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ABSTRACT OF THE DISSERTATION

Deep Representation Learning for Multimodal Data Retrieval

by

Yuxin Tian

Doctor of Philosophy in Electrical Engineering Computer Science

University of California Merced, Summer 2023

Professor Shawn Newsam, Chair

This dissertation explores the potential of deep representation learning in the realm of

semantic matching across multimodal data - an area of increasing relevance as digital

information becomes progressively diverse. With a core emphasis on enhancing the

effectiveness of retrieval systems, this research dives into the intricacies of two specific

types of deep representations: invariant representations and multimodal representations.

Invariant representations boost the resilience of deep representations to variations

inherent in data, catering to changes such as alterations in image content, the timestamp

of image creation, and orientation. This dissertation delves into the development of ro-

bust invariant representations that persist despite temporal shifts in the data, highlighting

their utility in a variety of real-world applications. The applicability of the invariant rep-

resentations is further examined in overhead image geolocalization.

Concurrently, multimodal representations aim to establish semantic correspondences

across different data modalities, including text, images, tabular data, and more. The

study of multimodal representations facilitates many applications such as image and text

interleaved search engines and recommendation systems. We propose a framework for

learning composed image-text representations. This approach combines visual and tex-

tual modalities to enrich the search experience, facilitating image retrieval supplemented

by textual feedback. Due to the complexity of the recommendation system, optimizing

the retrieval model alone may not always lead to the better performance. Thus, we pro-

pose a multi-task learning approach for multimodal representation learning to address

xiv



this challenge, thereby fostering more accurate semantic matching.

By extensively exploring deep representation learning for retrieval tasks, this disser-

tation illustrates the substantial potential inherent in learning invariant and multimodal

representations. As such, it not only advances current understanding and development

in this rapidly evolving domain but also lays the groundwork for future research oppor-

tunities.
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Introduction
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1.1 What’s Retrieval?

In recent years, we’ve seen an explosion of content generation and sharing across

various domains, including social media platforms, medical imaging, and so on. This

surge of information has brought new challenges, particularly in searching through vast

databases to retrieve specific content. Retrieval systems are the cornerstone of how

we interact with the vast amounts of data in the digital world. From the web search

engines that help us navigate the Internet to the recommendation algorithms that curate

personalized content on various platforms, retrieval systems are deeply ingrained in our

information consumption patterns.

The retrieval process involves comparing representations of a query to those of doc-

uments to identify, retrieve, and rank documents that may be relevant in response to a

specific query. Both the query and documents can encompass various modalities, such

as image, text, and tabular data. Over the past few decades, a wide range of techniques

have been developed to enhance retrieval quality across diverse domains. These do-

mains range from geospatial information systems to social media platforms, and search

engines. Each of these domains has unique requirements and challenges, pushing the

boundaries of retrieval methodologies and inspiring a rich variety of strategies to en-

hance retrieval effectiveness and efficiency.

One can view the retrieval problem as learning a scoring function, denoted as f : X×
Y → R, which maps a pair of a query and a document, (q, d) ∈ X×Y , to a score f(q, d).

The function is designed so that relevant (q, d) pairs have high scores, while irrelevant

pairs score low. During the inference time, the system will return the documents with

high scores based on the comparison with the search query. Beyond query-document

retrieval, many real-world applications can be structured in this form. For instance,

in geolocalization, q represents a query image, while d corresponds to similar images,

but with known locations, from the same geographical location as the query image.

In the advanced multimodal search engine, where image search is combined with text

feedback, q represents a composite query of image and text, and d denotes the target

image that aligns with the user’s intent. In recommendation systems, q represents a user

query, and d represents a potential product to recommend.
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It is not always possible to retrieve identical documents from a large corpus for the

given search query: the identical document may not exist in the document dataset, the

intent behind a search can be vague and ambiguous, and the <query, target> may be-

long to different modalities. The task of accurately capturing search intent from a query

and understanding the semantic representations of documents presents substantial chal-

lenges. As a result, various methods have been proposed to tackle the issue of semantic

matching, moving beyond the traditional term matching methods or content-based im-

age retrieval methods [47]. The goal of semantic matching is to address situations where

the desired results are not exact matches of the query but still fulfill the users’ search

intent. Search queries can be formulated in various ways, including text queries, query

images, or a combination of both, providing users with more convenient ways to express

their needs.

1.2 Deep Representations Learning

Deep learning is crucial for “understanding” the content of raw data, where the fo-

cus lies on employing neural networks to extract suitable embeddings or representations

from raw data. Fundamentally, embedding is a method of converting sparse vectors

of IDs or pixel values into dense feature vectors, often referred to as semantic embed-

ding due to its ability to capture semantics [47]. Learned embeddings are important for

various downstream tasks, such as mortality prediction [127], bot detection [126], and

retrieval. For the retrieval task, deep representations can be utilized to represent queries

and documents for semantic matching. Specifically, in this thesis, we consider two types

of deep representations for semantic matching in retrieval: invariant representations and

multimodal representations.

Invariant representations enhance the resilience of deep representations to varia-

tions in data, such as changes in image content, image creation time, and orientation.

Time-invariant features are characteristics of a model that remain unaffected by tempo-

ral changes in the input data. On the other hand, orientation-invariant features involve

the model’s capacity to identify and process input data irrespective of the orientation or

rotation of objects or scenes in the data. These properties are particularly valuable in
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(a) (b)

Figure 1.1: Example scenarios where deep representation learning can play a role. (a)

Perform geolocalization across time. (b) Advanced retrieval system with image and text.

Image credit: FashionIQ dataset [39].

computer vision tasks, where objects may evolve over time or appear in various orienta-

tions within images. In Chapter 2, we present a method for cross-time and orientation-

invariant overhead image geolocalization using semantic image matching.

Although significant progress has been made in terms of learning representations

for vision or languages for retrieval [64, 33, 114], it is theoretically insufficient to model

a complete set of human concepts using only unimodal data. However, establishing

semantic correlations between different types of data is far from straightforward. For

instance, understanding how a sentence in English corresponds to a specific image or

video clip involves complex mappings that cannot be readily achieved through conven-

tional methodologies. Due to the increasing popularity of social networks (e.g., Insta-

gram, Twitter, Pinterest), the large amount of multimodal data containing both images

and text on social websites has helped with the development of multimodal representa-

tion learning. Multimodal representations, bridging the heterogeneity gap among dif-

ferent modalities, play an indispensable role in the utilization of ubiquitous multimodal

data. As a result of its powerful representation capabilities and the growing amount
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of multimodal data online, deep learning-based multimodal representation learning has

garnered considerable attention in recent years. This dissertation demonstrates how to

learn multimodal representations from images and their associated text modifications to

retrieve the images with desired characteristics. I also introduce how to utilize image,

text, and tabular data to learn representations for recommendation system.

1.3 Contributions

The contributions of the dissertation include:

• We have developed a method for large-scale overhead image geolocalization by

comparing a query image to wide-area reference imagery with known locations.

Our approach uses deep local features, allowing the query image to only overlap

rather than align precisely with the reference imagery. We address the issues

of images from different dates through cross-time geolocalization using time-

invariant features, trained via a Siamese network. For differently oriented query

and reference imagery, we have introduced an orientation normalization network.

Through extensive experimentation, we demonstrate that our method outperforms

existing state-of-the-art approaches.

• We introduce a novel solution that employs a multimodal transformer-based ar-

chitecture for the fusion of image-text representations. This solution significantly

enhances performance on several large fashion datasets, setting new standards in

the challenging field of image search with text feedback.

• We present Que2Engage, a multimodal embedding-based retrieval system. This

system integrates contextual signals as a unique modality in its transformer fusion

backbone, striking a balance between relevance and engagement in a real-world

recommendation system. Our proposed multimodal retrieval model effectively

incorporates images, text, and contextual signals, as our results demonstrate.
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1.4 Dissertation Overview

The remainder of this dissertation is organized as follows: Chapter 2 presents the

method for learning invariant representations, fundamental to overhead image geolocal-

ization. In Chapter 3, we delve into the learning framework for composed image-text

representations derived from fashion imagery. This framework paves the way for an

advanced search experience—image retrieval complemented with text feedback. Chap-

ter 4 outlines the process of learning and optimizing multimodal representations during

the retrieval phase within a complex recommendation system. Finally, in Chapter 5,

we conclude the dissertation by discussing potential future research opportunities and

possible extensions of the work presented.



Chapter 2

Cross-Time and Orientation-Invariant

Overhead Image Geolocalization

7
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2.1 Overview

Overhead image geolocalization is becoming increasingly important due to the grow-

ing collection of drone imagery without location information. In this chapter, we per-

form large-scale overhead image geolocalization by matching a query image to wide-

area reference imagery with known location. We use deep local features so that the query

image need not align with but only overlap the tiled reference imagery. We further ad-

dress two key challenges. For when the query and reference imagery are from different

dates, we perform cross-time geolocalization using time invariant features learned using

a Siamese network. For when the query and reference imagery are oriented differently,

we introduce an orientation normalization network. We demonstrate our contributions

on two new high-resolution overhead image datasets. Our method significantly outper-

forms strong baselines on cross-time geolocalization and is shown to exhibit promising

orientation invariance.

2.2 Introduction

While there has been a fair amount of work on locating ground level imagery [5, 42,

71, 90, 121, 135], there has been little work on the overhead case [29]. However, we

believe this is an increasingly important problem due to the ease with which anyone can

capture overhead imagery using drones and share it online. While location information

typically accompanies traditional overhead imagery, such as from satellite and aerial

platforms, location information is often missing or unreliable for drone imagery. It

might become lost as the imagery is distributed or deliberately obscured. Our focus on

overhead imagery geolocalization is thus timely and important.

This chapter focuses on the problem of geolocating overhead imagery captured from

satellite, aerial, or drone platforms. By geolocating we mean assigning geographic co-

ordinates such as latitude and longitude values. We allow the “search region” to be large

and so this is a difficult problem. As shown in Figure 2.1, we formulate the problem as

matching a query image to tiled wide-area reference imagery with known location. We

address two fundamental challenges: the query and reference imagery 1) might have
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Aerial imagery

Reference set

Orientation 
normalization

Feature extraction

Similarity matching

Query image

Figure 2.1: We perform overhead image geolocalization by matching a query image to

reference imagery with known location. We address two fundamental challenges: cross-

time matching and orientation-invariant matching. Compare the query image with the

reference set above.

been taken at difference times, and 2) might be oriented differently.

We exploit recent advances in deep learning, particularly convolutional neural net-

works (CNNs), to perform the image matching. We show that, as expected, global

image features extracted using the fully connected (fc) layers are not appropriate due

to query-reference tile misalignment and so we instead derive local features from the

locality preserving feature maps of the convolutional (conv) layers. We show these deep

local features significantly outperform traditional local features, such as Scale Invariant

Feature Transform (SIFT) features [75], when the query and reference images are from

different dates. We next develop a Siamese network to explicitly learn time-invariant

features to make our approach even more robust to changes in season, illumination, and
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sensors, and to changes in what is on the ground [92]. Finally, we tackle the real but

challenging problem of when the query and reference imagery are oriented differently

(e. g. , not both pointing north). For this, we develop an Orientation Normalization

Network (ONN) that rotates the query and reference imagery to the same canonical

orientation. We demonstrate our methods on two new high-resolution overhead image

datasets.

The key and novel contributions of our work include:

• We perform large-scale overhead geolocalization via image matching using learned

time-invariant deep local features.

• We propose an Orientation Normalization Network to account for when the query

and reference imagery are oriented differently.

• We introduce two high-resolution overhead image datasets which will be made

publicly available for other researchers.

2.3 Related Work

2.3.1 Image geolocalization.

Estimating the geographic location of an image has been of interest to the computer

vision community for some time [5, 67, 69, 72, 95, 96, 97, 111, 122]. However, the focus

has been mostly on geolocating ground level imagery which is a related but different

problem than ours, and has a different set of challenges. Ours is one of the first works

to focus on overhead image geolocalization.

Ground level imagery has been geolocated by matching it to maps in geographic

information systems (GIS) [17], to other ground level imagery with known location [5,

42, 71, 90, 121, 135], to overhead imagery [7, 46, 69, 72, 104, 111, 122, 136], or to

combinations of this reference data [67].

Geolocating a ground level query image by matching it to ground level reference

imagery is limited to regions where reference imagery is available such as in urban

areas [89, 88, 108] or along roads. It also typically assumes the query and reference
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images are both oriented with the sky at the top. We instead can geolocate overhead

imagery from anywhere and which might be oriented differently from our reference

imagery.

The fundamental challenge to geolocating a ground level query image by matching

it to overhead imagery is the difference in perspective and so most of the work on this

problem focuses on cross-view matching [69, 72, 97]. For example, Shi et al. propose

a novel Cross-View Feature Transport (CVFT) layer to facilitate feature alignment be-

tween ground and aerial domains [97]. In contrast, our query and reference imagery are

taken from the same viewpoint and so we face a different set of challenges.

