence on these accounts. On the one hand, 

polysemy does appear to elicit distinct behavior from homonymy. In lexical decision tasks, 

words categorized as homonymous are recognized more slowly than those categorized as 

polysemous (Rodd et al, 2002; Klepousniotou, 2002; Klepousniotou & Baum, 2007; Armstrong 

& Plaut, 2008), possibly because the unrelated meanings compete during lexical access (Rodd et 

al, 2002). Homonymy may also be more challenging to learn than polysemy (Rodd et al, 2012; 

Floyd & Goldberg, 2021). These findings are inconsistent with predictions of the Sense 

Enumeration Account, and in turn favor the Core Representation Account. 

 On the other hand, senses ostensibly related through polysemy elicit distinct behavior 

from same sense uses of a wordform (Klein & Murphy, 2001; Klein & Murphy, 2002; 

Yurchenko et al, 2020). In a memory task (Klein & Murphy, 2001), subjects were worse at 

recognizing previously observed wordforms (e.g., “wrapping paper”) when the repeated phrase 

 
13 As Klein & Murphy (2001) note, it is technically possible to reconcile this result with a Core Representation 
Account: if accessing specific meanings (e.g., “wrapping paper”) requires the application of a generative “rule”, and 
if the core representation is under-specified, it might be easier to transition between same sense meanings (because 
the generative rule is already activated) than between an under-specified core and a specific meaning. 
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employed them in a context evoking a polysemously related sense (e.g., “liberal paper”) than a 

same sense context (e.g., “shredded paper”). Similarly, in a primed sensibility judgment task, 

subjects were also less accurate when responding to polysemously related senses than same 

sense uses or a neutral baseline (e.g., “____ paper”) (Klein & Murphy, 2001), and displayed 

differentiable brain responses in an EEG experiment (Yurchenko et al, 2020). These findings are 

sometimes interpreted as evidence against the Core Representation Account (Klein & Murphy, 

2001). Indeed, they do disconfirm a strong view in which comprehenders process and represent 

related senses identically to same sense uses.  

Importantly, however, given that most Core Representation Accounts argue that related 

senses are derived via a generative rule, it is technically possible to reconcile these accounts with 

the finding that related senses are processed differently from same sense uses, since the 

application of this rule might increase processing time (Klein & Murphy, 2001). Some Core 

Representation Accounts can also accommodate the difference in facilitation between same 

sense primes and a neutral baseline––if generative rules can be primed, then it should be easier to 

transition between same sense meanings (given that the rule is already primed) than between an 

under-specified core representation and a more specific meaning (which would require activating 

the rule for the first time). Thus, these particular results do not allow us to distinguish between 

Sense Enumeration Accounts and a more nuanced version of Core Representation Accounts.    

This leaves considerable uncertainty. Polysemous meanings may indeed be represented 

separately (as in Sense Enumeration Accounts), or at least enjoy some degree of functional 

separation (as more nuanced versions of both accounts would predict); but according to some 

evidence, this representational mechanism appears to be distinct from homonymy (as in Core 

Representation Accounts). And in fact, recent work suggests that the simple distinction between 
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polysemy and homonymy (and even between same and different senses) may be overly 

simplistic. Multiple studies (Klepousniotou, 2002; Klepousniotou & Baum, 2007; Bambini et al, 

2013; Lopukhina et al, 2018; Yurchenko et al, 2020) have found differences in behavioral and 

neurophysiological responses to pairs of meanings related via different polysemy mechanisms: 

metonymy (e.g., “pet chicken” vs. “roast chicken”) and metaphor (e.g., “polluted atmosphere” vs. 

“relaxed atmosphere”). Similarly, other studies (Klepousniotou et al, 2008; Brown, 2008) have 

found that measures of processing ease (e.g., accuracy and response time) are predicted by the 

degree of overlap or semantic similarity between two senses.  

Importantly, current evidence as described above does not fully adjudicate between the 

two accounts falling under the Mental Dictionary Framework. Moreover, other approaches 

identify certain limitations of this framework and attempt to address them.  

 

Challenges to the Mental Dictionary Framework 

The Mental Dictionary Framework––at least as outlined above––has been challenged on several 

theoretical grounds. Some of these arguments relate specifically to the question of lexical 

ambiguity, while others concern the role of knowledge and context more generally (Elman, 

2004).  

 

Identifying sense boundaries is challenging.  

The Mental Dictionary Framework reifies the lexicographic concept of discrete word senses, 

which requires a commitment as to whether the difference in meaning conveyed by a given pair 

of word uses corresponds to ambiguity (i.e., distinct senses) or mere context-dependence 

(sometimes called vagueness).  
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This distinction may appear obvious in some cases (e.g., “river bank” vs. “financial 

bank” are readily interpreted as distinct senses), but in many situations, it is difficult to pin down 

using standard linguistic tests (Tuggy, 1993; Geeraerts, 1993; Hanks, 2000; Kilgarriff, 2007; 

Krishnamurthy & Nicholls, 2000). Tuggy (1993) illustrates the challenge using the verb “paint”, 

which can describe a number of conceptually related actions, including: 1) painting a portrait in 

oils; 2) painting a landscape with watercolors; 3) painting stripes on the parking lot; 4) applying 

makeup to the face; and more. (1) and (2) plausibly belong to the same sense, but (1) and (3) 

may seem anomalous when used in zeugmatic cross-reference (“I’m painting [a portrait] and 

Ben is painting [stripes on the road] too”), a common test for distinguishing ambiguity from 

vagueness. According to that criterion, then, (1) and (3) should be considered distinct senses, 

suggesting that “paint” is at least partially ambiguous. Yet even this standard test is not without 

limitations. First, other contexts may permit a crossed reading of these two meanings (“When 

I’m painting [a portrait], I try to get the color on evenly, and so does Jane when she paints 

[stripes on the road]”) (Tuggy, 1993). Second, it is not always clear whether the anomalous 

reading arises from lexical ambiguity per se. For example, the sentence “the newspaper costs 

$0.50 and sacked all its staff” seems anomalous, but is that because human comprehenders 

represent two distinct senses for the wordform “newspaper”, or because of difficulties that arise 

during a more general-purpose process of pragmatic interpretation (Kilgarriff, 2007)? In other 

cases, cross-reference can elicit zeugma in the absence of ambiguity; for example, “I evicted and 

knew her” does not seem to involve lexical ambiguity, but many readers likely find it anomalous 

(Kilgarriff, 2007). 

Further, as others have noted (Geeraerts, 1993; Kearns, 2006), different tests are often in 

conflict with one another. Two uses of “book” might have different truth conditions and 
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accompany distinct modifiers (e.g., a cultural artifact vs. a physical object), but may still permit 

cross-reference (“I’m enjoying [this book] but I wish it had larger print”) (Kearns, 2006, pg. 369-

370).  

Of course, the fact that ambiguity is sometimes hard to distinguish from context-

dependence is not evidence that the distinction itself is in principle invalid. Perhaps we simply 

need better tests, or the existing tests ought to be weighted in more sophisticated ways. But it 

does indicate that the situation is more complex than it might appear at first glance, particularly 

when we apply this distinction to the mental representation of word meaning––and surprisingly, 

there is a dearth of studies investigating the psychological reality of discrete word senses (as 

distinct from context-dependence) in the first place. 

 

Homonymy and polysemy (and context-dependence) are not easily distinguished.  

The distinction between homonymy and polysemy is also notoriously challenging to define and 

detect (Tuggy, 1993; Valera, 2020). These forms of lexical ambiguity are typically distinguished 

in one of two ways: a) determining whether a given pair of meanings shares a common etymon 

or etymological source (polysemy) or not (homonymy); and b) determining whether a given pair 

of meanings is conceptually similar or related (polysemy), or not (homonymy) (Valera, 2020). 

Yet both methods have limitations. Shared etymology is difficult to establish and does not entail 

synchronic psychological association––even if two meanings were once related, the phenomenon 

of semantic drift can lead to those meanings drifting apart over time, leading to apparent 

homophony (Tuggy, 1993). For example, the words flour/flower actually began as a borrowing 

from the same etymon (flur) from French (fleur, meaning both “blossom” and “the choicest part 

of something”); these meanings drifted in various ways (e.g., “flower of wheat” referring to the 
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endosperm of wheat), and in fact retained the same spelling until the 18th century––now the 

words are heterographic homonyms (Jurafsky, 2014).  

Psychological relatedness seems preferable in principle if our goal is to establish theories 

about the structure of the mental lexicon. But assessing psychological relatedness raises thorny 

definitional and methodological questions: how exactly is “relatedness” established? Should 

some mechanisms or manners of conceptual relation—such as metaphor or metonymy—be 

weighted more heavily than others, or does any manner of relation count? Moreover, as others 

have noted (Klepousniotou, 2002; Valera, 2020) the very notion of relatedness—and the way it’s 

usually measured—lies on a continuum, as opposed to a dichotomy. This has led some (e.g., 

Deane, 1988; Tuggy, 1993) to suggest that homonymy, polysemy, and under-specification ought 

to be considered as lying along a cline as well: 

 

“In effect, the three types form a gradient between total semantic identity and total 

semantic distinctness” (Deane, 1988, pg. 327). 

 

“Ambiguity and vagueness may be seen as occupying opposite ends of a continuum with 

polysemy in the middle.” (Tuggy, 1993, pg. 1).  

 

This continuum view is to some extent compatible with current psycholinguistic evidence. As 

noted earlier, processing ease (as measured by RT, accuracy, N400 effects, etc.) on several 

different tasks (e.g., lexical decision, primed sensibility judgments, etc.) is predicted not only by 

the coarse distinction between homonymy and polysemy, but also by the degree of overlap 

between two meanings (Klein & Murphy, 2002; Klepousniotou et al, 2008; Brown, 2008). 
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 However, a cline between ambiguity and under-specification does not square easily with 

the Mental Dictionary Framework. Under a strong interpretation of “continuum”, categories such 

as homonymy and polysemy are helpful descriptive abstractions, but are not viewed as 

psychologically real; it is challenging to reconcile this position with the Mental Dictionary 

Framework, in which word meanings are represented in discrete entries. This suggests that an 

alternative framework might be required––one that allows for greater flexibility of representation 

and context-dependence.  

 

Word meaning is flexible and context-dependent.  

A more general critique of the Mental Dictionary Framework is presented by Elman (2009), who 

argues that in general it cannot adequately address the dynamic, context-dependent nature of 

word meaning. Elman (2009) reviews a large body of psycholinguistic research, demonstrating 

that words encode detailed world knowledge, and that this knowledge appears to play an early 

role in sentence processing. This includes early detection of incompatible or unlikely 

instrument/patient pairings (e.g., Susan used the scissors to cut the expensive wood), the ability 

of discourse context to override typical verb/patient pairings (e.g., a “shopping” context renders 

the lifeguard saved money easier to process, even though the default expectation might be saved 

lives), and more. In other words, “lexical representations contain a significant amount of detailed 

word-specific information that is available and used during online sentence processing” (Elman, 

2009, pg. 566).  

For Elman, this raises the question of which information is included in these lexical 

representations. Overly sparse entries (e.g., a phonological representation and part of speech) 

cannot account for the early effects of lexical knowledge; but if we instead add sufficient detail 
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to these entries to accommodate the psycholinguistic evidence, it results in a combinatorial 

explosion (e.g., storing all the possible instrument/patient contingencies and their respective 

compatibilities). Elman (2004; 2009; 2011) ends up rejecting the notion of discrete lexical entries 

altogether, instead advocating for a view in which word meaning is represented as trajectories 

through a continuous state-space. This alternative view, which we call the Continuity of Meaning 

Framework, is described in more detail below. 

 

The Continuity of Meaning Framework 

In the Continuity of Meaning Framework, words are conceptualized as cues to meaning–

–eliciting context-dependent trajectories through a continuous state-space, as in a recurrent 

neural network (Elman, 2004; Elman, 2009; Elman 2011; Li & Joanisse, 2021). In theory, the 

dimensions of this state-space could be constituted by many different features of lexical 

experience, including the distributional statistics or usage patterns of a word (Li & Joanisse, 

2021), as well as sensorimotor associations with that word (Elman, 2011). In this paper, we focus 

primarily on the role of distributional patterns, but a potential role for sensorimotor correlates is 

considered in the General Discussion. 

The precise trajectory elicited by a particular word token (e.g., “runs”) will necessarily be 

contingent on the prior state of the network, which in turn is entirely dependent on context (e.g., 

“the boy runs” vs. “the cheetah runs”). Thus, this approach builds the role of context directly 

into its conception of word meaning: rather than positing discrete senses for two contexts of use, 

the difference in meaning can be captured by the different trajectories elicited by “runs” across 

those two sentential contexts. Accordingly, when the same wordform is encountered in contexts 

that differ to a greater degree, it will also elicit trajectories through the network that differ more–
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–the distance in state-space between “the boy runs” and “the cheetah runs” should be smaller 

than the distance between “the boy runs” and “the clock runs”. This yields the theoretical 

benefits of word “types” without the disadvantages discussed above (Elman, 2004), in the 

following way. To the extent that two tokens elicit similar trajectories in state-space, they behave 

quantitatively like a common “type” of sorts––but while also differing in subtle, context-

dependent ways. This framework also reflects a larger paradigm shift towards continuous 

accounts of cognitive processes more generally (Spivey & Dale, 2004; Spivey & Dale, 2006; 

Spivey, 2008); increasingly, many processes thought to consist of discrete operations carried out 

over symbolic representations have been modeled using a dynamical systems approach that 

posits no explicit representations (Spivey, 2008; Beer, 2003; Chemero, 2011).     

How might this framework handle the problem of lexical ambiguity? In its strongest 

theoretical implementation, the notion of discrete sense categories is rejected altogether. This 

view––which we call Pure Exemplar Theory––holds that discrete meaning categories for a word 

(i.e., “senses”) is a convenient theoretical abstraction, but is not psychologically real. A “sense” 

is simply a label describing a stable pattern of activity within the high-dimensional state-space. 

According to Pure Exemplar Theory, the difference between lexical ambiguity and context-

dependence is entirely a matter of degree: all words elicit variable trajectories through state-

space, and although we might decide that some of these trajectories are better described in terms 

of multiple “sense-clusters”, this distinction is not assumed to be cognitively relevant––it does 

not influence cognitive processing above and beyond the distance in state-space between any 

two contexts of use. This theory thus has an affinity to other accounts of language processing 

that eschew stored abstractions (Ambridge, 2020).  
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As a consequence, on Pure Exemplar Theory, the difference between homonymy and 

polysemy is also one of degree, not kind. Homonymy corresponds to words with more distant, 

differentiable contexts of use, while polysemy corresponds to words whose contexts of use are 

closer in state-space. A similar account is presented in Rodd (2020), in which these phenomena 

are understood from the perspective of attractor basins. Homonymous meanings correspond to 

distant, deep attractor basins, while polysemous meanings correspond to shallow, more 

connected basins.14  

 To date, Pure Exemplar Theory cannot be strictly disconfirmed by any existing 

psycholinguistic research. Merely finding a difference in how comprehenders process 

homonymous or polysemous words, as many studies have (Rodd et al, 2002; Klepousniotou, 

2002; Klepousniotou & Baum, 2007; Armstrong & Plaut, 2008), does not rule out the possibility 

that this difference simply reflects distances in a fundamentally continuous space; if 

homonymous meanings are more distant than polysemous meanings, then Pure Exemplar Theory 

predicts that they should be harder to process. The same goes for finding a difference between 

how people process ostensibly same sense and different sense uses (Klein & Murphy, 2001): if 

same sense uses are used in more similar contexts, then Pure Exemplar Theory predicts that they 

should be easier to process than different sense uses. Thus, Pure Exemplar Theory currently 

offers a better explanation of existing data than either theory falling under the Mental Dictionary 

Framework, as it accommodates findings distinguishing homonymy and polysemy, as well as 

ambiguity from context-dependence. It is also more consistent with other evidence that is harder 

to reconcile with either account, such as the finding that the degree of overlap between two 

 
14 Rodd (2020) does not necessarily argue for some form of the Pure Exemplar Theory. Rather, it is the closest 
example of a model of lexical ambiguity in which meaning is seen as distributed feature-vectors in a continuous 
landscape. It is possible that Rodd’s (2020) state-space model is compatible with a cognitive distinction between 
ambiguity and context-dependence. 
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meanings––or more aptly, between two contexts of use––influences behavior (Klein & Murphy, 

2002; Klepousniotou et al, 2008; Brown, 2008). 

  

Hybrid Meaning Framework: Category Effects in a Continuous State-Space  

 

Although Pure Exemplar Theory cannot be disconfirmed by current empirical evidence, there are 

at least two reasons to think it might not stand up to a more targeted falsification attempt.  

 First, outside of lexical ambiguity, there are a number of domains in which humans treat 

continuously varying input as falling into discrete categories that have psychological effects 

above and beyond continuous variation in that input (Goldstone & Hendrickson, 2010). This 

phenomenon, categorical perception, transforms the perceptual space “such that differences 

between objects that belong in different categories are accentuated, and differences between 

objects that fall into the same category are deemphasized” (Goldstone & Hendrickson, 2010, pg. 

69). Evidence for categorical perception is often demonstrated by manipulating a continuous 

stimulus, such as voice onset time or color hue, and asking whether behavioral or 

neurophysiological responses to that stimulus exhibit discontinuity. Many of these domains 

involve language in some way (though not all, e.g., face perception). For example, responses to 

continuous variation in acoustic input exhibits discontinuity dependent on the phoneme 

categories of a language (Liberman et al, 1957). Similarly, neurophysiological responses to 

variation in color hue are dependent on language-specific color categories (Thierry et al, 2009; 

Mo et al, 2011). This phenomenon also extends to objects, i.e., whether two distinct referents are 

co-categorized by the lexicon of a language. English speakers distinguish cups from mugs, while 

Spanish speakers refer to both as taza. Accordingly, English speakers exhibit a sharper visual 
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mismatch negativity effect when viewing pictures of mugs interspersed with those of cups (or 

vice versa), than do Spanish speakers (Boutonnet et al, 2013). While this last example involves 

distinct referents (i.e., cups and mugs) rather than continuous variation in a perceptual stimulus 

(e.g., color hue), it remains relevant to the question of lexical ambiguity. If sense categories are 

psychologically real, one might expect them to exert a similar influence: that is, the conceptual 

distance between two contexts of use should be magnified if those contexts straddle a sense 

boundary––and compressed if they fall within a single sense category.  

 Second, recent empirical evidence from an offline task (Trott & Bergen, 2021) is broadly 

consistent with this prediction. Trott & Bergen (2021) asked participants to rate the conceptual 

relatedness of the same wordform in two different contexts of use. In some cases, these contexts 

corresponded to the same sense (e.g., “marinated lamb” vs. “roasted lamb”), while others 

corresponded to different senses (e.g., “marinated lamb” vs. “friendly lamb”). Additionally, 

some different-sense pairs were classified (according to dictionaries) as polysemous (e.g., 

“marinated lamb” vs. “friendly lamb”), while others were homonymous (e.g., “furry bat” vs. 

“baseball bat”). Participants’ ratings were compared with a continuous measure of the distance 

between these contexts of use, obtained using the neural language model BERT15 (Devlin et al, 

2019). As expected, more distant contexts were rated as less related (Pearson’s r = 0.58). 

Critically, however, BERT consistently underestimated how related participants found same-

sense pairs to be, and overestimated how related they found different-sense homonyms to be 

(Trott & Bergen, 2021). Both results point to the possibility that participants’ relatedness 

judgments were influenced not only by continuous variation across contexts of use, but also by 

human sense categories. According to this interpretation, sense categories compressed the 

 
15 BERT is described in more detail in the Current Work section.  
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conceptual distance between same-sense pairs and amplified the distance between distance-sense 

pairs (particularly for homonyms). 

 On the other hand, there are several important limitations to this result. First, as 

participants’ relatedness judgments were made offline, it remains unclear whether putative sense 

categories play an active role in shaping online word processing in context. Second, participants 

were explicitly asked to rate meaning similarity on a labeled scale from 1 (“totally unrelated”) to 

5 (“same meaning”). This might have encouraged participants to draw on meta-linguistic 

category knowledge to complete the task, even if such knowledge does not actually influence the 

course of “ordinary” language comprehension. Together, these limitations imply that we cannot 

yet rule out the Pure Exemplar Theory as a viable account of the mental lexicon.  

 Of course, as noted in the previous section, there are also a number of limitations to both 

theories falling under the Mental Dictionary Framework. This raises the possibility of a hybrid 

account––one that reconciles the notion of discrete sense categories with a continuous, graded 

meaning space.   

 

Hybrid Meaning Theory. Hybrid Meaning Theory posits the existence of senses (or “sense-

clusters”). These sense categories warp the underlying continuous context space according to 

which category a particular point or trajectory within that space belongs to. Specifically, contexts 

of use belonging to the same sense category should become closer together, while contexts of use 

belonging to different sense categories should become further apart.  

 Importantly, this theory requires that the co-categorization of two contexts of use depend 

on some factor other than distance in context space. That is, Hybrid Meaning Theory is not 

merely an exaggeration of existing clumpiness. Rather, it requires that contexts of use are 
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somehow assigned to distinct sense categories, which themselves are derived from a source of 

information or representation external to that context space––and which, in turn, warp the 

distance between those usage contexts. There are many possible mechanisms by which sense 

categories might form, including: identification of distinct sensorimotor associations for different 

contexts of use, distinct communicative or pragmatic contexts, and more (see the General 

Discussion for a more detailed description). Importantly, the primary commitment of Hybrid 

Meaning Theory is not to a specific categorization mechanism, but to the claim that sense 

categories impinge on a continuous meaning-space and transform that space in some way.   

Figure 10 presents one possible implementation of these transformations: within a sense-

cluster, points attract towards the centroid of that sense category, resulting in an exaggeration of 

conceptual distance across clusters. We call this mechanism the Sense Attraction account.  

 

Figure 10: In the Sense Attraction Account, existing clumpiness in usage-space is exaggerated. 

For within-cluster uses of a wordform, contextual distance is compressed in meaning-space; for 

across-cluster uses of a wordform, contextual distance is amplified. 

Sense Attraction Account
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Another possible mechanism, which we call the Sense Distillation Account, is illustrated 

in Figure 11. Unlike the Sense Attraction Account, within-cluster variance is distilled into a 

single point, i.e., the centroid of that cluster. Critically, this preserves the metric properties of the 

continuous space: clusters with centroids that are relatively closer together will result in sense 

representations that are also closer in meaning-space. But because within-cluster variance is 

removed, the Sense Distillation Account predicts that the difficulty of transitioning between two 

within-sense contexts of use is not predicted by their distance in usage-space––whereas the 

Sense Attraction Account predicts that within-cluster variance should predict processing 

difficulty even for same sense uses of a wordform.  

 

Figure 11: In the Sense Distillation Account, clusters are distilled into their centroids. This 

removes within-cluster (i.e., within-sense) variance entirely, but preserves the underlying metric 

properties of the continuous space. 

Both possible accounts outlined above are analogous to more general cognitive 

mechanisms implicated in the resolution of continuously varying or ambiguous input into 

Sense Distillation Account
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discrete categories, such as categorical perception (Goldstone & Hendrickson, 2010) or the 

Ganong Effect (Ganong, 1980). As described earlier, these theoretical mechanisms have played 

an important role in accounting for human behavior in other domains (e.g., speech perception); 

we propose that an analogous mechanism could be of use in explaining human lexical 

knowledge. 

 Both implementations of Hybrid Meaning Theory (Sense Compression and Sense 

Distillation) also acknowledge the importance of continuity and context-dependence, as well as 

the possibility that the mind carves further structure into this continuous space. While this theory 

has not been directly tested, its stipulation of continuous gradation in meaning allows it to 

accommodate existing evidence for the dynamic, flexible nature of word meaning (Elman, 

2009). Further, its representation of category structure makes it consistent with evidence that 

discrete sense representations play a role in cognitive processing (Klein & Murphy, 2001; Klein 

& Murphy, 200; Yurchenko et al, 2020). It also makes a concrete prediction that differentiates it 

from Pure Exemplar Theory, as well as from both theories falling under the Mental Dictionary 

Framework. Namely, the ease of transitioning between two contexts of use, as in primed 

sensibility judgment tasks (Klein & Murphy, 2001; Klepousniotou et al, 2008; Brown, 2008) 

should be affected both by the distance in usage space between those contexts and whether or not 

a sense boundary separates those uses.  

Nevertheless, at present, there is no reason to prefer this theory over the more 

parsimonious Pure Exemplar Theory, which has not yet been disconfirmed and which also 

accommodates existing evidence. 
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Hybrid+ Theory. The Hybrid Meaning Theory described above claims that discrete sense 

categories are integrated with a continuous meaning-space. Yet there is also evidence that human 

sense knowledge is further shaped by the kind of ambiguity at play (Rodd et al, 2002; 

Klepousniotou, 2002; Klepousniotou & Baum, 2007; Armstrong & Plaut, 2008; Trott & Bergen, 

2021). If this is true, the Hybrid Meaning Theory must be augmented with a categorical 

distinction between homonymy and polysemy––above and beyond distances in state-space. We 

call this augmented view the Hybrid+ Theory. 

 As noted earlier, the Continuity of Meaning Framework predicts that on average, pairs of 

homonymous senses are likely to occupy more distant regions of sense-space than pairs of 

related senses (Rodd, 2020). That is, homonyms and polysemes occupy a continuum of proximity 

in sense-space ranging from very close to very distant. Neither Pure Exemplar Theory nor 

Hybrid Meaning Theory categorically distinguishes the two phenomena. In principle, however, it 

is conceivable that the human mind transforms a continuous space not only with discrete sense 

representations, but also in a way that reflects distinct kinds of lexical ambiguity. This 

transformation could have the result of differentiating homonymy and polysemy above and 

beyond the proximity of their sense-clusters in usage space (Rodd et al, 2002; Klepousniotou, 

2002; Klepousniotou & Baum, 2007; Trott & Bergen, 2021). We call this modified view 

Hybrid+ Theory, given that it posits both discrete sense representations and distinct kinds of 

relationships between these sense representations, all atop continuous effects of context.  

As with sense categories, there are a number of reasons why a categorical difference 

between polysemy and homonymy could emerge. For one, various theories of lexical 

representation propose that they are realized through different cognitive mechanisms (Cruse, 

1986), which could produce categorically distinct behavior. Additionally, polysemy is 
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systematic, both within and across languages (Srinivasan & Rabagaliatti, 2015), which might 

scaffold the learning of new polysemous meanings of known wordforms (Srinivasan & 

Snedeker, 2011) as compared with unrelated meanings of the same wordform (e.g., “dog bark” 

and “tree bark”). In theory, this differentiation could also occur along multiple levels of 

granularity, distinguishing not just homonymy and polysemy but also different kinds of 

polysemy, such as metaphor and metonymy (Yurchenko et al, 2020). Differentiation could even 

occur at the level of specific semantic relations, such as Animal/Meat or Material/Product 

(Srinivasan & Snedeker, 2011; Srinivasan & Rabagliati, 2015).  

 

Current Work 

Thus far, we have reviewed several theories of how humans process and represent word 

meaning, with a particular focus on ambiguous words. The Mental Dictionary Framework views 

word meanings as analogous to entries in a dictionary; each unique form-meaning pairing is 

represented in a lexical entry, with ambiguous words (like homonyms) corresponding to multiple 

lexical entries. The Mental Dictionary Framework can be further subdivided into accounts that 

distinguish between polysemy and homonymy (Core Representation Accounts) and those that 

view all ambiguous words as mapping onto distinct lexical entries (Sense Enumeration 

Accounts). Crucially, both kinds of account claim that word senses are psychologically real and 

constitute categorical representations in the mind.  

In contrast, The Continuity of Meaning Framework views word meanings as trajectories 

in a continuous, context-sensitive state-space. In Pure Exemplar Theory, the notion of discrete 

sense representations is rejected altogether, along with the categorical distinction between 

homonymy and polysemy (Elman, 2009).  
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We also described two novel, “hybrid” theories falling under the Hybrid Framework. 

Hybrid Meaning Theory claims that meaning is constituted by a continuous state-space, but also 

that existing “clumpiness” in a word’s pattern of use is exaggerated by the mind (see Figures 1-

2). The Hybrid+ Theory takes this model one step further, and claims that the mind further 

differentiates between homonymy and polysemy in this continuous space. 

To test these theories, we selected a methodological paradigm––primed sensibility 

judgments––that has previously been used to demonstrate categorical effects of sense boundaries 

(Klein & Murphy, 2001; Yurchenko et al, 2020), as well as a distinction between homonymy and 

polysemy (Klepousniotou et al, 2008; Brown, 2008). Specifically, processing difficulty––as 

indexed by response time (RT) and accuracy––is increased when the uses of an ambiguous 

wordform across a prime and target sentence correspond to what are classified as different senses 

(Klein & Murphy, 2001; Yurchenko et al, 2020); this effect is larger for different-sense sense 

pairs classified as homonyms (Brown, 2008), or with less semantic overlap (Klepousniotou et al, 

2008), than for words that are closely related. 

