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Abstract

Learning Visual-based Head-based Pointing

by

Muratcan Cicek

Devices such as computers, smartphones, tablets, and other smart gadgets have become

integral to daily life, enhancing productivity and connectivity. A fundamental aspect

of Human-Computer Interaction is pointing, which involves selecting and manipulating

objects on display using a pointing device such as a mouse, touchpad, or stylus. However,

such devices require fine control of the wrist and fingers. Those with poor upper limb

mobility or control can use technology such as eye gaze tracking or head tracking for

pointing control. In particular, head tracking does not require a dedicated device (since

it can be accomplished by analyzing images of the user taken by a screen camera). It

was shown to be more effective and acceptable than eye gaze tracking.

This dissertation first studies visual-based head-based pointing in different

settings. It starts by proposing a mobile head-based pointing in the context of online

shopping. Then, the study is extended by proposing a more general mobile head-based

pointing and conducting Fitts’ Law studies with people with motor impairments. User

studies demonstrated the method’s robustness across different environments. These ini-

tial evaluations also suggest that head-based pointing solutions with predefined control

mechanisms can be limited. For example, the pointer motion may not accurately reflect

x



the user’s intent, forcing them to move their head in “non-natural” ways to accomplish

specific pointing tasks.

The second phase of the dissertation proposes a user-centric approach to create

a flexible pointing algorithm that adapts to the user’s intent. This approach involves

collecting data by asking participants to follow with their heads the motion of a target

on the screen, moving through pre-defined trajectories, while images of their heads are

taken by a screen camera. The videos thus recorded were analyzed using computer vision

algorithms. This analysis considered several types of features, such as facial landmarks

and head poses. An affine transformation was computed using least squares regression

to map these features to pointer locations on a screen. The analysis revealed unique

head movement patterns among individuals performing similar pointing tasks, indicat-

ing that the relationship between head position and desired pointer motion is complex

and conditional, with biases based on the location and direction of pointing. To improve

pointing precision, I also implemented fully connected neural networks (FCNs) and re-

current neural networks (RNNs) based on the features extracted from video frames. In

my evaluation, I considered different visual feature sets and personalization techniques.

The results of this analysis show the potential of using advanced transformation mod-

els and carefully selected feature sets to enhance the accuracy of head-based pointing

systems. The findings underscore the importance of personalization and selecting appro-

priate mapping types and feature sets in designing efficient and user-friendly head-based

pointing. As technology advances, these insights could pave the way for more intuitive

and accessible human-computer interaction mechanisms.
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To those who cannot utilize the default computer interfaces...
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Chapter 1

Introduction

In the past few decades, the use of electronic devices has significantly expanded

across various domains, including personal, professional, and industrial applications.

Devices such as computers, smartphones, tablets, and other smart gadgets have become

integral to daily life, enhancing productivity and connectivity[28, 48]. The proliferation

of these devices has led to the development of various interaction methods to improve

user experience and accessibility. Human-Computer Interaction (HCI) is a field of study

focused on designing and using computer technology, particularly the interfaces between

users and computers. The primary goal of HCI is to create intuitive and efficient in-

teractions between humans and machines. Common interaction methods include the

traditional mouse and keyboard, the most widely used input devices, allowing precise

control and text input. Touchscreens, found in smartphones, tablets, and some laptops,

enable direct interaction with the display. Voice control uses speech recognition tech-

nology to interpret and execute user commands. Gestural interfaces employ cameras
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and sensors to detect and interpret body movements, while eye tracking monitors eye

movements to control the cursor and other interface elements.

A fundamental aspect of HCI is the pointing task, which involves selecting and

manipulating objects on a display using a pointing device such as a mouse, touchpad,

or stylus. The efficiency of pointing tasks is crucial for overall user performance and

satisfaction[13, 61, 93]. The effectiveness of these tasks can be measured by speed, accu-

racy, and ease of use. Evaluating the performance of different HCI methods is essential

to determine their suitability for various applications. Evaluation typically involves user

studies, where participants perform specific tasks using the interface. Metrics such as

task completion time, error rate, and user satisfaction are recorded and analyzed.