We also expect to be able to geolocate overhead imagery more accurately than

ground level imagery.

We know of only one other work on geolocating overhead imagery [29]. It also uses

an image matching framework but uses traditional local features and does not address

the cross-time or orientation-invariant cases. We include it as one of our baselines.

2.3.2 Orientation alignment.

The concept of orientation is very different for overhead images than for images

taken at ground level. Most ground level images have a canonical orientation [35].

Street view images and the like typically have the ground at the bottom and sky at the

top. Most objects have a canonical orientation when viewed from the side which then

dictates the canonical orientation of the image [111]. In fact, researchers have exploited

this fact to learn better representations in an unsupervised manner [37]. In contrast,

overhead imagery typically does not have a canonical orientation. While most overhead

imagery is oriented so that north points up, this has nothing to do with the content of

the image and cannot be derived from it in the general case. There has been work on

classifying rotation agnostic images [35] in the ImageNet dataset [27] by splitting the

image representation into rotation related and unrelated parts. This, however, produces

global features which are not appropriate for our problem.

CNNs are inherently limited in their ability to model geometric transformations due

to the fixed geometric structure of their constituent modules [26]. Modules have been

proposed that enable spatial manipulation, including rotation, of data within the net-
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works [26, 49, 123]. We utilize one such module, Spatial Transformer Networks [49],

in our Orientation Normalization Network below.

2.3.3 Image retrieval.

Our matching framework has many similarities with image retrieval methods. We

distinguish it, though, from the following two main image retrieval paradigms. Similarity-

based image retrieval methods seek to retrieve similar images and not necessarily images

of the same scene. Retrieving similar images is not sufficient to geolocate overhead im-

agery since many locations might look very similar from above. Indeed, our results

show that even when our matching framework fails, it still retrieves similar images. We

need our matching to be more discriminating (yet still allow for differences due to time

and orientation). Image retrieval has been used to geolocate ground-level imagery by

matching it against ground-level images of the same scene. This is the approach taken

by Radenovic et al. [90] using a method called fine-tuning image retrieval (FITR).

These approaches tend to use global features though, which, as we will demonstrate, are

not effective for our problem. We include FITR as one of our baselines.

2.4 Methodology

We formulate overhead image geolocalization as an image matching problem in

which a query image is matched to wide-area reference imagery with known location.

We assume the search area is covered by one contiguous reference image even though,

in reality, it will be a registered mosaic of large but individually acquired images. In

order to localize the matching, we partition the contiguous reference image into tiles the

same size as the query (this also enables easy parallelization). Our problem thus reduces

to finding a good representation F (.) for overhead imagery so that given a query image

q, we are able to find at least one spatially overlapping tile r from reference set R by

computing the distance between F (q) and F (r).

Several things make this challenging. First, the query image is randomly located and

thus not aligned with any of the reference tiles. The query image overlaps several of the

reference tiles but by varying amounts and so we have to be able to perform matching



13

Image 𝑥

Image 𝑦

𝑳𝒇𝒄

conv1
conv2

conv3
conv4 conv5

fc6 fc7

Feature map

Feature map

Figure 2.2: Siamese network for learning features for cross-time matching. The positive

training samples are co-located images from different times.

based on this varying overlap. Second, the query and reference imagery might have been

taken at different times, for example, when geolocating current drone imagery using

archived satellite imagery. And, third, they might not have the same orientation. We

describe our novel technical contributions to overcome these challenges in the following.

2.4.1 Deep Local Features

CNNs have proven effective at mapping images to powerful and often semantically

rich feature vectors [62, 141]. Most work utilizes global features extracted from the

fully connected layers including the work mentioned above on geolocating ground level

imagery by matching against ground or aerial images [5, 69, 72, 90, 97, 111]. However,

since our query and reference tiles only overlap, using global features to perform the

matching is unlikely to be effective. Our results below demonstrate this.

We instead extract deep local features from the conv layers since locality is preserved

in the feature maps. We split these feature maps along the channel dimension to produce
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a set of deep local features. Specifically, given an image x, we apply a trained CNN to

compute a conv layer output F (x) of size H × W × C, where H × W are the spatial

dimensions of the feature map and C is the number of channels. F (x) is then split into

a set of H ·W vectors of length C. We denote these features as pi
x where x is the image

and i is the feature number which is in the range (1, H ·W ). Each image x, either query

or reference, is thus represented by the set of deep local features Sx = {pi
x}

H·W
i=1 .

Matching between a query image and a set of reference tiles is then performed by

finding, for each of the query’s features, the nearest neighbor in feature space among

all the features of the all reference tiles. Each nearest neighbor match votes for a refer-

ence tile and the votes are accumulated over all the query image’s features to rank the

reference tiles. Specifically, given a query image q with local features pi
q and a set of

reference tiles r ∈ R, each with local features pi
r, for each pi

q, we use the Euclidean

distance to find the nearest neighbor:

pj
r = arg min

r∈R,j=1,...,H·W
∥pi

q − pj
r∥2. (2.1)

This will result in a vote for reference tile r. We then rank the reference tiles in order of

decreasing votes and pick the top one as the match for query image q. That is, we use

only the best match among all the reference tiles to geolocate the query tile even though

it overlaps multiple reference tiles. (See Figure 2.6.)

We first investigate deep local features extracted using a VGG16 network [101]

trained on the ImageNet dataset [27]. These features are not specific to overhead im-

age matching nor are they invariant to potential time differences between the query and

reference images. One of our key technical contributions therefore is a Siamese net-

work which learns improved deep local features specific to overhead imagery and for

cross-time matching.

2.4.2 Siamese Network for Cross-Time Matching

Our proposed Siamese network is shown in Figure 2.2. It consists of two embed-

ding CNNs that share weights. During training, the network is presented with either a

pair of images from the same geographic location but taken at different times (positive

examples) or a pair of images from different locations (negative examples). Positive
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Figure 2.3: Orientation normalization network (ONN) which learns a rotation regressor

to transform differently oriented images of the same location to the same orientation.

ST is a spatial transformer layer.

examples are shown in Figure 2.5. The goal of the Siamese network is to learn a feature

representation (non-linear embedding) g(.) such that images from different locations are

far apart in feature space while images from the same location are close even if they are

from different times. This is done by training the network to minimize a contrastive

loss [40]

Lfc =
1

2
lD2 +

1

2
(1− l)max

(
0,
(
m−D2

))
, (2.2)

where l ∈ {0, 1} is the label indicating whether the input pair x, y is from the same

location (l = 1) or not (l = 0), D2 is the squared distance between g(x) and g(y), and

m is the margin parameter that omits the penalty if the distance between images from

different locations is too large.

Structurally, our Siamese network consists of two pre-trained VGG16 networks

which we modify for fine-tuning on our overhead imagery. We remove the last fully

connected layer fc8 and use the 4096-dim feature from fc7 to compute the Euclidean

distance between g(x) and g(y). We investigate deep local features extracted from conv1

to conv4 of the trained embedding network in our experiments.
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Figure 2.4: Our cross-time orientation normalization network (CTONN) learns a re-

gressor that can orient images at different orientations and from different times to the

same canonical orientation. Our RotSiamese network provides rotation invariance to

deal with the noisy output of the CTONN at inference time.

2.4.3 Orientation Normalization Network

A fundamental challenge to performing overhead image geolocalization through im-

age matching is that the query and reference imagery typically do not have the same

orientation. While the reference imagery is usually oriented northwards, the orientation

of the query image is generally arbitrary and unknown. Further, unlike ground level im-

agery, which has a standard orientation (such as the sky is up) that can be estimated and

exploited by works like [37], there is no such standard orientation that can be estimated

from overhead imagery.

Therefore, instead of trying to reorient the query image to a standard orientation so

that it matches the reference imagery, we instead reorient both the query and reference

to the same, potentially arbitrary direction. We seek a framework that can estimate such

scene-specific canonical orientations.

Figure 2.3 shows our framework for learning a network that can be used to normalize

the orientation of overhead images. This framework takes as input differently rotated

versions of an overhead image and learns a rotation regressor that aligns the images.

Specifically, we define a set of K discrete rotation transformations T = t(.|αk)
K

k=1,

where t(.|αk) is the operator that applies to image x the rotation transformation with
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angle αk that yields the rotated image xk = t(x|αk). The αk are evenly sampled from

0◦ to 360◦ depending on K. We investigate the choice of K in the experiments.

The goal of the rotation regressor in Figure 2.3 is to predict angles θ0x and θ1x such

that when input image x0 is rotated by θ0x, it has the same orientation as input image x1

rotated by θ1x. If image x0 was derived by rotating x by α0 and image x1 was derived

by rotating x by α1 , then the rotation regressor can be learned by minimizing the loss

function Lθ

Lθ =
∣∣(α0 + θ0x

)
−
(
α1 + θ1x

)∣∣ , (2.3)

where θkx is the predicted angle for the rotated image xk. (Note that the rotation regressor

has no knowledge of α0 and α1.)

However, this objective alone leads to a trivial solution which predicts θ = 0 regard-

less of the input. So, we modify the network to also compare the normalized images

during training, that is the similarity of image x0 rotated by θ0x and image x1 rotated by

θ1x. We do this by inserting a spatial transformer (ST) layer [49] to produce images v0x
and v1x (see Figure 2.3). Here, vkx = ST

[
xk|(θkx, rr

)
], where vkx denotes the transformed

image whose input is xk with the predicted rotation angle θkx, and rr denotes the reduced

ratio to crop the center of the rotated image in order to avoid introducing blank regions

in the corners.

The rotation regressor is then learned by minimizing the joint loss function

L =
∣∣(α0 + θ0x

)
−
(
α1 + θ1x

)∣∣+ λv

∣∣v0x − v1x
∣∣ , (2.4)

which includes the L1 loss between images v0x and v1x. The weighting parameter λv is

chosen empirically.

We implement the rotation regressor using a VGG16 convolutional backbone fol-

lowed by a two-layer regressor module to produce the angle θ. A scaled Tanh activation

layer is appended to the regression model to constrain θ to meaningful values.

2.4.4 Cross-Time Orientation-Invariant Matching

We are only able to train our Orientation Normalization Network (ONN) using dif-

ferently oriented images from the same time due to the sensitivity of the L1 loss to time-

related differences. The learned rotation regressor is effective for normalizing images
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Figure 2.5: Co-located cross-time training pairs. Top: 2012. Bottom: 2014.

from the same time but has difficulties with images from different times. We there-

fore develop the cross-time ONN (CTONN) framework shown in Figure 2.4 left. This

network now takes co-located image pairs x and y from different times and separately

applies the random rotations α0 and α1 to produce x0 and y1. The rotation regressor

is applied to predict θ0x and θ1y from these images. The spatial transformer module now

applies rotation θ1y to x1 instead of y1 to produce v1x, where x1 is x rotated by θ1y (the

amount y was rotated to get y1). v0x and v1x are now from the same year and can be

compared using L1. The loss function for training CTONN becomes

L = ∥
(
α0 + θ0x

)
−
(
α1 + θ1y

)
∥+ λv

∣∣v0x − v1x
∣∣ . (2.5)

The proposed CTONN results in a rotation regressor that is more effective for normaliz-

ing the orientations of images from different times. However, the normalized images are

still not aligned well enough for our cross-time feature extractor, which was trained us-

ing images with the same orientation. We therefore need to make our cross-time feature

extractor more robust to these slight misalignments.

We develop the second Siamese network shown in Figure 2.4 right to make our

feature embedding network more orientation invariant. We refer to this network as Rot-

Siamese (RotSia for short). This network learns to extract deep local features that are

more orientation invariant through 1) the addition of another loss term, and through 2)

data augmentation. Specifically, the input images (same location different time) are sep-

arately rotated by small random angles sampled from a limited range (−ϕ, ϕ) before
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being fed into the embedding network. This data augmentation alone does not result

in improved orientation invariance as the loss function computed on the global features

is not sensitive to slight differences in orientation. We therefore modify the loss to also

compare the convolutional feature maps. We perform average pooling along the channel

dimension (CAP ) of the conv layer that we use for deep feature extraction and compare

these averages.

Specifically, given two rotated images x′ and y′, feature maps F (x′) and F (y′) are

extracted from the conv layer. The pooled feature maps CAP (F (x′)) and CAP (F (y′))

are then flattened and compared using the Euclidean distance:

D2
conv = ∥CAP (F (x′))− CAP (F (y′))∥. (2.6)

This is then incorporated into a contrastive loss Lconv

Lconv =
1

2
lD2

conv +
1

2
(1− l)max

(
0,
(
m−D2

conv

))
. (2.7)

Finally, the overall objective of the RotSiamese network is the weighted sum of this

loss and the original one

L = Lfc + λcLconv. (2.8)

The weighting parameter λc is chosen empirically. Note that the CTONN and Rot-

Siamese networks are trained separately but training them together in an end-to-end

manner could be future work.