Each theory makes distinct, testable predictions about which variables should influence 

behavior, and which should not. This means that each theory (with the exception of Hybrid+ 

Theory) can be disconfirmed by finding that some variable of interest (e.g., sense boundaries) 

predicts behavior when the theory claims that it should not. For example, Pure Exemplar Theory 

predicts that the ease of transitioning between two contexts of use (as measured by RT or 

Accuracy) should be predicted by a continuous measure of the distance between those contexts 

in usage-space––but not by whether those contexts of use span a sense boundary (e.g., 

“marinated lamb” and “friendly lamb”) or belong to the same sense (e.g., “marinated lamb” and 

“roasted lamb”). Conversely, both varieties of the Mental Dictionary Framework predict an 
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effect of sense boundaries on behavior, but not a graded effect of contextual distance above and 

beyond this categorical effect. Hybrid Meaning Theory predicts both a graded effect of 

contextual distance and an effect of sense boundaries––but critically, the effect of sense 

boundaries should not be different across homonyms and polysemes (once contextual distance is 

accounted for). 

Table 1: Each theory makes distinct, testable predictions about which factors should influence 

behavior. 

 

Mental Dictionary 
Framework 

Continuity of 
Meaning Framework 

Hybrid 
Framework 

Sense 
Enumeration 

Core 
Representation Pure Exemplar Theory Hybrid Hybrid+ 

Graded effects of 
context -- -- Yes Yes Yes 

Effect of sense 
boundaries Yes Yes -- Yes Yes 

Effect of sense 
boundary larger 
for homonyms 

than polysemes 

-- Yes -- -- Yes 

 

 In other words, Hybrid Meaning Theory (along with Pure Exemplar Theory, and both 

Mental Dictionary theories) does not predict an interaction between sense boundary and 

ambiguity type. Technically, this theory is compatible with a main effect of ambiguity type (i.e., 

an overall difference across homonymous and polysemous stimuli), given that different words 

and sentence frames will be used. In order to disconfirm the theory, we would need to observe an 
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interaction: a larger effect of sense boundaries for homonyms than polysemes, as observed for 

offline judgments in Trott & Bergen (2021). Only Hybrid+ Theory is compatible with this 

interaction effect. Accordingly, only this final theory cannot be strictly falsified, given that it 

predicts non-zero effects for all variables of interest. That said, certain patterns of results are 

nonetheless more compatible with alternative, simpler theories; for example, there is little reason 

to prefer Hybrid+ Theory if no graded effect of context is found, once categorical sense 

representations are accounted for (see Table 1).  

Past work has focused primarily on adjudicating between the varieties of the Mental 

Dictionary Framework. Although a number of researchers have raised the possibility of 

homonymy and polysemy occupying a continuum (see Challenges to the Mental Dictionary 

Framework above), none have attempted to directly adjudicate between the Mental Dictionary 

Framework and Pure Exemplar Theory, nor test the Hybrid Theories introduced here. That’s 

what the current experiments aimed to do. 

Measuring Continuous Contextual Distances 

A critical prerequisite for comparing these theories is operationalizing the notion of 

continuous distance in state-space. Such an operationalization must be both continuous and 

context-sensitive, so that one context of use (e.g., the word “lamb” in “marinated lamb”) can be 

compared to another (e.g., in “friendly lamb”), e.g., by calculating the distance between these 

contexts.  

To operationalize this notion of continuity, we used BERT (Devlin et al, 2019), a state-

of-the-art neural language model (NLM). There is a growing body of literature using BERT and 

other NLMs as operationalizations of human lexical-semantic knowledge in general (Li & 

Joanisse, 2021; Trott & Bergen, 2021; Nair et al, 2020; Haber & Poesio, 2020a; Haber & Poesio, 
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2020b), and to test Elman’s (2004; 2009) cues to meaning framework in particular (Li & 

Joanisse, 2021; Trott & Bergen, 2021). It is important to note that BERT (like most NLMs) is 

trained on linguistic input alone (Bender & Koller, 2020), and lacks access to any extra-linguistic 

sources of information that humans might use to represent the meanings of a word, such as 

sensorimotor associations. Thus, BERT reflects a particular operationalization of the Continuity 

of Meaning Framework: its representational space is continuous, and the topology of this 

continuous space is determined by statistical regularities in which words co-occur with which 

other words. While this operationalization has clear limitations (Bender & Koller, 2020), it is 

compatible with views of linguistic meaning that emphasize the role of usage (Wittgenstein, 

1953), such as the distributional semantic hypothesis (Harris, 1954; Firth, 1957; Lenci, 2008). 

The distributional semantic hypothesis states that words with more similar meanings should 

appear in more similar contexts––and consequentially, that meaning similarity should be 

derivable from contextual similarity.  

BERT (base) was trained on a large text corpus (>3 billion word tokens) using two 

objectives: 1) a masked language modeling task, in which the model must learn to predict a 

“masked” word in some sentential context (e.g., “I went to the [MASK] bank”); and 2) next-

sentence prediction, in which the model must learn to predict whether two sentences occurred 

next to each other. After training, BERT can be used to produce contextualized embeddings of a 

given wordform, a vector representation reflecting both that wordform’s statistical distribution in 

the training corpus, as well as the immediate context in which that word appears. That is, rather 

than producing a single, static embedding for a given string, as earlier distributional semantic 

measures like LSA and HAL do, BERT’s contextualized embeddings are sensitive to the 

linguistic context in which a word token is observed. BERT’s architecture appears to naturally 
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encode a number of linguistic features, such as part of speech, semantic roles, and others 

(Tenney et al, 2019). These contextualized embeddings have been shown to improve 

performance on a number of downstream NLP tasks involving lexical ambiguity, such as Word 

Sense Disambiguation (Aina et al, 2019; Loureiro et al, 2020). Past work also suggests that 

BERT can be used to distinguish monosemous and polysemous words, or even polysemy and 

homonymy (Haber & Poesio, 2020a; Haber & Poesio, 2020b; Soler & Apidianaki, 2021; Nair et 

al, 2020), and that BERT’s representations encode sense-like information (Karidi et al, 2021). 

Most relevantly for our purposes, BERT’s contextualized embeddings are well-suited for 

measuring contextual distance in a graded manner––given two contextualized embeddings of an 

ambiguous target word (e.g., for “marinated lamb” and “friendly lamb”), we can compute the 

cosine distance between those vectors, a metric often used to assess proximity in vector-space4. 

Smaller cosine distances indicate that the embeddings are closer, while larger values indicate 

they are further apart.  

Accounting for contextual distance in a primed sensibility judgment task allows us to 

adjudicate among the theories outlined above. Pure Exemplar Theory predicts that the difficulty 

in transitioning between two contexts of use should be affected solely by their proximity in 

usage-space––thus, the existence of a sense boundary (or the distinction between homonymy and 

polysemy) should not predict variance in RT or Accuracy above and beyond cosine distance. 

Both varieties of the Mental Dictionary Framework predict the opposite, i.e., cosine distance 

should not explain variance in RT or Accuracy above and beyond the existence of a sense 

boundary. And both hybrid theories predict a systematic distortion of this continuous usage-

 
4 Note that we also replicated the primary analyses using ELMo, another well-known contextualized language 
model. Our pre-registered analyses used BERT because it tends to outperform ELMo on Word Sense 
Disambiguation tasks (Wiedemann et al, 2019) and predicting relatedness judgments (Trott & Bergen, 2021), and 
because it was more predictive of response time in a pilot study. 
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space, such that the existence of a sense boundary (or the distinction between homonymy and 

polysemy) should increase measures relating to processing cost (e.g., RT or Accuracy), above 

and beyond the cosine distance as measured by BERT.  

 

Experiment 1 

The primary goal of Experiment 1 was adjudicating between the competing theoretical accounts 

outlined above. As noted above (see also Table 1), each theory makes distinct predictions about 

which variables should predict processing ease (as measured by RT and Accuracy) in a primed 

sensibility judgment paradigm. Specifically, Pure Exemplar Theory predicts that only the 

continuous distance between two contexts of use is necessary to explain processing ease. In 

contrast, both Mental Dictionary Theories predict that only categorical variables, such as the 

existence of a sense boundary or the distinction between polysemy and homonymy, are 

necessary to explain behavior. The two hybrid theories (Hybrid and Hybrid+) subscribe to a 

continuous model of word meaning, but additionally hypothesize the existence of discrete sense 

representations (Hybrid) and a distinction between homonymy and polysemy (Hybrid+); thus, 

each predicts that a unique combination of these variables will predict processing ease.  

This work is (to our knowledge) the first attempt to directly test the Continuity of 

Meaning Framework using a measure of online processing ease. Past work (Nair et al, 2020; 

Trott & Bergen, 2021; Li & Joanisse, 2021) has used NLM-derived measures (e.g., cosine 

distance) to predict relatedness judgments, but has not directly pitted those continuous measures 

against categorical factors (such as the existence of a sense boundary) to ask whether both 

explain independent sources of variance in processing difficulty.  
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The experimental design, hypotheses and analyses were pre-registered on OSF in 

advance of data collection (https://osf.io/gj48a). Additionally, data and code to reproduce the 

pre-registered analyses is available on OSF (https://osf.io/2s7mg/); additional data and code to 

reproduce the supplementary analyses is also available on GitHub 

(https://github.com/seantrott/trott_ph_amb). 

The study was carried out with IRB approval. 

 

Methods. 

Participants. We recruited 216 participants from the UC San Diego Psychology 

Department Subject Pool. After following the exclusion criteria listed in our pre-registration 

(https://osf.io/gj48a), we had a total of 180 participants (our target sample size). The exclusion 

criteria included: participants who self-reported as non-native speakers of English, participants 

who failed at least one of the two “bot check” questions at the beginning of the experiment, 

participants who self-reported as having completed the experiment on a mobile device, and 

participants for whom more than half of critical trials were excluded because of overly slow (RT 

> 3 SD above the subject-level mean) or overly fast (<500 ms) responses. Of the final set of 

participants, 144 self-identified as female (33 male, 2 non-binary, and 1 preferred not to answer). 

The average age was 20.5 (SD = 1.67) and ranged from 18 to 29.  

The target sample size of 180 was based on a pilot study with 74 participants. In the pilot 

study, we detected significant (p < .001) effects of both Cosine Distance and Sense Boundary, 

but only a marginally significant interaction between Sense Boundary and Ambiguity Type in 

predicting Accuracy. Thus, it was inconclusive from the pilot whether Hybrid Meaning Theory 

or Hybrid+ Theory was a better explanation of the data. We conducted a simulation-based power 
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analysis using the simR package (Green & MacLeod, 2016) to determine the number of 

participants we would need to detect the interaction between Ambiguity Type and Sense 

Boundary with 95% power at an alpha of .025 (to correct for the two dependent variables). The 

power analysis indicated that 95% power could be achieved with 180 participants; we then 

estimated the number of participants we would need based on applying the exclusion criteria to 

the pilot data. (More details are included in the pre-registration.) 

Materials. We adapted materials from several previous studies (Klepousniotou, 2002; 

Brown, 2008; Klepousniotou et al, 2008; Klepousniotou & Baum, 2007). These studies either 

used sentence fragments containing an ambiguous word (e.g., “marinated lamb” or “fixed the 

radio”), or used homonymous and polysemous words in isolation (e.g., “bat”). For each 

ambiguous word, we created four sentences (two for each of the primary senses). Thus, there 

were six possible sentence pairs for each word: two Same Sense pairs, and four Different Sense 

pairs. Each sentence for each word contained the same sentence frame (e.g., “They liked the ___ 

lamb”), but differed in the disambiguating word (e.g., “marinated” vs. “friendly”); a minority of 

words (13) had at least one sentence which used a different article before the disambiguating 

word than the other sentences (e.g., “a” vs. “an”). We began with 115 items total (460 

sentences).  

We used two dictionaries (Merriam-Webster and the Oxford English Dictionary) to 

determine whether the two meanings expressed by a word were categorized by lexicographic 

experts as different senses. There were 3 words for which neither dictionary listed the meanings 

as separate senses at all (e.g., “glossy magazine” vs. “sports magazine”), suggesting that 

lexicographers viewed these meanings as the same. These items were included in the norming 

study, but not in the final stimulus set (leaving us with 112 words). We also used both 
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dictionaries to annotate whether Different Sense items were classified by lexicographers as 

related via Homonymy or Polysemy; meanings listed as separate entries were annotated as 

Homonymy, and those listed in the same entry were annotated as Polysemy. There was one word 

(“drill”) for which the two dictionaries did not agree; in this case, we labeled the two meanings 

as homonymy, following the OED. 

We also created a number of filler items (112 unique wordforms). Each filler word was 

matched for the concreteness, frequency, part of speech, and length (number of syllables) of one 

of the critical wordforms. Then, for each filler, we constructed two sentences containing that 

word, i.e., a minimal sentence pair. For 38 of these filler items (approximately one third), both 

sentences were nonsensical; for the remaining 74 (approximately two thirds), only one of the two 

sentences was nonsensical (counterbalanced for whether the first or second was nonsensical). 

This was to prevent participants from learning any contingencies between the prime and target 

item.  

Finally, we ran a norming study to obtain relatedness judgments for all of the critical 

sentence pairs (Trott & Bergen, 2021). Eight of the words had very low relatedness judgments 

for their Same Sense pairs, so we excluded these from the final stimulus set, leaving us with 104 

wordforms (and 624 unique sentence pairs, not accounting for order). In this final set, 30 

wordforms were labeled as Homonymous, and 74 were Polysemous. 76 of the target wordforms 

were used as nouns and 28 were used as verbs.  

Among this final set of 104 words, Mean Relatedness from the norming study was (as 

expected) higher among Same Sense (M = 3.53, SD = 0.451) than Different Sense (M = 1.38, SD 

= 1.13) pairs. Further, Different Sense Homonyms were less related on average, and also 

exhibited less variability (M = 0.44, SD = 0.37), than Different Sense Polysemes (M = 1.76, SD 
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= 1.11). This was also expected: the polysemous meanings ranged considerably in their 

relatedness, from highly related meanings (e.g., “marinated lamb” vs. “friendly lamb”) to less 

related meanings (e.g., “brain cell” vs. “prison cell”). Additional details about the norming 

procedure can be found in Trott & Bergen (2021); note that some of the descriptive statistics will 

differ from those presented here, given that Trott & Bergen (2021) report analyses on the original 

set of 112 words.  

Procedure. 

Participants completed the study online. They were told that they would read a series of 

sentences, and that some of these sentences would make sense, while others would not. Their 

task was to determine which sentences made sense and which did not; they were told to indicate 

this via button-press (m for “makes sense”, and x for “does not make sense”). The instructions 

encouraged participants to complete each trial as accurately and quickly as possible. Before 

beginning the primary experiment, participants completed ten practice trials (five sentence pairs). 

After each trial, they were given feedback indicating whether their response was correct.  

The primary experiment contained 56 critical sentence pairs, randomly sampled from the 

list of possible trials. Each sentence pair contained an overlapping word (e.g., “lamb”) and 

sentence frame (“They liked the ___”), with one disambiguating word (e.g., 

“marinated/friendly”). The sampling process was constrained so as not to repeat the same word 

multiple times across sentence pairs. A similar process was implemented for sampling 56 filler 

sentence pairs as well. On any given trial (i.e., a target sentence), a participant saw a sentence 

appear in the center of the browser page (e.g., “They liked the marinated lamb”). A reminder of 

their task instructions appeared below the target sentence (“Does this sentence make sense? X = 

No; M = Yes”).  
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After completing the primary experiment, participants answered several demographic 

questions, regarding their self-identified gender, age, whether or not they were a native speaker 

of English, and whether or not they completed the experiment on a mobile device. 

The experiment was implemented in JsPsych, version 6.0.5 (de Leeuw, 2015). 

 

Results. 

 All analyses described below were conducted in R version 3.6.3 (R Core Team, 2020). 

Mixed effects models were constructed using lmer (for Reaction Time data) and glmer (for 

Correct Response data) commands from the lme4 package (Bates et al, 2015). Random effects 

structure was determined by beginning with the maximal model, then reducing random effects as 

needed for model convergence (Barr et al, 2013); in this case, all models contained by-subject 

random slopes for the effects of Cosine Distance, Sense Boundary, and Ambiguity Type, as well 

as random intercepts for subjects and items. All models also contained the following covariates 

relating to the target word: Concreteness, Log Frequency, Part-of-speech, and Length (number of 

characters). Nested models were compared using log-likelihood ratio tests. Finally, each 

explanatory variable of interest (e.g., Cosine Distance) was used in two separate analyses, to 

predict either Reaction Time (RT) or Correct Response (Correct vs. Incorrect); thus, we 

corrected for multiple comparisons using the Holm-Bonferroni method (Holm, 1979). Only 

adjusted p-values are reported below.  

 Planned analyses were pre-registered on OSF (https://osf.io/gj48a); all exploratory 

analyses are marked as such in a separate section. 

 Planned analyses. First, we compared a model with fixed effects for Sense Boundary 

and Cosine Distance to a model omitting only the fixed effect of Sense Boundary. The full model 
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had significantly better fit than the reduced model for both Accuracy [X2(1) = 77.17, p < .001] 

and RT [X2(1) = 34.43, p < .001]. This disconfirms the prediction of Pure Exemplar Theory; 

even after adjusting for continuous differences in a word’s context of use, the existence of a 

sense boundary explained additional variance in how accurately and quickly participants 

responded to the target item. Subjects were more likely to respond correctly to Same Sense items 

(89.3%) than Different Sense items (79.9%). Response times were also faster for Same Sense (M 

= 1068, SD = 542) than Different Sense (M = 1159, SD = 598) items. 

 

Figure 12: Log Reaction Time for correct trials only, displayed as a function of Same Sense vs. 

Different Sense. Different Sense trials resulted in longer response times on average than Same 

Sense trials. 
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Figure 13: Accuracy on the target trial, grouped by subject and displayed by Same Sense vs. 

Different Sense. Accuracy was considerably higher for Same Sense (M = 0.89) than Different 

Sense trials (M = 0.8).  

Second, we constructed a full model including fixed effects of Sense Boundary, Cosine 

Distance, and Ambiguity Type, as well as an interaction between Ambiguity Type and Sense 

Boundary. The full model explained significantly more variance in RT than a model omitting 

only the fixed effect of Cosine Distance [X2(1) = 15.42, p < .001]; larger Cosine Distances were 

associated with longer response times [b = 0.14, SE = 0.04]. This disconfirms predictions of 

both theories falling under the Mental Dictionary Framework, i.e., both the Core Representation 

and Sense Enumeration accounts; continuous gradations in a word’s context of use predicted 
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behavior above and beyond Sense Boundary and Ambiguity Type. There was no significant 

effect of Cosine Distance on Accuracy (p > .2).  

 Finally, we compared the full model to a model omitting only the interaction between 

Ambiguity Type and Sense Boundary. The full model did not explain significantly more variance 

for either Accuracy (p = .16) or RT (p > .2). This fails to disconfirm Hybrid Meaning Theory––

at least on this task, there is no evidence that homonymy and polysemy elicit fundamentally 

different behavior, all other things being equal.  

 Exploratory analyses. One unexpected finding was an apparent main effect of 

Ambiguity Type on Accuracy––participants were considerably less accurate when responding to 

homonymous than polysemous items, as evidenced by a significant coefficient for Ambiguity 

Type [b = -1.14, SE = 0.24, p < .001]. Because this effect occurred in both the Same Sense and 

Different Sense conditions, it is unlikely to be driven by relative differences in the degree of 

cross-sense inhibition (or facilitation) across Polysemy and Homonymy. That is, the main effect 

cannot be due to priming. Further support for this interpretation comes from inspection of 

Accuracy on the first, unprimed half of each trial, which reveals a similar main effect of 

Ambiguity Type (but not, crucially, of Sense Boundary). Together, this suggests that the main 

effect of Ambiguity Type arises because of properties of the sentences themselves––either 

because participants are less accurate when responding to sentences with homonyms in general, 

or because these particular sentences were not sufficiently controlled for plausibility across 

Homonymy and Polysemy.  

 To account for the latter possibility, we replicated the planned analyses from above, but 

substituted mean first-trial Accuracy (or RT) for each version of each item in place of variables 

relating to the target word like Concreteness or Frequency. By including first-trial Accuracy (or 
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RT) as a covariate, we could better estimate parameters of interest (e.g., coefficients for Cosine 

Distance, Sense Boundary, and the Ambiguity Type x Sense Boundary interaction) as they relate 

to the task itself, as opposed to uncontrolled properties of the stimuli. The main effect of 

Ambiguity Type in the full model was now not significantly different from zero (p > .5 for both 

Accuracy and RT). Importantly, however, the main effect of Sense Boundary was preserved for 

both Accuracy [X2(1) = 84.8, p < .001] and RT [X2(1) = 36.57, p < .001], as was the main effect 

of Cosine Distance on RT [X2(1) = 17.73, p < .001]. Again, there was no significant interaction 

between Ambiguity Type and Sense Boundary for either RT or Accuracy (ps > .2).  

 While this does not answer directly the question of why Homonymous sentences had 

lower accuracy rates than Polysemous sentences overall, it does suggest a method for directly 

accounting for any uncontrolled differences in the stimuli.16 This approach has the advantage of 

more directly adjusting for any variance due to features intrinsic of the individual sentence in 

question; differences in First-Trial Accuracy or First-Trial RT are not plausibly attributed to the 

structure of the task––given that the target ambiguous word has not been directly primed or 

inhibited by a previous use––and instead, reflect processing difficulties relating to the sentence 

itself. Thus, in Experiment 2, we sought to replicate the findings reported in Experiment 1 using 

this refined analysis.  

Experiment 2 

In Experiment 1, we found that behavior was predicted both by Cosine Distance and 

Sense Boundary, but not by the interaction between Sense Boundary and Ambiguity Type. 

However, there was a main effect of Ambiguity Type: accuracy was lower for homonymous than 

polysemous sentences. This main effect could have arisen from uncontrolled properties of the 

 
16 See the General Discussion for possible explanations for this result. 
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stimuli––indeed, when we controlled for the first-trial accuracy of each item, the main effect of 

Ambiguity Type disappeared, but the main effects of Sense Boundary and Cosine Distance were 

preserved. However, this analysis was exploratory. Thus, the primary goal of Experiment 2 was 

replicating the main findings of Experiment 1 while pre-registering this new analysis 

(https://osf.io/4ej6t).  

Methods 

Participants. As in Experiment 1, we aimed to collect data from 180 participants. Rather 

than try to estimate the rate of exclusion ahead of time, we iteratively collected data in batches 

and applied the exclusion criteria to each batch until at least 180 included participants were 

reached.  

Subjects were recruited through the UC San Diego Psychology Department Subject Pool. 

When we finished collecting data, there were 239 subjects in the final pool, with 187 remaining 

after applying the exclusion criteria. Of the final 187 participants, 129 self-reported as female (53 

male, 2 non-binary, and 3 preferred not to answer). The average age was 20.4 (SD = 2.04), and 

ranged from 18 to 32.   

Materials and Procedure. The materials used and experimental design were identical to 

Experiment 1. 

Results 

Planned analyses. The analyses were identical to those carried out in Experiment 1, 

except that the lexical statistics of the target word (e.g., Concreteness or Log Frequency) were 

replaced by the average first-trial accuracy (or RT) for the target sentence. 

As in Experiment 1, predictions of Pure Exemplar Theory were disconfirmed by finding a 

significant effect of Sense Boundary above and beyond Cosine Distance, for both Accuracy 
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[X2(1) = 96.96, p < .001] and RT [X2(1) = 45.57, p < .001]. Predictions of both theories falling 

under the Mental Dictionary Framework were also disconfirmed by finding a significant effect of 

Cosine Distance above and beyond Sense Boundary and Ambiguity Type (and their interaction), 

when predicting RT [X2(1) = 39.64, p < .001] but not Accuracy (p > .2). Finally, we detected no 

significant interaction between Ambiguity Type and Sense Boundary for either Accuracy or RT 

(ps > .2).  

Exploratory Analyses. The analyses above, precisely like the results from Experiment 1, 

are most consistent with Hybrid Meaning Theory. However, as noted in the Introduction, there 

are multiple mechanisms by which sense categories could be implemented in a continuous space. 

In the Sense Attraction Account, distances in usage-space are reduced for within-sense tokens, 

and exaggerated for tokens that span a sense boundary. Crucially, within-cluster variance is not 

eliminated entirely––it is merely reduced. In contrast, the Sense Distillation Account claims that 

within-cluster variance is entirely distilled into a single point, i.e., the centroid of that cluster. 

The metric properties of the underlying continuous space are preserved across sense-clusters, but 

within-cluster variance is removed. 

These accounts make testable predictions about whether, and how, Cosine Distance is 

related to processing ease for Same Sense items. Specifically, the Sense Attraction Account 

predicts that even for Same Sense items, reaction time should increase as a function of Cosine 

Distance (as it does when all items are considered). However, because the Sense Distillation 

Account claims that within-cluster variance is removed entirely, it predicts that Cosine Distance 

should not be systematically related to reaction time. 

We tested these accounts by building a linear mixed effects model with Log RT as a 

dependent variable, fixed effects of both Cosine Distance and Ambiguity Type, by-subject 
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random slopes for both Cosine Distance and Ambiguity Type, and random intercepts for subjects 

and items. This model explained significantly more variance than a model omitting Cosine 

Distance alone [X2(1) = 11.02, p = .001], indicating that even within Same Sense pairs, Cosine 

Distance was positively correlated with RT [b = .17, SE = 0.05]. This disconfirms the Sense 

Distillation Account, which predicts no difference in RT within Same Sense pairs. 

Discussion 

 Combined with Experiment 1, these results are inconsistent with three of the five 

accounts under investigation. As noted earlier, each account made specific predictions about 

which variables should or should not influence behavior in a primed sensibility judgment task 

(see Table 1 for a summary). Only the Hybrid+ Theory could not be strictly disconfirmed, given 

that it predicts significant effects of all the relevant experimental variables; failing to find a 

significant effect is not necessarily grounds for rejecting a theory. Nevertheless, a simpler theory 

that explains the data equally well is still preferable from the standpoint of theoretical parsimony. 

In this case, that reasoning tips the scales toward the Hybrid Meaning Theory.  

 To summarize the results, first, we found that the existence of a sense boundary between 

two contexts of use (e.g., “marinated lamb” vs. “friendly lamb”) resulted in slower response 

times and less accurate responses overall, as compared to two contexts of use that fall under the 

same sense category (e.g., “marinated lamb” vs. “roast lamb”). This replicates the sense 

consistency effect obtained in past work, using both identical task paradigms (Klein & Murphy, 

2001; Yurchenko et al, 2020) and alternative approaches (Klein & Murphy, 2002). Importantly, 

this effect held even after controlling for contextual distance, disconfirming the prediction of 

Pure Exemplar Theory. That is, behavior on this task can be better explained by positing some 
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form of categorical sense representation above and beyond the distance between two contexts of 

use. 

 Second, we found that response times were systematically longer for larger contextual 

distances, as measured by the cosine distance between BERT’s contextualized representations of 

the ambiguous target word, when controlling for sense boundaries. This disconfirms predictions 

of both accounts falling under the Mental Dictionary Framework (i.e., the Core Representation 

and Sense Enumeration Accounts), neither of which allow for graded effects of context: behavior 

on this task varied not only as a function of discrete sense representations, but rather was related 

to a measure that captures the context-dependent nature of word meaning. To our knowledge, 

this is the first empirical demonstration that online processing difficulty of ambiguous words can 

be explained by a continuous measure of contextual distance, above and beyond discrete 

variables like Sense Boundary. 

 This leaves the two hybrid theories: Hybrid vs. Hybrid+. The former predicts no 

difference in behavior across polysemous and homonymous words, while the latter does. 

Crucially, we failed to detect a difference in how people processed different-sense polysemous 

meanings and different-sense homonymous meanings, after controlling for differences in first-

trial accuracy or response time. Although we cannot strictly reject the Hybrid+ Theory––absence 

of evidence does not entail evidence of absence––this does suggest that the Hybrid Meaning 

Theory is a more parsimonious explanation of the data from both experiments.17 According to 

this theory, the clusters in context-space that arise as a function of purely distributional 

properties of language use are systematically “warped” in psychological space, as in the 

categorical perception of speech (Goldstone & Hendrickson, 2010), according to sense 

 
17 The question of whether homonymy is truly just a form of “distant” polysemy is further explored in the General 
Discussion.  
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boundaries. Further, a post-hoc analysis of the data from both experiments found that variance in 

contextual distance within Same Sense words (i.e., within a sense category) was also predictive 

of reaction time. This suggests that of the two compression mechanisms explored in the 

Introduction (Sense Attraction vs. Sense Distillation), Sense Attraction is a better explanation of 

the data. 