Several methods are currently available for accomplishing pointing tasks. The

traditional mouse provides precise control but requires a flat surface, which can lead

to repetitive strain injuries. Trackpads and touchpads, integrated into laptops, offer a

compact alternative to the mouse. Stylus and pen input used primarily with tablets

and graphic design tools, allow for the detailed input. Head-based pointing uses head

movements tracked by a camera to control the cursor, which benefits users with limited

hand mobility. Eye-tracking devices allow users to control the cursor with their gaze,

which is useful in accessibility applications.

User studies are critical for understanding the practical implications of dif-

ferent pointing methods[61]. These studies typically involve participants completing

predefined tasks while researchers measure various performance metrics. Such studies

help identify the strengths and weaknesses of each method and guide the development

2



of more effective interfaces. Fitts’ Law is a predictive model of human movement pri-

marily used in HCI to quantify the difficulty of pointing tasks. The law states that the

time required to move to a target area is a function of the distance to the target and

the size of the target. Mathematically, it is expressed as:

T = a+ b log2

(
D

W
+ 1

)
(1.1)

where T is the average time to complete the movement, a and b are empirically

determined constants, D is the distance to the target, and W is the width of the target.

Fitts’ Law is widely used to evaluate the performance of pointing devices and to design

user interfaces that facilitate faster and more accurate pointing[3, 61, 96].

For individuals with motor impairments, performing pointing tasks can be

particularly challenging due to the necessity for fine control of the wrist and fingers.

Fine motor control is essential for precise cursor movements and accurate selection of

small interface elements. Many people with motor impairments lack this fine control of

the upper limbs due to various conditions, such as cerebral palsy, muscular dystrophy,

multiple sclerosis, or spinal cord injuries[78, 79, 80]. These conditions can result in

muscle weakness, spasticity, tremors, and involuntary movements, all of which impede

the ability to use traditional pointing devices effectively.

The inability to control upper limbs precisely affects computer interaction sig-

nificantly, as it limits the use of conventional input devices like the mouse and keyboard.

These users often face difficulties performing simple tasks such as clicking icons, drag-

ging items, or navigating menus. This not only hampers their productivity but also

3



affects their overall user experience and accessibility to technology. On the other hand,

access to technology is crucial for people with motor impairments, as it can signifi-

cantly improve their quality of life by providing greater independence and the ability to

participate more fully in society. Ensuring these users have access to effective assistive

technologies and alternative pointing methods is a critical step towards achieving digital

inclusivity and empowering individuals with disabilities to use technology to its fullest

potential[41, 55, 73].

Assistive technologies and alternative pointing methods have been developed

to address the physical challenges of this user group. Assistive technologies are designed

to enhance the functional capabilities of individuals with disabilities, enabling them to

interact with computers and other electronic devices more effectively[21, 36, 39]. Some

alternative pointing methods include voice recognition systems, which allow users to con-

trol the computer via spoken commands, and eye-tracking systems, which enable cursor

control through eye movements. Additionally, head-based pointing systems, which use

head movements tracked by a camera to move the cursor, provide a viable option for

users with limited hand mobility[8, 15, 18, 69].

User studies evaluating the pointing abilities of people with motor impair-

ments are essential to developing and refining these assistive technologies. Such studies

typically involve participants with various motor impairments performing tasks using

different pointing methods while researchers collect data on performance metrics such

as speed, accuracy, and user satisfaction[11, 31, 72, 87, 104]. These studies help identify

the most effective solutions and inform the design of more accessible and user-friendly
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interfaces.

I am a person with motor impairments, Cerebral Palsy specifically. I have

relied on visual-based head-based pointing by Enable Viacam[68] since 2010. The in-

teraction method allowed me to become a computer scientist and build a solid career,

exponentially improving my living standards. As my appreciation, I dedicated my doc-

toral research to studying, evaluating, and improving visual-based head-based pointing.

The dissertation documents this research and covers my collaborations with several

parties. First, in Chapter 2, I provide a background on the literature.