2.4.5 Geolocalization pipeline

Again, we perform geolocalization by matching the features of the query image to

the features of the reference tiles and pick the top match through voting. When the

query and reference tiles are from different times and have different orientations, we

first perform orientation normalization on each tile separately using our trained CTONN

and then extract deep local features using the feature embedding from the trained Rot-

Siamese network. Figure 2.1 illustrates this pipeline. Note that the features can be

pre-computed offline for all the reference tiles.
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Dataset
2012 2014

SF LA SF LA
Query 800 900 800 900
Reference 5569 6525 5569 6525

Table 2.1: The number of 256×256 pixel tiles in our dataset.

2.5 Experiments

In this section, we first introduce two new high-resolution overhead image datasets

and describe our implementation details. We then we demonstrate our results on the

cross-time, orientation-invariant overhead image geolocalization problem with compar-

ison to strong baselines.

2.5.1 Dataset

We use high-resolution aerial imagery from the National Agriculture Imagery Pro-

gram (NAIP) for our experiments. The images have a ground sample distance (GSD) of

one meter (spatial resolution is 1m/pixel) and measure approximately 6k × 7k pixels.

We download eight pairs of spatially contiguous NAIP images from the San Francisco

area and nine pairs from Los Angeles area. Each pair of images consists of co-located

images but taken at different times, one in 2012 and the other in 2014. These pairs thus

form our cross-time dataset. The reference datasets are constructed by partitioning the

NAIP images into non-overlapping tiles measuring 256× 256 pixels. The query images

are not aligned with these reference tiles but are randomly extracted from the NAIP

images and also measure 256× 256 pixels. Table 2.1 summarizes the dataset.

During training, the Siamese networks and the cross-time ONN require pairs of co-

located images from different times. We thus construct a training set of 12k pairs for

SF and 13.5k pairs for LA. Examples of training pairs are shown in Figure 2.5. The

negative training samples are cross-time images from different pairs to ensure they are

not co-located.
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Figure 2.6: A sample query in red and its ground truth in yellow. Geolocalization is

successful if the top ranked image in the matched reference set overlaps the query image.

2.5.2 Implementation Details

Siamese networks We fine-tune the Siamese models using an Adam optimizer with a

batch size 24. We set the initial learning rate to 10−4 for the fc layers and to 10−5 for

other layers. The learning rate is decayed by 0.1 every 30 epochs. For the RotSiamese

network, we set λc to 1 and ϕ to either 10◦ or 20◦.

Orientation normalization networks For training the rotation regressor, we use an

Adam optimizer with a batch size 24 and an initial learning rate of 2 × 10−5. We

decrease the learning rate by a factor of 10 every 30 epochs. The last Tanh function

is scaled by a factor of 1.5π. For ONN training, we set reduce radio rr to 150/224 and

λv to 1. For CTONN training, we set rr to 28/224 and λv to 0.1. We experiment with

different sets of rotation transformations for training the rotation regressor (parameter

K in Section 2.4.3). We consider sets of size 4, 8, and 36 corresponding to multiples
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(a) Successful examples

(b) Failed examples

Figure 2.7: (a) Successful and (b) failed orientation normalization examples. The first

and third rows contain co-located images from years 2012 and 2014 at various orienta-

tions. The second and fourth rows contain the normalized images.
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Model conv3 conv4 conv5 fc6 fc7
Same-time 100 100 91.63 64.00 65.25
Cross-time 76.50 70.63 31.50 19.13 18.50

Table 2.2: Results of performing geolocalization in the SF dataset using features ex-

tracted from various layers of a VGG16 network trained on ImageNet. Top: the query

and reference images are from the same time; Bottom: they are from different times.

of 90◦, 45◦, and 10◦ respectively. In order to avoid introducing blank regions into the

corners of the rotated images, we rotate images of size 370×370 pixels and then extract

images of size 256× 256 from the center.

Evaluation metrics We consider the geolocalization to be correct if the top ranked ref-

erence tile overlaps the query image. As shown in Figure 2.6, the ground truth for the red

query image is the four reference tiles in yellow since picking any of these tiles would

geolocate the query. Using only the top ranked image corresponds to top-1 accuracy

which is quite strict. In practice, the top-n ranked images could be marked as candi-

dates and the user could easily make the final selection manually. This would greatly

increase performance with modest manual effort. In the case of a correct geolocaliza-

tion using our method, we assume that image registration could be used to determine

the exact location of the query image (such as the geographic coordinates of its corners)

using the overlapping reference tiles.

The accuracy for a set of queries is the percentage of successful searches for that set.

This is the metric that we report below.

2.5.3 Results

Global vs. local CNN features.

We first compare global versus local features extracted using a VGG16 model trained

on the ImageNet dataset. Table 2.2 compares the performance of deep global features

extracted from the fc layer and deep local features extracted from various conv layers.

(See Section 2.4.1 for details on how these features are extracted.) These results are for

the SF dataset and from when the query and reference tiles have the same orientation.
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The top row corresponds to when the query and reference tiles are from the same year

and the bottom row to when they are from different years (cross-time). We draw three

conclusions. First, as expected, the local features significantly outperform the global

features due to the query and ground truth reference tiles only overlapping (see Fig-

ure 2.6). Second, the deep local features extracted from conv3 or conv4 significantly

outperform those from conv5 especially in the cross-time case. This indicates the fea-

tures in the final conv have possibly become too specialized. (When we train our VGG16

networks on the overhead imagery, the features from conv4 turn out to be optimal so that

is what is used in the experiments below.) Finally, the performance is significantly worse

in the cross-time case indicating these features possess limited time-invariance.

Cross-time features and baselines.

Table 2.3 compares our cross-time features trained using the Siamese network to sev-

eral baselines: NetVLAD [5], fine-tuning image retrieval (FTIR) [90], and SIFT [29].

We also copy the results from the global (VGG fc) and local (VGG conv) features ex-

tracted using the VGG16 network trained on the ImageNet dataset. The query and refer-

ence tiles again have the same orientation. NetVLAD and FTIR are global features and

so again perform poorly. Matching using the local SIFT features is also done through

voting. While the SIFT features work well in the same-year case, they perform poorly

in the cross-year case, indicating they too possess limited time-invariance. Our cross-

time deep local features trained using the Siamese network (Section 2.4.2) are shown

to outperform all other approaches especially in the cross-year case. The improvement

over VGG conv in the cross-year case in particular demonstrates the effectiveness of

our cross-time Siamese training framework.

ONN: orientation invariance.

Table 2.4 shows the results when the query and reference tiles are oriented differ-

ently. The columns indicate the difference in orientation between the query and refer-

ence: 90◦, 180◦, 270◦, or an arbitrary angle randomly sampled from (0◦, 360◦). The

rows indicate different configurations: no ONN corresponds to no orientation alignment

and the other rows indicates the sizes of the sets of rotations the ONN is trained with (K
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Method
SF LA

Same year Cross year Same year Cross year
VGG fc [101] 65.25 18.50 56.89 7.33
NetVLAD [5] 63.63 30.00 65.22 14.00
FTIR [90] 57.11 38.75 55.22 32.33
SIFT [29] 99.75 61.00 100 39.22
VGG conv [101] 100 70.63 100 47.44
Siamese 100 82.50 99.89 74.11

Table 2.3: Comparison of our cross-time features (Siamese) with several baselines.

Test set SF LA
Rotations 90◦ 180◦ 270◦ (0◦, 360◦) 90◦ 180◦ 270◦ (0◦, 360◦)

Sa
m

e
tim

e no ONN 6.50 35.38 6.75 24.25 4.33 27.89 4.11 18.11
4 classes ONN 99.75 99.63 99.75 69.13 99.56 98.67 99.33 70.89
8 classes ONN 94.63 94.75 95.13 88.75 97.67 97.78 97.56 96.00
36 classes ONN 90.38 90.63 90.38 89.25 90.22 91.67 91.67 90.44

C
ro

ss
tim

e no ONN 4.75 19.5 3.63 11.63 2.11 14.11 1.22 7.89
4 classes ONN 79.63 78.13 81.13 35.38 24.78 24.78 26.33 12.56
8 classes ONN 35.73 36.00 37.38 27.75 14.44 14.33 14.33 12.89
36 classes ONN 32.5 34.88 32.00 30.13 23.89 26.56 26.11 19.33

Table 2.4: Geolocalization results for when the query and reference have different ori-

entations. See the text for details.

in Section 2.4.3). For example, in the 4 classes cases, the ONN is trained with images

at four rotations: 0◦, 90◦, 180◦, and 270◦.

We first focus on the same-time case (top of Table 2.4). The no ONN results show

just how difficult geolocalization becomes when the query and reference are not ori-

ented the same. Our proposed ONN is shown to significantly improve performance. In

particular, the ONN trained with 36 difference rotations achieves around 90% accuracy

even in the difficult case of the query having an arbitrary rotation from 0◦ to 360◦. For

the fixed rotation cases (90◦, 180◦, 270◦), performance decreases with an increase in

training rotation classes. This is because these fixed rotations occur in the training set

more often when there are fewer classes.

We now focus on the cross-time case (bottom of Table 2.4). Incorporating the ONN

still improves the performance over no ONN but not by as much, especially in the ar-

bitrary orientation case. This demonstrates that the ONN has difficulty normalizing the
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Classes ONN CTONN Sia RotSia(20◦) RotSia(10◦) SF LA

4

✓ ✓ 35.38 12.56
✓ ✓ 43.5 14.22

✓ ✓ 46.88 21.89
✓ ✓ 40.25 22.89

8

✓ ✓ 27.75 12.89
✓ ✓ 31.00 13.33

✓ ✓ 64.88 37.33
✓ ✓ 56.38 43.33

36

✓ ✓ 30.13 19.33
✓ ✓ 30.63 20.33

✓ ✓ 62.00 37.56
✓ ✓ 54.75 45.00

Table 2.5: Cross-time and arbitrary query orientation results. See the text for details.

orientation of images from different times since that is not what it is trained on.

Figure 2.7 visually illustrates this. The images on the left show the successful nor-

malization of images from different years. The first and third rows show co-located

images from different years rotated by varying amounts. These are the inputs to the

ONN. The second and fourth rows show the normalized images. These images are sim-

ilarly oriented both within and between years. In contrast, the images on the right of

Figure 2.7 show a failure case. Here, the normalized images on the second and fourth

rows are misaligned by 180◦. This is a difficult case, though, even for humans.

CTONN: cross-time orientation invariance.

Table 2.5 shows the results from our CTONN and RotSiamese frameworks when

the query and reference are from different times and the query has arbitrary orientation.

Remember that the CTONN is trained using differently oriented images from different

years and RotSiamese incorporates additional orientation invariance to deal with the

noisy CTONN output. (Please refer back to Section 2.4.4 for details.) Sia corresponds to

the original Siamese network (Section 2.4.2) and RotSia(20) and RotSia(10) correspond

to the RotSiamese networks with ϕ = 20 and ϕ = 10 (Section 2.4.4).

The results in Table 2.5 demonstrate that CTONN improves the orientation nor-

malization for images from different times and that the RotSiamese framework learns
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Figure 2.8: Performance versus % overlap between the query and ground truth tiles. See

the text for details.

features that are more orientation-invariant. The best results are achieved by combining

these two improvements.

Cross-time geolocalization.

Fig. 2.9 shows successful and failed cross time geolocalization examples using our

proposed Siamese network framework from section 3.2. These results correspond to

table 3. The first row shows the query images which are from 2012 and the second row

shows the matched images which are from 2014. The successful examples correspond

to when the match overlaps the query. Note how the matched images appear quite

different from and often have limited overlap with the queries. This demonstrates the

effectiveness of our Siamese network at learning cross time feature representations. In

fact, it is even difficult for a human observer to identify the overlap in these successful

examples. We challenge the reader to do this. The overlapped images are shown in

Fig. 2.15a.

Fig. 2.9b shows examples of failed geolocalizations when the matched (retrieved)

image does not overlap the query. These failures are understandable since the images are

not distinctive enough to be matched to the co-located images in the reference dataset.

They are homogeneous images of water, forest, and dense housing. However, even

though geolocalization fails, the matched images are visually and semantically very

similar to the queries. This again confirms the effectiveness of our features. It also
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emphasizes that our problem is different from, and more difficult than, image retrieval.

Cross-time orientation normalization.

In Fig. 2.10, we show the results of our orientation normalization network (ONN)

from section 3.3 and our cross time ONN (CTONN) from section 3.4. Again, the goal of

these networks it to transform co-located images to the same orientation even if they are

from different time. The top row shows a pair of co-located images from 2012 and 2014

rotated by various amounts. The second row shows the results of applying our ONN to

the images in the top row and the third row shows the results of our CTONN. We make

three observations here. First, our ONN does well at aligning the images at various

orientations although there are still slight variations in the results. Second, our ONN

mis-aligns this pair of cross time images by approximately 180◦. Finally, our CTONN

improves upon this and the normalized images are roughly in the same orientation. This

demonstrates the effectiveness of our CTONN at aligning images from different time

to the same orientation. The geolocalization performance of our ONN and CTONN is

compared in table 5.

Cross-time and orientation-invariant image geolocalization.