 This result raises a number of questions about the nature of these sense representations. 

How exactly does contextual distance map onto conceptual distance? Which functional 

transformation best accounts for the behavioral data, and what are the parameters underlying this 

transformation? These questions are explored in the section below.  

Hybrid Meaning Theory: A Further Test and Computational Model 

Above, we concluded that Hybrid Meaning Theory––and the Sense Attraction mechanism in 

particular––was the best explanation of the behavioral data. This theory claims that distance in 

context-space is systematically warped by the existence of sense boundaries, such that within-

sense distances are reduced, and across-sense distances are amplified.  

One potential objection to this conclusion is that BERT’s representation of the context 

space is not analogous to that of human participants. In principle, it is possible that human 

meaning representations are completely continuous (as predicted by Pure Exemplar Theory)––

and even derived from distributional statistics alone––but that the topology of this 

representational space is distinct from BERT’s, for reasons other than the existence of putative 

sense boundaries. If this interpretation is correct, BERT’s representational space already contains 

sufficient information to account for human behavior, provided it is transformed in the 

appropriate way. Critically, to be consistent with Pure Exemplar Theory, such a transformation 

must be bottom-up: that is, it must not depend on information extrinsic to what is observable via 
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a word’s pattern of use. On the other hand, if Hybrid Meaning Theory is correct, no bottom-up 

transformation to the underlying BERT-space will be sufficient to account for human sense 

knowledge. Instead, contextual distance must be transformed using top-down or auxiliary 

information––i.e., information that cannot be derived from distributional regularities in linguistic 

input alone. For example, contextual distance could be systematically transformed according 

whether the two contexts of use straddle a sense boundary or not.  

In the current section, we asked whether a top-down or bottom-up transformation to 

cosine distance improved the fit of a model predicting human behavior on the primed sensibility 

judgment task. Specifically, we compared the success of several bottom-up transformations to 

top-down transformations relying on the value of the Sense Boundary parameter (i.e., Same 

Sense vs. Different Sense). As a second-order question, we also considered two distinct functions 

to apply to cosine distance (for both bottom-up and top-down transformations): 1) an additive 

function, which increased or decreased cosine distance as a function of Sense Boundary (or the 

induced cutoff parameter); and 2) a multiplicative function, which scaled with the original value 

of cosine distance. Both functions, as well as the procedure for identifying the optimal 

parameters for each transformation, are described in more detail in the Methods section below.  

Once the parameters for each transformation were identified, we asked which 

transformation best predicted human behavior on Experiments 1-2. The best transformation was 

then selected using Akaike Information Criterion (AIC), a measure of model fit (Akaike, 1974; 

Burnham & Anderson, 2002). That is, we compared the predictive power of a series of statistical 

models, each containing a specific implementation of Transformed Distance.  

 

Functional Transformations 
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The first functional transformation was additive and top-down. That is, it assumed a fixed 

mapping between contextual distance and conceptual distance, according to whether or not two 

contexts of use were separated by a lexicographer-classified sense boundary. This mapping can 

be described as follows: 

𝑌 = 	 $𝑠𝑎𝑚𝑒 = 1:	𝑥 −	𝛽!
𝑠𝑎𝑚𝑒 = 0:	𝑥 +	𝛽!

0 

If two contexts of use correspond to the same sense, this function decreases conceptual distance 

by a fixed amount18 (b1); if two contexts of use correspond to distinct senses, this function 

increases conceptual distance by a fixed amount (b1). The “bottom-up” version of this 

transformation is identical, but uses an optimized cutoff parameter instead of Sense Boundary: 

𝑌 = 	 $𝑥 ≤ 𝑐:	𝑥 −	𝛽!
𝑥 > 𝑐:	𝑥 +	𝛽!

0 

 The second functional transformation was still linear, but no longer applied a fixed 

transformation to a given value of Cosine Distance. Rather, Transformed Distance was scaled 

proportionally to the original value of Cosine Distance: for same sense pairs, more distant pairs 

were “attracted” more relative to closer pairs; for different sense pairs, closer pairs were 

“repelled” more relative to already distant pairs. This was based on research suggesting that 

certain category effects are particularly large near category boundaries (Kuhl, 1991), and that co-

categorized exemplars undergo a larger perceptual transformation when they are further apart 

(Kuhl, 1991). This mapping can be described as follows: 

 
18 Using a single same term (b1) produces the same optimal solution as using distinct terms (b1, b2) for same and 
different sense pairs.  
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𝑌 = 	

⎩
⎨

⎧ 𝑠𝑎𝑚𝑒 = 1:
𝑥
𝛽!

𝑠𝑎𝑚𝑒 = 0:	𝑥 +	
1 − 𝑥
𝛽" ⎭

⎬

⎫
 

That is, the contextual distance of same sense pairs is divided by a fixed amount (b1), which 

results in a proportionately larger transformation to distant pairs than close pairs. Conversely, the 

contextual distance of different sense pairs is increased by an amount that decreases as Cosine 

Distance increases––different sense pairs that are already very distant (i.e., close to 1) will be 

adjusted less than different sense pairs that are very close (i.e., close to 0). As with (1), the 

bottom-up version of this transformation uses an optimized cutoff parameter instead of the Sense 

Boundary variable: 

𝑌 = 	

⎩
⎨

⎧ 𝑥 ≤ 𝑐:
𝑥
𝛽!

𝑥 > 𝑐:	𝑥 +	
1 − 𝑥
𝛽" ⎭

⎬

⎫
 

 For each transformation, we performed a grid search over a constrained parameter space 

to identify the optimal set of parameters that would best approximate relatedness. For the 

additive transformation, we considered values of b1 ranging from a lower-bound of 0 (i.e., no 

transformation) to an upper-bound of 1. For the multiplicative transformation, we considered 

parameter values ranging from [.1, 15] for both b1 and b2. For the bottom-up versions of each 

transformation, we considered cutoff parameters between [0, 1]. 

Parameter Optimization 
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To determine the optimal values of each parameter for each functional transformation, we sought 

to optimize the strength of the relationship between Transformed Distance and human 

relatedness judgments. Past work (Trott & Bergen, 2021) has found that although Cosine 

Distance is strongly correlated with relatedness (rho = -.58), it underperforms human inter-

annotator agreement by a considerable margin (rho = -0.79); further, Cosine Distance 

systematically underestimates human relatedness judgments of same-sense pairs, and 

overestimates the relatedness of different-sense pairs. Thus, we used a grid search to identify the 

parameters for each transformation that optimized the correlation strength between Transformed 

Distance and Mean Relatedness. 

The optimal parameters and resulting correlations between Mean Relatedness and 

Transformed Distance are included in Table 2, and the transformations themselves are depicted 

in the figures below. 

 

Table 2: Final parameter values for each transformation. 

Transformation Parameters Pearson’s r 

Additive (BU) b1 = 0.2, 

C = 0.2 

-0.59 

Multiplicative (BU) b1 = 0.6, 

b2 = 14.6, 

C = 0.5 

-0.62 

Additive (TD) b1 = 0.4 -0.76 

Multiplicative (TD) b1 = 10.6, 

b1 = 3.6 

-0.77 
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Figure 14: Final result of top-down transformations to Cosine Distance. Different functional 

transformations are applied to Cosine Distance as a function of Sense Boundary. 
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Figure 15: Final result of bottom-up transformations to Cosine Distance. Here, distinct 

transformations are applied according to some cutoff parameter, as opposed to the value of Sense 

Boundary variable; the cut-off refers to the value of Cosine Distance at which to apply one 

transformation or the other, and stands in for a “bottom-up” or induced value of Sense Boundary. 

Note that in the case of the multiplicative transformation, this results in a surprising 

transformation: because some Different Sense pairs are grouped under the cutoff value, there is a 

pressure to increase the distance of those pairs even more, to differentiate them from the Same 

Sense pairs also grouped under the cutoff value.  

Model Specification and Evaluation 

Our primary goal was to identify the transformation that best predicted human behavior on 

Experiments 1-2. To this end, we compared a series of models with distinct parameterizations, 

predicting both Correct Response and RT. Recall that in both Experiments 1-2, Cosine Distance 

did not improve model fit when predicting Correct Response, but it did explain independent 
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variance in RT; Sense Boundary explained variance in both dependent variables. There were four 

transformed models total, accounting for the transformation itself (Additive vs. Multiplicative) 

and the implementation (Bottom-Up vs. Top-Down). All models included the same random 

effects structure, and differed only in which fixed effects were added. 

1. Transformed Distance (Additive):  

a. D-Add-BU 

b. D-Add-TD 

2. Transformed Distance (Multiplicative) 

a. D-Mul-BU 

b. D-Mul-TD 

3. Original Cosine Distance: D 

4. Sense Boundary: SB 

5. A model containing both (3) and (4): D + SB 

6. A model containing an interaction between D and SB, along with their main effects.  

 

The top-down additive and multiplicative models (D-Add-TD and D-Mul-TD) represent 

hypothesized implementations of the Sense Attraction Account, i.e., distinct mechanisms by 

which within-sense distance is reduced and across-sense distance is increased. In this sense, they 

are each examples of a “hybrid” model. Thus, to the extent that Cosine Distance and Sense 

Boundary each explain unique variance in behavior, as they do for Reaction Time, these hybrid 

models should improve upon models with only Cosine Distance (D) or Sense Boundary (SB). 

Their bottom-up counterparts are included to test whether equivalent transformations to Cosine 

Distance without the use of extrinsic information (i.e., a sense boundary) would suffice. 



97 
 

Model D + SB is another example of a “hybrid” model, which is agnostic to the particular 

transformation applied to Cosine Distance, but which simply accounts for both Sense Boundary 

and contextual distance using distinct parameters. If D + SB is superior to both of the models 

with transformed distance, it suggests that neither functional transformation is sufficient to 

capture the underlying psychological transformation. But if either D-Add or D-Mul improves 

upon D + SB, it suggests that the corresponding functional transformation is, in fact, a good 

approximation of the true mapping between contextual distance and conceptual distance. Finally, 

we considered a model with an interaction between Cosine Distance and Sense Boundary (D * 

SB). This model can be seen as a superset of the multiplicative transformations, since it allows 

for a different slope of the effect of Cosine Distance for Same Sense vs. Different Sense pairs. 

Further, because there are both top-down and bottom-up implementations of D-Add and 

D-Mul, we can ask whether––and to what degree––an explicit, supervised transformation 

improves upon one that simply warps cosine distance according to some cutoff parameter. If the 

top-down transformations do not represent an improvement, it suggests that the relevant 

information to form human-like sense boundaries is already captured by the distributional 

regularities of language use––that is, the transformation does not require information external to 

contextual distance (as measured by BERT). Importantly, this outcome would be consistent with 

Pure Exemplar Theory: human lexical knowledge can be explained using information present in 

the distributional statistics of linguistic input alone. But if the top-down transformations do 

improve upon the bottom-up ones, it suggests that other sources of information, or other manners 

of representation, are necessary to account for human behavior. 

We then calculated the AIC for each model. AIC is a measure of model fit, and is defined 

as: 
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𝐴𝐼𝐶 = 2𝑘 − 2ln	(𝐿) 

Where k is the number of parameters in the model, and L is the likelihood of the model. Models 

with better fit will have higher values of L, and thus lower AIC values overall. As is standard 

practice (Burnham & Anderson, 2002; Burnham et al, 2011), we rescaled each value of AIC by 

subtracting the AIC of the best model (i.e., the one with the lowest AIC) of that model set.  

Results 

 Predicting Response Time. First, we considered the distribution of AIC values across 

models for predicting RT, aggregated across Experiments 1-2.  

The best model (i.e., the one with the lowest AIC) is the model containing both of the 

original predictors (Cosine Distance and Sense Boundary), followed by the model containing 

their interaction; presumably, the interaction does not substantially improve model fit, and is 

penalized for adding an extra parameter.  

None of the transformations considered were sufficient to account for the information 

provided by Cosine Distance and Sense Boundary. On the other hand, the top-down 

implementations of the additive and multiplicative transformations represented a substantive 

improvement over Cosine Distance alone, as well as Sense Boundary. This is not entirely 

surprising, given that the transformed variables explicitly incorporate both Cosine Distance and 

Sense Boundary, systematically adjusting the former as a function of the latter. Of the two 

transformations, the simpler Additive transformation resulted in a lower AIC than the 

Multiplicative transformation. 



99 
 

 

Figure 16: Rescaled AIC for each of the models predicting RT. The models containing top-down 

transformations (D-Add-TD and D-Mul-TD) exhibited better fit than those containing only 

Sense Boundary (SB) or the original Cosine Distance variable (D). The bottom-upt 

ransformations (D-Add-BU and D-Mul-BU) exhibited the worst fit. 

 Finally, the bottom-up implementations of both transformations actually performed worse 

than Cosine Distance alone. This is more surprising, given that they were optimized to improve 

the correlation between Cosine Distance and Mean Relatedness.  
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 Predicting Accuracy. Second, we asked how well the transformed versions of Cosine 

Distance predicted Correct Response. Recall that in Experiments 1-2, a fixed effect of Cosine 

Distance did not improve model fit above a model containing only Sense Boundary.  

 In this case, the original measure of Cosine Distance performed the worst, followed by 

the bottom-up (BU) transformations; unlike with RT, the bottom-up transformations did 

represent an improvement upon the original Cosine Distance measure.  

 

Figure 17: Rescaled AIC of the models predicting Correct Response. As with RT, the models 

with the top-down transformations (D-Mul-TD and D-Add-TD) exhibited better fit than those 

with the bottom-up transformation (D-Mul-BU and D-Add-BU), though in this case, these were 

not as successful as a model with Sense Boundary alone. 

 The best model was the one containing only Sense Boundary. Again, this is not 

surprising, given that the addition of Cosine Distance did not improve model fit for Experiments 
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1-2. Of the top-down (TD) transformations, the Additive transformation resulted in a slightly 

lower AIC, but this difference was quite small (~0.53), considering the differences between other 

models. 

 

Discussion 

 In this section, we attempted to formalize and compare different implementations of 

Hybrid Meaning Theory. This theory claims that distance in context-space is systematically 

warped in conceptual space by the existence of sense boundaries, such that within-sense distance 

is reduced and across-sense distance is increased.  

We considered two high-level questions. First, what information is required to account 

for the effect of sense boundaries? Can these effects be simulated by applying a bottom-up 

transformation to Cosine Distance, or does a successful approximation require some top-down, 

external source of information? And second, which functional transformation (i.e., additive vs. 

multiplicative) results in a parameter that best predicts human behavior?  

 We addressed the first question by comparing a top-down and bottom-up version of each 

transformation. The key difference was that the top-down transformations explicitly relied on the 

value of Sense Boundary (i.e., Same vs. Different Sense), while the bottom-up transformations 

induced an optimal “cutoff” parameter to apply to Cosine Distance. Models equipped with the 

top-down transformations consistently outperformed those using the bottom-up transformations, 

as measured by a lower AIC value. This pattern held across both dependent variables (Correct 

Response and Response Time) and both types of transformation (additive vs. multiplicative). 

This suggests that distributional statistics alone, at least as operationalized by certain state-of the-

art Neural Language Models, are insufficient to account for the effect of sense categories. 
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Rather, an explanatory theory must posit that sense category structure is derived from some 

source of information or representation that goes beyond linguistic co-occurrence statistics; 

plausible candidates are explored in the General Discussion. 

 We addressed the second question by comparing two functional transformations. The 

additive transformation was intended to model a main effect of Sense Boundary: within-sense 

distance was reduced by some fixed amount, and across-sense distance was increased by that 

same amount. In contrast, the multiplicative transformation allowed the magnitude of a given 

transformation to vary with the original distance in context-space: distant Same Sense pairs were 

attracted more than pairs that were already close together; and nearby Different Sense pairs were 

repelled more than pairs that were already distant. When predicting RT, the top-down additive 

transformation was better than the top-down multiplicative transformation; this was also true 

when predicting Correct Response, but the difference in predictive power was comparatively 

very small.  

 

General Discussion 

We began with the question of how humans store and represent the meanings of 

ambiguous words. Traditional theories fall under the Mental Dictionary Framework, with 

discrete entries corresponding to each meaning of a wordforms. In contrast, the Continuity of 

Meaning Framework views word meaning as trajectories in a continuous, context-dependent 

state-space (Elman, 2004; Li & Joanisse, 2001). Some theories falling under this framework 

(e.g., Pure Exemplar Theory) eschew the notion of discrete meaning representations altogether. 

In this paper, we also introduced two “hybrid” theories, which allow for the possibility of graded, 
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context-sensitive meaning representations, but also posit the existence of mediating categorical 

representations (see Table 1 for a summary).  

Two behavioral experiments provided support for the simpler of these two hybrid 

theories, which we uncreatively call Hybrid Meaning Theory. Using a primed sensibility 

judgment paradigm, we found that response time on the target trial was systematically related to 

the continuous distance between the prime and target contexts, above and beyond the existence 

of a sense boundary between those contexts––this disconfirms any theory that fails to account for 

continuous, context-sensitive meaning representations (e.g., any theory under the Mental 

Dictionary Framework). Both response time and accuracy were further modulated by the 

existence of a sense boundary, disconfirming a theory that posits no discrete meaning 

representations (e.g., Pure Exemplar Theory). We also found no evidence that the size of this 

effect depended on the kind of ambiguity (i.e., homonymy vs. polysemy), suggesting that these 

phenomena do not elicit categorically distinct behavior on the task. Altogether, this suggests that 

Hybrid Meaning Theory accounts best for the behavioral signatures we measured of how humans 

represent the meaning of ambiguous words. 

Below, we discuss limitations of the current work, and explore implications for future 

research. 

Accuracy vs. Reaction Time (RT) 

 As described above, both dependent measures (Accuracy and RT) were predicted by the 

existence of a sense boundary, but only RT was significantly correlated with cosine distance. 

Although we treated these measures as testing the same hypothesis (hence correcting for multiple 

comparisons), it is worth exploring potential post-hoc explanations for why they would diverge 

with respect to cosine distance. 
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 Accuracy is a discrete measure (correct or incorrect), reflecting discrete responses on the 

task (sensible vs. nonsensical). Consequently, it reflects the outcome of imposing a decision 

threshold on a process that may, at root, be continuous. In cases where the effect of graded 

context distances (here, cosine distance) is relatively small––they may be detectable only on the 

process of arriving at a decision, but not necessarily the outcome of a decision itself.  

In contrast, RT reflects the amount of time required to correctly identify a sentence as 

plausible. As a more fine-grained measure of the process by which a participant arrived at their 

decision, RT may thus be more suitable for identifying small, continuous effects like that of 

cosine distance. Indeed, other researchers (Spivey & Dale, 2004; Spivey & Dale, 2006) have 

pointed out that fine-grained, continuous measures are important for investigating putatively 

continuous processes. If this is true, it suggests a potential avenue for future work: researchers 

might deploy more fine-grained measures (e.g., mouse-tracking, eye-tracking, or EEG) to 

identify whether and to what extent the mental lexicon exhibits continuity. 

Limitations of the Language Model 

One possible objection to the current work is that BERT represents a poor operationalization of 

Pure Exemplar Theory, and that other language models would be a better choice. This objection 

might manifest in two different ways: first, that BERT already has representational abstractions, 

and is thus ill-suited to operationalizing an account that eschews sense representations (i.e., it’s 

already too humanlike); and second, that BERT is too limited, either in its training data or its 

architecture (i.e., it’s not powerful enough).  

First, as others have pointed out (Mahowald et al, 2020), signals elicited from neural 

language models––e.g., surprisal, hidden unit activation, etc.––often covary with psychological 

or linguistic categories, such as parts of speech, animacy, semantic roles, and more (Tenney et al, 
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2019); this is sometimes interpreted as reflecting the formation of representational abstractions. 

If models like BERT are capable of forming abstractions, it is conceivable that sense 

representations might already be encoded by BERT, in which case BERT would indeed be a 

poor implementation of a theory that posits no sense representations. However, this objection can 

be rejected on empirical grounds: in our studies, BERT demonstrably failed to capture variance 

in human behavior that was explained by the existence of a sense boundary. Similarly, bottom-up 

transformations to cosine distance alone failed to improve model fit above and beyond the effect 

of sense boundary––the best transformations were “top-down”, in that they relied on an external 

source of information (in this case, human-annotated sense knowledge). Together, these findings 

empirically demonstrate that even if BERT is capable of forming representational abstractions, 

these abstractions cannot account for the effect of human sense knowledge. 

A second, alternative objection is that BERT is not sufficiently powerful. Neural 

language models are evolving rapidly––models like GPT-3 already surpass BERT on a number 

of metrics (Brown et al, 2020), and increases in computing resources will likely yield even better 

models in years to come (Kaplan et al, 2020). Thus, our “best guess” for how much information 

can be extracted from linguistic context alone may change as well; it is possible that a future 

generation of neural language models will display something equivalent to human sense 

knowledge. Importantly, however, improvements in performance along some dimensions (e.g., 

perplexity) do not always entail better predictions of human behavior on other tasks (e.g., 

reading time or eye-tracking) (Kuribayashi et al, 2021). This suggests that even as models 

improve at the tasks they are designed to do (e.g., masked word prediction), they may continue to 

diverge from humans in important, cognitively relevant ways. Additionally, as noted in 

Supplementary Analysis 1, we did replicate our analyses with ELMo, another language model 
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(Peters et al, 2018) that typically underperforms BERT on Word Sense Disambiguation tasks 

(Wiedemann et al, 2019), and with BERT-large, which contains twice as many layers and many 

more parameters. Interestingly, although BERT-large produced better predictions of human 

relatedness judgments, it was a worse predictor (as measured by AIC) of reaction time than 

BERT-base. This reinforces the point that improvement on one task does not entail improvement 

across the board––so it is no guarantee that future language models will acquire humanlike sense 

knowledge in the absence of other methodological interventions intended to render them more 

humanlike (i.e., fine-tuning them to a Word Sense Disambiguation dataset, or incorporating 

grounding into their training regime). Further, in Supplementary Analysis 3, we asked whether a 

different metric (Surprisal) explained more variance than the pre-registered measure (Cosine 

Distance); while Surprisal was indeed predictive of behavior, it did not eliminate the explanatory 

power of sense boundaries, consistent with the predictions of Hybrid Meaning Theory. Finally, 

in the Computational Modeling section, we explored several bottom-up transformations to 

Cosine Distance, all of which suggest that distributional statistics alone are insufficient to 

account for the category effects of sense boundaries. 

On this note, it is worth reiterating that BERT represents a particular implementation of 

Pure Exemplar Theory––i.e., one in which continuous meaning representations are derived from 

distributional regularities in linguistic input alone. BERT (and most other neural language 

models) lack extra-linguistic grounding (Lake & Murphy, 2020; Bender & Koller, 2020). Thus, 

any semantic knowledge that relies on extra-linguistic information (e.g., perceptual experience) 

will be inaccessible to BERT. While this limits BERT’s predictive power, it also offers a useful 

inferential tool: models like BERT help establish empirical limits on how much human linguistic 

knowledge can be captured from distributional regularities alone. As Elman (2011) notes, a 
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continuous meaning space could be constituted by many different dimensions of experience, 

including the sensorimotor or even social associations with individual words and constructions. 

Accordingly, future work could make use of recent developments in grounded language models 

(Su et al, 2019; Zellers et al, 2021; Johns, 2021) to ask whether access to particular dimensions 

of sensorimotor information elicits more humanlike behavior. One possible outcome is that the 

variance in human behavior currently explained by sense boundaries can actually be attributed to 

aspects of sensorimotor or social experience uncaptured by BERT. Under one interpretation, this 

would salvage a version of Pure Exemplar Theory, which simply admits more dimensions of 

human experience into the continuous state-space.  

Is Homonymy Just “Distant” Polysemy? 

We found no evidence that homonymous meanings exhibited different priming effects 

than polysemous meanings. This is surprising, given the extensive evidence that the two 

phenomena elicit systematically different behavior on a number of tasks (Rodd et al, 2002; 

Klepousniotou, 2002; Klepousniotou & Baum, 2007; Klepousniotou et al, 2012; Rodd et al, 

2012; Floyd & Goldberg, 2021), and the fact that they are typically treated as distinct phenomena 

in theoretical linguistics and lexicography (Valera, 2020). Some past work has nevertheless 

acknowledged the possibility of homonymy and polysemy lying along a continuum, both in 

theoretical cognitive linguistics (Tuggy, 1993) and experimental psycholinguistics (Rodd et al, 

2002; Brown, 2008; Klepousniotou et al, 2008). As noted in the Introduction, however, the 

majority of work in this area has not incorporated this notion of a continuum between 

homonymy and polysemy into theoretical or formal models of lexical ambiguity (with some 

exceptions, e.g., Rodd (2020)). 
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 Does this mean that homonymy is simply “distant” polysemy––at least when it comes to 

their respective impacts on cognitive processing? There are several possible reasons why it does 

not. First, we might simply have failed to detect a real, non-zero difference between polysemy 

and homonymy (e.g., because the study was under-powered). On the other hand, while there is 

always a real possibility of a false negative result, we obtained null results across two large N 

studies (N ≥ 180); further, a power analysis suggested that we should have had 95% power to 

detect an effect of the size we detected in a pilot study. Combined, this suggests that the 

behavioral differences in this paradigm are either nonexistent, or small enough to be of 

negligible theoretical interest.  

Second, it is possible that our operationalization of homonymy and polysemy––i.e., 

determining whether two meanings were listed as separate entries in the dictionary––was 

somehow deficient. However, it is unclear how better to operationalize these variables. Binning 

according to some behavioral variable (e.g., relatedness) would impose semi-arbitrary structure 

on a continuous space, which is precisely the question we are attempting to address. The 

expertise of lexicographers for Merriam-Webster and the OED may be the closest approximation 

to the received expert view that can be found. Nevertheless, it is possible that another 

operationalization, perhaps relying on finer-grained distinctions between semantic relations (e.g., 

metaphor vs. metonymy), could result in the detection of behavioral differences across categories 

of ambiguity. 

Third, our original, pre-registered analyses did not account for sense dominance (i.e., 

when one meaning of an ambiguous word is more frequent than another), which is known to 

influence ease of processing (Duffy et al, 1988; Klepousniotou et al, 2008; Blott et al, 2020). 

However, we counterbalanced the order of the prime and target sentences across participants. 
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Thus, if many of the sentence pairs contained unbalanced meanings, our results would essentially 

be averaging across a null or small effect (i.e., moving from a subordinate to a dominant sense) 

and a strong effect (i.e., moving from a dominant to subordinate sense); we believe this is 

unlikely to account for the failure to find a significant difference in the priming effect across 

polysemous and homonymous pairs. Additionally, we did run a post-hoc analysis using normed 

dominance judgments for different sense items only (see Supplementary Analysis 2). This 

analysis replicated the effect of dominance found in past experiments (Klepousniotou et al, 

2008), as well as the main effect of Cosine Distance reported in Experiments 1-2. There was also 

a possible main effect of Ambiguity Type for different sense pairs only––but as noted below, this 

main effect could be driven by uncontrolled differences among the stimuli themselves, and is not 

necessarily attributable to differences in the strength of priming across homonymous and 

polysemous stimuli (i.e., we failed to detect a Sense Boundary x Ambiguity Type interaction in 

both experiments). 

Finally, and perhaps most importantly, it is possible that the primed sensibility judgment 

task is simply not well-suited for detecting a difference between homonymy and polysemy. Our 

failure to detect a difference on one task does not entail that the two phenomena are not 

psychologically distinct in general. To make this more general claim––i.e., that homonymy is 

“distant” polysemy––one would need to demonstrate a null effect across a number of tasks that 

have provided evidence for a categorical difference between polysemy and homonymy. If, by 

process of elimination, each task fails to elicit behavioral differences above and beyond the 

continuous distance between two contexts of use, one might at last conclude that homonymy and 

polysemy truly do lie along a continuum; if, on the other hand, some tasks do continue to elicit 
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different behavior, that would provide deeper insight into exactly when and under what 

conditions this categorical distinction is cognitively and behaviorally relevant.  

Here, it is worth revisiting the surprising finding that accuracy did significantly differ 

across sentences containing homonymous and polysemous sentences, on both prime and target 

trials. Since the size of this effect did not differ across prime and target trials, this indicates that 

there was no difference in the priming effect itself. There are several possible explanations for 

this main effect. First, it could be due to uncontrolled differences in the stimuli: perhaps the 

sentences containing homonyms, or the homonymous items themselves, happened to be less 

natural than those containing polysemes. Although we adjusted for a number of features in our 

analyses (e.g., frequency, length, concreteness), it is possible that we failed to account for a 

crucial determinant of lexical processing. Second, the effect could be driven by a theoretically 

meaningful difference in how homonymous and polysemous words are processed. Past work 

(Rodd et al, 2002; Klepousniotou, 2002) has found differences in reaction time and accuracy on 

isolated lexical decision tasks. If accessing the meaning of a homonym involves competition 

from its other, unrelated meanings (Rodd et al, 2002), then sentences containing homonyms 

might also be genuinely harder to process than those with polysemes, even independent of 

priming.  