Chapter 3 presents my research collaboration with eBay. During my summer

internship in 2018 with eBay’s computer vision team, I led a project under the supervi-

sion of Robinson Piramuthu, with significant support from colleagues Jinrong Xie and

Qiaosong Wang. Our research, culminating in a peer-reviewed publication, focused on

developing head-based pointing interactions for mobile applications, particularly ben-

efiting people with motor impairments. Motivated by the difficulties these individuals

face with in-store and online shopping, I proposed a research plan leveraging modern

smartphones’ advanced sensors and computing power, such as the iPhone X, to imple-

ment head-tracking technology. This technology was designed to facilitate hands-free

interaction by enabling a button to activate via head movements, making basic activities

like online shopping more accessible. Our open-source project, built on the ARKit 2

toolkit, demonstrated how augmented reality tools could be employed as assistive tech-

nology, offering significant advantages over existing solutions by enhancing mobility and

ease of use. The project not only aimed to provide an accessible shopping experience
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but also showcased potential applications in gaming and other hands-free scenarios. The

key contributions of our work include an open-source mobile user interface solution for

hands-free interaction featuring accurate 3D head pose mapping, a dwelling function

for touch events, a practice interface, and a demo application, thus paving the way for

further development and integration of hands-free applications. The project also in-

volved a lab-based user study following Fitts’ Law to evaluate our pointing mechanism.

However, Chapter 3 focused on demonstrating the applicability of head-based pointing

(HBP) across various contexts without evaluating it with the target group—individuals

with motor impairments.

Chapter 4 extends that research by conducting evaluations with this target

group during my summer internship at Google in 2019, supervised by Jeffrey Nichols.

The research highlights the effectiveness of a custom head-based pointing (HBP) as an

input method for virtual reality, gaming, and accessibility. Computer vision advance-

ments have made vision-based HBP feasible on mobile devices using built-in hardware,

offering a portable and user-friendly solution for people with motor impairments. How-

ever, most existing HBP research focuses on stationary settings, with few studies in-

cluding participants with motor impairments or investigating HBP on mobile devices.

To address this gap, a Fitts’ Law study was conducted to assess HBP’s practicality

on smartphones for users with motor impairments. The research identified three re-

quirements for mobile head trackers: ease of use without cumbersome settings, precise

pointing for typical user interfaces, and configurability to individual needs. The pro-

posed technique uses neural network-based face detection for precision and supports
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multiple selection methods. User studies demonstrated the method’s robustness across

different environments and effectiveness compared to the Eva Facial Mouse[69]. The

research resulted in a calibration-free, device-independent pointing mechanism, compre-

hensive evaluation, and open-sourced implementation, recommending HBP as a viable

interaction method for mobile devices for users with motor impairments.

Based on the previous evaluations, I concluded that the head-based pointing

solutions with predefined control mechanisms can be limited; for example, head tracking

may not accurately reflect user intent, leading to non-natural movements. After a

detailed discussion with my advisor, Prof. Roberto Manduchi, we proposed a user-

centric approach to create a flexible pointing algorithm that adapts to user intent. This

approach involves collecting data by asking participants to mimic marker movements

on a screen with their heads, which is tracked using video frames. The collected data

is then used to develop a more intuitive head-tracking system. Chapter 5 details the

remote data collection strategy and analyzes the variance in head movement data across

participants.

Chapter 6 analyzes the collected data, focusing on several types of features,

such as facial landmarks and head poses. An affine transformation was computed using

least squares regression to map these features to pointer locations on a screen. The

study compared these mapped pointer trajectories with the actual trajectories of a

marker followed by participants’ heads. Significant discrepancies were observed, which

were expected due to the lack of feedback provided to participants regarding their head

movements. Furthermore, the analysis revealed unique head movement patterns among
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individuals performing similar pointing tasks, necessitating tailored mappings from head

to pointer motion using affine transformation as the mapping function. It was found

that the relationship between head position and desired pointer motion is complex and

conditional, with biases based on the location and direction of pointing.