To understand how our geolocalization framework performs on different types of ter-

rain, we visualize the performance of our different approaches in the SF area in Fig. 2.11

and the LA area in Fig. 2.12. Each circle in these figures represents the location of query

image from 2012 with arbitrary orientation. (Our queries are square regions. The cir-

cles correspond to the centers of these regions.) A green circle indicates a successful

geolocalization in which the matched image from the 2014 reference overlaps the query

image. A red circle indicates a failure. Similar to the results in Fig. 2.9 above, we expect

our framework to fail for homogeneous, non-distinctive regions.

Results from two scenes from each of SF and LA are shown. The images on the

left show the results when the query is oriented the same as the reference imagery. We

consider this the easy case and apply the Siamese network from section 3.2. The results

on the right show the results when the query is arbitrarily oriented. We consider this the

difficult case. These results are produced using our combined CTONN and RotSiamese
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frameworks (section 3.4).

As we can see from the results in Fig. 2.11 and Fig. 2.12, our proposed frame-

work achieves good performance when the query is at the same orientation as the ref-

erence imagery. The few failure cases here are typically when the query terrain is non-

distinctive such as over water. Looking at the second image from SF, we notice that our

framework can geolocalize query images of forest regions when the queries are oriented

in the same direction as the reference but that this performance deteriorates when the

query regions are arbitrarily oriented. This shows it is difficult to normalize the orienta-

tion of images of forest which makes sense because there is little directional information

in these images. For the LA area shown in Fig. 2.12, failure at locating forest images

can also be observed. Our framework is able to successfully estimate the location of

dense buildings and streets in LA.

Fig. 2.13 and Fig. 2.14 show successful and failed examples of cross time and arbi-

trary orientation geolocalization examples from the SF and LA areas respectively. The

significant visual differences caused by cross time domain and orientation can be ob-

served which makes geolocalization more challenging. The shape of the buildings and

the streets are obscured by trees and different viewpoints, especially for LA. However,

our method is able to provide a good solution. Even in the failure cases, our framework

returns visually similar images to the reference set even if they are not co-located with

the queries. This again demonstrates the effectiveness of our methods. We again propose

a challenge to the reader to find the overlapping regions for the successful examples. The

overlapping regions for these examples are shown in Fig. 2.15b and Fig. 2.15c.

2.6 Discussion

Limitations:

We note that our orientation normalization framework only works if the normalized

images can be matched. It cannot improve over the case where the query and reference

have the same orientation.

Our performance will of course depend on the content of the query. If the query is not

distinctive, such as a homogeneous image of water, forest, or even dense housing, our
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framework will likely fail due to there being tiles in the reference which, particularly in

the cross-year case, are more similar to the query than the ground truth. But, any image-

based approach would fail in this case. We note, though, that even when we fail to

geolocate the query images, the top matches are visually and semantically very similar.

This again emphasizes that performing effective similarity-based image retrieval is not

sufficient for our problem.

Our approach currently uses co-located image pairs from the query and reference

datasets when training the cross-time and orientation-invariant components. Such pairs

will not always be available and so this is another limitation.

Finally, our framework will fail when we do not have reference imagery for the

query location. But, high-resolution overhead imagery is available for most if not all of

the Earth.

Scalability to partial overlap

Finally, we explore how sensitive our approach is to the overlap between the query

and the reference tiles. Figure 2.8 shows the performance as a function of % overlap.

Success here means that a ground truth tile that overlaps the query by a certain amount

is in the top n matches where n is the number of ground truth tiles. (The ground truth

tiles are those that overlap the query.) Note, though, that our geolocalization framework

only requires that one of the ground truth tiles is the top match, not that all of the ground

truth tiles are in the top matches. Since we assume a set of contiguous references tiles, as

the overlap between the query and any one ground truth tile decreases, the overlap with

another ground truth tile necessarily increases (see Figure 2.6). At least one reference

tile overlaps with the query image more than 25%.

Figure 2.8 shows that, as expected, the ability of our matching framework to retrieve

a ground truth tile decreases as the overlap decreases. The features are only so local due

to the spatial entanglement of the convolutional maps.

2.7 Conclusion

We perform large-scale overhead image geolocalization by matching a query image

to wide-area reference imagery with known location. We demonstrate that local features,
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particularly those extracted using CNNs, are more effective than global features due

to the partial overlap of the query and reference tiles. We develop several technical

innovations to deal with the real but challenging cases of when the query and reference

are from different times and when the query has an arbitrary orientation. We demonstrate

the effectiveness of these innovations on two large datasets of high-resolution aerial

imagery.
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(a) Successful examples

(b) Failed examples

Figure 2.9: (a) Successful and (b) failed cross-time geolocalization examples from the

SF area. The first row contains query images from 2012 and the second row contains

the matched images from 2014. We challenge the reader to determine the overlap in the

successful examples. The overlapped images are shown in Fig. 2.15a.
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(b) Year 2014 examples

Figure 2.10: (a) Year 2012 and (b) Year 2014 orientation normalization examples. The

first row contains a co-located pair of images from 2012 and 2014 at various orientations.

The second row contains the images normalized using our orientation normalization

network (ONN). The third row contains the images normalized using our cross-time

ONN (CTONN).
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(a) Query without rotation (b) Query with arbitrary orientation

Figure 2.11: Examples of cross-time geolocalization for two NAIP scenes from SF area.

Each circle corresponds to a query image with successful (green) or failed (red) geolo-

calization result. (a) Query images without rotation where the Siamese framework is

used. (b) Query images with arbitrary orientation where the combined CTONN and

RotSiamese frameworks are used.
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(a) Query without rotation (b) Query with arbitrary orientation

Figure 2.12: Examples of cross-time geolocalization for two NAIP scenes from LA

area. Each circle corresponds to a query image with successful (green) or failed (red)

geolocalization result. (a) Query images without rotation where the Siamese framework

is used. (b) Query images with arbitrary orientation where the combined CTONN and

RotSiamese frameworks are used.
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(a) Successful examples

(b) Failed examples

Figure 2.13: Examples of (a) Successful and (b) failed geolocalization for cross-time

and arbitrary orientation from SF area. Each column consists of a pair of images with

query image (top) with arbitrary angle from 2012 and the matched image (bottom) from

2014 after applying the CTONN and RotSiamese frameworks to the query images. Ex-

amples of the overlapping regions are shown in Fig. 2.15b.
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(a) Successful examples

(b) Failed examples

Figure 2.14: Examples of (a) Successful and (b) failed geolocalization for cross-time

and arbitrary orientation from LA area. Each column consists of a pair of images with

query image (top) with arbitrary angle from 2012 and the matched image (bottom) from

2014 after applying the CTONN and RotSiamese frameworks to the query images. Ex-

amples of the overlapping regions are shown in Fig. 2.15c.
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(a) The overlapped images for cross-time geolocalization examples from SF area in

Fig. 2.9a.

(b) The overlapped images for cross-time and arbitrary orientation geolocalization ex-

amples from SF area in Fig. 2.13a.

(c) The overlapped images for cross-time and arbitrary orientation geolocalization ex-

amples from LA area in Fig. 2.14a.

Figure 2.15: Examples of overlapping regions for query and matched images of suc-

cessful geolocalization results in (a) Fig. 2.9, (b) Fig. 2.13 and (c) Fig. 2.14.
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3.1 Overview

Effective fashion image retrieval with text feedback stands to impact a range of

real-world applications, such as e-commerce. Given a source image and text feedback

that describes the desired modifications to that image, the goal is to retrieve the tar-

get images that resemble the source yet satisfy the given modifications by composing a

multi-modal (image-text) query. We propose a novel solution to this problem, Additive

Attention Compositional Learning (AACL), that uses a multi-modal transformer-based

architecture and effectively models the image-text contexts. Specifically, we propose a

novel image-text composition module based on additive attention that can be seamlessly

plugged into deep neural networks. We also introduce a new challenging benchmark de-

rived from the Shopping100k dataset. AACL is evaluated on three large-scale datasets

(FashionIQ, Fashion200k, and Shopping100k), each with strong baselines. Extensive

experiments show that AACL achieves new state-of-the-art results on all three datasets.

3.2 Introduction

Image retrieval is a fundamental task in computer vision and serves as the cor-

nerstone for a wide range of applications such as fashion retrieval [70, 98], geolo-

calization [68, 105], and face recognition [103]. There are several ways to formu-

late the search query such as keywords [1, 138], a query image [130, 117], or even a

sketch [36, 57, 133, 13, 14, 93]. However, a core challenge in traditional image retrieval

is that it is difficult for the user to refine the retrieved items based on their intentions.

A range of approaches to incorporate user feedback to refine the retrieved images have

been explored. Combining natural language feedback with a query image is a partic-

ularly promising framework since it provides a natural and flexible way for users to

convey the image modifications that they have in mind.

In this work, we investigate image retrieval with text feedback where the goal is

to retrieve images that are similar to a query image but incorporate the modifications

described by the text. Such multi-modal and complementary input provides users with

a powerful and intuitive visual search experience. However, as a multi-modal learning
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Interactive retrievalImage retrieval

Dress is blue with higher 
neckline

With Text 
Feedback

Figure 3.1: We consider the task of retrieving new images that resemble the reference

image while changing certain aspects as specified by text. Best viewed in color.

problem, it requires the synergistic understanding of both visual and linguistic content

which can be a challenge. While image search with text feedback lies at the intersection

of vision and language analysis, it differs from other extensively studied vision-and-

language tasks, such as image-text matching [65, 63, 140, 50], image captioning [91,

84, 25], and visual question answering [38, 52, 18, 16]. This difference stems from

the significant challenge of learning a composite representation that jointly captures the

visual content of the query image and the linguistic information in the accompanying

text to match the target image of interest.

A fundamental challenge in image-text compositonal learning is characterizing global

concepts from the query image and text representation simultaneously. For instance,

when the text describes a modification to the color and neckline of a dress in a query

image, the composition module should capture the concept of transforming the color

and neckline, but it should also preserve the other visual concepts such as the trim, and

material of the dress (Figure 3.1). Another challenge is how to selectively modify the

query image representation using the captured contextual information so that it is close

to the target image representation in the latent space.

We propose a novel transformer-based Additive Attention Compositional Learning



42

(AACL) model to address these challenges. The key idea is that we learn a contextual

vector from the joint visiolinguistic representation. AACL then selectively modifies the

query image tokens using the global context vector such that the composite features

preserve the visual content of the image that should not be changed while transforming

the relevant content according to the accompanying text.

We empirically compare our AACL approach with the state-of-the-art (SOTA) meth-

ods for visual search with text feedback on three large-scale fashion datasets: Fash-

ionIQ [39], Fashion200k [41], and a new challenging benchmark derived from Shop-

ping100k [2]. We show that our proposed compositional learning method outperforms

existing methods on all three datasets.

We make the following fundamental contributions:

• We propose a novel multi-modal additive attention layer capable of learning a

global context vector which is used to selectively modify the image representation

in an efficient way.

• We develop a fully transformer-based model for the challenging task of visual

search with text feedback and demonstrate that it achieves state-of-the-art perfor-

mance through extensive experiments on several large-scale fashion datasets.

• We create a new image-text retrieval dataset derived from Shopping100k. This

new dataset features a wider range of fashion categories and attributes, resulting

in an additional challenging benchmark for the research community.

3.3 Related Work

3.3.1 Image Retrieval with Text Feedback

Image retrieval with text feedback has been of interest to the computer vision re-

search community for some time and a number of efforts (e.g., [4, 76, 110]) have in-

vestigated effective ways to combine image and text representations. The text feed-

back can be provided in various ways, including absolute attributes (e.g., “red”) [1, 138,

41], simple relative attributes (e.g., “more red”) [85, 60, 131], or full natural language
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phrases [110, 3, 51, 20, 30, 100, 55]. Natural language is the preferred method of in-

teraction between humans and computers in contemporary search engines. For image

search in particular, it allows a user to convey detailed and precise specifications or mod-

ifications in a very natural way. We therefore focus on query-based image search with

accompanying natural language phrases.

Previous methods [3, 19, 55, 30, 100] for image retrieval with text feedback rely

heavily on convolution to aggregate features. In contrast, ours is the first approach

to efficiently learn features globally via attention. Previous works have also relied

on complicated hierarchical feature aggregation [20, 51], multiple forms of text feed-

back [20, 3], or multiple loss functions [20, 51, 3]. The winning solutions [55, 56, 99]

for the FashionIQ 2020 challenge—an interactive image retrieval challenge—employed

common performance boosting techniques such as careful hyperparameter tuning and

model ensembles to improve the results. In contrast, AACL focuses on the design of the

image-text composition module and achieves state-of-the-art performance via feature

fusion in one step, which is more efficient and easier to adapt to other frameworks.