 

Sense Representations in a Continuous State-Space 

The experimental results reported above support Hybrid Meaning Theory, which claims: 

1) word meanings are context-dependent trajectories through a continuous state-space; and 2) 

these trajectories are mediated by sense representations, such that contextual distance is 
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transformed into a sense-mediated conceptual distance. The second claim raises a number of 

questions about the nature of these sense representations.  

 First, there are a number of distinct computational mechanisms by the use of which sense 

representations might mediate contextual distance. In the Introduction, we distinguished between 

Sense Attraction, in which tokens within a sense-cluster shrink towards their centroid, and Sense 

Distillation, in which within-cluster variance is removed altogether, preserving only the centroid 

or prototypical member. An exploratory analysis provided evidence in favor of the Sense 

Attraction mechanism; even considering only same sense uses, we found that response time was 

positively correlated with contextual distance, suggesting that some within-cluster variance is 

preserved. Further, we applied several functional transformations to Cosine Distance, and asked 

which transformation yielded improvements in predicting human behavior. We found that an 

additive transformation to Cosine Distance best improved a statistical model’s fit; crucially, the 

best transformation was “top-down” and explicitly used the Sense Boundary variable, i.e., 

information external to the underlying BERT-space. This suggests that distributional regularities 

alone––even after applying a bottom-up transformation––are insufficient to account for the 

emergence of sense-like representations.    

 This leads to a second, related question: how and when do these sense representations 

emerge? Given that every context of use constitutes a slight variation in meaning, what degree––

or what dimensions––of variation results in the creation of a sense boundary? Klein & Murphy 

(2001, pg. 279) summarize the question as follows (emphasis ours): 

 

“If two senses are only very subtly different, it seems unlikely that speakers will develop 

separate entries for them, since a single entry will suffice to specify most of the meaning 
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for both. If two senses are strikingly different, then a single entry will probably be 

unsuccessful at representing both meanings, which will presumably lead to the formation 

of separate entries…What is needed is a more specific model of what causes a sense to 

be separately represented, from which one could derive predictions about which 

uses would involve the same senses and which would involve different senses.” 

 

One promising avenue would be to look to related research on how children acquire ambiguous 

words. There is some evidence that children are better able to acquire new meanings for a known 

wordform when those meanings are related, rather than unrelated, to its existing meanings (Floyd 

& Goldberg, 2021). This echoes previous findings that homonyms are challenging to learn 

(Casenhiser, 2005), possibly because children have a bias against assuming homophony––though 

more recent work (Dautriche et al, 2016) suggests that children reliably postulate homophony if 

the exemplars presented from each meaning are sufficiently distinct. Finally, work by Srinivasan 

& Snedeker (2011) suggests that children rely on a common representation for polysemous 

words with highly regular meaning relationships (e.g., “heavy book” and “popular book”). As the 

authors note, this common representation could be lexical, with rules for deriving each meaning 

stored with the word itself (Pustejovsky, 1995); alternatively, they might rely on more general 

conceptual knowledge, likely reflecting systematic conceptual relations within and across 

languages (Srinivasan & Rabagliati, 2015). Yet to our knowledge, it remains unknown whether 

and when these related meanings drift apart into distinct sense-clusters. In our task, English-

speaking adults demonstrated an effect of sense boundary above and beyond the distance 

between two contexts of use, and there was no significant difference in the size of this effect 

between polysemes and homonyms––suggesting that at least in adults, polysemous meanings 
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manifest in distinct sense-clusters. Future work could use a similar paradigm with children, and 

ask at what age children begin to differentiate highly related polysemous meanings. 

A second avenue would be to develop hypotheses about which dimensions of contextual 

variability are most likely to predict the emergence of a new sense. If word meaning is at least 

partially grounded in sensorimotor experience (Barsalou, 1999; Pulvermüller, 2013; Bergen, 

2015), one possibility is that a new sense-cluster is generated when the associated sensorimotor 

profile is sufficiently distinct. For example, one meaning might be more concrete than the other, 

as is the case with much of conceptual metaphor (e.g., “a wooden table” vs. “a data table”). 

Alternatively, different contexts of use might be similarly concrete, but involve different bodily 

effectors, different perceptual modalities, or even different instruments. For example, “cut the 

paper” and “cut the hair” both typically involve scissors, whereas “cut the grass” often involves a 

lawn mower. If psychological senses are motivated by sensorimotor distinctions, then one would 

predict that “cut the paper” and “cut the hair” are more likely to behave as same sense items, 

while “cut the paper” and “cut the grass” should be more likely to behave like different sense 

items, all other things being equal. Similarly, the difficulty of transitioning across a sense 

boundary might be highest when those senses have very different sensorimotor profiles.  

Conclusion 

Word meaning is highly context-sensitive and often outright ambiguous. Accordingly, 

mental representations of word meaning must be flexible enough to accommodate this context-

sensitivity. However, traditional theoretical frameworks analogize mental representations to 

entries in a physical dictionary, which are static and discrete; this conceptualization is 

challenging to reconcile with the flexible, context-dependent nature of word meaning. We 

reviewed evidence supporting the Continuity of Meaning Framework, in which word meanings 
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are conceptualized as context-sensitive trajectories in a continuous state-space; we also 

introduced two “hybrid” theories, which posit discrete, psychologically real categories atop this 

continuous space. In two behavioral experiments using a primed sensibility paradigm, we found 

that human behavior was best predicted by a theory that posits both continuous, flexible meaning 

representations as well as discrete senses.  
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CHAPTER 5: WHY DO HUMAN LANGUAGES HAVE HOMOPHONES? 

 

 Human languages are replete with ambiguity. This is most evident in homophony––where 

two or more words sound the same, but carry distinct meanings. For example, the wordform 

“bark” can denote either the sound produced by a dog or the protective outer sheath of a tree 

trunk. Estimates of the rate of homophony in English range from 7.4% (Rodd et al, 2002) to over 

15%19 (Baayen et al, 1995). Dautriche (2015) estimates the average homophony rate across 

languages to be 4%, with considerable cross-linguistic variability, ranging from approximately 

3% in Dutch to 15% in Japanese.  The prevalence of homophony, like other kinds of ambiguity, 

is confounding on its face. Human languages are generally thought to be shaped by pressures for 

efficient, effective communication (Zipf, 1949; Gibson et al, 2019). Yet ambiguity increases both 

the effort required for comprehension and the likelihood of miscommunication. A comparison 

between human and programming languages places this into relief. Programming languages, 

designed for efficient and errorless communication, generally abide no ambiguity at all. Why 

then do human languages insist on encoding distinct messages identically? Why are homophones 

so common? 

 Part of the answer appears to be that human comprehenders are adept at disambiguating 

ambiguous input using various contextual cues (Levinson, 2000; Wasow et al, 2005; Ferreira, 

2008; Piantadosi et al, 2012). In the case of homophones, a wide array of cues to meaning are 

available, including the syntactic structures that words are embedded in (Dautriche et al, 2018), 

gestures that accompany speech (Holle & Gunter, 2007; Holler & Beattie, 2003; Kidd & Holler, 

2009), and statistical aspects of linguistic context (Aina et al, 2019). The human capacity for 

 
19 Estimates of the rate of polysemy (wordforms with related meanings) are considerably higher: up to 80% of 
wordforms in English are thought to be polysemous (Rodd et al, 2002).  
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disambiguation thus creates a tolerant environment for ambiguous wordforms––explaining why 

as languages evolve, homophones might not be strictly selected against.  

 But might homophones also be selected for? Zipf (1949) argues that ambiguity is a 

design feature of any human communication system, resulting from a direct pressure for 

efficiency. A growing body of evidence is consistent with the claim that lexica are optimized for 

efficient communication between humans (Piantadosi et al, 2009; Gibson et al, 2019), from the 

way they carve up semantic domains (Regier et al, 2007; Kemp & Regier, 2012; Xu & Regier, 

2014; Kemp et al, 2018; Zaslavsky et al, 2018) to the wordforms that they contain (Piantadosi et 

al, 2011; Piantadosi et al, 2012; Mahowald et al, 2018). This pressure for an efficient lexicon 

could result in a selective bias for wordforms that are particularly easy to produce and 

comprehend, where ease reflects properties such as a word’s length, phonotactic plausibility, and 

frequency. Combined with a tolerance for ambiguity, a bias for easy wordforms could exert a 

pressure on lexica to “recycle” particularly optimal wordforms for multiple meanings. This 

pressure, termed “unification” by Zipf (1949), would increase efficiency by reducing the number 

of unique wordforms that speakers need to learn and encode. Furthermore, by preferentially re-

using the most optimal wordforms, such a lexicon would arguably involve less effort in speaking 

or writing than an unambiguous linguistic system. If such a pressure exists, it should produce 

concentrations of homophony in optimal regions of phonotactic space––the “easiest” wordforms 

should be the most ambiguous. Indeed, Piantadosi et al (2012) find that English, German, and 

Dutch count more homophones among wordforms that are short, frequent, and phonotactically 

well-formed. This finding is consistent with the idea that ambiguity arises out of a pressure for 

efficiency.  
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However, homophony could also emerge in a lexicon without being directly selected for, 

as an indirect consequence of other factors affecting how words are distributed in a lexicon. Two 

indirect mechanisms could also partially (or even fully) account for the uneven distribution of 

homophony across a lexicon.  

First, the proportion of occupied phonotactic space (i.e., the ratio of actual wordforms to 

possible wordforms) for English and every other language we are aware of will always be higher 

for shorter wordforms than for longer wordforms. This is because the number of possible 

wordforms of a given length grows exponentially with each added syllable. If a language’s 

phonotactics permit n unique syllables, then there are n possible monosyllabic wordforms, 

approximately n2 possible bisyllabic wordforms, approximately n3 possible trisyllabic 

wordforms, and so on. In contrast, the number of actual wordforms does not grow exponentially 

with word length (e.g., the CELEX set of English lemmas contains approximately 7706 

monosyllabic words, 15247 disyllabic words, and 11379 trisyllabic words). This means that the 

proportion of occupied phonotactic space will always be greater among short wordforms than 

long wordforms. Thus, even if words were randomly added to a lexicon, homophony would by 

chance be more likely to occur among short wordforms than long wordforms. 

Second, the existence of phonotactic constraints results in a lexicon that is not uniformly 

distributed across the space of possible wordforms. All languages appear to impose idiosyncratic 

constraints on sounds and their combinations––for example, English does not allow the velar 

nasal /ŋ/ in syllable onsets, unlike Vietnamese; but English does allow consonant clusters like 

/st/, unlike Japanese. Phonotactic regularities narrow the space of possible wordforms 

considerably (Dautriche et al, 2017). By limiting the range of possible wordforms and biasing the 

formation and evolution of the lexicon, these phonotactic constraints could also increase the 
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prevalence of homophones. Critically, they could do so even without a direct pressure to reuse 

entire wordforms. Even a pressure to merely statistically reuse certain phonological sequences 

more often would increase the likelihood of homophones overall, and particularly among the 

most phonotactically probable wordforms.  

Both of these mechanisms offer indirect causal pathways whereby a drive for efficiency 

could lead to increased homophony. For example, more phonotactically regular words could be 

easier to learn (Jusczyk et al, 1994; Gathercole et al, 1991; Munson, 2001; Coady & Aslin, 

2004), which would lead to more phonotactically probable words being more likely to be 

transmitted across generations, or less phonotactically words becoming more phonotactically 

probable through imperfect intergenerational transmission. This in turn could result in increased 

homophony, particularly among highly probable wordforms. Once again, though, both 

phonotactics and the distribution of word lengths in a lexicon could in principle lead to the 

emergence of homophony without a direct, selective pressure for the preferential reuse of 

specific, optimal wordforms (as hypothesized by Zipf, 1949). Furthermore, both factors should 

be most likely to produce homophones in exactly those regions of phonotactic space reported by 

Piantadosi et al (2012): among short, phonotactically plausible wordforms.  

It is currently unknown, however, how much homophony exists due to these simple, 

distributional characteristics of languages alone. As a consequence, no evidence exists for or 

against an efficiency-motivated direct pressure for homophony, as hypothesized by Zipf. The 

current work asks two primary questions. First, to what extent is the amount of homophony 

found in real human lexica attributable to indirect and uncontroversial factors such as length and 

phonotactic regularities, without a direct pressure to reuse existing wordforms? And second, to 
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what extent are these indirect factors responsible for the concentration of homophony within 

optimal regions of the lexicon? 

To answer these questions, we constructed five series of artificial lexica, designed to 

mirror the phonotactic regularities and word lengths of the real lexica of English, Dutch, 

German, French, and Japanese. The generative model was an adaptation of the model used by 

Dautriche et al (2017), in which a language’s phonotactics were learned by training an n-phone 

Markov Model on the set of unique wordforms in a lexicon. By observing the patterns of sounds 

and sound combinations in a language, such a model can learn to encode phonotactic rules about 

which sounds a word can start and end with, which sounds can occur in what sequence, and so 

on. For each language, this model was then used to generate 10 artificial lexica, all matched for 

the total number of words as well as the distribution of word lengths. For example, if the real 

lexicon has 5,000 monosyllabic words, then each of the artificial lexica will also have 5,000 

monosyllabic words. Furthermore, the distribution of sounds within and across those words will 

approximate the phonotactics of the real language. These artificial lexica had no constraints 

regarding homophones, reflecting a general tolerance for ambiguity; however, they also did not 

contain a parameter biasing them toward the reuse of existing wordforms. Each artificial lexicon 

thus represents one answer to the questions: 1) how much homophony can be expected to 

emerge in a lexicon as a function of just the real, observed phonotactic regularities and the real, 

observed distribution of word lengths; and 2) where should we expect to find the largest 

concentrations of homophony as a function of these factors? They thus serve as a baseline 

characterization of the effects of indirect causes of homophony. Comparing the real lexica to 

these artificial ones reveals how much more or less homophony the real languages display—and 
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how much more or less concentrated it is—than would be expected without any direct pressure 

for or against homophony20.  

Note that these artificial lexica are not intended to serve as plausible models of lexicon 

formation and change. Rather, as described above, they serve as statistical baselines in the 

attempt to understand which theoretical parameters are necessary to explain the existence and 

distribution of homophony in real lexica. For this reason, the artificial lexica are parameterized 

solely by each particular language’s phonotactics and distribution of word lengths. 

The data and code to reproduce these analyses can be found on GitHub 

(https://github.com/seantrott/homophone_simulations). 

Current Work 

Materials and Methods 

Data. The English, German, and Dutch lexica were sourced from the CELEX lexical database 

(Baayen et al, 1995). For French, we used the French Lexique (New et al, 2004). For Japanese, 

we used the Japanese CallHome Lexicon (Kobayashi et al, 1996). We restricted our analysis to 

lemma-only forms. Additionally, following Piantadosi et al (2012), we also excluded any words 

containing spaces, hyphens, or apostrophes. This resulted in 41,887 entries for English (with 

35,107 unique phonological forms), 51,719 entries for German (with 50,435 unique phonological 

forms), 67,477 entries for Dutch (with 65,260 unique phonological forms), 47,782 entries for 

French (with 37,278 unique phonological forms), and 51,147 entries for Japanese (with 40,449 

 
20 Note that our statistical models do not include a measure of frequency, even though this is included in the original 
model built in Piantadosi et al (2012). This is because it would not be meaningful to estimate frequency for the 
words in the artificial lexica.  



121 
 

unique phonological forms). As in Piantadosi et al (2012), words with multiple parts of speech 

were counted as homophones21. 

Methods.  

 Estimating number of syllables. Our primary determinant of word length was Number 

of Syllables (or Number of Morae, in the case of Japanese; see below). While the real lexica 

annotated this information for each lexical entry, it had to be estimated for the artificial lexica. 

To ensure a fair comparison, we applied the same estimation procedure to wordforms in the real 

lexica and wordforms in the artificial lexica.  

 For English, Dutch, German, and French, Number of Syllables was estimated by counting 

the number of vowels occurring in a wordform’s phonetic transcription. The set of possible 

vowel characters for a given language was transcribed by hand and can be found on the project’s 

GitHub page.22  

 Since Japanese has been characterized as a mora-timed, rather than syllable-timed 

language (Port et al., 1987), we calculated Number of Morae instead of Number of Syllables. In 

addition to counting the number of vowels in a Japanese wordform, we counted the number of 

nasal codas, as well geminate consonants (e.g., “kk” in Hokkaido, or “gg” in doggu). It should 

be noted that the results we report below––both the replication of Piantadosi et al (2012), and the 

comparison to the artificial lexica––are qualitatively similar whether word length in Japanese is 

estimated using Number of Syllables or Number of Morae.  

 Counting number of homophones. Following Piantadosi et al (2012), we defined 

Number of Homophones as the number of lexical entries with an identical phonological form as 

 
21 Importantly, this should only serve to inflate the estimated amount of homophony in naturally-occurring 
languages relative to the amount of homophony in the artificial lexica. Thus, it would actually work against the 
effects reported below (i.e., the artificial lexica exhibiting more homophony than the real lexica). 
22 Link: https://github.com/seantrott/homophone_simulations  
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some target entry.23 This means the smallest possible value for Number of Homophones would 

be 0 (i.e., there are no other words with the same form in a given lexicon), and the largest 

possible value would be one less than the size of the lexicon (i.e., all words share the same form).  

 After identifying the number of homophones for each entry in a lexicon, we reduced each 

lexicon to the set of unique phonological wordforms (e.g., the 41,887 entries in English were 

reduced to 35,107 unique forms). 

 Building the phonotactic model. In order to estimate the phonotactic plausibility of 

wordforms in a lexicon, as well as to generate phonotactically plausible novel wordforms (see 

below), it was first necessary to model the phonotactics of each language. We adapted the 

procedure used in Dautriche et al (2017) 24, which is described briefly below. 

 The phonotactics of a target language can be learned by observing, for all wordforms in 

that language, which phonemes appear in what position and in what sequence. Specifically, an n-

phone model calculates the probability of observing some phoneme in position i given the 

previous n-1 phonemes. For example, a 2-phone (biphone) model would condition the 

probability of observing some phoneme as a function of the previous phoneme, i.e., p(Xi | Xi-1). 

We included special symbols for the START and END of a word so that the model would also 

learn which phonemes are most likely to begin and end a word in a given language. Note that 

unlike Piantadosi et al (2012), these models were trained using the set of unique types (i.e., 

wordforms), rather than tokens (i.e., the actual instances of each wordform); this is because 

 
23 As pointed out by an anonymous reviewer, it is possible that the lexical resources we used, including CELEX, 
count as homophony some meanings that are actually polysemous. If this is the case, our estimates of homophony 
should actually be inflated for the real lexica, which would work against the effects reported below (i.e., the artificial 
lexica displaying higher incidences of homophony overall). 
24 Link to GitHub associated with Dautriche et al (2017): https://github.com/SbllDtrch/NullLexicons  
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training on tokens conflates phonotactic probability with frequency. This is analogous to the 

main approach taken in Dautriche et al (2017). 

 While previous work (Dautriche et al, 2017) found that a 5-phone model effectively 

captured phonotactic dependencies in English, Dutch, German, and French, we sought to 

independently determine the optimal n for each language, particularly because Japanese has 

notably shorter syllables than the other four languages. To do this, we followed a similar 

procedure as reported in Dautriche et al (2017) and Futtrell et al (2017). For each real lexicon, 

we first extracted the set of unique wordforms (e.g., 35,107 wordforms in English), then 

performed a series of train/test splits (75% train, 25% test). For each split, we trained a series of 

n-phone models ranging from n=1 to n=6 on the wordforms in the training set, then evaluated 

the probability of wordforms in the held-out test set. The basic motivation for this approach is as 

follows: the optimal n-phone model for a language’s phonotactics should be the model that, 

when trained on a set of real wordforms, maximizes the probability of held-out wordforms that 

also appear in that lexicon. Following Futtrell et al (2017), we ran a series of one-tailed two-

sample t-tests on the set of log-likelihoods of held-out wordforms obtained from each successive 

n-phone model––i.e., the log-likelihoods obtained from the 2-phone model were compared to the 

1-phone model, those from the 3-phone model were compared to the 2-phone model, and so on. 

The optimal n for a given lexicon was the smallest n that represented a significant improvement 

over the n-1 model for the same set of wordforms. Note that log10 was used to calculate log 

likelihoods (and subsequently, surprisal); the results are not qualitatively different when using 

log2 instead.  

 The mean log-likelihood calculated for held-out wordforms in each language are 

visualized in Figure 18 below. Critically, we found that for English, Dutch, and German, the 5-
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phone model represented a significant improvement over the 4-phone model. That is, held-out 

wordforms were significantly more likely under the 5-phone model than the 4-phone model for 

English (t = 4.05, p < .001), Dutch (t = 3.55, p < .001), and German (t = 7.31, p < .001). 

However, the 6-phone model either did not improve or actually decreased model fit (suggesting 

overfitting) in each language (all t ≤ 0). The 4-phone model was optimal for French (t = 8.67, p 

< .001) and Japanese (t =4.08, p < .001). Thus, a 5-phone model was used to evaluate the 

probabilities of wordforms in English, Dutch, and German (and generate artificial lexica for 

those languages), and a 4-phone model was used for French and Japanese. 

 

Figure 18: Mean log-likelihood of held-out wordforms for each n-phone model, across 

languages. Higher values (i.e., less negative) indicate higher probability under that model. For 

English, Dutch, and German, increasing n up to 5 significantly improved model fit over the 4-

phone model; a 6-phone model did not improve fit. For French and Japanese, a 4-phone model 

was the highest n representing an improvement over the (n-1) model. 
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 This model allows us to evaluate the probability of a given wordform, which can be 

defined as the product of all the transitional probabilities between each phoneme in that 

wordform (including the start and end symbols). The Surprisal of a given wordform is thus 

defined as the negative log probability of observing that particular sequence of phonemes: 

Surprisal(word) = -log(p(word)). As in Piantadosi et al (2012), we normalized this measure to the 

number of phonemes in a word to ensure that surprisal could be compared across words of 

different length: Normalized Surprisal = Surprisal(word) / Length(word). 

 Once the model was built for each language, it was then used to generate novel 

wordforms in an iterative manner. For each word, the model began with the START symbol, 

then generated a phoneme conditioned on that start symbol (i.e., one of the phonemes likely to 

occur at the beginning of the word). The next phoneme was then conditioned on the first 

phoneme and the START symbol, and so on, until the model produced the END symbol, 

signaling the end of the word. 

 Finally, as in Dautriche et al (2017), we assigned non-zero probability to unobserved 

phoneme sequences using an identical smoothing procedure; they report that “optimal smoothing 

was obtained with Laplace smoothing with parameter .01” (pg. 132), so this was the value we 

used in configuring the phonotactic model. 

 

 Generating artificial lexica. We generated 10 artificial lexica for each real lexicon. 

First, we identified the number of words in the real lexicon, as well as the distribution of their 

lengths, as measured by Number of Syllables (see above for the estimation procedure). Each 

artificial lexicon was constrained to have the same overall number of words (not wordforms) as 

the corresponding real lexicon, as well as the same distribution of word lengths. For example, 
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since the real English lexicon has 7706 monosyllabic words, each artificial English lexicon was 

also constrained to have 7706 monosyllabic words. 

 We then built a phonotactic model for the real lexicon as described above, and used this 

model to generate wordforms for each artificial lexicon. For each potential wordform, we 

estimated the Number of Syllables to determine whether to add it to the artificial lexicon––e.g., if 

the word had 1 syllable and the artificial lexicon still had fewer monosyllabic words than the real 

lexicon, the word was added to the lexicon; otherwise, it was discarded. No other constraints 

were placed on the generation of wordforms; we allowed the model to generate real wordforms, 

as well as wordforms that were homophonous with wordforms already in the lexicon. This 

process continued until the artificial lexicon had the same number of words of each length as the  

real lexicon.  

 Note that the models used to generate the artificial lexica were trained on the entire set of 

unique wordforms for the target lexicon; however, qualitatively similar results were obtained 

using a 50/50 split of the target lexicon to generate and evaluate wordform phonotactic 

probability (see Supplementary Analysis 5). 

 

Results 

Replication and extension of previous findings.  

First, we replicated the primary analysis reported by Piantadosi et al (2012) on the real 

lexica of English, Dutch, and German, and extended this analysis to two non-Germanic 

languages: French and Japanese. Using a Poisson regression, we asked whether a wordform’s 

#Homophones (the number of additional, distinct meanings) was related to its length in syllables 

(#Syllables) and its phonotactic plausibility (Surprisal). As in Piantadosi et al (2012), we used 
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the Normalized Surprisal measure described above, obtained by dividing a wordform’s Surprisal 

by its length in phones. 

We found significant, negative relationships in the real lexica between #Homophones and 

#Syllables (or #Morae25 in Japanese) for English [b = -0.72, SE = 0.03, p < .001], German [b = -

0.69, SE = .04, p < .001], Dutch [b = -1.11, SE = 0.03, p < .001], French [b = -0.35, SE = 0.02, p 

< .001], and Japanese [b = -1.01, SE = 0.01, p < .001]. That is, for all five languages, shorter 

wordforms were more likely to have more homophones––consistent with the notion that lexica 

recycle short wordforms for multiple meanings. 

However, we found positive26 relationships between Normalized Surprisal and 

#Homophones across all real languages but Japanese, i.e., less phonotactically plausible 

wordforms (as measured by a 5-phone model or 4-phone model, as appropriate) were more likely 

to have more homophones. This was true for English [b = 0.78, SE = 0.03, p < .001], German [b 

= 0.86, SE = 0.06, p < .001], Dutch [b = 0.997, SE = 0.04, p < .001], French [b = 0.73, SE = 

0.04, p < .001], but not Japanese [b = 0.0004, SE = 0.031, p =.99]. This is in contrast to the 

original result reported by Piantadosi et al (2012), who found a negative relationship between 

Normalized Surprisal and #Homophones in German and Dutch.  

There are several possible explanations for the disparity between our results and those of 

Piantadosi et al (2012). First, while Piantadosi et al (2012) used a 3-phone model to determine 

phonotactic plausibility, we used 4-phone and 5-phone models to estimate wordform probability, 

 
25 Like syllables, a mora is a unit of timing, and is usually considered the basis of the sound system in Japanese. A 
single mora in Japanese is constituted by a vowel (or an onset and a vowel); nasal codas also constitute a separate 
mora, as does the first part of a geminate consonant.  
26 Note that negative relationships were obtained between the non-normalized Surprisal measure and Number of 
Homophones across each language; these results are described in Supplementary Analysis 2. However, this non-
normalized Surprisal measure conflates phonotactic plausibility with word length, which is why Normalized 
Surprisal may be a better measure overall.  
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which were found to improve model fit over a 3-phone model (see Figure 18). Second, our 

models were trained using lexical types, as opposed to tokens (which would conflate frequency 

with phonotactic probability). And third, our estimates were not calculated using held-out 

wordforms, as they were in Piantadosi et al (2012). This final explanation is explored in 

Supplementary Analysis 3; using 10-fold cross-validation to obtain our surprisal estimates, we 

found that the coefficients for Normalized Surprisal were closer to 0 for all the real lexica, and 

negative in Japanese. Thus, a likely reason for the disparity is that the surprisal estimates given 

here were not calculated using held-out wordforms.   

However, the central question of the current work concerns the comparison between the 

real and artificial lexica. The results of these comparisons are described in detail below, both 

concerning the amount of homophony across the real and artificial lexica, as well as where those 

homophones are concentrated. 

Simulated lexica exhibit higher upper-bounds on homophony.  

We operationalized the amount of homophony in three ways. First, we measured the 

Maximum Number of Homophones per wordform––that is, in a given lexicon, how many 

homophones does the most homophonous wordform have? Second, we measured the Mean 

Number of Homophones per wordform. And third, we measured Homophony Rate: how many 

wordforms in a lexicon have at least 1 homophone? In all cases, more positive values reflect a 

greater amount of homophony. For each measure in each language, we compared the distribution 

of values obtained from the simulated lexica to the value in the real lexicon. This enabled us to 

ask the question: to what extent can the amount of homophony in a language be attributed to a 

selective pressure for lexical ambiguity, as opposed to an emergent outcome of a language’s 

phonotactics and distribution of word lengths? Note that for all of these measures, the values 
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obtained for the real and artificial lexica were significantly different27 (p < .001), except where 

noted otherwise.  

Across all five languages, the simulated lexica had a significantly larger Maximum 

Number of Homophones on a single wordform (see Figure 19 below). For example, the most 

homophonous wordforms in the real English lexicon had at most 7 homophones, while the most 

homophonous wordforms in the simulated English lexica had anywhere from 17 to 28 

homophones (M = 19.8, SD = 3.3). This difference was particularly stark for Dutch: the most 

homophonous wordform in the Dutch lexicon had 5 homophones, while the maximum number of 

homophones per wordform in the simulated lexica ranged from 72 to 116 (M = 97.1, SD = 

15.13). 