In Chapter 7, neural networks capable of learning non-linear correlations and

biases through conditional neuron activation were proposed to improve precision. Eval-

uations involved fully connected neural networks (FCNs) and recurrent neural networks

(RNNs). FCNs offered straightforward data formation adjustments, and RNNs learned

sequence-to-sequence mappings to account for previous steps in estimating current

pointing coordinates. Different training approaches, including stateful and stateless

training, were explored. Using cross-validation, feature comparison studies with FCNs

and RNNs involved training individual models for each feature set and participant. Per-

sonal models trained for specific participants were compared to generic models tested

on unseen participants. Normalization effects were also studied, revealing that generic

models underperformed compared to personal models. To address this, personalized

models with limited end-user data were introduced, demonstrating the fine-tuning ca-

pacity of neural networks. Various fine-tuning strategies, such as adjusting learning

rates and weight freezing, were tested, and the benefits of standard normalization in

fine-tuning were explored to enhance the overall contribution of the work.
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Chapter 2

Related Work

My research focused on proposing novel head-tracking mechanisms that pro-

vide visual-based head-based pointing on different devices as assistive technology to

make those devices accessible to everyone, including people with motor impairments.

Different devices come with different assistive technology options, providing alternative

selection and pointing methods. Alternative text inputs or voice-based solutions can

also be employed as an alternative pointing tool. This chapter presents a review of the

related literature to provide a greater context for my research. The related literature

includes several assistive technologies that provide or support pointing functionality.

2.1 Assistive Technology

WebAIM [103] lists several selection and pointing methods as the mainstream

assistive technologies, as discussed in the following sections.
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2.1.1 Selection Methods

Adaptive switches of any kind replace a necessary button pressing for mouse

clicking, tapping, or for a more specific function like using a screen scanning solution.

By design, adaptive switches are larger buttons that can be attached anywhere from

floor to wheelchair headrests and can be hit by appropriate body parts. Tecla [100] lists

the 7 most common switches as adaptive switches, including several types of buttons,

joysticks, Sip-and-Puff tools, and blink recognizers. Besides these regular switches,

other interesting studies propose sensitive switch [30], vision-based switches [57, 59]

triggered by a smile, a tongue or tooth-click detecting device, and voice-based switches

[94]. The mobile platform, iOS by Apple [46], where I developed an application during

my early research, has built-in features like touch screen tapping as a switch and a front

camera-based switch that detects very simple head movements as a trigger and supports

external switches.

2.1.1.1 Dwelling function

The dwelling function is a selection mechanism rather than an assistive tool.

Most solutions tend to have a dwelling function as a replacement for the switches I

mentioned above because these solutions are designed to provide a completely hands-

free interaction and greater mobility by not relying on any external switch. Instead,

they require the user to hover over a target in graphical user interfaces for an activation

time to select the target. As several comparative studies [64, 109] show, the dwelling

method is quite slower than the clicking method for selection. It also has the Midas
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Touch problem, unintentional selection due to ‘pointing-hold’ on a random target. This

issue limits the design graphical user interface since bigger targets are necessary [82].

Using an external device increases the complexity of the task by requiring two separate

physical abilities, pointing and button clicking simultaneously. So, with a careful choice

of appropriate activation times and a specialized design, a dwelling function may still

be preferable to an external switch.

2.1.2 Pointing Methods

Adaptive pointing devices are several adaptive mouse solutions with different

shapes and sizes to provide easier use in the market in addition to larger touchpads and

touchscreens that recognize customized gestures like Mott et al. [74] suggest. While

these solutions provide greater accessibility than standard input devices, they still re-

quire fine physical ability that most people with motor impairments do not have. Also,

having an external device or an extra large touchscreen counteracts the logic of complete

mobility that my approach brings.

2.1.2.1 Screen Scanning mechanisms

Screen scanning mechanisms scan along the horizontal and vertical axes of

the screen in a loop until the user selects the desired target by a switch. Although

this is the only practical interaction technique when the user has no physical ability, it

only functions as a single switch in the worst cases. This is the least efficient pointing

method in terms of time since the system needs to scan two-dimensional targets in one
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dimension. The missing item selection cost during the scan is twice the looping time,

which would be very long when the number of items is considerably large. Like most of

today’s popular operating systems, iOS also has a built-in scanning mechanism, Switch

Control, [46] that supports both item and point scanning.

2.1.2.2 Gaze-tracking

The gaze-based pointing methods calculate an approximate gaze point by

tracking the movement of eye components where the user has no other physical ability.

In these unfortunate cases, gaze-based techniques [53, 66, 107] connect the user to the

outside world by building direct communication. Other gaze-based solutions with more

sophisticated interaction [27, 46, 71, 75] allow users to play games and browse the web.