3.3.2 Image-Text Composition

While there has been much effort and different kinds of methods proposed to achieve

the top scores on benchmarks involving image and text, relatively few have focused on

the image-text composition module itself. In [54], the authors propose a multi-modal

residual network (MRN) that learns representations by fusing visual and textual fea-

tures through element-wise multiplication and residual learning. FiLM [87] utilizes a

linear modulation component in which text information modifies the image representa-

tion via a feature-wise affine transformation. Vo et al. proposed TIRG [110], which uses

a gating mechanism to determine the channels of the image representation that should

be modified by the conditioning text. In ComposeAE [3], a complex embedding space

that semantically ties the representations from text and image modalities is designed.

Recently, MAAF [30] improved multi-modal image search via a Modality-Agnostic At-

tention Fusion model. This model uses a dot product attention mechanism as found in

the standard transformer architecture. Additionally, resolution-wise pooling is proposed

to aggregate fine-grained features from a ResNet [43] CNN. RTIC [100] consists of a
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residual text and image composer to encode the errors between the source and target im-

ages in the latent space and includes a graph convolutional network for regularization.

Our work differs from these composition modules in that we utilize a novel image and

text composition module via additive attention [6, 79] to model global contexts. Fur-

thermore, we use an element-wise product to model the interaction between the global

context and each input token, which both greatly reduces the computational cost and

effectively captures the contextual information [54, 55, 124].

3.3.3 Attention Mechanism

The concept of attention has gained popularity recently in neural networks as it al-

lows the models to learn representations from different modalities [54, 48, 30, 20, 4].

The two most commonly used attention functions are additive [6], and dot-product (mul-

tiplicative) attention [109]. Dot-product attention has a drawback, however, in that it has

to attend to all the tokens on the source side for each target token, which is expensive and

can potentially be impractical for longer sequences. Additive attention has been shown

experimentally to achieve higher accuracy than multiplicative attention in some scenar-

ios [79, 124]. Inspired by this, we propose an additive attention composition module for

feature fusion.

3.4 Method

Figure 3.2 presents the overall architecture of our Additive Attention Compositional

Learning (AACL) framework. Given a source image x and text feedback t as the input

query, the goal of AACL is to learn a composite representation oxt that can be used to re-

trieve relevant images y from a target database. AACL contains three key components:

(1) an image encoder for visual semantic representation learning, (2) a text encoder for

natural language representation learning, and (3) an additive attention composition mod-

ule that modifies the source image representation according to the text representation. In

contrast to other approaches that use multiple stages of feature composition and match-

ing (e.g., [20]), AACL does this in one stage using the final output of the image and text

encoders.
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Figure 3.2: Overview of our Additive Attention Compositional Learning framework.

Given a pair of query image and text as input, our goal is to learn a composite rep-

resentation that aligns to the target image representation. AACL contains three major

components: an image encoder (Sec. 3.4.1), a text encoder (Sec. 3.4.1), and an Additive

Attention Composition Module (Sec 3.4.2) that can be plugged into different models for

feature fusion. “⊙” represents Hadamard product.

In the following, we first provide an overview of the two encoders in Section 3.4.1.

We then detail our novel composition module in Section 3.4.2 and our model optimiza-

tion in Section 3.4.3.

3.4.1 Image and text representation

Image Representation: We employ a Swin Transformer [74] to derive a discrimina-

tive representation of the visual content of an image. As a transformer inherently learns

visual concepts of increasing abstraction in a compositional, hierarchical order, we con-

jecture that image features from the final layer may not fully capture the visual infor-

mation of the lower levels. We thus concatenate image tokens extracted from the final

(Stage 4) and penultimate (Stage 3) layers of the Swin Transformer. Unless otherwise

specified, our model uses these 49 + 49 = 98 image tokens for multi-level image un-

derstanding. A learned linear projection maps each image token to d dimensions so that

the final image representation is ϕx ∈ R98×d.

Text Representation: The DistilBERT language representation model [94] is used to

encode the semantics of the accompanying text. DistilBERT naturally yields m tokens
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for the input words, namely the hidden states of the last layer of the model. We concate-

nate these tokens to form the final text representation ϕt ∈ Rm×d.

3.4.2 Additive Attention Composition Module

In order to jointly represent the image and text components of the query, we seek to

transform the visual features conditioned on language semantics. To accomplish this,

we propose an additive attention composition module for feature fusion. This module

consists of multiple composition blocks that each employ additive self-attention to learn

a context vector which then selectively modifies the joint visiolinguistic representation.

The final output of these blocks yields a modified image representation that is meant to

faithfully capture the input image and text information.

Visiolinguistic Representation: In order to obtain the input representation for our first

composition block, the image tokens ϕx and text tokens ϕt are concatenated to obtain

the visiolinguistic representation ϕ = [ϕx, ϕt]. The final representation is denoted as

ϕ ∈ RN×d, where N is the combined count of image and text tokens.

Composition Block: Following the standard transformer architecture [109], the addi-

tive attention composition module is composed of a stack of L identical blocks with

multiple heads. Different attention heads use the same formulation but different param-

eters, which allows the model to jointly attend to information from different represen-

tation subspaces at different positions. Each block has an additive self-attention layer

followed by a linear layer and a feed-forward neural network. We also employ a residual

connection and layer normalization after these linear and feed-forward components.

Additive Self-Attention Layer: In order to discover the latent relationships essential

for learning the transformation, we use the additive attention mechanism to learn a con-

text vector c, then selectively suppress and highlight the representations from each to-

ken. Similar to [124], we first use a linear transformation layer to transform the input

sequence into the hidden states: h = Fh(ϕi), i ∈ N . The context vector c that is learned

to modify each token is generated as a weighted sum of these tokens hi:

c =
N∑
i=1

αihi, (3.1)
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The weight αi of each token hi is computed by

αi =
exp

(
wT

hhi/
√
d
)

∑N
j=1 exp

(
wT

hhj/
√
d
) . (3.2)

where wh ∈ Rd is learned during the training process, and wT
hhj scores how much each

input token contributes to the global context.

Next, to selectively suppress and highlight the visual content in h, a Hadamard prod-

uct is introduced to reuse the global contextual information, which is motivated by its

effectiveness in modeling the nonlinear relationship between two vectors [113, 124, 45].

It is formulated as vi = c⊙hi. Another linear transformation layer Fo is applied to each

token vi to learn its hidden representation. To form the final output of the additive atten-

tion layer, we add the hidden states hi that capture relevant source-side information to

the transformed latent features. The final output of the additive self attention layer is:

oi = hi + Fo (c⊙ hi) (3.3)

3.4.3 Deep Metric Learning

Our objective during training is to push the “modified” image representation ϕxt

and the target image representations ϕy closer, while pulling apart the representations

of dissimilar images. A batch-based classification loss as in [110, 3, 30] is used to

train the model as early experiments showed that the triplet loss performs worse for the

Recall@k metric. Each batch is constructed from N pairs of a query (image and text)

and its corresponding target image.

L =
1

B

B∑
i=1

− log

{
exp {κ (ϕy, ϕxt)}∑B
j=1 exp {κ (ϕy, ϕxt)}

}
(3.4)

where B is the batch size and κ is a similarity kernel that is implemented as the dot

product in our experiments.
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3.5 Experiments

3.5.1 Experimental Setup

Datasets: We evaluate our model on three datasets—FashionIQ, Fashion200k and our

modified version of Shopping100k—in order to validate its ability to generalize to a

variety of natural language expressions. We provide details of these datasets in Sec-

tions 3.5.2, 3.5.3, and 3.5.4, respectively.

Implementation Details: We use the PyTorch deep learning framework to conduct

all our experiments. The Swin Transformer [74] is used as the backbone for the im-

age encoder. The transformer model is initialized using weights first pre-trained on

ImageNet-22K and then fine-tuned on ImageNet-1K [27].

We extract sequences of 1024-dimensional tokens from Stages 3 and 4 of the model

and then project the tokens to d dimensions, which for our experiments is 768. We

learn the text embedding using a pre-trained DistilBERT model [94], which yields a

768-dimensional token for each input word. The original BERT model is pre-trained on

BooksCorpus (800M words) and English Wikipedia (2,500M words) [28]. We employ 3

additive attention composition blocks and 8 parallel attention heads for each block. For

training, we use SGD optimization with a learning rate of 0.035. We train all models us-

ing 4 GPUs with a batch size of 32 per GPU. For FashionIQ, we employ a learning rate

decay of 0.1 every 10 epochs for 60 epochs. For Fashion200k and our modified Shop-

ping100k, we use the same decay value but every 30 epochs with a total of 100 epochs.

We report the average and standard deviation of five trials for all our experiments to

obtain more meaningful results.

Evaluation Metric: For evaluation we adopt Recall@K (denoted as R@K for short), a

standard metric in retrieval.

Compared Methods: We compare the results of AACL with several methods, namely:

FiLM, MRN, TIRG, ComposeAE, MAAF and RTIC. We explained them briefly in Sec-

tion 3.3.2.
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Model
Shirt Dress Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 (R@10 + R@50)/2

MRN [54] 15.88 34.33 12.32 32.18 18.11 36.33 24.86
FiLM [87] 15.04 34.09 14.23 33.34 17.30 37.68 25.28
TIRG [110] 16.12 37.69 19.15 43.01 21.21 47.08 30.71
ComposeAE [3] 9.96 25.14 10.77 28.29 12.74 30.79 19.61
MAAF [30] 21.30 44.20 23.80 48.60 27.90 53.60 36.57
RTIC [100] 22.03 45.29 27.37 52.95 27.33 53.60 38.10
TIRG∗ 21.38±0.54 46.28±0.78 25.82±0.39 53.21±0.33 26.73±0.72 53.17±0.29 37.77±0.21
MAAF∗ 23.55±0.31 46.38±1.34 28.75±0.63 54.48±0.49 29.70±0.45 55.84±0.87 39.78±0.68
RTIC∗ 23.03±0.63 46.68±0.52 26.86±0.74 52.80±0.61 27.21±0.89 53.24±0.66 38.31±0.67
AACL 24.82±0.62 48.85±0.77 29.89±0.65 55.85±0.87 30.88±1.2 56.85±1.16 41.19±0.88

Table 3.1: Comparison of image search with text feedback on FashionIQ. Averaged

R@10/50 computed over all three categories. * denotes results obtained with the same

image encoder and text encoder as AACL.

Dress is dark 
purple with 
straps and it 
is longer 

Dress is more 
black designs
and it has a 
paint pattern

Dress is 
brighter blue
and it is 
sleeveless

Figure 3.3: Qualitative results of AACL on FashionIQ dataset. Blue and green box

indicate query and target images, respectively.

3.5.2 FashionIQ

FashionIQ [39] is a natural language based interactive fashion product retrieval

dataset. It contains 77,684 images crawled from Amazon.com, covering three cate-

gories: Dresses, Tops&Tees and Shirts. Among the 46,609 training images, there are

18,000 image pairs. Each pair is accompanied by on average two natural language sen-

tences that describe one or multiple visual properties to modify in the reference image,
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Model R@1 R@10 R@50

FiLM [87] 12.9 39.5 61.9
MRN [54] 13.4 40.0 61.9
TIRG [110] 14.1 42.5 63.8
ComposeAE [3] 16.5 45.4 63.1
DCNet [55] – 46.9 67.6
MAAF [30] 18.94 – –
TIRG∗ 17.22±0.39 56.52±1.85 75.60±0.09
MAAF∗ 17.79±0.98 57.57±0.98 77.51±0.63
RTIC∗ 17.05±0.96 54.65±0.79 75.54±1.63
AACL 19.64±1.66 58.85±1.01 78.86±0.43

Table 3.2: Comparison of image search with text feedback on Fashion200k dataset.

* denotes our implementation results obtained with the same image encoder and text

encoder as AACL.

such as “is shiny” or “is blue in color and floral, and with white base”. We follow

the same evaluation protocol as [39], using the same training split and evaluating on the

validation set. We report results on individual categories, as well as the average results

over all three.

Table 3.1 compares the performance of AACL and the other methods on FashionIQ.

We observe that AACL is superior to all reported results by a large margin (top half).

AACL even outperforms methods that include factors other than the composition mod-

ule itself, such as the target image captions, model ensembles, and additional joint loss

functions [3]. We further note that AACL is actually complementary to some of these

methods and could, in fact, be used as their composition modules. For a like-to-like

fair comparison, we also reproduced the best competitors, focusing on just the composi-

tion module itself. That is, we utilized the same image and text encoders—namely, Swin

Transformer and DistilBERT—and the same optimizer. In this scenario AACL surpasses

TIRG, RTIC, and MAAF by an overall margin of 3.42%, 2.88% and 1.41% respectively

in average R@10 and R@50 scores. Figure 3.3 presents our qualitative results on Fash-

ionIQ. These results demonstrate that our model can handle complex and realistic text

descriptions. We also observe that our model can jointly comprehend global appearance

(e.g., colors, material), as well as local fine-grained details (e.g., straps and neckline,

length of sleeves), for image search.
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Replace 
embroidered 
with cropped

Replace 
flare-leg with 
wide-leg

Replace gray 
with pink

Figure 3.4: Qualitative results of AACL on Fashion200k dataset. Blue and green box

indicate query and target images, respectively.