 

 
27 Significance was determined by comparing a given test statistic for the real lexicon treal to the corresponding 
distribution of test statistics obtained from the artificial lexica, Tartificial. Each of these values was centered according 
to the mean of Tartificial, denoted here as T’artificial and t’real. We then conducted a two-tailed significance test, i.e., 
calculating the proportion of values in |T’artificial| that were greater than or equal to |t’real|. This proportion corresponds 
to a p-value; e.g., if all the values in |T’artificial| are less than |t’real|, p = 0.  
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Figure 19: For each language, the most homophonous wordforms in the artificial lexica (shown 

by the violin plots) have more homophones than the most homophonous wordforms in the real 

lexica (shown by the orange dots). The artificial lexica uniformly exhibit a higher upper-bound 

(Maximum Number of Homophones) on homophony.  

 

As expected, there was considerable variability across the five languages in how much 

homophony was tolerated per wordform. For example, the real Japanese lexicon exhibited a 

much higher upper-bound on homophony (33) than the real German lexicon (4); this is not 

surprising, given the limited syllable inventory of Japanese (on the order of 100 possible 

syllables) relative to German (over 1000 possible syllables, conservatively). Importantly, 

however, the simulated Japanese lexica still had more homophones per wordform than their real 

counterpart, ranging from 71 to 92 (M = 81.6, SD = 6.67). In other words, despite inter-linguistic 

variability, the simulated lexica in each language all exhibited higher upper-bounds on how 
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much homophony was tolerated for a given wordform––the most homophonous wordforms were 

considerably more ambiguous, sometimes by an order of magnitude (e.g., in Dutch).  

 Similarly, with the exception of Japanese (p = .5), wordforms in the simulated lexica had 

a significantly larger Mean Number of Homophones than wordforms from their real counterparts 

(see Figure 20 below for an illustration); in Japanese, the Mean Number of Homophones per 

wordform was at least as high in the artificial lexica as it was in the real lexicon.28 For example, 

wordforms in English have on average 0.19 homophones; in contrast, the average number of 

homophones per wordform in the simulated English lexica ranged from 0.22 to 0.23 (M = 0.22, 

SD = 0.003). Again, there was considerable inter-linguistic variability; wordforms in the real 

Japanese lexicon have more homophones on average (0.26) than wordforms in the real German 

lexicon (0.02). However, in each language, the average number of homophones per wordform 

was at least as large in the simulated lexica as the real counterparts––and for four of the five 

languages, wordforms in the simulated lexica were, on average, more ambiguous than those in 

the real lexica. 

 
28 Note that for Japanese, the Mean Number of Homophones per wordform is actually higher in the artificial lexica 
than the real lexicon with the use of a 5-phone model, rather than a 4-phone model. 



132 
 

 

Figure 20: In every language but Japanese, wordforms in the artificial lexica (shown by violin 

plots) have more homophones (Mean Number of Homophones) on average than wordforms in 

the real lexica (shown by orange dots). In Japanese, the Mean Number of Homophones per 

wordform is at least as high in the artificial lexica (M = 0.27, SD = 0.002) as the real lexica (.26). 

 The results for the Homophony Rate (i.e., the proportion of wordforms with at least one 

homophone) across real and simulated lexica were more mixed (see Figure 21 below).  
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Figure 21: The artificial Dutch and German have a higher proportion of wordforms with at least 

one homophone (shown by the violin plots) than their real counterparts (shown by the orange 

dots). However, the artificial French, Japanese, and English artificial lexica have lower 

Homophony Rates than the real lexica. 

 

In two languages (German and Dutch), the simulated lexica had significantly more 

homophonous wordforms, sometimes by a factor of 2x or 3x; for example, the homophony rate 

in the real Dutch lexicon was 0.03, while the rate in the simulated lexica ranged from 0.108 to 

0.11 (M = .11, SD = .0004). On the other hand, the Homophony Rate in the real English lexicon 

(0.156) was significantly higher than the rate the simulated lexica (M = 0.143, SD = .002); 

similarly, the Homophony Rate for the real French and Japanese lexica were significantly higher 

than that for the artificial lexica. 
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 Together, these results suggest that the amount of homophony in the five real lexica is 

not the result of a direct pressure for ambiguity. In fact, the real lexica actually display less 

homophony than the artificial ones in some measures, particularly the upper-bound of 

homophones tolerated for a given wordform and the mean number of homophones per 

wordform. This means that merely the pressure for highly probable phonotactic sequences, 

combined with the observed distribution of word lengths, can produce concentrations of 

homophony in a lexicon that are as dense or denser than in real lexica, without a direct pressure 

to recycle entire wordforms.  

Simulated lexica exhibit more efficient reuse of optimal wordforms.  

We then asked whether homophones were more concentrated in optimal regions of phonotactic 

space in the simulated lexica or their real counterparts. That is, to what extent do the 

phonotactics of a language, as well as its distribution of word lengths, account for the finding 

that more optimal wordforms tend to have more homophones? 

 In order to assess the degree to which homophony was optimally distributed in a lexicon, 

we regressed a wordform’s #Homophones against two operationalizations of wordform 

optimality: its length (#Syllables) and its phonotactic plausibility (Normalized Surprisal). For 

each lexicon, we extracted the following information from the model: 1) pseudo-R2, as a measure 

of overall model fit; 2) the coefficient for #Syllables; and 3) the coefficient for Normalized 

Surprisal. A larger, more positive value for (1) reflects more efficient reuse overall, and more 

negative values for (2) and (3) reflect more efficient reuse along those particular dimensions of 

wordform optimality. Then, for each language, we compared each of these test statistics from the 

real lexicon to the distribution of test statistics obtained from the corresponding simulated lexica. 

The significance for each of these comparisons was assessed in the same way as above. All of 
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the comparisons described revealed significant difference. To preview the overall finding, in all 

cases, the simulated lexica exhibited stronger effects (i.e., more optimally distributed 

wordforms) than their real counterparts. 

 Across all five languages, the distribution of pseudo-R2 values obtained from the 

simulated lexica were significantly higher than the pseudo-R2 value from the real lexicon (see 

Figure 22 below). Pseudo-R2 reflects a model’s goodness-of-fit, i.e., how well the predictors in a 

model explain variance in the dependent variable. Thus, this indicates that two 

operationalizations of wordform optimality––its length, and its phonotactic plausibility––were 

better predictors of homophony across all of the simulated lexica than their real counterparts, for 

each language. For example, the pseudo-R2 for the model constructed on the real English lexicon 

was .143, while the mean for the simulated lexica was 0.17 (SD = .004). Some differences were 

even starker: the pseudo-R2 for the real German lexicon was .09, while the distribution of 

pseudo-R2 values for the simulated German lexica averaged more than twice that (M = 0.231, SD 

= .003). Concretely, this means that homophony is better predicted by wordform optimality in 

the artificial than real lexica.  
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Figure 22: We built a series of Poisson regression models predicting #Homophones from 

#Syllables and Normalized Surprisal. In each language, the models constructed for the artificial 

lexica (shown by violin plots) exhibit better model fit (larger pseudo-R2) than the models 

constructed for the real lexicon (shown by orange dots). 

 

Further evidence comes from direct comparison of the coefficients for both predictors 

(Number of Syllables and Surprisal) across the real and artificial lexica. As reported earlier, the 

real lexica all exhibited negative relationships between Number of Syllables and Number of 

Homophones––i.e., short wordforms have more homophones in all five languages. However, the 

simulated lexica exhibited significantly stronger relationships, as depicted in Figure 23 below.  
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Figure 23: Word length (as measured in #Syllables) is a better predictor of homophony in the 

artificial lexica (shown by the violin plots) than the real lexica (shown by orange dots). 

 

For example, the coefficient for Number of Syllables in the real English lexicon was -0.717, but 

the coefficients for the simulated English lexica were approximately twice as large (M = -1.4, SD 

= .02). In some cases, the difference was even larger, as in French: here, the coefficients for the 

simulated lexica (M = -1.77, SD = .02) were approximately five times as large as the coefficient 

for the real lexicon (-.35).  

 Even more striking results were obtained for Surprisal: the real lexica actually exhibited 

positive relationships between Surprisal and Number of Homophones, while the artificial lexica 

all demonstrated negative relationships (see Figure 24); these differences were significant for 

each language. In other words, the artificial lexica reused short, phonotactically plausible 

wordforms to a greater extent than did their real counterparts. 
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Figure 24: Phonotactic Surprisal was more negatively correlated with Number of Homophones 

(i.e., more probable wordforms had comparatively more homophones) in the artificial lexica 

(shown by violin plots) than real lexica (shown by orange dots). 

 

 

General Discussion 

In the current work, we asked whether the prevalence of homophony across five languages––

English, German, Dutch, French, and Japanese––could be plausibly attributed to a direct pressure 

to recycle optimal wordforms. We reasoned that even without a direct pressure for ambiguity, an 

absence of a pressure against ambiguity should result in some amount of homophony in a 

lexicon, simply as a result of a language’s phonotactic constraints and the distribution of words 

across different lengths. Under this view, the selective pressure is for well-formed phonotactic 

sequences as opposed to entire wordforms; the pressure to use well-formed sequences could 
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result in homophony, particularly for the most phonotactically probable wordforms. 

Furthermore, given that the proportion of occupied phonotactic space will always be highest for 

short wordforms, homophony should also be most likely to occur in short words.  

 We tested this view by simulating a series of artificial lexica for each of the five 

languages. Across all five languages, we found that wordforms in the real lexica had either fewer 

or an equivalent number of homophones on average as wordforms in the artificial lexica (in 

every language but Japanese, wordforms in the artificial lexica were more ambiguous on average 

than those in the real lexica. The real lexica also uniformly exhibited lower upper-bounds on the 

number of homophones tolerated per wordform. This was true despite considerable cross-

linguistic variability in the propensity towards homophony overall (e.g., Japanese vs. Dutch); in 

each language, the artificial lexica surpassed their real counterparts in terms of the degree to 

which a wordform could be saturated with many meanings. The main exception to this trend was 

Homophony Rate (the proportion of wordforms with at least one homophone): for English, 

French, and Japanese (but not German and Dutch), the real lexica had higher Homophony Rates 

than the artificial lexica. This will be discussed in more detail below. Finally, statistical analyses 

of where these homophones were distributed revealed that homophones in the real lexica were 

concentrated less efficiently in “optimal” regions of phonotactic space: across all languages, 

word length and phonotactic plausibility––taken as operationalizations of wordform optimality––

were better predictors of homophony in the artificial lexica than the real lexica (see Figures 5-7).  

 There are two conclusions to be drawn from these results. First, neither the amount of 

homophony in these five real languages, nor the apparent concentration of homophones among 

optimal regions of phonotactic space, requires explanation by a direct pressure to recycle entire 

wordforms. Rather, homophony appears to be a natural and perhaps inevitable consequence of 
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other features of a language––i.e., its phonotactics and distribution of word lengths. Of course, 

these features may themselves be related to efficiency, as noted in the Introduction––but 

indirectly so. 

 Second, real lexica may actually be the product of a pressure against homophony. The 

artificial lexica were modeled using only two parameters: the phonotactics of the target lexicon 

and a particular distribution of word lengths. They were not designed to explicitly select for 

homophony, nor did they contain a parameter selecting against homophony. In other words, they 

reflect the consequence of allowing the phonotactics of a language to determine its space of 

realized wordforms, under the assumption that the speakers of that language place no upper limit 

on how many homophones are tolerated per wordform. This resulted in considerably more 

homophones per wordform than observed in real languages. For example, wordforms in the real 

Dutch lexicon had at most 5 homophones, whereas the average upper-bound in the Dutch lexica 

was 97––more than 16 times as high. Furthermore, homophony in the artificial lexica was more 

likely to be found among more optimal wordforms.  

One explanation for this result is that real lexica are subject to a pressure against 

oversaturating the same wordform with too many unrelated meanings––no matter how “optimal” 

it is. Clearly this pressure is not absolute: homophony does still exist (to varying degrees) in real 

languages––and in fact, some languages (French, English, and Japanese) had a higher proportion 

of wordforms with at least one homophone than their artificial counterparts. This suggests that 

the pressure is not against the existence of homophony per se, but rather, could reflect a 

constraint on the extent to which any given wordform can be saturated with distinct, unrelated 

meanings. Assigning too many unrelated meanings to the same signal could impede 

communication or learning (Casenhiser, 2005; though see Dautriche et al, 2018), and may thus 
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be selected against. Such a pressure against oversaturation is roughly analogous to what others 

have termed diversification (Zipf, 1949) or a pressure for clarity (Piantadosi et al, 2012). 

However, unlike Zipf (1949), we find no opposing pressure towards unification; instead, 

homophony appears to emerge naturally as a function of other pressures (e.g., phonotactics), and 

is attenuated in particular wordforms (i.e., it does not reach the potential predicted by that 

wordform’s phonotactics) due to a pressure against oversaturation. 

 There are a number of explanations for how this direct or indirect pressure against over-

saturation might come about. For example, the attenuation of homophony could manifest as a 

kind of smoothing of high-probability phoneme sequences across phonological neighborhoods as 

opposed to being concentrated in a specific wordform. (A wordform’s neighborhood is the set of 

wordforms differing from it in only one phoneme.) This could satisfy the pressure to reuse well-

formed phonotactic sequences while also avoiding potential impediments to communication 

caused by overloading the same high-probability wordform with too many meanings.  

This account leads to testable predictions. If real lexica are subject to this smoothing 

process, they should have larger phonological neighborhoods than the artificial lexica, which 

were placed under no pressure against ambiguity. Indeed, previous work using an identical 

generative model (Dautriche et al, 2017) found exactly this: across four languages (English, 

German, Dutch, and French), real lexica exhibit more “clumpiness” (i.e., larger and more 

densely connected neighborhoods) than ought to be expected merely as a function of those 

languages’ phonotactics. We extended a subset of their analyses to the set of artificial lexica we 

constructed, counting as “neighbors” any two wordforms that could be converted into each other 

via one phoneme substitution, deletion, or insertion (Luce & Pisoni, 1998; Vitevitch & Luce, 

1999; Dell & Gordon, 2003). Under this definition of neighbor, the neighbors of the word cat 
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would include rat (substitution), at (deletion), and cast (insertion). Consistent with prior work, 

and despite a different operationalization of neighborhoods from Dautriche et al (2017), we 

found that wordforms in the real lexica had larger average neighborhood sizes than wordforms in 

the artificial lexica (see Figure 25 below). For example, wordforms in the real English lexica 

averaged 2.56 neighbors, whereas the mean neighborhood sizes in the artificial English lexica 

ranged from 2.23 to 2.32 (M = 2.28, SD = 0.03). This result is the inverse of our finding 

regarding homophony––wordforms in the artificial lexica have more homophones on average 

than wordforms in the real lexica. In other words, the artificial lexica appear to optimize for 

dense concentrations of homophony, while the real lexica appear to optimize for larger 

neighborhoods. This apparent trade-off can also be illustrated by comparing both the rank-

distribution of homophone counts and rank-distribution of neighborhood sizes across the real and 

artificial lexica (see Figure 26). 
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Figure 25: Consistent with previous work (Dautriche et al, 2017), wordforms in the real lexica 

(shown by orange dots) have larger lexical neighborhoods (i.e., the set of words differing in 

exactly one phoneme) on average than wordforms in the artificial lexica (shown by violin plots). 

Note that this is true even in French, where the values are closest: wordforms in the real French 

lexicon have 2.71 neighbors on average, whereas wordforms in the artificial lexica have 

approximately 2.66 neighbors on average (SD = .02). 
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Figure 26: Rank-distribution of homophone counts (left) and rank-distribution of neighborhood 

sizes (right) across the real and artificial English lexica. The most homophonous wordforms in 

the artificial lexica are more homophonous than equivalently ranked wordforms in the real 

lexica. Conversely, the wordforms with the largest neighborhoods in the artificial lexica still 

have smaller neighborhoods than equivalently ranked wordforms in the real lexica. 

 

 Taken together, these findings are broadly consistent with the hypothesis that real lexica 

could be subject to a pressure against oversaturating the same wordform with too many 

meanings, and this selection against homophony could instead result in the creation of lexical 

neighbors. Of course, a similar effect could be achieved not through selection against high levels 

of homophony but rather from a positive pressure towards large neighborhoods, i.e., a “clumpy” 

lexicon. As Dautriche et al (2017) argue, dense lexical neighborhoods may have many beneficial 

consequences, e.g., for word learning (Coady & Aslin, 2003; Storkel et al, 2006; though see also 

Swingley & Aslin, 2007) and word production (Vitevitch et al, 2002; Vitevitch & Sommers, 

2003). It is impossible to know from the current work whether the disparity between the real and 

artificial lexica is due to a direct pressure in real lexica against oversaturation that results in 
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dense neighborhoods, or a positive selection for dense neighborhoods that results in less 

homophony. Future work could explore this potential trade-off at both the psychological level of 

explanation (e.g., whether learners make errors when learning homophones that lead to the 

creation of near neighbors), and by simulating such pressures during the lexicon generation 

process (e.g., whether a direct pressure in favor of large neighbors reduces the number of 

homophones, or whether a direct pressure against over-saturation increases neighborhood size).  

 Homophones could conceivably be reduced in real lexica through other, more indirect 

mechanisms as well. Notably, many human languages have rich morphological structure, 

allowing them to flexibly combine existing morphemes to construct novel meanings. While the 

real lexica we analyzed excluded wordforms derived via inflectional morphology, they did not 

exclude derivational morphology (e.g., adding the suffix -ify to the adjective humid creates the 

verb humidify; adding the suffix -ness to the adjective happy creates the noun happiness). 

Morphological compositionality allows speakers to convey new meanings without coining 

entirely new wordforms––but it also avoids the need to reuse existing wordforms for new, 

unrelated meanings (i.e., homophony). Thus, compositionality represents an efficient mechanism 

for recycling existing lexical materials that also avoids outright ambiguity. Clearly, wordforms in 

the artificial lexica were not constructed via processes of morphological composition. Future 

work could also explore whether parameterizing these artificial lexica according to the 

morphology of the underlying real lexicon would decrease the overall homophony, and if so, 

how. (See Supplementary Analysis 4 for further exploration of the relationship between 

derivational morphology and homophony in real lexica.) 

 In addition to real lexica exhibiting a lower upper-bound on homophony overall, we 

found that their homophones were less optimally distributed––that is, homophones were much 
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more concentrated among short, phonotactically likely wordforms in the artificial lexica than in 

their real counterparts. This result is surprising on its face: why do real lexica apparently prefer 

(at least relative to the phonotactic baselines) to distribute their homophones across less optimal 

regions of the lexicon? Even if real lexica select against over-saturation, intuition suggests that 

the homophones that are preserved should be concentrated among short, phonotactically likely 

wordforms. One possible explanation for this result is that the pressures that ordinarily select 

against homophony are reduced for longer wordforms––there are at least two accounts as to why 

this may be the case. The first account is that longer wordforms might be more contextually 

discriminable than short wordforms and are thus more likely to be preserved in the lexicon. If 

this is true, the distinct senses of homophonous wordforms should be better disambiguated by 

contextual cues (e.g., some representation of the linguistic context) for longer wordforms. The 

second account holds that because longer wordforms are comparatively less common than short 

wordforms, they require less frequent disambiguation. Even if longer wordforms are no more 

contextually discriminable than short wordforms, they are encountered less often. If a frequent 

need to disambiguate is one of the factors that selects against homophony––e.g., because 

disambiguation may incur processing costs, no matter how marginal––homophones should be 

relatively more likely to be preserved among infrequent wordforms than frequent ones. Note that 

this does not predict that short wordforms have less homophones overall; past work (Piantadosi 

et al, 2012) has shown empirically that this is not the case. Rather, the penalty against accruing 

multiple meanings will be proportionately less for longer, less frequent wordforms. Therefore, 

less frequent wordforms should experience less of a reduction in their projected homophony 

(relative to their phonotactics) than more frequent ones. 
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 As noted above, the artificial lexica are intended as statistical baselines to determine 

which theoretical parameters are required to explain homophony, not as models of the many 

other pressures that real lexica are subject to. Thus, our work does not elucidate the 

developmental or historical mechanisms by which homophones arise, nor the processes by which 

they might be selected against or be preserved in a lexicon. There are a number of known sources 

of homophony in real lexica, including sound change and lexical borrowing (Ogura & Wang, 

2006; Ke, 2007). Despite some debate about the extent to which homophony-generating sound 

changes are avoided (Sampson, 2013; Wedel et al, 2013; Sampson, 2015; Yin & White, 2018), 

there are many attested examples of phoneme losses and mergers resulting in homophony, such 

as knight and night in English, or as a consequence of the many phoneme mergers experienced in 

Middle Chinese (Ke, 2007; Sampson, 2013; Sampson, 2015). Similarly, lexical borrowing can 

lead to homophony; for example, the English words sheik and chic were both borrowed from 

different languages at different time points (16th century Arabic vs. 19th century French, 

respectively), and both have an identical phonological form (Ke, 2007). A satisfying explanation 

of homophony at a mechanistic level should incorporate these generative processes––i.e., the 

mutations by which potential homophones are introduced into a lexicon. Such a model should 

also predict which potential homophones will be selected against (and what form this selection 

process takes, i.e., whether it is via the avoidance of homophony-inducing mergers (Wedel et al, 

2013; Yin & White, 2018) or something else) and which will be preserved. Homophones should 

be more likely to survive in a lexicon if their meanings are systematically made sufficiently 

discriminable by context (Dautriche et al, 2018). A better understanding of this process would 

also yield insights into which sources of contextual information human speakers and 
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comprehenders routinely sample and deploy for disambiguation, and therefore influence 

language change. 

 We began by asking why a system that appears to be optimized for efficient 

communication (Gibson et al, 2019) contains apparently inefficient properties such as lexical 

ambiguity. A series of simulations suggests no evidence for a direct selection pressure in favor of 

homophones. Rather, the concentration of homophony among short, high-probability wordforms 

can be explained purely as a function of a language’s phonotactics and distribution of word 

lengths, which perhaps themselves are the result of a pressure for efficiency. In fact, real lexica 

may even select against dense concentrations of homophony. We have suggested one 

mechanism: they might “smooth out” high-probability phonotactic sequences across lexical 

neighborhoods instead of concentrating these sequences in a single wordform. The product is 

lexica that are slightly less optimal in phonotactic terms but may better conform to other 

requirements of humans who need to use them.  
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CHAPTER 6: CAN A PRESSURE AGAINST HOMOPHONES EXPLAIN PHONOLOGICAL 

NEIGHBORHOODS? 

Why are human languages structured the way that they are? One approach to finding 

evolutionary causes for contemporary structure seeks to characterize the various selection 

pressures that could plausibly account for the form and content of languages (Richie, 2016). This 

approach has produced a growing consensus that human lexica are shaped by a pressure for 

cognitive and communicative efficiency (Gibson et al., 2019; Levshina & Moran, 2021), both in 

terms of how they carve up semantic domains (e.g., color) (Regier, Kay, & Khetarpal, 2007; 

Kemp & Regier, 2012; Zaslavsky, Kemp, Regier, & Tishby, 2018; Kemp, Xu, & Regier, 2018), 

and in the wordforms they contain (Piantadosi, Tily, & Gibson, 2011; Mahowald, Dautriche, 

Gibson, & Piantadosi, 2018). 

 But one feature of language that has to date resisted explanation in these terms is the 

presence of dense phonological neighborhoods. Lexica are clumpy: they contain dense pockets 

of wordforms differing in only one sound (e.g., “cat”, “bat”, and “mat”)—typically called 

phonological neighbors—while leaving vast swaths of phonological space entirely unused 

(Dautriche, Mahowald, Gibson, Christophe, & Piantadosi, 2017). From the perspective of 

communicative efficiency, this clumpiness may be surprising; allowing wordforms to cluster in 

particular regions of phonological space–––instead of distributing them more evenly–––has been 

found to increase the likelihood of misperceiving one wordform for another, potentially even 

impairing comprehensibility (Vitevitch & Luce, 1998).29  

 One explanation for the prevalence of neighborhoods comes from phonotactics. Each 

language has certain rules about which sounds can start and end a word, which sounds can occur 

 
29 Note that contradictory results have been obtained in Russian and Spanish, in which dense neighborhoods may 

actually facilitate word perception (Vitevitch & Rodr´ıguez, 2005; Arutiunian & Lopukhina, 2020). 
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in which sequence, and so on (Frisch, Large, & Pisoni, 2000; Bailey & Hahn, 2001; Vitevitch & 

Aljasser, 2021). Phonotactic rules sharply constrain the space of legal words in a language, 

simplifying the speaker’s task of selecting and producing words. And phonotactics may also 

account for some of the clumpiness oberved in human languages. However, recent work 

(Dautriche et al., 2017) has found that phonotactics alone cannot fully account for the 

neighborhood density of real human lexica: across four languages (English, Dutch, German, and 

French), phonological neighborhoods are still larger than one would expect in a lexicon whose 

wordforms were determined purely by the phonotactics of that language (Dautriche et al., 2017). 

What accounts for this gap? 

 A natural explanation is that dense phonological neighborhoods are directly selected for, 

i.e., they increase cognitive or communicative efficiency in some way. Indeed, there is some 

evidence that dense neighborhoods may facilitate both word learning (Storkel, 2004; Storkel, 

Armbruster, & Hogan,¨ 2006; Coady & Aslin, 2003; Jones & Brandt, 2020; Fourtassi, Bian, & 

Frank, 2020; Jones & Brandt, 2019) and word production (Vitevitch, 2002; Vitevitch & 

Sommers, 2003). If this interpretation is correct, it suggests that the possible benefits of dense 

neighborhoods (facilitation of word learning and production) “outweigh” the challenges they 

may pose for comprehension (Vitevitch & Luce, 1998). Thus, under this view, neighborhoods 

are the result of a positive selection pressure—above and beyond the phonotactics of a language. 

 Another possibility, however, is that dense neighborhoods are the byproduct of other 

properties or selection processes that operate over real human lexica. The fact that 

neighborhoods appear to confer a benefit on lexical acquisition and production does not entail 

that they were selected for this function; there are numerous examples in evolutionary biology of 

apparently adaptive traits that emerged at least partially as a byproduct of other selection 
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pressures (Gould & Lewontin, 1979). Below, we introduce one such candidate pressure—a 

selection pressure against homophony—and describe how it could result in lexica with dense 

phonological neighborhoods, even without a direct selection pressure for clumpiness. 

Real Lexica Select Against Over-Saturation 

There has been a good deal of attention recently on why ostensibly efficient communication 

systems would evolve to contain homophony, i.e., wordforms with distinct, unrelated meanings 

(Piantadosi, Tily, & Gibson, 2012). Several papers (Trott & Bergen, 2020; Caplan, Kodner, & 

Yang, 2020) have adopted the approach of building phonotactic baselines (Dautriche et al., 

2017) to ask how much homophony one should expect to find purely as a function of a 

language’s phonotactics. That is, if wordforms were randomly sampled (with replacement) from 

phonotactic space, how frequently would different meanings be assigned to the same wordform? 

 These phonotactic baselines have been able to account for both the amount and 

distribution of homophony. But surprisingly, real human lexica actually have fewer homophones 

per wordform than their artificial, phonotactic counterparts (Trott & Bergen, 2020), and this 

homophony is more evenly distributed across the lexicon, i.e., across longer and more illformed 

wordforms, than one would expect (Trott & Bergen, 2020; Caplan et al., 2020). 

 A natural explanation for the gap in homophony is that real lexica are subject to a 

pressure against saturating the same wordform with too many meanings. A few notes of 

clarification are required here. First, all spoken languages appear to display homophony, so any 

hypothesized pressure against homophony must not be categorical (Sampson, 2013). Second, 

what all languages studied to date share is an apparent resistance to over-saturation, i.e., the 

number of meanings loaded onto the same wordform, relative to what would be expected from a 

phonotactic baseline. This is despite the fact that some languages (English and Japanese in 
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particular) have a higher rate of homophony (i.e., more wordforms with at least one meaning) 

than baselines (Trott & Bergen, 2020).30 Taken together, these facts suggest that real lexica may 

be subject to a smoothing process: rather than concentrating many meanings in the highest-

probability wordforms—which could impede communication—real lexica may distribute these 

meanings more evenly across phonotactic space (Trott & Bergen, 2020), which could result in 

larger neighborhoods. 

 Could smoothing create larger neighborhoods? If real lexica prefer wordforms with high 

phonotactic probability, as they appear to, and if at the same time they also select against over-

saturating the same high-probability wordform, then they should be more likely to instead select 

other high-probability (but not overly homophonous) wordforms in adjacent phonological space. 