However, these solutions require a well-calibrated external device under fixed lighting

conditions. Also, comparisons between head-based and gaze-based interactions [7, 54]

conclude that head-based techniques are more voluntary, stable, and have greater ac-

curacy, while gaze-based techniques would be faster for some specific tasks like typing

[34]. Despite experimental studies [43, 52, 86] that have the potential to increase their

accuracy on mobile platforms, the practical mobile usage of gaze-based interactions is

still limited.

2.1.2.3 Head-based Pointing

The head-mounted stylus has a long history. It is used as a writing tool by

attaching a regular pencil at the edge of the stylus. The first commercially available
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device used an ultrasound transmitter attached to a computer’s screen and receivers

attached to a headset to determine the location of the user’s head [84]. Today, we still

have physical head-mounted styluses [83] for touchscreens and sophisticated products

like Quha Zono [81] and Glassouse [35]. Besides physical devices, many of today’s

alternative pointing methods employ visual-based interactions [67] that detect and track

a voluntary movement of a body part [91] for two-dimensional pointing. Betke et al. [8]

show that visual tracking of body features, especially facial [e.g., face, nose, eyebrow],

can be a successful pointing tool for people with motor impairments. Mauri et al. [70]

also review assistive technologies for the same user group and conclude that visual-based

systems would be the only way of computer interaction for some users. Advantages

include flexibility and lower cost over other traditional assistive technologies. There

are many successful applications of head-based pointing in assistive technology (e.g.,

Camera Mouse [77], Smyle Mouse [59], Enable Viacam [68], HeadMouse Nano [22]).

MacOS also embedded head pointing[47] as an internal assistive feature one year after

this research. In addition to assistive technology, I would also like to highlight the huge

potential of head-based tracking in other areas, including desktop GUIs [9], wearable

computing [12], and VR 3D user interface [10, 20, 54].

Today, there are also ready-to-use mobile head-tracking solutions such as EVA

Facial Mouse [69] and Essential Accessibility [2] available on mobile platforms that

rely on head-tracking and provide considerably free control of the mobile environment

without any external devices, nor requiring a sensitive calibration. But most of these

products are only available on Android. On the other hand, I find that recent studies
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[1, 89, 90, 91] that evaluate head-tracking on mobile devices tend to use iOS as their

experimental environments. In their first study, Roig-Maimó et al. [91] propose two

similar tasks to evaluate head-tracking: a picture-revealing puzzle game for pointing

and an item selection task for different-sized items. In their most recent work, Roig-

Maimó et al. [90] applies a user performance evaluation through Fitts’ law for a mobile

head-tracking interface by following the multidirectional tapping test described in the

ISO standard [49] after his non-ISO study [89].

Most visual-based head-based pointing solutions rely on off-the-shelf face-

tracking algorithms to capture user feedback (i.e., head movement) and convert this

input into pointing coordinates on the screen. Enable Viacam [68] benefits from the

Haar Cascade algorithm [101] for face detection by evaluating its source code. Cam-

era Mouse [77] also allows users to choose the input mechanism for pointing. Besides

face tracking, it includes point tracking based on simple optical flow calculation. In

this setting, users can determine a small patch on their face and the software tries to

keep track of this patch on the following frames. On the other hand, HeadGazeLib [19]

utilizes the depth sensors of the device to locate the user’s face with respect to the cam-

era. While other methods [15, 59] use advanced deep learning algorithms to detect and

track the facial features from RGB images, their conversion functions are again tailored

by the developers and involve no machine learning. To the best of my knowledge, no

visual-based head-based pointing solution aims to directly learn to point from the user’s

appearance.
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2.2 Pointing Ability of People with Motor Impairments

Fitts [32] designed and ran the first experimental study evaluating human per-

formance in target acquisition tasks. His seminal work became known as Fitts’ Law and

has adapted countless times to many related input tasks. The ISO 9241 standard [49]

includes variations of his work for testing the performance of non-keyboard input de-

vices. Fitts’ Law techniques have also been used to evaluate pointing performance tasks

for specific user groups, including individuals with motor impairments. One of the first

Fitts’ Law studies in this latter category was conducted by Bravo et al. [11] to compare

the reaction and movement times between able-bodied and cerebral palsied groups and

concluded that the cerebral palsied groups required more time to respond. Riviere and

Thakor [87] also showed that movement disorders make mouse use quite inaccurate and

nonlinear. Montague et al. [72] found similar performance and interaction behaviors for

motor-impaired users using touchscreens on mobile devices. Similarly, Findlater et al.