Jacket Shirt T-shirt Jumper Shorts Trouser Jean Swim Bottoms1 Skirt Dress
7,528 14,853 22,071 11,797 5,099 4,630 6,229 5,497 3,726 2,528 12,119

Table 3.3: Number of images in select categories (count > 2k) in Shopping100k dataset.

3.5.3 Fashion200k

Fashion200k [41] is a large-scale fashion dataset crawled from multiple online shop-

ping websites. It contains more than 200k fashion images collected for attribute-based

product retrieval. It also covers a diverse range of fashion concepts, with a total vo-

cabulary size of 5,590. Each image is tagged with descriptive text corresponding to a

product description, such as “beige v-neck bell-sleeve top”. Following [110], we use the

training split of 172,049 images for training and the test set of 33,480 test queries for

evaluation. During training, pairwise images with attribute-like modification texts are

generated by comparing their product descriptions on-the-fly, e.g., “replace black with

blue” or “replace mini with midi”.

Table 3.2 shows our model achieves compelling results compared to other methods,

most notably for R@1 where AACL outperforms the best competitor MAAF by a rel-

1Full name of category “Bottoms” is “Tracksuit Bottoms”.



52

Attributes:

Neckline: Backless


sleeve: 3/4

color: Navy; Fabric: Jersey;


Pattern: print; Category: Shirt;

Fit: large; Gender: Female


Neckline: Square

Sleeve: Short


Caption: "Shirt is Navy color
and Jersey fabric and Large fit

and Backless neckline
and Print pattern and 3/4

sleeve"

Caption: "Shirt is Navy color
and Jersey fabric and Large fit
and Square neckline and Print

pattern and Short sleeve"

Query text: Shirt, replace
Backless neckline with Square

neckline, and replace 3/4 sleeve
with Short sleeve"

Figure 3.5: Example of image pair and generated text query from Shopping100k dataset.

Gray words indicate shared attributes.

ative margin of 9.4%. We also observe that token based methods, namely MAAF and

AACL, perform better than residual based methods. This indicates that the rich informa-

tion contained in tokens is beneficial for feature composition. Figure 3.4 shows our qual-

itative results on Fashion200k. Our model is able to retrieve new images that resemble

the reference image, while changing certain attributes conditioned on text feedback—

e.g., fit, color and length. We also observe that all retrieved images share the same

semantics and are visually similar to the target image, indicating the quantitative perfor-

mance is potentially underestimated.

3.5.4 Shopping100k

Shopping100k [2] is a large-scale fashion dataset of individual clothing items ex-

tracted from different e-commence providers. It contains 101,021 images of 12 fashion

attributes, covering the following categories: “collar”, “color”, “fabric”, “fastening”,

“fit”, “gender”, “length”, “neckline”, “pattern”, “pocket”, “sleeve length”, and “sport”.

A total of 151 different labels are generated by combinations of different attributes

and the corresponding attributes values. Compared to FashionIQ and Fashion200k, the

Shopping100k dataset is more diverse and only contains garments in isolation. In addi-

tion, FashionIQ and Fashion200k only contain 3 and 5 apparel categories, respectively.

Each image in Shopping100k is tagged with the attributes and attribute values, such
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Model Dress Jacket Jean Jumper Shirt Shorts Skirt Swimming T-shirt Bottoms Trouser Average

Recall@1
TIRG∗ 6.81±0.58 10.46±0.97 4.83±1.43 11.87±1.26 13.15±1.25 12.38±1.16 10.92±1.22 13.51±1.49 11.87±0.80 8.32±0.60 13.03±1.77 10.65±0.37
MAAF∗ 7.05±0.86 12.43±0.76 5.79±1.34 13.19±0.88 14.44±1.28 13.21±1.68 12.11±0.77 12.41±0.71 12.89±1.16 10.28±1.35 12.89±0.87 11.52±0.39
RTIC∗ 6.80±0.09 11.70±0.90 5.27±0.90 12.08±1.39 13.93±1.33 11.83±0.97 10.96±1.44 13.18±0.99 12.60±0.99 8.49±0.65 11.70±1.70 10.78±0.44
AACL 7.70±0.67 12.63±0.93 7.27±0.96 13.30±0.31 14.21±0.52 14.38±1.14 14.55±1.22 16.22±1.02 13.66±0.28 10.00±0.53 14.14±0.63 12.55±0.32
Recall@10
TIRG∗ 34.22±0.53 49.86±0.47 29.23±0.48 51.08±0.89 50.22±0.72 50.43±0.52 55.85±0.58 51.86±1.49 47.19±1.04 41.69±0.59 51.06±1.28 46.61±0.35
MAAF∗ 35.01±1.85 51.48±1.67 31.78±1.12 51.70±2.45 52.15±1.96 50.64±1.30 54.70±3.36 54.74±2.46 49.31±1.79 44.00±2.87 52.08±0.63 47.96±0.65
RTIC∗ 33.17±1.92 50.51±2.11 29.21±4.36 48.92±3.39 50.90±2.89 50.29±0.74 51.96±2.09 51.62±2.02 46.71±2.41 42.24±1.31 51.46±1.25 46.09±1.03
AACL 35.16±0.54 51.63±1.33 30.80±1.79 52.31±0.89 52.52±1.32 54.63±1.66 57.54±0.95 56.13±2.13 49.18±1.40 46.69±1.06 54.63±1.72 49.20±0.46
Recall@50
TIRG∗ 66.15± 0.80 81.50±0.38 62.47±0.19 80.74±2.40 82.43±0.28 81.36±0.95 85.57±1.66 83.91±1.20 79.32±1.81 77.94±1.18 85.02±1.35 78.76± 0.69
MAAF∗ 68.42±1.42 82.73±2.29 63.24±2.94 82.28±1.36 84.41±1.90 82.06±1.66 88.19±0.78 85.32±2.27 81.07±1.34 81.17±0.67 86.75±0.82 80.51±0.56
RTIC∗ 67.30±2.12 81.92± 2.42 64.30±5.31 80.27±2.37 83.45±1.58 82.22±1.88 84.71±1.57 84.15±2.46 78.87±1.95 79.47±0.88 85.37±1.92 79.27±1.12
AACL 69.21±0.37 83.30±1.77 63.92±3.59 82.30±0.36 84.75±1.21 85.50±1.30 88.94±0.78 85.31±1.52 80.54±1.18 82.83±0.88 87.61±0.76 81.29±1.11

Table 3.4: Comparison of image search with text feedback on our modified Shop-

ping100k dataset. Averages are computed over all categories. * denotes our imple-

mentation results obtained with the same image encoder and text encoder as AACL.

as “Neckline: Backless, Sleeve: 3/4, Color: Navy, Fabric: Jersey, Pattern: Print, Cat-

egory: Shirt, Fit: Large, Gender: Female”. There are 15 high-level apparel categories.

To generate the dataset for image retrieval with text feedback, we remove categories

that contain fewer than 2,000 images, namely “coat”, “suit”, “jumpsuit”, “pyjamas”,

and “tracksuit”. The final set of 11 categories is listed in Table 3.3 along with the num-

ber of images in each category. A training split with 76,867 images and a validation

split with 19,210 images is randomly sampled from these remaining categories.

To generate the training image pairs and modification text, we first derive a de-

scriptive caption for each image using its tagged attribute values by concatenating the

category with “is”, followed by attributes joined by “and”—e.g., “Shirt is Navy color

and Jersey fabric and Large fit and Backless neckline and Print pattern and 3/4 sleeve”.

Queries are created by selecting image pairs that differ in two attributes in the descrip-

tion. Note that we constrain the image pairs to be from the same apparel category and

gender. The modification text is created with the apparel category plus the attribute

modifications following the pattern “replace xx with xx”—i.e. “Shirt, replace Backless

neckline with Square neckline, and replace 3/4 sleeve with Short sleeve.” (Figure 3.5).

During training, the query and target image pairs are selected on-the-fly based on the

number of attributes we specify. For our experiments, 16,237 fixed test query pairs are

generated from the validation set for performance evaluation.

Table 3.4 compares our approach to other methods on Shopping100k. Our model
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Stage(s) Recall@10 Recall@50

Stage 2 + 3 + 4 48.78 80.74
Stage 3 + 4 49.20 81.29
Stage 4 48.56 81.25

Table 3.5: Ablation of using tokens from different Swin Transformer stages on our

modified Shopping100k dataset.

is shown to clearly outperform the SOTA baselines. Figure 3.6 presents some qualita-

tive examples. These examples yield three observations. First, our model is capable of

understanding rich image-text representations, including global attributes such as color,

pattern, and fit, as well as local attributes such as collar, neckline, and sleeves. Second,

our model is capable of using the text information to selectively modify the query im-

ages. As an example, for the first query the retrieved images preserve the striped pattern

even though it is not requested in the text feedback. Five of the top-5 retrieved can-

didates fulfill the “long sleeves” requirement and four candidates have “low-v-neck”.

Third, the model is capable of capturing minor modifications such as “kent collar” vs.

“mandarin collar”, suggesting it can be successfully utilized in fine-grained search.

3.5.5 Ablation Study

Image representation: Table 3.5 compares the performance of AACL when using dif-

ferent image representations from the Swin Transformer on our modified Shopping100k

dataset. The experiments reveal that using image tokens from Stages 3 and 4 is most ef-

fective for this task. The concatenation of two stages from the encoder considers richer

forms of image representation. Somewhat surprisingly, concatenating representations

from Stage 2 does not seem to benefit the task. This may suggest that at some point,

the lower level information may distract the model from capturing meaningful global

contextual information.

Number of attributes: In Table 3.6, we see the effect of the number of attributes that

differ on the Shopping100k dataset. We constrain the modification text to have varying

numbers of differing attributes: 2 attributes, 1 or 2 attributes, or 1 attribute. Having 2

differing attributes is seen to be the most difficult case and so we choose it to compare

with the other methods in Table 3.4.
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Dataset Dress Jacket Jean Jumper Shirt Shorts Skirt Swimming T-shirt Bottoms Trouser Average

Recall@10
1 attribute 30.11 52.48 47.71 53.34 51.36 55.39 52.17 54.29 48.90 47.69 50.24 49.42
1 or 2 attributes 33.64 54.25 46.28 54.38 51.11 54.36 55.25 58.98 52.09 46.44 49.43 50.56
2 attributes 35.16 51.63 30.80 52.31 52.52 54.63 57.54 56.13 49.18 46.69 54.63 49.20
Recall@50
1 attribute 61.52 84.78 80.09 84.02 84.10 86.83 89.02 84.70 81.04 80.03 84.66 81.89
1 or 2 attributes 66.78 85.16 81.48 83.38 82.72 86.25 89.62 87.42 81.67 83.07 86.81 83.12
2 attributes 69.21 83.30 63.92 82.30 84.75 85.50 88.94 85.31 80.54 82.83 87.61 81.29

Table 3.6: Comparison of AACL when constructing Shopping100k dataset with differ-

ent number of attributes. Lowest value is underlined.

Method Recall@10 Recall@50

Additive→Dot-Product 48.37 80.14
Product→Addition 48.56 80.45
AACL 49.20 81.29

Table 3.7: Ablation of self-attention layer on our modified Shopping100k dataset. We

separately examine substituting additive self-attention with standard dot-product and

changing the Hadamard product to addition.

Additive attention:

To assess the importance of additive attention, we perform a comparison by substi-

tuting with dot-product attention. Table 3.7 “Additive→Dot-Product” shows the com-

parison on our modified Shopping100k dataset. From these results, we that AACL does

benefit consistently from the additive attention. In addition, dot product attention is

more computationally expensive than additive attention (O(n2) vs. O(n)) and as such

the benefits of additive attention extend beyond evaluation performance gains.

Interaction function:

We study the effect of using different functions, namely addition and Hadamard

product, to model the interactions between the context vector and the individual tokens.

We compare the standard AACL and this variant on Shopping100k. The results are

shown in Table 3.7 “Product→Addition”. The Hadamard product performs consistently

better than addition, indicating this form of non-linear modeling is beneficial.
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3.5.6 Additive Attention Visualization

To interpret the attention learned by AACL, we count the number of instances of

words with high normalized attention scores from the FashionIQ validation set. The

word attention scores are normalized as follows: We first multiply the αi in Equation 3.2

across all blocks to get the total attention flow for each token. Subsequently, the min-

imum word token flow score is mapped to zero and the maximum to one. We apply a

threshold of 0.8 for high scores.

To further interpret the attention learned by AACL, we visualize the attended regions

in Figure 3.7. We apply a mask based on the attention flow (as calculated above) to the

input query image. Note that, since we are using the Swin Transformer as the image

encoder, the encoded feature maps are 7 × 7 and the resulting visualization resolution

appears lower than with other models. Nevertheless, we do observe that the spatially

attended regions vary with the query text. This indicates that the additive self-attention

selects different visual content to transform conditioned on the text query.

3.5.7 Additional Qualitative Results

We present additional qualitative results on the FashionIQ dataset to provide further

insight into using natural language as text feedback. Note that the query text of Fash-

ionIQ most closely resembles natural language as the queries are provided by annotators

from English-speaking countries.