Under this account, the distribution of wordforms across phonological space would be 

determined by two primary factors: 

A pressure to use well-formed phonological sequences, i.e., those with high phonotactic 

probability. 

A pressure against over-saturating the same wordform with an excess of meanings. 

 

 Critically, this pair of pressures together could result in larger phonological 

neighborhoods than either of them would independently, even while not directly selecting for 

dense neighborhoods. Instead of sampling the same high-probability wordform (e.g., “gap”) 

many times, this process would sample from similarly high-probability regions of phonotactic 

space, which—simply because of the previously established connection between phonotactic 

probability and neighborhood density (Dautriche et al., 2017)—would select wordforms that are 

 
30 This may also partially account for the mixed results reported in more recent work (Pimentel, Meister, Teufel, 

& Cotterell, 2021). 
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more likely than chance to be neighbors of existing words. In the aggregate, this would indirectly 

produce denser neighborhoods. 

 This explanation—a pressure against oversaturation of individual wordforms increases 

neighborhood density—has several things to recommend it a priori. First, the pressure against 

oversaturation is itself independently motivated, as described above. But second, it could also 

account for a dissociation between homonymy and neighborhood size observed in past work 

(Dautriche et al., 2017; Trott & Bergen, 2020). Across five languages tested (English, Dutch, 

German, French, and Japanese) by two groups, real human lexica consistently have larger 

neighborhoods but fewer homonyms than their phonotactic baselines. Finding a single 

explanation for both effects is desirable from the perspective of theoretical parsimony; rather 

than positing multiple, distinct pressures to explain different results—a pressure against 

homophony (Trott & Bergen, 2020) and a pressure for denser neighborhoods (Dautriche et al., 

2017)—a single pressure could in principle explain two apparently unrelated phenomena, i.e., 

“filling two needs with one deed”.31 

 Under this alternative account, dense neighborhoods may still provide benefits to word 

learning and production (Storkel, 2004; Storkel et al., 2006; Vitevitch, 2002). However, these 

advantages would not be causally responsible for larger neighborhoods, but rather, would be a 

kind of “positive externality” created by a selection pressure against homophones. 

Current Work 

 The central goal of the current work was to ask whether a pressure against homophony—

coupled with phonotactic constraints—could explain the distribution of neighborhood sizes 

observed in real lexica. To our knowledge, this account has not been directly tested. 

 
31 In principle, a pressure for larger neighborhoods may also explain why real lexica have fewer homophones. This 

issue is explored in the General Discussion. 
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 We followed the approach taken in past work (Dautriche et al., 2017; Trott & Bergen, 

2020; Caplan et al., 2020); for each language of interest, we simulated a series of baselines, 

matched for the phonotactics and distribution of word lengths (as defined by number of 

syllables) of the target lexicon. Unlike past work, however, we also introduced novel constraints 

for some of these baselines. Specifically, we introduced an Anti-Homophone pressure, which 

prevented a wordform from acquiring too many meanings and forced the baselines to conform to 

the rank distribution of homophones found in the real lexicon.32 

 We then compared two measures of neighborhood size (Mean and Maximum 

Neighborhood Size) across the real lexica and their baselines. Our question was to what extent 

these constraints—phonotactics, and a pressure against homophony—were sufficient to account 

for neighborhood density in real lexica. Critically, a demonstration of sufficiency would not 

disconfirm the possibility that real lexica are subject to a pro-neighborhood pressure. Rather, it 

would serve as a proof-of-concept that there are alternative (and possibly more parsimonious) 

routes that could account for the size of neighborhoods in real lexica. 

All materials and code are available on GitHub: https://github.com/seantrott/neighbors_lexica.  

Methods 

Materials. 

 We analyzed five languages: English, Dutch, German, French, and Mandarin. To do this, 

we relied on lexical resources that contained phonological information for each lemma of a 

lexicon. We used CELEX (Baayen, Piepenbrock, & Gulikers, 1996) for English, Dutch, and 

 
32 We did not attempt to model the specific cognitive or diachronic mechanisms by which homophony avoidance 

might come about, e.g., through the inhibition of homophony-producing sound changes (Wedel, Kaplan, & Jackson, 
2013; Wedel, Jackson, & Kaplan, 2013); this topic is explored more in the General Discussion. 



155 
 

German; Lexique (New, Pallier, Brysbaert, & Ferrand, 2004) for French; and the Chinese 

Lexical Database for Mandarin (Sun, Hendrix, Ma, & Baayen, 2018). 

 To ensure that our analyses were consistent with previous work (Trott & Bergen, 2020; 

Piantadosi et al., 2012), we restricted our analysis to lemmas. We also removed wordforms 

containing hyphens, spaces, or apostrophes, as well as proper nouns. The final number of lexical 

entries (i.e., lemmas) for each real lexicon was: 41887 entries in English, 67583 entries in Dutch, 

51718 entries in German, 43782 in French, and 45552 in Mandarin. 

Building Phonotactic Models. 

 To model the phonotactic rules of each language, we fit a series of n-phone Markov 

Models to each lexicon (Dautriche et al., 2017; Trott & Bergen, 2020; Caplan et al., 2020). By 

observing the entire set of wordforms in a language, an nphone model can learn statistical 

contingencies such as which phonemes are most likely to start and end a wordform, and which 

phonemes are most likely to follow the previous n - 1 phonemes. 

 Following past work (Trott & Bergen, 2020), we identified the optimal n for each lexicon 

using a cross-validation procedure. For each lexicon, we performed a train/test split (75% train, 

25% test). Then, we fit a series of n-phone models ranging from n = 1 to n = 6 on the training set, 

and used these trained models to calculate the phonotactic probability of wordforms in the test 

set. Importantly, we performed this procedure 10 times for each value of n, to ensure that the 

results were not too sensitive to a particular train/test split. The optimal n was defined as the 

value that maximized the probability of wordforms in the held-out test set—i.e., large enough to 

capture the appropriate dependencies, but not so large that it overfit to the training set. This 

procedure resulted in n = 5 for English, Dutch, and German; and n = 4 for French and Mandarin. 

(Note that tones were treated as phonemes in the phonotactic model; exploratory analyses 
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suggest that the nphone model captured statistical regularities in which tones co-occurred with 

the internal structure of the corresponding syllable, but future work could ask about the impact of 

conditioning tones on particular segments of the preceding syllable (Kirby, 2021).) 

Finally, we fit an n-phone model to each lexicon using all unique word types (rather than the 

75% training set). (Word types, rather than tokens, were chosen to be consistent with past work 

(Piantadosi et al., 2012; Trott & Bergen, 2020), and to avoid conflating phonotactic probability 

with word frequency.) 

Phonotactic Baselines. 

Following past work (Dautriche et al., 2017; Trott & Bergen, 2020; Caplan et al., 2020), we used 

the trained phonotactic models to simulate a series of phonotactic baselines for each language. 

Unlike past work, we built three different types of baselines (described below), with ten versions 

for each baseline (for a total of thirty baselines per language). 

Neutral Baselines. The procedure for generating Neutral baselines was identical to the 

procedure adopted in past work (Trott & Bergen, 2020). We first identified the number of 

lemmas (not wordforms) per word length (e.g., the English lexicon has 7,706 monosyllabic 

lemmas). Then, we used the phonotactic model to generate novel wordforms; each artificial 

lexicon was constrained to have the same distribution of words per word length as the real 

lexicon. For example, if an artificial lexicon already had the maximum number of monosyllabic 

words allowed, future monosyllabic words generated by the model would be discarded. This 

procedure was continued until the artificial lexicon had the same number as lemmas (not 

necessarily wordforms) as the real lexicon.  
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 Importantly, there was no constraint on the number of “meanings” a given wordform 

could acquire (i.e., the same wordform could be sampled an arbitrary number of times, provided 

more words of that length were required). 

Anti-Homophony Baselines. The Anti-Homophony Baselines followed an identical procedure 

as the Neutral Baselines, with one additional constraint: no wordform was allowed to acquire 

more meanings than the equivalently-ranked wordform in the real lexicon’s rank distribution of 

homophones. That is, if the most homophonous wordform in English had eight meanings, then 

no wordform in the baseline would be allowed to acquire more than eight meanings— and if the 

tenth most homophonous wordform had only three meanings, then the tenth most homophonous 

wordform in the baseline could acquire at most three meanings. 

 Conceptually, this pressure is akin to “blocking” new meanings from being attached to 

overly homophonous wordforms, and finding an alternative wordform instead. This is similar 

(though not identical) to instead adding a new word to the lexicon with some probability p, 

where p decays with the number of meanings already assigned to that wordform. 

Anti-Homophony+ Baselines. Finally, we considered an alternative implementation of an Anti-

Homophony pressure. Rather than simply discarding overly homophonous wordforms, we 

applied a sound change to one of the phonemes in the target wordform.  

 First, we randomly selected a phoneme in the target wordform to change. Then, we 

replaced it with a random vowel or consonant (depending on the identity of the phoneme). 

Finally, to ensure that the resulting wordform was sensible, we evaluated its phonotactic 

probability; if the wordform’s probability was higher than the least-probable wordform in the 

real lexicon, we added it to the lexicon (provided it also did not have too many homophones). 
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 The motivation for this procedure was that a pressure against homophony may not 

manifest as “blocking” the offending wordform entirely—overly homophonous wordforms likely 

have many desirable properties as wordforms of that language (i.e., they are short and well-

formed). Thus, this anti-homophony pressure would preserve many of these desirable properties 

(most of the wordform remains intact) while also avoiding an excess of ambiguity. 

 Note that this procedure could arguably be interpreted as also implementing an indirect, 

pro-neighbor pressure, given that offending wordforms are directly converted to minimal pairs. 

However, this pro-neighbor pressure need not necessarily be pro-neighborhood per se—if the 

offending homophones are converted to existing wordforms, the distribution of meanings across 

wordforms could change without altering the distribution of neighborhood sizes. 

Results 

Replication of Homophony Results. 

 Past work (Trott & Bergen, 2020; Caplan et al., 2020) found that phonotactic baselines 

without a pressure against homophones exhibited a higher upper-bound of homophony: the 

Maximum Number of Homophones (i.e., the number of meanings assigned to the most 

homophonous wordform, minus one) was larger in the baselines than their real counterparts. As 

depicted in Figure 27, we replicated this effect: Neutral baselines consistently contained higher 

levels of homophony than the real lexica.33 

 

 
33 The Anti-Homophony and Anti-Homophony+ baselines are excluded from this figure, given that their levels of 

homophony were constrained not to exceed the real lexicon. 
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Figure 27: Maximum Number of Homophones across the real lexica and Neutral baselines. Red 

circles represent the values for the real lexicon. 

Comparing Neighborhood Sizes. 

 We used two primary dependent variables to compare the relative density of 

neighborhoods across real and artificial lexica: Mean Neighborhood Size and Maximum 

Neighborhood Size.34 The neighborhood size of a given wordform was defined as the number of 

wordforms that were exactly one edit away, i.e., using either insertion, deletion, or substitution. 

Thus, the Mean Neighborhood Size was the average phonological neighborhood size across the 

entire lexicon, while the Maximum Neighborhood Size was the size of the densest neighborhood 

in a given lexicon. 

 Consistent with past work (Dautriche et al., 2017; Trott & Bergen, 2020), the real lexica 

had larger Mean Neighborhood Sizes and Maximum Neighborhood Sizes, compared to the 

Neutral baselines. For example, the Mean Neighborhood Size in English was 2.51, while the 

Neutral English baselines ranged from 2.23 to 2.32 (M = 2.28,SD = 0.03). Similarly, the 

Maximum Neighborhood Size in Dutch was 42, while the Neutral Dutch baselines ranged from 

25 to 30 (M = 27.3,SD = 1.89). This demonstrates that phonotactics alone cannot account for 

neighborhood density in real lexica. 

 
34 Equivalent results were obtained using the Total Number of Minimal Pairs within a lexicon, as in past work 

(Dautriche et al., 2017). 
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 Yet as depicted in Figure 28, this gap largely disappeared (or in some cases, reversed) 

with the introduction of a pressure against over-saturation. Across all languages, the Mean 

Neighborhood Size was at least as large in the Anti-Homophony baselines. For example, in 

English, the Mean Neighborhood Size of the Anti-Homophony baselines ranged from 2.52 to 

2.59 (M = 2.54,SD = 0.03) (recall that the value for the real English lexicon was 2.51). In some 

languages (e.g., Dutch and German), the Anti-Homophone baselines actually had larger 

neighborhoods on average. The gap was also attenuated for Maximum Neighborhood Size (see 

Figure 29). However, the largest neighborhoods in real lexica tended to be slightly larger than 

the median value in the baselines (with the exception of French). 

 Surprisingly, the Anti-Homophony+ baselines exceeded both the Mean and Maximum 

Neighborhood Sizes of their real counterparts, sometimes to a very large degree (e.g., in French 

and Dutch). Further, the Anti-Homophony+ baselines overestimated the average neighborhood 

size across all languages tested. 

 

 

Figure 28: Mean Neighborhood Size as a function of language and lexicon type. Red lines 

represent the value for each real lexicon. 
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Figure 29: Maximum Neighborhood Size as a function of language and lexicon type. Red lines 

represent the value for each real lexicon. 

 In order to quantify which baseline produced the best fit, we calculated the Mean Error 

(ME) between the rank distribution of neighborhood sizes for each real lexicon and its artificial 

baselines. Mean Error was used (rather than mean absolute or squared error) to reveal the 

direction of the average error, i.e., whether a given baseline tended to underestimate or 

overestimate neighborhood sizes on average. As depicted in Figure 30, the Neutral baselines 

generally exhibited the worst fit (with the exception of French), and tended to underestimate 

neighborhood sizes. The Anti-Homophony baselines produced better predictions, and in fact, had 

the best fit for every language but French (in which the predicted neighborhood sizes were too 

large on average). Finally, the Anti-Homophony+ baselines erred on the side of overestimating 

neighborhood sizes, to an even greater degree than the Anti-Homophony baselines. 
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Figure 30: Mean Error (ME) for each baseline. Mean Error was computed by comparing the 

neighborhood sizes across each real lexicon and its artificial baselines; a score closer to zero 

corresponds to better fit. 

General Discussion 

We asked whether the distribution of neighborhood sizes in real lexica could be explained by the 

combination of phonotactic constraints and a pressure against homophony. Past work (Dautriche 

et al., 2017) found that phonotactics alone were insufficient to account for neighborhood sizes in 

real lexica, suggesting that real lexica are shaped by a positive selection pressure for larger 

neighborhoods. This proneighborhood pressure would also be consistent with evidence that 

dense neighborhoods confer benefits on learning (Coady & Aslin, 2003; Storkel, 2004; Fourtassi 

et al., 2020) and production (Vitevitch, 2002). The current work replicated this effect, as well as 

the finding that phonotactics alone tends to overestimate the degree of homophony compared to 

real lexica (Trott & Bergen, 2020). 

 Critically, however, we found that introducing a pressure against homophony in the 

baselines resulted in substantially larger neighborhood sizes on average—eroding or even 

reversing (in French and Dutch) the gap between the real lexica and their baselines (see Figure 

28). This also resulted in a larger upper-bound on neighborhood sizes in the baselines, though 
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not always larger than the real lexica (see Figure 29). Finally, a pressure that converted overly 

homophonous wordforms to minimal pairs resulted in larger neighborhoods across the board—

surpassing the Mean Neighborhood Size of real lexica, and attaining or surpassing the Maximum 

Neighborhood Size of real lexica. 

 Thus, a pressure against homophony was in many cases sufficient to account for average 

neighborhood sizes. This means that an explanation for average neighborhood sizes in real lexica 

need not posit a direct selection pressure for these neighborhoods: the distribution of 

neighborhood sizes observed in real languages may be the sole result of phonotactics and a 

pressure against over-saturation. Additionally, the Anti-Homophone+ pressure actually 

overestimated neighborhood sizes in many cases. 

 While these results cannot rule out the possibility that neighborhoods are directly selected 

for (see below), they do demonstrate that a pro-neighborhood pressure may not be a necessary 

part of an explanation. Importantly, this would not be inconsistent with evidence that dense 

neighborhoods provide benefits to learning and production—but under this account, these 

benefits would simply be “positive externalities” of a causally unrelated pressure against over-

saturation. 

Limitations and Future Work 

 The work described here is limited in certain ways. First, the languages tested represent a 

limited subset of the world’s languages. The sample was biased towards Indo-European 

languages (English, Dutch, German, and French), with one SinoTibetan language (Mandarin), 

and did not include languages from other major language families such as Austronesian or Niger-

Congo. The languages reflect a convenience sample; they are the languages for which we could 
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obtain lexical resources that contained phonological information at the level of individual 

lemmas. 

 A second limitation lies in the measures of neighborhood density used. We used the 

average and maximum neighborhood size in a lexicon. However, past work (Dautriche et al., 

2017) also used more sophisticated measures of the network structure in a lexicon, such as the 

degree of transitivity. Future work in this vein could better quantify how exactly neighborhoods 

distribute across the lexicon, using tools from network analysis. 

 Third, as in past work (Dautriche et al., 2017; Caplan et al., 2020; Trott & Bergen, 2020), 

we used an n-phone model to learn the phonotactics of the target language. Recent work has used 

more sophisticated approaches, such as a generative model (Futrell, Albright, Graff, & 

O’Donnell, 2017) or LSTM neural network (Pimentel et al., 2021). Future work could ask how 

adopting an alternative approach to modeling phonotactics changes the distribution of 

neighborhood sizes in the baselines. That said, recent work (Trott & Bergen, 2022) did find 

comparable results using an LSTM and nphone approach. 

 Fourth, our approach cannot cannot directly disconfirm the theory that real lexica are 

shaped by a pro-neighborhood pressure. At best, the baselines demonstrate the sufficiency of a 

particular set of constraints in explaining the distribution of neighborhood sizes, absent a direct 

pro-neighborhood pressure; there may still be a priori reasons to prefer a theory that posits such 

a pressure. The results do suggest that a pressure against homophony can in principle explain two 

seemingly independent facts—namely, that real lexica have fewer homophones, and larger 

neighborhoods, than predicted by their phonotactics—but they do not rule out the possibility of 

alternative explanations. 
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 A fifth, related limitation is that the baselines do not illuminate the causal mechanisms by 

which an anti-homophony pressure could operate, either at the level of individual communicative 

constraints or diachronic language change. Future research would benefit from experimental 

work directly probing these causal mechanisms, e.g., whether errors made during learning 

homophones (Casenhiser, 2005) could result in minimal pairs. Similarly, researchers could build 

computational models of how these local pressures interact with changes operating over longer 

timescales, such as sound change (Wedel, Jackson, & Kaplan, 2013). 

 Sixth, this work did not consider other important variables, such as frequency—both of 

individual wordforms, and of the distinct lemmas conveyed by those wordforms. This is in part 

due to limitations of the simulation method used. Employing a different approach, recent work 

(Trott & Bergen, 2022) discovered several relevant findings: homophony resistance is positively 

correlated with the frequency of particular wordforms, though not necessarily with the relative 

frequency of their meanings; and further, homophony resistance is highest among wordforms 

with high neighborhood density—consistent with the results presented here. 

 Finally, these analyses made two simplifying assumptions. First, meanings were 

implicitly assumed to be discrete units, with no relation between them. However, meanings are 

likely at least partially continuous (Elman, 2009; Trott & Bergen, 2021; Li & Joanisse, 2021); 

further, some meanings are more related (as in polysemy) than others (as in homonymy). 

Second, forms were assumed to be arbitrarily related to meanings—however, there is 

considerable evidence (Blasi, Wichmann, Hammarstrom, Stadler, & Christiansen,¨ 2016; 

Gutierrez, Levy, & Bergen, 2016) that form-meaning´ relationships may be less arbitrary than 

previously thought. Future work could integrate both lines of thought by using a continuous 
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representation of the meaning space, and exploring different ways of assigning form-meaning 

pairings in either systematic or arbitrary ways. 

Conclusion 

 Why do real lexica have such large phonological neighborhoods? One explanation is that 

real lexica are subject to a selection pressure for dense neighborhoods, possibly because dense 

neighborhoods facilitate word learning (Storkel, 2004; Coady & Aslin, 2003) and production 

(Vitevitch, 2002; Vitevitch & Sommers, 2003). We pursued another possibility— that dense 

neighborhoods emerge from the interaction of other constraints operating over real lexica, 

namely phonotactics and a pressure against individual wordforms acquiring too many meanings 

(Trott & Bergen, 2020). We tested the sufficiency of this latter account using simulated 

baselines. Crucially, the combination of phonotactic constraints and an anti-homophony pressure 

was sufficient to account for average neighborhood sizes in real human lexica—demonstrating 

that a direct selection pressure for neighborhood density is not a necessary part of an 

explanation. 
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CHAPTER 7: LANGUAGES ARE EFFICIENT, BUT FOR WHOM? 

 

 Languages adapt to the needs of the people who use them. In particular, there is 

increasing evidence that human languages have evolved in part to facilitate efficient 

communication (Piantadosi et al, 2009; Gibson et al, 2019; Mahowald et al, 2020; Zaslavsky et 

al, 2018; Regier et al, 2016; Kemp et al, 2018). Pressure for efficiency has been used to explain 

various features of language, like how they carve up semantic domains among words (Kemp & 

Regier, 2012; Gibson et al, 2017; Zaslavsky et al, 2018; Conway et al, 2020), as well which 

wordforms a lexicon contains (Piantadosi et al, 2011; Meylan & Griffiths, 2017; Mahowald et al, 

2018). But efficiency involves trade-offs: features that make a language more efficient for 

speakers sometimes make it less efficient for comprehenders, and vice versa (Zipf, 1949). How 

do languages balance the interests of speakers and comprehenders when those interests are 

misaligned? 

 In the case of a language’s grammatical rules, there is an emerging consensus that 

languages reflect a trade-off between reducing complexity (i.e., minimizing difficulties in 

production) and reducing ambiguity (i.e., minimizing difficulties in comprehension). The need to 

balance these pressures may explain cross-linguistic patterns in word order (Hahn et al, 2020), 

person marking (Zaslavsky et al, 2021), case marking (Mollica et al, 2020), and more. Moreover, 

some theories argue that efficiency is best achieved by prioritizing the needs of speakers 

specifically (Levinson, 2000; MacDonald, 2013). Planning and producing utterances is 

cognitively expensive: speakers must ultimately translate the concepts they wish to convey into a 

series of complex motor commands, a process that involves selecting the correct lexical items 

and arranging them in an appropriate syntactic configuration (Ferreira, 2008; MacDonald, 2013). 
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The architecture of the language production system is largely tuned towards reducing speaker 

effort (Ferreira, 2008), and as a consequence, the form of human languages themselves may also 

be oriented towards producibility, rather than comprehensibility (Levinson, 2000; MacDonald, 

2013). On this view, comprehension is nevertheless possible because comprehenders have a 

sufficiently less taxing task than speakers (MacDonald, 2013, MacDonald, 2015), and rely on 

pragmatic inference to decipher under-specified or ambiguous utterances (Levinson, 2000). Of 

course, some grammatical features may also reflect a pressure for efficient comprehension, such 

as grammatical gender (Wasow et al, 2013; Dye et al, 2017; Dye et al, 2018). Similarly, the mere 

fact of grammatical regularity in the first place likely makes communication more robust to 

noise, which helps with both comprehension and production (Gibson et al, 2013).  

 There is substantively less consensus when it comes to the lexicon. Although many 

researchers agree that human lexica are shaped for efficient communication (Piantadosi et al, 

2009; Mahowald et al, 2018; Mahowald et al, 2020), it remains unclear whether they favor a 

pressure for efficient production or efficient comprehension, or whether they are shaped equally 

by both pressures. The paradigm example of these pressures in conflict is Zipf’s meaning-

frequency law (Zipf, 1945; Piantadosi et al, 2012), the empirical observation that more frequent 

words are more ambiguous.  

On the one hand, this distribution could be interpreted as serving the speaker’s needs. It is 

easier to produce frequent words than infrequent ones (Oldfield & Wingfield, 1965; Dell, 1990), 

so a lexicon that concentrates meanings among its most frequent wordforms would be more 

efficient for speakers than a lexicon that distributes its meanings more evenly across wordforms 

(Zipf, 1949; Piantadosi et al, 2012). Under this view, the meaning-frequency law reflects a 

pressure for efficient production, which Zipf (1945) termed unification. Taken to the extreme, 



169 
 

this pressure––sometimes called compressibility (Kirby et al, 2015)––leads to a degenerate 

lexicon, “in which every meaning is associated with a single, shared, maximally ambiguous 

signal” (Kirby et al, 2015, pg. 88). A maximally degenerate lexicon is often taken as a speaker’s 

ideal because it requires a speaker to remember and produce only a single word, and thus 

imposes minimal costs on speakers, i.e., it is minimally complex (Zipf, 1949; Zaslavsky et al, 

2018).  

On the other hand, real lexica are far from maximally degenerate. This is because lexica 

are also subject to a countervailing pressure, alternatively termed diversification (Zipf, 1945), 

expressivity (Kirby et al, 2015), or informativity (Zaslavsky et al, 2018), to reduce the burden of 

comprehension (Zipf, 1945; Wasow, 2013) and ensure clarity of communication (Piantadosi et 

al, 2012). An incomprehensible language is not particularly efficient––suggesting that the cost of 

disambiguation should in principle also shape the development of communicative systems. 

Oversaturating frequent wordforms with many meanings likely incurs costs for comprehenders: 

even if disambiguation is less costly than production (Levinson, 2000), it does appear to impose 

at least a marginal increase in processing difficulty (Rayner & Duffy, 1986; Rayner & Frazier, 

1989; Blott et al, 2020). And if the most frequent wordforms are also the most ambiguous, then 

comprehenders will be required to disambiguate more often. But while real lexica do exhibit a 

relationship between frequency and ambiguity, their most frequent wordforms are not maximally 

ambiguous, i.e., this relationship is weaker than would be expected by a purely speaker-centric 

lexicon. Thus, under this view, the empirical relationship between ambiguity and frequency also 

reflects a pressure to reduce the burden on comprehenders.  

Zipf’s interpretation is that the empirical distribution of meanings across wordforms 

represents a compromise between these purported pressures (Zipf, 1945; Zipf, 1949). Yet 
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identifying an equilibrium is only part of an explanation, as it leaves the relative magnitudes of 

the countervailing pressures indeterminate. It is possible that the pressures are equal in size, as 

Zipf (1945) suggests. But it could be that a speaker-oriented pressure has ultimately won out—

that the equilibrium point is closer to the speaker’s ideal than the comprehender’s. This view of a 

Speaker-Oriented Pressure is similar to claims that grammar shows an equivalent bias 

(MacDonald, 2013). Alternatively, the lexicon may be driven primarily by a Comprehender-

Oriented Pressure, biased towards reducing the cost of disambiguation.  

Unfortunately, we cannot adjudicate between these competing accounts using the 

empirical distribution of word meanings alone. In the absence of a suitable baseline, it is 

impossible to determine whether Zipf’s meaning-frequency law is attributable to a bias towards 

production or a bias towards comprehension, or even whether it can be explained without either 

such pressure (Caplan et al, 2020; Trott & Bergen, 2020). To date, the observed relationship 

between wordform frequency and ambiguity has only been compared with a baseline in which 

there is no relationship between wordform frequency and ambiguity (Zipf, 1949; Piantadosi et al, 

2012). But such a baseline is indistinguishable from one version of a purely Comprehender-

Oriented Pressure, in which meanings are distributed evenly across wordforms, and is thus 

inappropriate for adjudicating between Speaker-Oriented and Comprehender-Oriented Pressures. 

Instead, a baseline is required that establishes how many meanings those same wordforms should 

be expected to accrue just on the basis of other known factors. Previous work has established that 

even controlling for frequency, shorter and more phonotactically probable words have more 

meanings (Piantadosi et al, 2012). Using a baseline that incorporates these effects, we can then 

ask whether the positive empirical relationship between wordform frequency and ambiguity is 
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larger (reflecting a Speaker-Oriented pressure) or smaller (reflecting a Comprehender-Oriented 

pressure) than what would be expected without either such pressure. 

Here, a conceptual parallel can be drawn to work in evolutionary biology; many traits 

that appear adaptive for a particular function may have emerged from other, more indirect 

selective pressures, or even genetic drift (Gould & Lewontin, 1979). This has led to the use of 

so-called “neutral” models (Alonso et al, 2006) to establish baselines of what to expect in the 

absence of selection pressures. More recently, neutral models have been applied to cultural 

evolution as well, to understand which aspects of language change are due to explicit selection 

and which are better explained by stochastic drift (Newberry et al, 2017). There is some 

controversy around the question of whether neutral models can be used to provide positive 

evidence of a causal mechanism (Leroi et al, 2020; Bentley et al, 2012); however, there is 

general agreement that they are useful for establishing a “null” baseline, against which 

alternative theoretical models can be compared (Leroi et al, 2020).  