[31] compared touchscreen and mouse input performance by people with and without

upper body motor impairments. These studies and Wobbrock [104] show that point-

ing at targets in graphical user interfaces, whether with a mouse, a stylus, or a touch

screen, is still a serious access barrier for people with motor impairments because of the

required fine motor skills. This has led researchers to work on improving the efficiency

of pointing tasks through alternate methods.
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Chapter 3

Mobile Head Tracking for eCommerce

and Beyond

This chapter explains my research during my summer internship in the com-

puter vision team at eBay 2018. The project was led by me and supervised by Robinson

Piramuthu, the head of the team at the time. Our colleagues, Jinrong Xie, and Qiaosong

Wang, also supported the project, especially in terms of running the user studies and

validating the implementation. The published work [18] was written by me and peer-

reviewed by my colleagues before the final submission.

I was always interested in introducing head-based pointing into different ap-

plications to show its practicality and necessity for people with motor impairments. At

eBay, I was asked to propose a research plan that brings our interests together. After

a literature survey, I found out that 80% of Americans shop online, according to Pew

Research Center in 2016 [95]. Shopping at stores can be cumbersome as consumers do
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not prefer to be present at stores physically for several reasons [51]. In addition, there

are also specific barriers [97] that make in-store shopping harder for people with motor

impairments. I believe online shopping would address this problem since it requires

considerably less effort to interact with digital devices to buy an item than to travel

to the nearest store. But even this task is hard to complete for people with motor

impairments. They are required to operate a pointer with a mouse-like device or tap-

ping a certain point on the touch screen [31, 72, 87, 104]. According to The Centers

for Disease Control and Prevention, there are 39.5 million adult Americans with some

sort of physical functioning difficulty [33], and they potentially have difficulties during

shopping, both in-store and online.

Proprietary software can emulate mouse and keyboard via head tracking. How-

ever, such a solution is not common on smartphones. Modern smartphones like the

iPhone X have various sensors and abundant computing power. Unlike desktop and

laptop computers, they are much easier to carry around. Therefore, it is natural to

make head-tracking-based interaction available on smartphones. For example, a but-

ton, typically sensitive to touch, could capture head-tracking motion and activate when

the tracking region falls within its extent. It is difficult for developers to achieve this

since it requires special expertise. The work in this chapter is proposed to make it easy

for application developers to use buttons that capture head-tracking events. This will

make basic activities such as shopping easily accessible to people with motor impair-

ments. Also, this could be extended to other situations demanding hand-free browsing.

I implemented such a button, and eBay open-sourced the project so developers
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could easily integrate it into their projects. Using the software, users could interact with

the application only by head movement. This requires significantly less effort compared

to using a touchscreen. I built the application on top of the state-of-the-art ARKit 2

[44] toolkit. The work shows that Augmented Reality tools can be used for assistive

technology and have several advantages over the existing assistive solutions as they rely

on the built-in feature and provide complete mobility.

This work focuses on its application as an assistive tool, mainly for people

with motor impairments. To illustrate the use of such a modality, it provides an online

shopping experience for everyone through a mobile application. Although the initial

motivation was developing an accessible online shopping application, the scope of pos-

sible use cases includes other applications such as gaming and hands-free situations

such as during cooking and auto-repair. A great variety of mobile applications can be

empowered with a touch-free design by employing our ready-to-use interface module.

The contributions of this work are:

• An open-source solution for mobile user interfaces that provides hands-free inter-

action with smartphones. The code is completely open-sourced1. It features an

accurate mapping from a 3D head pose to a virtual pointer, a dwelling function to

generate hands-free touch events, a sample practice interface, and a demo appli-

cation for the online shopping experience. Anyone should be able to extend this

work and/or develop hands-free applications by integrating their design with its

UI components.

1https://github.com/eBay/HeadGazeLib
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• Design of a mobile user interface for online shopping that can benefit everyone,

including those with motor impairments. To the best of my knowledge, this re-

search is the first one that highlights the defined problem and proposes a practical

solution to developing a working product.