Figure 3.8 qualitatively compares our AACL model with TIRG, RTIC and MAAF

on the FashionIQ dataset Dress category. Figures 3.9 and 3.10 further illustrate the re-

trieval results on the Toptee and Shirt categories, respectively. We present the query

image and query text in the first row, followed by the top-5 retrieved images from the

various models in subsequent rows. Even though for each query image a single target

image is defined, there can be multiple “perceptually acceptable” images. This is be-

cause there may exist multiple items in the database that are similar to the target image

and satisfy the modifying text component of the query. In Figure 3.9b, for example,

there is more than one toptee that is short sleeved with gray and white stripes among the

retrieved items, but only the target image is considered a correct match. Compared to
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the other models considered, our AACL model tends to find the best matching images

that satisfy all conditions in the queries.

3.6 Conclusion

We present AACL, a novel and general-purpose solution to the challenging task of

image search with text feedback. This framework features an additive self-attention

layer that selectively preserves and transforms multi-level visual features conditioned

on text semantics to derive an expressive composite representation. We validate the effi-

cacy of AACL on three datasets, and demonstrate its consistent superiority in handling

various text feedback for natural language expression. Overall, our work provides a

novel approach along with a comprehensive evaluation, which collectively advance the

research in interactive visual search using text feedback.
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T-shirt, replace Square 
neckline with Low-v-
neck neckline, and 
replace Short sleeve 
with Long sleeve

Swimming, replace 
Black color with Navy 
color, and replace 
Plain pattern with 
Striped pattern

Dress, replace Short 
sleeve with Sleeveless 
sleeve, and replace 
polka dot  pattern with 
checked pattern

(a) Female examples

Jumper, replace Mandarin 
collar with Hood collar, 
and replace White color 
with Maroon color

Shirt, replace Mandarin 
collar with Kent collar, and 
replace Striped pattern 
with Floral pattern

Jean, replace Beige color 
with Gray color, and 
replace Slim fit with 
Straight fit

(b) Male examples

Figure 3.6: Qualitative results of AACL on (a) Female and (b) Male set of our modified

Shopping100k dataset. Blue and green box indicate query and target images, respec-

tively.
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Dress is long and white
with no sleeves

Dress is all polka
dots and fuller

Shirt is blue and doesn’t 
have a collar and it’s 
short sleeved shirt

Shirt is cream with
blue picture

Toptee is beige colored 
with longer sleeves and
a swoop neckline

Toptee is short sleeved 
and it is solid blue with 
decorative neckline

Figure 3.7: Attention visualization of AACL model on FashionIQ dataset. Words with

high attention value are in red.

Query text: 
Dress is lighter with a floral pattern, and it is 
blue with straps

AACL

MAAF

TIRG

RTIC

Query text: 
Dress v shaped neck with short sleeves and it is 
tan and pink striped

AACL

MAAF

TIRG

RTIC

(a) (b)

Figure 3.8: Qualitative results on FashionIQ dataset Dress category. Blue and green box

indicate query and target images, respectively.
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AACL

MAAF

TIRG

RTIC

Query text: 
Toptee is a solid color and it is red and has a dot 
pattern

(a)

AACL

MAAF

TIRG

RTIC

Query text: 
Toptee is a short sleeve with gray and white 
stripes and it is pale grey and white stripes.

(b)

Figure 3.9: Qualitative results on FashionIQ dataset Toptee category. Blue and green

box indicate query and target images, respectively.

Query text:
shirt has a brighter color and art and it has logo 
and light yellow color

AACL

MAAF

TIRG

RTIC

(a)

Query text:
Shirt is green with a four leaf clover and it is green 
and has no text

AACL

MAAF

TIRG

RTIC

(b)

Figure 3.10: Qualitative results on FashionIQ dataset Shirt category. Blue and green

box indicate query and target images, respectively.
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Retrieval for Relevant and Engaging
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4.1 Overview

Embedding-Based Retrieval (EBR) in e-commerce search is a powerful search re-

trieval technique to address semantic matches between search queries and products.

However, commercial search engines like Facebook Marketplace Search are complex

multi-stage systems optimized for multiple business objectives. At Facebook Market-

place, search retrieval focuses on matching search queries with relevant products, while

search ranking puts more emphasis on contextual signals to up-rank the more engaging

products. As a result, the end-to-end searcher experience is a combination of both rele-

vance and engagement, and the interaction between different stages of the system. This

presents challenges to EBR systems in order to optimize for better searcher experiences.

In this chapter we presents Que2Engage, a search EBR system built towards bridging

the gap between retrieval and ranking for end-to-end optimizations. Que2Engage takes

a multimodal and multitask approach to infuse contextual information into the retrieval

stage and to balance different business objectives. We show the effectiveness of our

approach via a multitask evaluation framework and thorough baseline comparisons and

ablation studies. Que2Engage is deployed on Facebook Marketplace Search and shows

significant improvements in searcher engagement in two weeks of A/B testing.

4.2 Introduction

Recent years have witnessed surprising advances in machine learning (ML), which

in turn have led to the pervasive application of ML models across several domains [22,

21, 78, 81]. Embedding-based Retrieval (EBR) has become an important component

of e-commerce search engines across Facebook Marketplace, Walmart, Instacart, and

more [66, 73, 83, 128, 44]. In general, EBR models focus on learning embedding repre-

sentations for search queries and documents, so that documents semantically close to a

search query can be retrieved via ANN search [66, 73, 83, 34]. However, search engines

are usually complex multi-stage systems optimized for multiple business objectives, so

simply optimizing for semantic relevance may not always lead to the best outcome.

For example, [73] points out that integrating EBR systems can lead to Normalized Dis-
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counted Cumulative Gain (NDCG) regressions because downstream re-ranking systems

may not always able to rank results retrieved via EBR properly.

In e-commerce platforms like Facebook Marketplace 1, contextual information such

as product price, production condition, seller rating, etc. are also important signals to

consider to ensure products retrieved are engaging to the searchers. However, we ar-

gue that the leverage of contextual information in a search EBR setting towards better

searcher engagement is not a trivial problem because (1) traditional EBR modeling tech-

niques based on contrastive learning overly emphasize on semantic relevance, so naively

applying contextual information in a contrastive learning setting may not work well (2)

a product being semantically relevant to a query does not imply that it is engaging to the

searcher, and thus simultaneously preserving relevance and engagement is challenging.

In this chapter we present Que2Engage, an extension of Que2Search [73] to ad-

dresses the aforementioned challenges. It takes a multimodal approach to incorporate

contextual signals as a unique modality in its transformer fusion backbone. The model is

trained with multitask learning that joins contrastive learning with ranker-style training

to not only retrieve semantically relevant products, but also up-ranks the more engaging

products like a re-ranking model. Similar to [137], we propose a multitask evaluation

for EBR models to understand its performances in different domains. We share detailed

baseline comparisons and ablation studies using the multitask evaluation framework to

illustrate our argument of multi-stage consistency and the effectiveness of our approach

in leveraging contextual information.

Que2Engage is integrated in Facebook Marketplace Search and powering millions

of search queries per day. It has demonstrated significant improvements in searcher

engagement via two weeks of online A/B testing.

4.3 Related Work

4.3.1 Embedding-based Retrieval

The largest E-commerce sites offer over millions of products for sale. Choosing

among so many options is challenging for both individual and group-oriented cus-
1www.facebook.com/marketplace
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tomers [139]. To alleviate the information overload caused by the tremendous amount

of data that existing online services expose to end-users, recommendation systems have

emerged to help customers choose the best “content” [53]. A recommendation system

for an e-commerce site receives information from a consumer about the search intent and

recommends products that are likely to meet needs. Today, recommendation systems are

deployed on hundreds of different sites, serving millions of consumers. In recent years,

Embedding-Based Retrieval (EBR) has been adopted in e-commerce search to retrieve

semantically relevant products as a complement of lexical retrieval [73, 83, 66, 137].

Siamese neural networks [15, 105] trained with contrastive learning loss [125, 106, 107]

are among the popular modeling choices for EBR in both search and recommendation

systems [112, 129, 77].

4.3.2 Contrastive Learning

Training recommendation systems on large item databases often involves treating the

process as an extreme multi-class classification task, where negative sampling is crucial.

The common method for two-tower models involves using in-batch negatives—positive

items of other users within the same mini-batch are considered as negative items. This

method has become a standard practice for reducing computational load and increasing

training efficiency [112]. However, naive contrastive learning using in-batch negatives

can suffer from missing interesting negative samples [137, 129] and being memory-

hungry [112]. Variants of contrastive learnings are proposed to address them by in-

corporating smarter negative sampling [129, 137, 73] and optimizing memory usage

[112, 137]. Sometimes, teacher-student learning is also used as an auxiliary task to

improve relevance [34, 137].

4.3.3 Contextual Information

In search retrieval, Pre-trained Language Models (PLM) are widely adopted because

the main focus of retrieval is often textual relevance [83, 77]. The exploration of per-

sonalization models, data knowledge, and the generation of appropriate product recom-

mendations to enhance user engagement has recently gained interest from the research
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Figure 4.1: Que2Engage architecture overview

community [59, 82]. Research [66, 73, 137] points out that contextual information and

consistency with re-ranking stage are also important factors to EBR systems’ end-to-

end performance that are beyond textual relevance. Recently, [137] developed a unified

training scheme to balance multiple optimization objectives, yet the role of contextual

information in the multi-objective setting is rarely discussed.

4.4 Modeling

Figure 4.1 presents the overall architecture of our Que2Engage framework, which

is a two-tower neural network consisting of a query and a document tower for learning

embedding representations of search queries and e-commerce products, respectively.

Multimodal and contextual information of products are fed into the document tower

using a transformer-fusion approach, and trained with multi-task learning. In the fol-

lowing, we detail our choices in model architecture and our novel multimodal multitask

method.

4.4.1 Model Architecture

Query tower

Similar to [73], we adopt a multi-granular representation of search queries which

consists of both raw query text and character trigrams of the query. Raw query text is

encoded using a 2-layer XLM [24] encoder, and character trigrams are encoded using an
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EmbeddingBag [86] encoder. Different from [73], we combine the two representations

using concatenation instead of attention fusion before sending to the final MLP layer as

we find the former yields slightly better performance.

Contextual information as a modality

For candidate product listings, we use an MLP-based encoder from the document

tower to encode the contextual information such as price, category and creation time.

Numerical features are represented as single neurons, and categorical features are repre-

sented using one-hot encoding. All of the contextual features are concatenated and then

fed into a BatchNorm layer followed by a final MLP to ensure a fixed numerical scale

and a fixed output length. We call this encoder output a ”context token” because it is

treated similarly to text and image tokens during the multimodal fusion step covered in

section 4.4.1. Essentially, contextual information is treated as a unique modality in our

multimodal framework.

Multimodal fusion

Besides encoding the contextual information, we use text encoder to convert the

textual fields, i.e., product title and description, into a sequence of word tokens and feed

them into the transformer to get the textual embedding. A special [CLS] token is used to

encode the whole sentence representation. For the variable number of images attached

to the document, we take the pre-trained image representations [12] for each of the

attached images, apply a shared MLP layer and deep sets [134] fusion to get the image

dense representation as an image modality token. We borrow the transformer-fusion

architecture used in [132], where we feed the concatenation of the text tokens, image

token as well as context token to the multimodal fusion encoder. Our text encoder and

multimodal fusion encoder are initialized from 6-layer XLM-R [23], an multilingual

language model. As in [132], the text encoder inherits its first K layers and and the

multimodal fusion model inherits its remaining M layers. We extract the hidden output

of the [CLS] token at the last layer of multimodal fusion encoder and project it to the

desired dimension as the final document embedding.
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Modality dropout

To ensure that our model does not overly rely on one modality and is robust against

missing information during inference time, we introduce a modality dropout mecha-

nism. Specifically, we randomly mask out the output of contextual encoder, image en-

coder and text encoder with probability of δc, δi and δt respectively, and replace the

masked ones with tensor of zero.

Learning image representation

We explore two variants of image encoders to capture visual information from prod-

uct images. In method one, we directly apply pre-computed image embedding from the

GrokNet model [12], with an MLP layer on top to ensure the image embedding size

is consistent with all the other tokens in the transformer fusion. In method two, we

include an off-the-shelf RestNet50 encoder from the CommerceMM model [132] into

the document tower, and train the entire document tower as a continued CommerceMM

fine-tuning process. While the latter is obviously more powerful because the original

image encoder is retained and fine-tuned, the former is much simpler to train and re-

quires less memory in both training and serving. We will compare them in more detail

in section 4.5.

4.4.2 Multitask Training

Contrastive learning

We adopt contrastive learning based on batch negative sampling as part of our train-

ing objectives, where positive samples are user engaged ⟨ query, product ⟩ pairs sam-

pled from anonymized search logs, and negative samples are generated by randomly

combining queries and products within a mini-batch of positive samples. Formally, we

introduce the relevance loss Lrelevance as follows

Lrelevance =
1

B

B∑
i=1

− log

{
exp {s · κ (qi, di)}∑B
j=1 exp {s · κ (qi, dj)}

}
(4.1)
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where B is the batch size, κ is a similarity kernel that is implemented as the cosine

similarity, and s denotes a scaling factor which is simply a fixed value s = 20 throughout

all experiments.