Consonant with this line of reasoning, recent work has shown that when the observed 

distribution of homophony is compared with an appropriate baseline, other apparently efficient 

distributions of meanings show up in lexica without any explicit pressure for efficiency (Trott & 

Bergen, 2020; Caplan et al, 2020). Indeed, Trott & Bergen (2020) find that when compared 

against a suitable baseline that incorporates a lexicon’s phonotactics and distribution of word 

lengths, real human lexica actually have fewer homophones than one would expect. Strikingly, 

this result is consistent with a Comprehender-Oriented Pressure, i.e., one in which homophones 

are avoided during the course of language change (Wedel et al, 2013a; Wedel et al, 2013b). 

Importantly, however, because this work used a simulated baseline (i.e., not using real words in 

the lexicon), it was unable to investigate whether the frequency of actual wordforms in a lexicon 
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shaped a pressure for or against homophony. This leaves a gap in the literature: could a 

Comprehender-Oriented Pressure explain Zipf’s meaning-frequency law as well?  

The logic of our approach below is as follows. First, we establish a suitable baseline that 

characterizes the expected relationship between wordform frequency and ambiguity in the 

absence of either a direct production-oriented pressure or a comprehension-oriented pressure. 

The distribution obtained in this baseline is then compared to the attested distribution in real 

lexica. If the relationship between frequency and homophony is stronger in real lexica than in the 

baseline, it is consistent with production-oriented pressures shaping the language; in contrast, a 

weaker relationship in real lexica is consistent with the language being shaped by a 

comprehension-oriented pressure. Finally, if the real relationship between frequency and 

homophony is indistinguishable from the baseline, it suggests either that both pressures are equal 

in magnitude, or that neither pressure is required to explain how many meanings words of 

different frequencies have. 

This hinges on first establishing a procedure for distributing meanings that is neutral with 

respect to whether it privileges a speaker-oriented pressure to accumulate meanings among 

frequent wordforms, or a comprehender-oriented pressure to reduce ambiguity among those 

wordforms. That is, given M meanings and W wordforms, how ought those meanings to be 

distributed across wordforms in a neutral manner? One candidate for such a neutral procedure is 

to assign meanings to wordforms according to their phonotactic probability. Although all 

wordforms of a language must obey the phonotactic rules of that language––i.e., which sounds 

can begin and end a word, which sounds can occur in which sequence, and so on––some 

phonological sequences are nonetheless more common across wordforms than others. 

Wordforms containing very common phonological sequences are considered to have a higher 
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phonotactic probability (Vitevitch & Aljasser, 2021). Critically, phonotactic probability appears 

to facilitate word production (Vitevitch et al, 2004; Goldrick & Larson, 2008), word recognition 

and processing (Vitevitch & Luce, 1999; Vitevitch et al, 1999), and word learning (Juszcyk et al, 

1994; Munson, 2001; Coady & Aslin, 2004; Storkel, 2002). To our knowledge, there is no 

evidence that phonotactic probability disproportionately benefits speakers over listeners, or vice 

versa. Thus, it is reasonable to expect that both speakers and listeners would prefer a lexicon that 

privileged phonotactically probable wordforms, as opposed to phonotactically improbable ones. 

(Of course, according to Zipf (1949), speakers might prefer that every meaning is conveyed by a 

single, high-probability wordform––while listeners might prefer no ambiguity at all. However, 

the goal of this baseline is not to implement the ideal speaker-oriented or listener-lexicon––it is 

to construct a lexicon according to neutral principles.)  

A second, related reason to distribute meanings according to the phonotactic probability 

of wordforms is that in real lexica, homophones are disproportionately concentrated among 

phonotactically probable wordforms (Piantadosi et al, 2012; Trott & Bergen, 2020). This lends 

further plausibility to the approach being taken: empirically, meanings are attracted to high-

probability regions of phonotactic space.  

Finally, phonotactic probability correlates with frequency across a number of languages 

(Bentz et al, 2016; Mahowald et al, 2018; Meylan & Griffiths, 2017). While this is not itself a 

reason to adopt this baseline, it does tell us a priori that even in the absence of a frequency bias, 

a preferential distribution of meanings according to phonotactic probability would produce a 

positive correlation between frequency and ambiguity. Importantly, this baseline correlation with 

frequency would be epiphenomenal in the sense that it emerged from other principles of lexicon 

design. The central question of the current work is whether the correlation between frequency 
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and ambiguity in the baseline is weaker than the one observed in real lexica (implying a speaker-

oriented pressure), or stronger than the one observed in real lexica (implying a comprehender-

oriented pressure). 

Current Work 

Using a neutral baseline, we calculated the Homophony Delta for each wordform in the real 

lexicon: the difference between how many homophones a wordform actually has, and how many 

homophones it would be expected to have, assuming that meanings distributed purely according 

to phonotactic probability. We then asked whether the relationship between Homophony Delta 

and Frequency was positive (as predicted by a speaker-centric pressure) or negative (as predicted 

by a comprehender-centric pressure). 

To calculate the expected number of homophones, we first calculated the phonotactic 

probability of each wordform using an n-phone model35. We then multiplied each wordform’s 

phonotactic probability by the number of meanings for words of that length (see the Methods 

section below for more details on how the number of meanings was calculated). This ensured 

that the distribution of meanings across word lengths was matched across each of the real lexica 

and their neutral baselines; for example, if the real English lexicon has 7,706 meanings 

distributed among its monosyllabic wordforms, the English baseline would do the same. Finally, 

we subtracted a wordform’s expected number of homophones from the number of homophones a 

wordform actually has. A positive value of Homophony Delta indicates that a wordform has 

more homophones than expected, and a negative value indicates that it has fewer. We repeated 

this process across six target languages: English, Dutch, German, French, Japanese, and 

Mandarin.  

 
35 See Supplementary Analysis 5 for a replication of the primary results using a measure of phonotactic probability 
calculated using an LSTM. 
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The accounts outlined above make opposing predictions about the relationship between 

Frequency and Homophony Delta. Given that more frequent wordforms are easier and faster to 

produce (Oldfield & Wingfield, 1965; Dell, 1990), a pressure to minimize speaker effort should 

result in frequent wordforms acquiring more meanings than their phonotactics would predict. 

Thus, Frequency should exhibit a positive relationship with Homophony Delta. On the other 

hand, concentrating meanings in the most frequent wordforms results in a language requiring 

more frequent disambiguation by comprehenders. Such a lexicon would impose a larger average 

disambiguation cost than one that distributed its meanings more evenly across wordforms. Thus, 

a pressure to minimize comprehender effort predicts a negative relationship between Frequency 

and Homophony Delta. Finally, it is possible that these pressures are roughly equal in size, or 

even that neither pressure plays a role at all––i.e., that phonotactic plausibility and length is the 

sole determinant of homophony. In both cases, the relationship between Frequency and 

Homophony Delta should be statistically indistinguishable from zero.  

All data and code necessary to reproduce the analyses described here can be found on 

GitHub: https://github.com/seantrott/homophony_delta.  

Methods 

Materials. We analyzed lexica from six languages: English, Dutch, German, French, Japanese, 

and Mandarin Chinese. Importantly, we restricted our analysis to the unique lemmas of each 

language. This means that inflectional variants (e.g., “dogs”) would not be included as distinct 

entries, whereas distinct meanings of the same wordform (e.g., water.n and water.v) would be 

listed separately, with separate frequency estimates for each lemma. For determining which 

meanings counted as distinct lemmas, as well as the frequencies of those lemmas, we relied on 

lexical resources for each language.  
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For English, Dutch, and German, we used the CELEX lexical database (Baayen et al, 

1995). For French, we used the French Lexique (New et al, 2004). For Japanese, we used the 

Japanese CallHome Lexicon (Kobayashi et al, 1996). For Mandarin Chinese, we used the 

Chinese Lexical Database (Sun et al, 2018); we also conducted the same analysis (and obtained 

qualitatively identical results) using the Mandarin CallHome Lexicon (Huang et al, 1996), which 

is included in the Supplementary Materials. We removed wordforms containing hyphens, spaces, 

or apostrophes, as well as proper nouns (in the case of the Mandarin Chinese lexica). The 

number of unique wordforms (i.e., after collapsing across distinct entries) in each lexicon was as 

follows: 35,107 English wordforms, 50,435 German wordforms, 65,260 Dutch wordforms, 

37,278 French wordforms, 40,449 Japanese wordforms, and 41,009 Mandarin Chinese 

wordforms (with 45,871 in the Mandarin CallHome lexicon). 

 Frequency estimates for English, Dutch, and German were taken from CELEX; 

respectively, these frequency estimates were in turn based on the COBUILD (approximately 18 

million words), INL (approximately 40 million words), and Mannheim (approximately 5 million 

words) corpora (Sinclair, 1987; Kruyt & Dutilh, 1997; Kupietz & Keibel, 2009). Note that we 

also replicated the analyses described here using the SUBLTEX estimates of word frequency, 

and obtained qualitatively identical results (i.e., a negative relationship between Log Frequency 

and Homophony Delta; see Supplementary Analysis 4) for a description of those results. The 

lexica for French and Mandarin Chinese already contained by-lemma frequency estimates. The 

corpus sizes from which these estimates were obtained were, approximately: 14.8M (for French) 

and 120M (for Mandarin). The frequency estimates for Japanese wordforms were taken from the 

Japanese CallHome Lexicon, with a total of approximately 690K tokens. In each language, if by-

lemma frequency estimates were available for a given wordform, we summed these estimates to 
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calculate the total frequency of that wordform. Note that the Japanese lexicon did not contain 

reliable by-lemma frequency measures––thus, for Japanese, we used the mean frequency for 

each lemma corresponding to a given wordform. However, the results reported below are 

qualitatively identical using the sum of lemma frequencies. Additionally, because we would 

eventually calculate the log of each frequency, we incremented each frequency value by 1, to 

ensure that no wordforms had a frequency of 0. Additionally, for the French lexicon specifically, 

frequency values were multiplied by 14.8 (given that Lexique normalized the book frequency 

estimates to 14.8). 

 Finally, the frequency estimates reflect a mixture of spoken and written text, depending 

on the language. The English COBUILD corpus consists primarily of written language 

(approximately 5% is spoken), as do the Dutch INL (approximately 9% is spoken) and German 

Mannheim (0% is spoken). The Chinese Lexical Database frequency estimates combine two 

written sources: the Leiden Weibo Corpus (Van Esch, 2012) and the SUBTLEX-CH corpus (Cai 

& Brysbaert, 2010). For French, we relied on frequency estimates from a corpus of written books 

(New et al, 2004). Finally, frequency estimates for the Japanese CallHome Lexicon are based 

solely on spontaneous spoken speech (Kobayashi et al, 1996).  

Calculating Phonotactic Probability. For each lexicon, we built an n-phone Markov Model that 

approximated the phonotactics of the target language. We adapted the code and procedure used 

in previous work (Dautriche et al, 2017; Trott & Bergen, 2020). 
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Given some value of n (e.g., 2), an n-phone model can use the set of wordforms36 in a 

lexicon to learn which phoneme characters occur in which positions and in which sequence; for 

example, in English, such a model would learn that the sequence bn– never occurs at the start of 

a wordform. Such a model can then be used to compute the probability of an entire wordform, 

which is defined as the product of all the transitional probabilities between each phoneme in that 

wordform (including the START and END symbols). We identified the appropriate chain length 

(i.e., value of n) for each language using a cross-validation procedure––the optimal n was 

defined as the model that, when trained on a set of real wordforms (e.g., 75% of a lexicon), 

maximizes the probability of held-out wordforms (e.g., the remaining 25%). This cross-

validation procedure was identical to the one described in Trott & Bergen (2020), and 

determined the optimal models to be 5-phone models for English, Dutch, and German, and 4-

phone models for Japanese, French, and Mandarin Chinese.  

We then calculated the phonotactic probability of each wordform in each lexicon using 

1000-fold cross-validation. We divided each lexicon into 1000 “folds” (each containing roughly 

0.1% of the entire set of wordforms). Then, for each fold, we trained an n-phone model on the 

remaining 99.9% of the lexicon, and evaluated the phonotactic probability of the wordforms in 

the target fold. This allowed us to produce estimates of phonotactic plausibility from a model 

that never directly observed the wordforms in question––only other wordforms resembling them 

to varying degrees. As in past work (Dautriche et al, 2017; Trott & Bergen, 2020), we also 

 
36 Note that these models were trained using the set of unique types (individual wordforms), rather than 

tokens (actual instances of each wordform in a text corpus), to avoid conflating phonotactic probability with 

frequency. 
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assigned non-zero probability to unobserved phoneme sequences using Laplace smoothing with 

the parameter set to .01.  

Finally, we used these probabilities to calculate the phonotactic surprisal of each 

wordform, which is defined as the negative log probability (note that we used log10)––i.e., less 

probable phonotactic sequences will have higher phonotactic surprisal. Because phonotactic 

surprisal is correlated with length, we divided surprisal by the number of phonemes in the 

wordform to obtain a Normalized Phonotactic Surprisal measure, as in Piantadosi et al (2012). 

Note that recent work (Pimentel et al, 2021) has found that an LSTM provides a better 

measures of phonotactic probability, and is less prone to overfitting, than an n-gram model. We 

have replicated the primary results described below using an LSTM with qualitatively identical 

results; see Supplementary Analysis 5 for more details. 

Calculating Actual Number of Homophones. Following past work (Piantadosi et al, 2012; 

Trott & Bergen, 2020), we calculated the Actual Number of Homophones for a given wordform, 

A(wi), by identifying the number of distinct lexical entries with the same phonological form, then 

subtracting one. Note that this measure would include both homographic (e.g., “baseball bat” vs. 

“furry bat”) and heterographic (e.g., “juicy steak” vs. “wooden stake”) homophones. In the latter 

case, the wordform /steɪk/ has three entries, so the Actual Number of Homophones is two.  

Estimating Expected Number of Homophones. To estimate a wordform’s Expected Number 

of Homophones, we calculated the number of meanings each wordform should be assigned if 

meanings were assigned purely on the basis of phonotactic plausibility alone. We also sought to 

control for word length, so the procedure described below was performed separately for words of 

varying lengths (e.g., 1-syllable, 2-syllable, etc.). 
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 First, we normalized a wordform’s phonotactic probability, pi, to the number of 

meanings, M, distributed among wordforms of that length. To do this, we calculated the sum of 

those wordforms’ probabilities––typically much less than 1, depending on the smoothing 

parameter and number of wordforms in question––then divided each probability pi by that sum. 

This produced a set of normalized wordform probabilities such that they summed to 1, which 

ensured that the sum of expected number of meanings (M’) distributed among some set of 

wordforms would equal the actual number of meanings (M). After this normalization procedure, 

the monosyllabic wordform /steɪk/ ends up with a normalized probability of 0.0009. 

 Then, for each wordform, we multiplied its normalized probability by M, the number of 

meanings available for wordforms of that length. This yielded the expected number of meanings. 

For example, the normalized probability for the wordform /steɪk/ (0.0009) would be multiplied 

by the number of meanings available for monosyllabic wordforms (7,706), yielding the expected 

number of meanings (approximately 6.94).  

 Finally, to calculate the Expected Number of Homophones, we simply subtracted one 

from the expected number of meanings (as in the real lexicon); the wordform /steɪk/ would thus 

have approximately 5.94 homophones. This is illustrated in the equation below, where wi refers 

to a given wordform, Mi refers to the number of meanings expressed by wordforms of that 

length, pi refers to the normalized probability of that wordform and E(wi) refers to the Expected 

Number of Homophones. 

E(𝑤!) = 𝑀! ∗ 𝑝! − 1 

 Note that unlike in the real lexicon, this procedure can yield non-integer values for a 

wordform’s Expected Number of Homophones; occasionally these values are even negative, if 

the expected number of meanings is below 1. We chose not to “correct” these values (i.e., round 
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them to the nearest integer), because doing so would no longer ensure equivalence between the 

actual and expected number of meanings distributed among wordforms of a certain length. 

Because our primary interest is in the relative differences between expected and actual numbers 

of meanings, the absolute value of Expected Number of Homophones should not impact the 

interpretation of results. (See Supplementary Analysis 6 for an alternative approach ensuring that 

wordforms are assigned an integer number of meanings.)   

Calculating Homophony Delta. Homophony Delta, i.e., HD(wi), was defined as the difference 

between a wordform’s Actual Number of Homophones, i.e., A(wi), and that wordform’s 

Expected Number of Homophones, i.e., E(wi):  

𝐻𝐷(𝑤!) = 𝐴(𝑤!) − 𝐸(𝑤!) 

We subtracted the latter estimate (described above) from the former, obtained from the 

real lexica. Thus, a negative value means that wordform has fewer homophones than predicted 

by its phonotactics, while a positive value means that a wordform has more homophones than 

predicted by its phonotactics. For the wordform /steɪk/, the Actual Number of Homophones is 2, 

while the Expected Number of Homophones is 5.94, so the Homophony Delta would be -3.94. 

Put another way: the wordform /steɪk/ has approximately 3.94 fewer homophones than predicted 

by its phonotactics. 

Results 

Homophony and Frequency. 

For each language, we constructed a linear regression model with Homophony Delta as the 

dependent variable, and Log Frequency, Number of Syllables, and Normalized Phonotactic 
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Surprisal37 as predictors. We were primarily interested in the effect of Log Frequency, which we 

focus on below; given that frequency is correlated with word length and phonotactic probability, 

we included Number of Syllables and Normalized Phonotactic Surprisal as covariates to identify 

and isolate the variance explained by Frequency specifically38. All analyses were performed in R 

version 3.6.3 (R Core Team, 2020).  

 Log Frequency exhibited a significant, negative relationship with Homophony Delta 

across all six languages: English [b = -0.49, SE = 0.07, p < .001], Dutch [b = -1.85, SE = 0.07, 

p < .001], German [b = -1.28, SE = 0.1, p < .001], French [b = -0.45, SE = 0.05, p < .001], 

Japanese [b = -1.73, SE = 0.11, p < .001], and Mandarin Chinese [b = -0.28, SE = 0.02, p < 

.001]. The magnitude of this relationship, and the absolute values of Homophony Delta, varied 

considerably across languages; for example, the most frequent wordforms in Dutch have much 

larger negative values of Homophony Delta than the most frequent wordforms in French or 

Japanese. Crucially, however, the overall relationship was negative in each of the languages we 

considered: frequent wordforms consistently have fewer homophones than predicted by their 

phonotactics. Because we modeled frequency as logarithmic, these coefficients can be 

interpreted as representing the expected reduction in homophony (relative to a wordform’s 

phonotactics), given each order of magnitude increase in frequency. For example, in English, the 

coefficient estimate for Frequency is -0.49; this means that an increase in frequency from 10 to 

 
37 Because Number of Syllables is correlated with Phonotactic Surprisal, we followed the procedure described in 
Piantadosi et al (2012) and divided Phonotactic Surprisal by the number of phonemes in a wordform, which we 
called Normalized Phonotactic Surprisal. 
38 Note that Frequency is correlated with Number of Syllables, and the presence of collinearity between predictors 
can sometimes lead to suppression or enhancement of parameter estimates (Wurm & Fisicaro, 2014). To check for 
collinearity, we calculated the variance inflation factor (VIF) for the complete model for each language, and found 
that all VIF scores were below 1.5, which suggests that collinearity is not necessarily a concern in this case.  
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100 would predict a 0.49 decrease in how many homophones a given wordform has, relative to 

its phonotactics. 

 

 

Figure 31: Across all six languages, the most frequent wordforms have fewer homophones in 

actuality (Real) than predicted by their phonotactics (Baseline). Higher values of Binned 

Frequency correspond to more frequent words. Error bars are one standard error. 

 This is best illustrated by Figure 31, which directly compares the actual and expected 

number of homophones for each of 20 frequency bins. Across all languages, frequent wordforms 

have fewer homophones in actuality than expected. That is, although each language exhibits the 

well-attested, positive relationship between wordform frequency and ambiguity39––i.e., Zipf’s 

 
39 See Supplementary Analysis 3 for an analysis illustrating that Zipf’s meaning-frequency law replicates across all 
six languages. 
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meaning-frequency law (Zipf, 1945)––this relationship is considerably weaker than one would 

expect if meanings were assigned purely on the basis of phonotactic probability and length.  

In addition to the negative relationship between Log Frequency and Homophony Delta, 

Normalized Phonotactic Surprisal exhibited a significant, positive correlation with Homophony 

Delta across all six languages: English [b = 3.58, SE = 0.13, p < .001], Dutch [b = 4.04, SE = 

0.17, p < .001], German [b = 3.42, SE = 0.18, p < .001]  French [b = 3.18, SE = 0.11, p < 

.001], Japanese [b = 2.92, SE = 0.09, p < .001], and Mandarin Chinese [b = 2.71, SE = 0.07, p 

< .001]. The most phonotactically plausible wordforms in real lexica have fewer homophones 

than predicted by their phonotactics alone. This is not surprising, given that our baselines 

assumed that phonotactic probability was the sole determinant of homophony––if the distribution 

of homophones in real lexica is influenced by any other factors, then the resulting relationship 

should be weaker than in our baselines. 

More surprising is the observation that Number of Syllables was positively correlated 

with Homophony Delta across five of the six languages (all but Mandarin Chinese): English [b = 

0.73, SE = 0.07, p < .001], Dutch [b = 0.4, SE = .07, p < .001], German [b = 0.36, SE = 0.07, p 

< .001], French [b = 0.56, SE = 0.05, p < .001], and Japanese [b = 0.13, SE = 0.02, p < .001]. 

In other words, short wordforms in these languages were less ambiguous than expected, given 

their phonotactics. The coefficient in Mandarin was not significant after correcting for multiple 

comparisons (p > .1). Across all languages, however, short wordforms were no more 

homophonous than one would expect (i.e., no language had a negative coefficient for Number of 

Syllables); this finding is consistent with past work (Trott & Bergen, 2020; Caplan et al, 2020) 

suggesting that the empirical relationship between length and homophony is not necessarily a 

product of a speaker-centric pressure to reuse short wordforms––indeed, in some languages, 
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short wordforms have fewer homophones than one would otherwise expect. See Figure 32 for 

the complete distribution of parameter estimates (and standard errors) across lexica.

 

 

Figure 32: Parameter estimates of Homophony Delta for Log Frequency, Normalized 

Phonotactic Surprisal, and Number of Syllables across all six languages. Importantly, the 

estimates for Log Frequency are negative for each of the six languages tested. Error bars are two 

standard errors. 

Homophony and Neighborhood Size. If real lexica are indeed subject to a pressure 

against homophony in high frequency words, that pressure should have detectable consequences 

elsewhere in a language. We pursued this line of reasoning by focusing on the distribution of 

phonological neighborhood sizes in the real lexicon. Phonological neighbors are defined as two 

wordforms that can be converted into one another via a single edit, i.e., a substitution, deletion, 

or addition (Luce & Pisoni, 1998; Vitevitch & Luce, 1999). For example, under this definition, 

“pot” and “pit” would be neighbors, as would “bat” and “cat”. Previous work (Dautriche et al, 
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2017; Trott & Bergen, 2020) has found that real languages have larger neighborhoods than 

artificial lexica matched for their phonotactics and distribution of word lengths, despite having a 

smaller number of homophones. Trott & Bergen (2020) argue that these results could arise from 

a pressure to avoid homophones, combined with a pressure to use high-probability phoneme 

sequences. Together, these pressures could create dense pockets of phonological neighborhoods 

in the place of a single, high-probability wordform over-saturated with meanings. If this 

interpretation is correct, then the wordforms most resistant to acquiring homophones should also 

have larger neighborhoods––i.e., controlling for other factors, Homophony Delta should be 

negatively correlated with Neighborhood Size.  

To test this hypothesis, we added Log Neighborhood Size as a covariate to the models 

described above. Even accounting for the effects of Log Frequency, Normalized Phonotactic 

Surprisal, and Number of Syllables, the relationship between Log Neighborhood Size and 

Homophony Delta was significantly negative across all six languages: English [b = -1.59, SE = 

0.08, p < .001], Dutch [b = -1.1, SE = 0.23, p < .001], German [b = -1.85, SE = 0.29, p < .001], 

French [b = -3.49, SE = 0.14, p < .001], Japanese [b = -2.5, SE = 0.07, p < .001], and Mandarin 

Chinese [b = -2.1, SE = 0.05, p < .001]. Wordforms with larger neighborhoods tended to have 

fewer homophones than predicted by their phonotactics (see also Figure 33). (Critically, the 

effect of Log Frequency remained significant across all six languages even with the addition of 

Log Neighborhood Size.) 
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Figure 33: Real vs. predicted number of homophones, by binned neighborhood size. Wordforms 

with larger phonological neighborhoods tend to have more homophones in Real lexica, but this is 

still fewer than predicted on the basis of their phonotactics (Baseline). Higher values of Binned 

Neighborhood Size correspond to larger neighborhoods. Error bars are one standard error. 

 

This relationship could be the product of a pressure to avoid homophones, which creates 

larger neighborhoods in their stead. But an alternate possibility exists––with reverse causality. 

Neighborhood size might affect the cost of disambiguation. Psycholinguistic research suggests 

that wordforms with larger neighborhoods are more likely to be confused with other wordforms 

in that language (Luce & Pisoni, 1998; Vitevitch & Luce, 1998; Vitevitch & Luce, 1999; though 

see other work (Vitevitch & Rodriguez (2005); Arutiunian & Lopukhina, 2020) for evidence that 

this effect varies across languages). If high-density wordforms are already confusable, one might 

expect those wordforms to display a stronger resistance to acquiring additional meanings. On this 
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explanation, larger neighborhoods—like frequency––are a cause of a selection pressure against 

homophones. The current results do not allow us to adjudicate between these possibilities; 

however, a prediction derived from the latter interpretation is explored in the General 

Discussion. 

General Discussion 

Our central question was the extent to which human lexica are adapted to minimize effort for 

speakers or comprehenders. The uneven distribution of lexical ambiguity provides a useful test 

case for this question: a lexicon optimized for production ease should concentrate its meanings 

among the easiest wordforms to produce, such as highly frequent wordforms (Zipf, 1949; 

Piantadosi et al, 2012). Yet such a lexicon would require frequent disambiguation on the part of 

comprehenders––thus, a pressure for comprehension ease would favor a lexicon with its 

meanings more uniformly distributed. Adjudicating between these accounts requires the use of a 

“neutral” baseline, i.e., a lexicon that is agnostic with respect to the relationship between 

wordform frequency and ambiguity and distributes its meanings according to other known 

factors. We used such a baseline to estimate what the magnitude of this relationship would be if 

meanings were assigned to wordforms with no direct pressure for or against concentrating 

meanings among frequent wordforms––in this case, meanings were assigned purely as a function 

of a wordform’s phonotactic probability and length. This allowed us to compare how many 

meanings each wordform actually has to the number of meanings predicted by its phonotactics.  

 Across six languages, we found that frequent wordforms have fewer homophones than 

predicted by their phonotactics (see Figure 31), and in many cases, infrequent wordforms have 

slightly more homophones than expected. We also replicated this result using an alternative 

measure of phonotactic probability (see Supplementary Analysis 5). These findings are most 
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consistent with a Comprehender-Oriented Pressure––alternatively termed diversification (Zipf, 

1949) or expressivity (Kirby et al, 2015). If each additional meaning of a wordform imposes 

some marginal cost for comprehenders, then a lexicon whose meanings are disproportionately 

concentrated among frequent wordforms will impose a larger average cost than a lexicon whose 

meanings are more evenly distributed. Thus, from the standpoint of minimizing comprehender 

effort, a selection pressure against homophony should manifest particularly strongly among the 

most frequent wordforms of a lexicon. Altogether, these results suggest that any pressure to 

optimize production ease is weaker than a countervailing pressure to reduce the cost of frequent 

disambiguation. The results of Supplementary Analysis 6, which formalized measures of speaker 

and listener effort across the lexicon, are also consistent with this conclusion. Of course, these 

results do not entail that human lexica are entirely shaped by comprehender-centric pressures; 

after all, lexica do tolerate some degree of ambiguity, even among the most frequent wordforms. 

Thus, a speaker-centric pressure is likely at play is well––our results simply suggest that at least 

when it comes to the distribution of meanings across wordforms, the comprehender-centric 

pressure is larger. 

 Further, along with other recent work (Gibson et al, 2019; Ferrer-i-Cancho et al ., 2020; 

Trott & Bergen, 2020; Caplan et al, 2020; Pimentel et al, 2021), these results emphasize the 

importance of developing formal baselines when investigating questions about the relative 

optimality of the lexicon.  

Limitations 

 One limitation of the present work is the number and identity of languages considered. 

We analyzed six languages, spanning three language families (Indo-European, Japonic, and 

Sino-Tibetan); this sample was biased towards Indo-European languages, and did not include 
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languages from major families like Austronesian or Niger-Congo. We selected these languages 

since they are the only ones that have widely available lexical resources including information 

about individual meanings or lemmas, as opposed to wordforms; this was necessary for the 

current analyses. If similar resources become available for other languages, these analyses (and 

others) could be extended to a larger and more diverse set of languages.  