Learning contextual information

Although batch negative sampling has proven useful in learning semantic relevance

in the search EBR problem [83, 73], we notice that it is not sufficient in learning con-

textual information towards user engagement. For example, contextual information like

product price is a distinguishing factor to identify engaging products among relevant

products (i.e. a product can be relevant but receives no engagement because the listed

price is not reasonable). However, during batch negative training, the model receives

little negative supervision from products with very unreasonable prices, since all neg-

ative samples are generated from engaged ⟨ query, product ⟩ pairs. Fundamentally, as

[125] points out, this is because batch negative methods implicitly sample from the dis-

tribution of engaged products, which may not be the true distribution of the inventory.

Methods like mixing random negatives [129] and in-batch hard negative mining [73]

are proposed to mitigate the problem. However, we observe that negative samples gen-

erated by those approaches are still too easy for the model to pick up the nuances in

contextual information. Therefore, we propose an auxiliary training task that optimizes

the model directly towards finding engaging products among relevant products. Specif-

ically, we augment the training set in section 4.4.2 by including ⟨ query, product ⟩ pairs

displayed to the searchers but which receive no searcher engagements as hard negatives,

and compute a BCE loss on those samples. Formally, we define the loss Lengagement as

follows

Lengagement = −(yi log(ci) + (1− yi) log(1− ci)) (4.2)

where ci = s · κ (qi, di).
To combine Lrelevance and Lengagement, we define the final multitask loss as

L(θ) = λ1 · Lrelevance + λ2 · Lengagement (4.3)

where θ is the model parameters, λ1 and λ2 are the weighting parameters chosen empir-

ically.
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4.5 Offline Experiments

4.5.1 Data Collections

We collect 150 million ⟨ query, product ⟩ pairs displayed to searchers from Face-

book Marketplace’s search log. To avoid the potential imbalance issue [61], we sample

75 million pairs receiving downstream engagements as positive samples, and 75 million

pairs as negative samples. The data is de-identified and aggregated before evaluation

proceeds. For offline evaluation, we collect 26k human-rated data as the relevance eval-

uation set. The human-rated dataset is generated by letting raters to decide whether a

result is relevant to a query or not. The candidates to be rated are generated by a stratified

sampling of the search queries and products, which includes both easy and hard sam-

ples. To evaluate user engagement, we reserve one future date among the 150 million

de-identified and aggregated search log data.

4.5.2 Baselines and Ablation Studies

We choose Que2Search [73] as our baseline model, which is a two-tower model

based on attention fusion of pre-trained XLM encoders [24] and image representations.

We further augment the model with encoders based on contextual information, as well

as with mixed batch method [129] to incorporate hard negatives from products displayed

to searchers. For the treatment group, we use the Que2Engage with pre-computed im-

age embeddings, because in practice its simplicity is preferred during the actual model

productionalization, and we share the comparison against an alternative image encoder

based on fine-tuning of the CommerceMM encoder separately.

4.5.3 Experimental Setup

Evaluation metrics

Similar to [137], we adopt a multitask evaluation framework to measure semantic

relevance and searcher engagement separately. Semantic relevance is measured using

the 26k human-rated dataset, and searcher engagement is measured using the 220k fu-
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ture engagement dataset. For both datasets, we rank them using the cosine similarity

from our model and report ROC AUC as the evaluation metric. Note that one signifi-

cant difference between the two datasets lies in personalization. For the human-rated

dataset, raters are asked to make judgement based purely on an objective guideline

around textual and visual relevance (e.g. whether there is a catalog or brand mismatch

between a query and a product), while more subjective factors outside of the guideline

(e.g. whether the listed price or product condition is appealing) play important roles in

the engagement dataset.

Therefore, ROC AUC on the relevance dataset measures how well the model pre-

dicts search relevance (similar to the in relevance degree in [137]), which is the main

evaluation metric used in [73]. We have also found it correlate well with search retrieval

performance. ROC AUC of the engagement dataset essentially measures its perfor-

mance on the search ranking task, because the candidates are all products with user

impressions. In fact, it is also a good indicator of the consistency between search re-

trieval and search ranking.

Experimental parameters

We develop all of the models on Nvidia A100 GPUs using the PyTorch Multimodal

framework [102]. Models are trained using batch size of 512, and optimized using

Adam optimizer with a learning rate of 4e − 4. We set weighting parameters λ1 and

λ2 as 0.8 and 0.2 respectively. For the modality dropout, δc, δi and δt are 0.5, 0 and

0.5. We directly feed the text tokens and the tokens from other modalities into the mul-

timodal transformer as [132], i.e., our multimodal transformer is an early-fusion model

with 0-layer text encoder and 6-layer multimodal fusion encoder. One exception to the

aforementioned settings is that when comparing pre-computed image embeddings with

fine-tuning the CommerceMM encoder, due to the increased GPU memory consumption

of the fine-tuning approach, we adjust the batch size to 64 for that particular experiment.

The learning rate was also adjusted to 5e − 5 for the CommerceMM training to avoid

NaN in the loss function computation.
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4.5.4 Results

Analysis of baseline results

The top part of table 4.1 outlines the performance of baseline models. We can see

that Que2Search does well on the relevance evaluation but performs poorly on the en-

gagement dataset, which is expected because it is optimized for semantic relevance.

While adding contextual information to Que2Search itself does not improve the per-

formance on engagement evaluation, changing the training objective to include mixed

negatives significantly improves the prediction. Mixed negatives also helps Que2Search

to better leverage contextual features towards engagement prediction with row 4 in ta-

ble 4.1 achieving the highest ROC AUC on engagement evaluation. This aligns with

our hypothesis in section 4.4.2 - vanilla batch negative is insufficient to learning the nu-

ances in engagement prediction from contextual information due to the sampling bias

introduced by generating negatives from the positives, and this can be mitigated by in-

troducing mixed negatives. Note that rows 4 and 5 in table 4.1 suggest a regression in

relevance evaluation along with the improvement of engagement evaluation. This is ex-

pected because contextual information like product price and condition are irrelevant to

the query-product relevance guideline provided to our raters, and thus we do not expect

the leverage of contextual signals to improve the relevance evaluation.

Que2Engage and ablation studies

The second part of table 4.1 shows that engagement evaluation can be significantly

improved with the Que2Engage approach, with the full Que2Engage using multitask

learning and modality dropout achieving the best results across the two evaluation meth-

ods. An ablation study on the loss function suggests that multitask training leads to the

biggest improvement in engagement evaluation, suggesting that a more focused loss

function on hard negatives works better than simply mixing the negatives. Finally,

modality dropout further improves both metrics and specially the relevance evaluation,

suggesting that forcing missing modalities may prevent the model over-fitting on one

task and thus regressing the other.
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Model Engagement Relevance
Que2Search[73] 55.88 67.14
Que2Search w/ contextual encoder 55.85 66.74
Que2Search w/ mixed batch loss 63.63 63.79
Que2Search w/ contextual encoder + mixed batch loss 64.45 61.17
Que2Engage w/ mixed batch loss 64.70 60.36
Que2Engage w/ multitask training 76.13 65.63
Que2Engage w/ multitask training + modality dropout 76.90 67.21

Table 4.1: Results for baseline comparison and ablation studies

Method Engagement Relevance
pre-computed image embedding 74.35 60.19
fine-tuned CommerceMM encoder 74.67 60.55

Table 4.2: Results for image encoder comparison

Image encoders

We also compare the two approaches to incorporate image signals into the multi-

modal fusion framework. We can see that although both methods are based on pre-

training tasks, being able to fine-tune the image encoder indeed outperforms the orig-

inal frozen GrokNet [12] approach used in Que2Search in both evaluations. However,

given that fine-tuning the image encoder end-to-end requires significantly more GPU

memory and training time, we do not include this technique in the production model

for simplicity. And the ablation study is done with a reduced batch size of 64 which

significantly regresses the absolute relevance evaluation because larger batch sizes have

proven helpful in contrastive learning [112]. However, we hope to productionalize this

technique one day with smarter memory efficiency optimizations such in [112, 137] and

with more powerful hardware.

4.6 Online Experiments

We deploy Que2Engage on Facebook Marketplace Search as a parallel retrieval

source to the traditional lexical-based search retrieval. For online A/B testing, we com-
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pare Que2Engage with Que2Search [73], which is our previous production model solely

optimized for semantic relevance. We measure both NDCG and searcher engagement

for this A/B testing. Note that NDCG is calculated from human-rated labels using sim-

ulated search results similar to how the human-rated evaluation set is generated. Two

weeks of online A/B testing shows that Que2Engage improves online searcher engage-

ment by 4.5% while keeping NDCG neutral, which aligns with our offline multitask

evaluation results.

4.7 Conclusion

We present the need of EBR modeling to balance relevance and engagement in the

real-world applications like Facebook Marketplace, and introduce Que2Engage, our lat-

est search EBR system, to address the challenges. Through baseline comparisons and

ablations studies, we show the effectiveness of our innovations in incorporating contex-

tual signals, multimodal techniques, representation learning and multitask learning. We

have deployed Que2Engage on Facebook Marketplace Search. Through two weeks of

A/B testing, we show that it outperforms our existing state-of-the-art search EBR sys-

tem [73] and significantly improved searcher engagement on product listed at Facebook

Marketplace.



Chapter 5

Conclusion and Future Work

74



75

5.1 Conclusion

In this dissertation, an innovative framework is first developed for learning invariant

representations for overhead image geolocalization. Subsequently, I develop frame-

works to learn multimodal representations not only for image search with text feedback

but also for embedding-based retrieval in recommendation systems. More specifically:

• I introduced a novel method for learning invariant representations for cross-time

and orientation-invariant overhead image geolocalization. This innovative ap-

proach allows for accurate and efficient large-scale geolocalization, remaining ro-

bust even when the query and reference images originate from different times or

orientations.

• I then proposed a framework for learning multimodal representations using fash-

ion imagery. The fusion of image and text data in the model enhances the search

experience, offering state-of-the-art performance in image retrieval with text feed-

back.

• I also presented a process for optimizing multimodal representation during the

retrieval phase within a complex recommendation system. The model effectively

incorporates images, text, and contextual information, achieving a balance be-

tween relevance and user engagement.

The research conducted in this dissertation not only contributes to the current state

of knowledge in the fields of computer vision and natural language processing, but also

offers practical solutions for real-world applications in geolocalization, fashion retrieval,

and recommendation systems.

5.2 Future Work

Looking ahead, there are several promising directions for future research. For in-

stance, a potential direction could involve the integration of multi-modal data into ge-

olocalization, as discussed in Chapter 2. The use of geographic location may enable
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the connection of various modalities and models, such as ground conditions and user

reviews, fostering the development of more comprehensive and informative representa-

tions.

The availability of sufficient training data is paramount for deep learning. Unfortu-

nately, such circumstances are rare in many real-world applications. For instance, while

we can readily obtain images and associated descriptions from social media, acquiring

relative captions given image pairs poses a significant challenge. Therefore, it becomes

crucial to explore ways to maximize the utility of existing data [58, 33, 31, 32] and

denoising the data [80]. In future work, I aim to develop a relative change captioning

framework as an extension to the work presented in Chapter 3. This approach, rather

than adhering to a specific pattern, seeks to describe image differences through natural

language descriptions. Such training data could enhance the model’s ability to compre-

hend human feedback and bolster the performance of image search with text feedback.

Another promising follow-up work in Chapter 3 could be interleaved image and text

generation. The generation model, diverging from solely focusing on the retrieval of

the target image from our dataset, can yield more innovative results even when the de-

sired outcome isn’t present in the dataset. The generated text can stimulate additional

interaction and gather more user feedback, while the generation model such as the sta-

ble diffusion model could be deployed to create images in response to this multi-round

text feedback. The recent advancement in prompt tuning can be leveraged for satisfying

performance on the multi-round generation [116, 115].

Various strategies have been suggested to circumvent the memory constraints dur-

ing the deployment phase of deep learning models [119, 120, 118]. However, the ne-

cessity of reducing the model size from the design phase itself is crucial. Techniques

such as pruning [9, 10], parallelization [11], and sparse training [8] with efficient strate-

gies offer theoretical guarantees and the potential to significantly reduce computational,

memory, and communication costs involved in training and inference of deep learning

models. Our objective is to learn representations that strike a balance between resource

efficiency and model effectiveness, potentially through grounding the pre-trained large

language model representations to the visual domain to enable cross-modality interac-

tions. This becomes particularly critical given the success of large language models,
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which unfortunately comes with a substantial computational cost.

In conclusion, deep representation learning serves as a fundamental component in

both computer vision and natural language processing fields. The process of learning

representations and establishing correspondences across different modalities holds sig-

nificant potential.
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