 Another potential concern is our choice of baseline, which itself might be divided into 

several lines of critique. The first critique is that n-gram models are prone to overfitting (see, 

e.g., Pimentel et al., 2021). This is a valid concern, but we have replicated the primary results 

using an LSTM to model phonotactics (see Supplementary Analysis 5), following Pimentel et al 

(2021). Thus, the finding that frequent wordforms have fewer homophones than predicted by 

their phonotactic appears robust to the phonotactic model chosen. A second concern might be 

that the neutral baseline is somehow not neutral––i.e., that assigning meanings to wordforms on 

the basis of their phonotactic probability is disproportionately biased towards speakers (or 

towards listeners). If this were true, it would pose a serious problem for our theoretical 

interpretation, which hinges on the neutrality of this assignment procedure. However, as 

described in the Introduction, phonotactic probability is known to facilitate both word production 

(Vitevitch et al, 2004; Goldrick & Larson, 2008) and word recognition and processing (Vitevitch 

& Luce, 1999; Vitevitch et al, 1999). To our knowledge, there is no reason to believe that 

phonotactic probability disproportionately benefits speakers (or listeners). This supports the 

neutrality of our procedure for assigning meanings to wordforms.   

 A third limitation or objection is that our theoretical interpretation hinges on a crucial 

assumption––namely, that speakers prefer a lexicon that concentrates its meanings among a few, 

frequent wordforms, while comprehenders prefer a lexicon that distributes its meanings more 
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evenly. Although this assumption is consistent with past theoretical work (Zipf, 1949; Kirby et 

al., 2015), we did not ground it in an explicit mathematical operationalization. Recent work 

(Zaslavsky et al., 2018; Zaslavsky et al., 2019; Mollica et al., 2020) has used information-

theoretic tools to formalize the notions of speaker and listener effort. In Supplementary Analysis 

6, we adopted these tools and found that, consistent with the work above, the real arrangement of 

wordforms and meanings is associated with lower listener effort (and higher speaker effort) than 

the arrangement obtained if meanings were assigned to wordforms as a function of their 

phonotactic probability. While this Supplementary Analysis has some limitations of its own, it is 

encouraging that a different methodological paradigm yielded qualitatively similar results. 

Future work would benefit from a more explicit grounding of the underlying semantic space. 

 Finally, our analyses focused on homophony. Another well-known kind of lexical 

ambiguity is polysemy, in which the same wordform has multiple, related meanings. Unlike 

homophony, polysemous words appear to enjoy advantages in both word learning (Srinivasan et 

al, 2019; Rodd et al, 2012; Floyd & Goldberg, 2021) and processing (Klepousniotou, 2002; Rodd 

et al, 2002; Klepousniotou et al, 2012). Thus, it is possible that polysemy––unlike homonymy––

may even be selected for (Xu et al, 2021). If this is true, then one might also expect the opposite 

pattern of results to the ones reported here: the most frequent wordforms should also be even 

more polysemous than predicted by their phonotactics. In contrast, if the cost of disambiguation 

is still too high, a comprehender-oriented pressure for expressivity may win out even in the case 

of polysemy. However, one challenge to analyzing polysemy in this way is the lack of consensus 

about what exactly constitutes a distinct “sense” (Kilgarriff, 2007; Brown, 2008; Krishnamurthy 

& Nichols, 2000). Some resources make relatively fine-grained distinctions, while others aim for 
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more coarse-grained sense inventories (Lacerra et al, 2020). Future work in this area would thus 

benefit from additional resource development. 

 

Future Research 

 Our findings point to other promising directions for future research. A first step would be 

to identify other factors that contribute to disambiguation cost. For example, many homophones 

are unbalanced, such that one meaning is used much more frequently than others. From the 

perspective of minimizing cost, unbalanced homophones might be preferred––if one meaning is 

much more frequent than another, comprehenders could simply assume the dominant meaning 

was intended, generally avoiding the need to disambiguate. This is consistent both with 

psycholinguistic evidence, which suggests that comprehenders tend to activate the dominant 

meaning of a homophone (Duffy et al, 1988; Blott et al, 2020), as well as work on historical 

sound change (Wedel et al, 2013b), which finds that phoneme mergers are especially unlikely if 

those mergers would create homophones among balanced minimal pairs. This interpretation also 

makes a testable prediction: homophones with a more uniform distribution over meanings should 

be more resistant to acquiring additional meanings. We tested this prediction in a supplementary 

analysis (see Supplementary Analysis 2), operationalizing meaning uncertainty as the Shannon 

entropy over possible senses of a wordform (Meylan et al, 2021). We found no significantly 

negative relationship between Sense Entropy and Homophony Delta in three of the five 

languages tested, though we did find a significantly negative relationship in German and 

Mandarin.  

One explanation for these results is that disambiguation cost is driven primarily by 

contextual discriminability––i.e., how much information context provides about the intended 
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meaning of an ambiguous wordform. In other words, the critical factor may not be the entropy 

over meanings in isolation, H(X), but the conditional entropy over meanings given some 

informative context, H(X | C) (Piantadosi et al, 2012). Presumably, the homophones that do 

persist in a lexicon are those whose distinct meanings are sufficiently distinguishable in context 

(Piantadosi et al, 2012; Dautriche et al, 2018). Human comprehenders exploit a number of 

contextual cues to disambiguate, including grammatical class (Dautriche et al, 2018), co-speech 

gesture (Holle & Gunter, 2007; Holler & Beattie, 2003), linguistic context (Aina et al, 2019), and 

even the speaker’s accent (Cai et al, 2017). Contextual discriminability should reduce the cost of 

disambiguation for a given wordform, thus easing the selection pressure against adding more 

meanings to that wordform. If this is true, a pressure against homophony should be weaker 

among wordforms with more contextually discriminable meanings, and stronger among 

wordforms whose meanings are less discriminable. Measuring contextual discriminability at 

scale is challenging, but future work could rely on sense-annotated corpora (Langone et al, 2004; 

Meylan et al, 2021), or use neural language models to derive an estimate of the residual 

uncertainty over meanings, given context (Pimentel et al, 2020).  

 The main findings reported above also inform accounts of how individual-level cognitive 

and communicative constraints produce emergent, lexicon-wide trends at longer timescales 

through language change. The presence of lexical ambiguity might elicit errors among language 

learners (Casenhiser, 2005) or adult comprehenders (Blott et al, 2020)––either because the cost 

of disambiguation was too high, or because they selected a meaning other than the one intended. 

Through a process of online, interactive repair (van Arkel et al, 2020), speakers might then use a 

different word (or series of words) to convey their intended meaning. Over many interactions, a 

population of speakers might drift towards using a different word in the first place, avoiding the 
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need for disambiguation or repair. This decision need not involve explicit or conscious ambiguity 

avoidance on the part of speakers, which is known to be challenging and rare (Ferreira, 2008; 

Wasow, 2015). Rather, it might reflect a form of implicit learning or routinization (Ferreira, 

2019); the language production system might learn that when trying to convey meaning m, 

wordform w2 (as opposed to ambiguous wordform w1) is often used successfully. 

Correspondingly, the use of wordform w1 to convey meaning m should eventually decrease, as an 

appropriate and less ambiguous substitute has been identified. In this way, failures of 

comprehension could drive future production decisions, which in turn shape lexicon structure. 

Across longer timescales, one might look to processes like sound change, which are 

known to generate homophony (Ke, 2006; Sampson, 2013; Sampson, 2015), yet which also 

appear to be sensitive to a pressure to avoid homophones (Wedel, Kaplan, & Jackson, 2013a; 

Yin & White, 2018; Ceolin, 2020). For example, phoneme mergers are statistically less likely for 

pairs of phonemes that carry higher functional load, i.e., which distinguish more minimal pairs 

(Wedel, Kaplan, & Jackson, 2013a). Here, the findings above lead to another concrete 

prediction: phoneme mergers should be especially unlikely if they would create homophones 

among the most frequent wordforms of a language. In other words, a pressure for homophony 

avoidance should be strongest among frequent wordforms. To our knowledge, such a prediction 

has not been directly tested. A second testable prediction regarding historical sound change 

comes from the relationship observed above between neighborhood size and homophone 

resistance. One interpretation of this finding is that high-density wordforms are more 

perceptually confusable, and thus display a stronger resistance to acquiring more meanings. If 

perceptual confusability plays a role in homophone avoidance during historical sound change, 

phoneme mergers should be less likely if they would create homophones among high-density 
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wordforms. Both predictions could be tested using historical data about phoneme mergers across 

time and languages (Wedel et al, 2013a; Wedel et al, 2013b). 

Conclusion 

 Overall, our results are consistent with the claim that languages are well-designed for 

human use (Piantadosi et al, 2009, Gibson et al, 2019; Mahowald et al, 2020): lexica distribute 

their meanings in a way that reduces the cost of disambiguation. But they also support a nuanced 

view of “efficiency”. As others (Zipf, 1949; Piantadosi et al, 2012) have noted, minimizing the 

effort of certain processes (e.g., production) can make other processes more challenging (e.g., 

disambiguation). Humans have limited cognitive resources at their disposal (Lieder & Griffiths, 

2020), and these limitations create trade-offs across many domains of communication. 

Identifying these tension points allows us to ask more targeted questions about how this pressure 

for efficiency operates within and across languages. Thus, when we assess the claim that 

language is efficient, we might do well to begin by asking: efficient for whom? 
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CHAPTER 8: CONCLUSION 

 This thesis attempted to address two questions about lexical ambiguity. First, are word 

meanings categorical or continuous? The results of Chapters 2-4 support a hybrid model, in 

which word meanings occupy a continuous state-space (Elman, 2009), which is further 

discretized along the boundaries of distinct senses. And second, does the amount and distribution 

of homophony in real lexica reflect a pressure to concentrate meanings in the most efficient, 

optimal wordforms? The results suggest that homophony can emerge without a direct pressure 

for efficiency––and further, that real lexica might select against homophones, particularly among 

the most frequent wordforms of a lexicon. This pressure could even explain other properties of 

human lexica, such as their large phonological neighborhoods.   

 This work has limitations, and also raises additional research questions. These issues are 

explored at some length in Chapter 4 and Chapter 7, but I provide a brief summary in the 

sections below.  

Limitations 

Related topic, distinct premises 

 The research questions addressed in this dissertation involve a related topic (lexical 

ambiguity), but recruit substantively different methodologies and make distinct theoretical 

assumptions. Chapters 2-4 focus on how meanings are represented in the mind, and thus 

foregrounds the issue of meaning itself: what it looks like, where it comes from, and how it 

changes across different contexts. The work in chapters 5-7 focuses on the arrangement of 

wordforms and meanings across the lexicon, but in contrast to Chapters 2-4, does not engage 

deeply with the nature of meaning itself. Further, the work in chapters 5-7 assumes that word 

meanings are fully atomic and discrete, but the results of chapters 2-4 suggest that this 
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assumption is unjustified: word meaning is at least partially continuous and context-dependent. 

This issue is discussed at more length in the section below. 

Flawed assumptions about word meaning 

 The work in chapters 5-7 makes several assumptions about word meanings, each of 

which is flawed or limited in some way. Some of these assumptions are unlikely to bear directly 

on the results, but others might; I discuss both kinds of assumptions. 

 First, meaning itself is modeled simply as “slots” that must be filled by phonotactically 

plausible wordforms; “ambiguity” is thus the number of slots filled by a particular wordform. 

The actual content of those slots is not considered. While this is clearly a simplification, it is 

worth noting that the same assumption is made by the original research to which this work is 

responding (Zipf, 1949; Piantadosi et al., 2012; Dautriche et al., 2017). For example, even 

though Piantadosi et al. (2012) consider different kinds of ambiguity (homophony and 

polysemy), the content of those meanings is not factored into their analyses; rather, they focus on 

the number of distinct meanings assigned to a particular wordform, as judged from a corpus like 

CELEX or WordNet. Second, and relatedly, these meanings are assumed to be atomic and fully 

distinct. The fact that some meanings relate to one another (e.g., “marinated lamb” vs. “friendly 

lamb”) is not included in our model, nor is the fact that meanings are at least partially continuous 

(see chapters 2-4). Again, this assumption is also made by past work (Zipf, 1949; Piantadosi et 

al., 2012). 

 Arguably, these first two assumptions––though clearly flawed––are unlikely to have 

direct inferential consequences for the work described in these chapters.40 The generative models 

could certainly be made more sophisticated: for example, they could sample meanings from a 

 
40 Though they may entail other assumptions that have more concerning consequences; see the paragraph below.  
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continuous meaning-space intended to reflect the topology of the actual lexicon, rather than 

assuming complete independence and atomicity of meanings. However, it is unclear how this 

added sophistication would change the fundamental research question being asked, or how it 

ought to change the results. If we accept that word meanings are also partially categorical (see 

chapters 2-4), and that some meanings are more related than others (even if homonymy and 

polysemy are not categorically distinct), then the simplifying assumptions described above seem 

suitable for asking the central question: how might we expect these categorical, relatively 

unrelated meanings to be distributed across wordforms in a lexicon absent a direct pressure for 

efficient reuse?  

 A third, more concerning assumption is the generative process by which new wordforms 

are created to convey new meanings. Our phonotactic models assume that speakers generate a 

new wordform “from scratch” (e.g., a kind of neologism) for each meaning; some of these newly 

coined wordforms happen to be identical, but the generative process is assumed to be 

independent. In reality, speakers of human languages have a number of meaning-generating 

mechanisms at their disposal. They can extend an existing wordform to convey a metonymically 

or metaphorically related meaning (e.g., Animal for Meat), or use productive morphological 

rules to create a new wordform entirely from existing lexical material (e.g., “own” can be turned 

into “owner”), or even coin a multiword expression. None of these mechanisms are considered in 

our model. The absence of polysemous relations and multiword expressions––although, again, a 

simplification––should not bear directly on the comparison between our simulated lexica and 

real lexica, given that the real lexica exclude polysemy and multiword expressions as well. Thus, 

if the research question focuses on the composition of these lexica directly––rather than the full 
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spectrum of how lexical meanings are created and conveyed––then these omissions should not 

have inferential consequences.  

 The more concerning omission is the lack of derivational morphology. Unlike polysemy 

and multiword expressions, real lexica do list separate entries for derivationally related 

wordforms (e.g., “own” and “owner”). Further, as noted in Chapter 5, derivational morphology 

could be a mechanism by which homophony is avoided:  

“Morphological compositionality allows speakers to convey new meanings without 

coining entirely new wordforms––but it also avoids the need to reuse existing wordforms 

for new, unrelated meanings (i.e., homophony). Thus, compositionality represents an 

efficient mechanism for recycling existing lexical materials that also avoids outright 

ambiguity.” (Trott & Bergen, 2020, pg. 8). 

Critically, the extent to which this is a problem depends on the extent to which derivationally 

related wordforms have the same number of syllables. For meanings conveyed by wordforms of 

different lengths (e.g., “own” and “owner”), our neglect of derivational morphology would not 

be responsible for generating more homophony than observed in real lexica. This is because the 

two meanings under consideration could not be assigned to the same wordform, given that the 

baselines control for how many meanings are assigned to wordforms of different lengths. 

However, if two meanings are conveyed by derivationally related wordforms of the same length, 

they are both candidates for being assigned to the same wordform––i.e., the baseline might 

independently coin the same wordform for each meaning. Rather, if applying derivational rules 

were an option for the baselines, that homophonous outcome might be avoided. Thus, to the 

extent that derivational morphology avoids homophony in real lexica, our omission of 
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derivational morphology could plausibly contribute to the fact that the baselines overestimate 

homophony. 

 This circles back to the first assumption mentioned above: meaning itself––nor the 

relation between meanings––is not modeled in the baselines. Although I do not believe this 

assumption is in itself is a problem for the research question, addressing the lack of derivational 

morphology might also require addressing that first assumption, along with implementing a 

procedure to simulate derivational morphology. Additionally, future work could consider only 

the set of monomorphemic wordforms in the real lexicon, and compare a baseline matched for 

that distribution specifically. This comparison would be more limited in its generalizability, 

however, so the consideration of derivational morphology seems like an important one for future 

work. 

Future Work 

Word Meanings: Continuous and Categorical? 

 Hybrid Theory claims that our representation of word meanings is both continuous and 

categorical. Yet the theory––at least as currently described––leaves a number of issues under-

specified. 

 First, assuming that sense boundaries are in fact cognitively “real”, when and how do 

these sense boundaries emerge during development? For example, when do the distinct senses of 

“lamb” start to behave distinctly, i.e., eliciting behavior that cannot be explained purely on the 

basis of a continuous account? One possibility is that certain meanings are sufficiently distinct 

that they are represented categorically from the beginning. Given the results of Chapter 4, this 

categorical distinction is unlikely to emerge––at least not “ready-made”––from differences in the 

distributional contexts alone; if that were true, then a model like BERT should arguably be able 
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to capture the observed effect of sense boundaries. It is also unlikely to emerge purely from 

differences in the degree to which two meanings activate similar or different sensory modalities, 

as a measure of sensorimotor overlap also failed to eliminate the effect of sense boundaries. 

Rather, this “ready-made” account might situate the distinction in properties of the referents 

themselves: for example, living animals and the meat produced from those animals––though 

related––are clearly distinct in a number of ways.41 Our measure of sensorimotor overlap focused 

on the perceptual modalities themselves (e.g., vision vs. audition), but did not capture differences 

in the content of those perceptual experiences (e.g., color, shape, volume texture, etc.). It is 

possible that a finer-grained measure of perceptual and motor content (e.g., the 65-dimensional 

“brain-based vectors”––Binder et al., 2016) would provide more explanatory power; such a 

measure would need to be contextualized, as with the CS Norms (Chapter 3). Alternatively, one 

might look to representations from multimodal models, such as VL-BERT (Su et al., 2019) or 

DALLE-2 (Ramesh et al., 2022). 

 A competing possibility is that two meanings begin in one continuous cluster, but that 

over time, distinct sense-clusters emerge. Repeated access to distinct focal points within this 

continuous cluster––whether in comprehension, production, or even memory––might catalyze a 

process of routinization, in which the distinct meanings eventually “drift” apart. Experimental 

work (Srinivasan & Snedeker, 2011) suggests that in young children, related polysemous 

meanings share a “common representational basis”, which is more consistent with this latter 

account. Of course, both accounts might be true, but simply for different words. In fact, these 

two explanations correspond roughly to the coarse taxonomy of homonymy (distinct meanings 

 
41 Presumably, such an account could also center the learner’s own experience with these referents. This would 
explain why some children are surprised to learn that the lamb on their dinner plate is “the same” as the lamb at the 
petting zoo––and why others, perhaps with more exposure to animal husbandary, are not.  



202 
 

“ready-made”, which share a wordform by accident) and polysemy (related meanings that “drift 

apart”). If both processes end in the same place (i.e., distinct senses), it would explain why the 

two kinds of ambiguity do not elicit reliably distinct behavior in adults.42 Investigating these 

ontogenetic processes will require a mixture of methods, including: corpus of analysis of child-

directed speech (Meylan et al., 2021), behavioral experiments (Srinivasan & Snedeker, 2011), 

and computational modeling. Modeling could adopt an approach analogous to “starting small” 

(Elman, 1993), and ask whether particular temporal patterns of input to a neural network can 

result in the emergence of sense boundaries. 

 Second, what exactly does it mean to say that meanings are continuous, or categorical, or 

both? Here, it is important to note that Hybrid Theory as currently described is a psychological-

level theory. Further, the metaphors for word meaning that Chapters 2-4 considered––e.g., as 

entries in a dictionary, or as trajectories in a continuous state-space––are all under-constrained in 

terms of their neural implementations. On the one hand, this is not necessarily a problem for 

these theories: reduction to the neurobiological level of explanation is not the sole goal of 

psychological theory development, and neurobiological theories are not intrinsically superior in 

terms of their predictive or explanatory power. On the other hand, considering the brain can help 

ground debates or disagreements about psychological theory; in some cases, a commitment to 

particular architectural implementations of a theory can even yield useful, testable predictions at 

the level of behavior. From this perspective, it is easier to imagine how the mechanics of a 

continuous state-space could be “translated” into neural dynamics, given that the original 

inspiration for the state-space model was a recurrent neural network (Elman, 2009). The primary 

challenges, then, are: 1) enumerating the plausible architectural pathways along which these 

 
42 It would also mirror the distinct diachronic accounts of how homonyms and polysemes come to be. 
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continuous meanings are “enacted”; and 2) determining the mechanisms by which category 

boundaries emerge or are induced from these architectures. Here, candidate theories could be 

informed (and constrained) by research on other areas in which both categorical and continuous 

representations seem to be at play. For example, work on the categorical perception of speech 

(Chang et al., 2010) has found evidence for category structure in the posterior superior temporal 

gyrus, consistent with behavioral evidence for categorical representations of distinct phonemes. 

Of course, word meaning will be even more challenging to ground in the brain, given its 

distributed nature. Nonetheless, this work provides a useful template for thinking about 

categorical responses can emerge in neural behavior.    

 Hybrid Theory also raises questions for Natural Language Processing (NLP). As 

Chapters 2-4 demonstrate, current state-of-the-art NLP models are unable to fully account for 

human behavior on various tasks, such as relatedness judgments and primed sensibility 

judgments. If computational models of word meaning are meant to be humanlike––either in their 

mechanisms, or in their behavior––then they may benefit from the explicit representation of 

sense boundaries. Some such models have already been created, e.g., SenseBERT (Levine et al., 

2019), using relatively coarse “super-sense” labels (e.g., artifact vs. food vs. animal). One 

question is whether training on these super-senses is sufficient to account for the apparent effect 

of sense boundaries; a further question is whether a training regime can be devised such that 

these super-senses emerge naturally, without needing explicit labels in the training data. 

 Finally, there is a clear connection between the work in Chapters 2-4 and debates about 

whether, and to what extent, cognitive processes more generally are best described as categorical 

or continuous. For example, Michael Spivey and others (Spivey, 2008; Spivey & Dale, 2006) 

have demonstrated that in a number of domains, apparently categorical behavior (e.g., word 
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recognition, semantic categorization, etc.) can emerge from underlying continuous processes. 

Central to their approach is the use of more sophisticated measurements that allow researchers to 

track continuous response dynamics (e.g., eye-tracking), as well as computational models that 

yield continuous predictions (e.g., neural networks). This approach represents a genuine advance 

in Cognitive Science, and has shown that in many cases, one need not posit explicit categorical 

representations to explain human cognition. Yet to our knowledge, the approach adopted in 

Chapter 4 is also novel. Further, our results have important implications for research that 

compares continuous and categorical accounts. Rather than asking solely whether a particular 

behavior can be explained by dynamics in a continuous state-space, we used statistical model 

comparisons to directly compare the explanatory power of this continuous account to a categorial 

one. This allowed us to estimate the magnitude of each parameter (i.e., contextual distance and 

sense boundaries) while adjusting for the other. The conclusion, which was perhaps not wholly 

unsurprising, was that word meanings appear to be both continuous and categorical. Having 

reached this conclusion, one can then ask deeper, probing questions about this hybrid model, 

such as how these categorical representations form and exactly how they play a role in online 

word processing.  

 In many areas of Cognitive Science, entrenched debates are sometimes cast as either/or, 

e.g., “Is this process continuous or categorical?” In reality, both positions in these debates are 

often somewhat correct––but because the question is framed in terms of binary opposition, it is 

unlikely to be resolved definitively either way. One benefit of the model comparison approach is 

that it allowed us to reframe the debate into a parameter estimation problem: “how much of this 

process is continuous, and how much is categorical?” This sidesteps the need to resolve 

definitively in terms of one position or the other. Further, it opens the door to more targeted, 
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nuanced questions, such as whether the relative magnitude of these parameters changes across 

task contexts, individuals, and more. 

Ambiguity: Selection Pressures and Spandrels 

 The results of Chapters 5-7 suggest that contrary to previous claims (Piantadosi et al., 

2012), homophones may be actively selected against: real lexica have fewer homophones than 

expected, particularly among frequent wordforms. This is interpreted as a comprehender-centric 

pressure to ease the cost of frequent disambiguation. 

 Yet as with Hybrid Theory, these results leave questions of mechanism under-specified. 

How would such a selection pressure be implemented? Such a question can and should be 

addressed at multiple levels of analysis. First, at the local level, how exactly do the challenges of 

disambiguation prevent wordforms from becoming over-saturated with meanings? As discussed 

in Chapter 7, this mechanism could manifest as repeated errors made by comprehenders in the 

presence of ambiguity. For example, if a speaker attaches a new meaning to an already 

ambiguous (but phonotactically optimal) wordform, comprehenders may struggle to resolve the 

intended meaning, resulting in a communication failure; if this process plays out enough times, 

speakers may simply choose to use a different wordform, eventually routnizing particular lexical 

selection processes that avoid ambiguity. Second, at the diachronic level, we might expect 

frequent wordforms to exhibit particular resistance to homophony-inducing sound changes; 

similarly, if a wordform is already ambiguous, it should be less likely to be borrowed (for a 

separate meaning) from other languages, relative to what one might expect given the wordform’s 

phonotactics or the new meaning’s communicative utility. Both lenses of analysis could also be 

applied to issues relating to the consequences of this selection, such as the possibility that it 

results in larger phonological neighborhoods (see Chapter 6).  
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 Another set of questions concerns the alleged distinction between homonymy and 

polysemy. Chapters 5-7 considered only homonyms; should we expect polysemous meanings to 

be subject to the same selection pressures? Note that even if these phenomena are (arguably) not 

psychologically distinct, as the results of Chapters 4 suggest, they could very well be subject to 

distinct selection pressures, given their distinct causes. Further, the precise finding in Chapter 4 

was that homonyms are not psychologically distinct from polysemes once accounting for 

semantic distance. Thus, even if these categories are not “real” in a psychological sense, one still 

might expect selection pressures for or against ambiguous words to operate differently––at least 

in a graded sense––according to the relatedness of their meanings. Indeed, there is some 

evidence that related meanings are easier to learn than unrelated meanings (Rodd et al., 2012), 

and that related meanings may also enjoy an advantage in processing relative to unrelated 

meanings (Klepousniotou, 2007). Given the apparent benefits of meaning relatedness, it is 

possible that polysemy––unlike homonymy––may actually be selected for, relative to the 

expectations set by a language’s phonotactics and distribution of word lengths. 

 More broadly, the results of Chapters 5-7 also reinforce the importance of using baselines 

when asking questions about selection pressures that putatively operate over language systems. 

There is considerable interest in the view of language change as a kind of evolutionary process, 

subject to competing selection pressures that shape its trajectory through a “fitness landscape” 

(Kirby et al., 2015; Gibson et al., 2017). Teleological explanations are tempting in this context, 

particularly when one observes the presence of some widespread feature of language that appears 

to confer a benefit on its speakers.43 But the conceptual challenges inherent in adaptationist 

accounts are well-documented for both biological (Gould & Lewontin, 1979) and cultural 

 
43 Voltaire satirizes this view in Candide: “Everything is made for the best purpose. Our noses were made to carry 
spectacles, so we have spectacles. Legs were clearly intended for breeches, and we wear them.” 
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(Caplan et al., 2014) systems. The mere presence of an apparently beneficial trait does not entail 

that this trait was directly selected for; in complex systems––like genomes, or languages––many 

features emerge as the byproduct of other selection processes or even random genetic drift. As 

Gould & Lewontin (1979) note, the challenge is further compounded by definitional issues––

determining the “conceptual boundaries” of a trait is no easy task, yet it has deep implications for 

which explanations we favor. With all this in mind, it is critical to consider a range of causal 

pathways that could give rise to a particular empirical observation (e.g., a non-zero correlation 

between word length and homophony); this could include the possibility of direct selection 

pressures (e.g., short wordforms are recycled for multiple homophones to make language more 

efficient), but should also include more indirect explanations (e.g., by virtue of their length, short 

wordforms are more likely to have more homophones simply by chance). Importantly, formal 

baselines are crucial for quantifying the expectations of these various accounts. One can then 

determine which account is most compatible with the empirical data, and whether direct 

selection pressures are necessary to posit. 

 Of course, the ability of a baseline to reproduce some empirical observation does not 

therefore entail that the baseline is the only correct explanation for those facts. There might still 

be other reasons to prefer a theory that posits direct selection: perhaps it links more closely to 

mechanisms of language change, or perhaps it also explains other facts about language. In this 

sense, one should remain clear-sighted about the inferential limits of a baseline. However, formal 

baselines can establish the sufficiency of a particular account. At the very minimum, a 

“successful” baseline should introduce additional uncertainty into one’s beliefs about which 

theory is most likely true. Theory adjudication requires identifying which facts are consistent or 



208 
 

inconsistent with the predictions of different theories. But mere consistency with the facts is less 

convincing when other––perhaps simpler––theories display comparable consistency.   
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