3.1 Design Process

In this section, I discuss the design process that the team also contributed. I

list my initial observations that I specify the problems, the design requirements I state

how to address these problems, and the design decisions we make with the team to meet

these requirements.

3.1.1 Initial Observations

These were my observations prior to the start of this work. Firstly, people with

motor impairments have several difficulties during shopping. I overview the literature

and discuss my findings in the previous section. The current interface of online shopping

applications has its own barriers for people with motor impairments since it heavily relies

on standard interaction methods. I highlighted the limitation of standard methods in

Chapter 2. Besides, standard interaction methods (i.e., selection, pointing, and typing)

need to be carefully adapted for people with motor impairments. Although sophisticated

interactions introduced to Virtual and Augmented Reality inspired this work, they are

nothing short of limitations in the mobile environment.

I surveyed relevant interaction methods individually in corresponding subsec-
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tions under Chapter 2 and tried to choose the most optimal solution. Among alternative

interaction methods for people with motor impairments, only a few provide true mobil-

ity. This is especially true on the iOS platform, where open-source tools for hands-free

pointing are sparse. Although Apple ARKit is mainly intended for entertainment, e.g.,

Pokemon Go and Animoji, I saw the potential of taking advantage of its head/face

tracking capability to empower mobile interface with a hands-free option.

3.1.2 Design Requirements

The aforementioned observations and the urgent need to enable persons with

motor impairments to use mobile devices with minimum effort inspired us to create a

mobile hands-free control without any auxiliary hardware that can be easily integrated

into existing applications. To be specific:

• Hands-free is a must-have as we want to empower conventional mobile applications

to be accessible to everyone, including persons with motor impairments, while

reducing the friction in target-pointing and -selection.

• Auxiliary-free Any external device or sensor brings additional cost and undermines

mobility in most cases.

• Mobile-friendly Nowadays, smartphones are ubiquitous and have become the main

source of information we consume every day. Being mobile-friendly means maxi-

mizing the benefits of hands-free control on the most common platform and being

influential in numerous existing and future mobile applications.
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3.1.3 Design Decisions

Next, I explain the following design decisions to meet each requirement in the

most compact way. The decisions were made after a discussion process with the team.

3.1.3.1 Interaction Methods

I propose a Completely mobile solution to the defined problem. After a compre-

hensive literature search, I concluded that people with motor impairments have serious

difficulty using regular mobile devices and that the solutions rely on external devices,

thus limiting mobility significantly. To make the solution hands-free and auxiliary-free,

I evaluate all possible methods for human-computer interaction in the 2 section. These

comparisons led me to pick head-based pointing with dwelling function for selection.

With this combination, I make sure the solution relies only on the embedded features

of the device - specifically the front camera since the methods I prefer are visual-based

interaction methods.

3.1.3.2 Application for Online Shopping

The team wanted to enable people with motor impairments to be able to shop

online on a smartphone and feel independent. With this purpose, I designed an online

shopping application requiring minimum interaction effort. To keep the design even

simpler, I built only a browse-based shopping application that allows users to browse

products across categories. This also eliminated other complex tasks, such as searching

and ranking, required for a regular online shopping application. While a browse-only
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shopping application did not provide a complete shopping experience, it was still im-

portant since the approach was one of the very first assistive eCommerce applications.

Also, since eBay open-sourced this project, anyone could extend its functionality by

adding searching logic on top of my work.

3.1.3.3 Development Environment

With the intention of developing mobile online shopping that only depends

on visual-based interaction, head-tracking specifically, I searched for the most appro-

priate environment with the necessary functionalities. Instant head-tracking was still

a challenging task on mobile devices at the time since it relied on power-hungry video

processing and the ability to capture high-quality video through a front-facing cam-

era. This solution was not practical on many mobile devices with limited resources and

led me to focus on the most recent product releases only. iPhone X had True-Depth

Camera [45], an impressive feature. It was originally designed to support advanced AR

applications on iOS 11 and is accessible through Apple’s ARKit 2 [44], an AR develop-

ment SDK. ARKit 2 implements efficient on-device head-tracking and exposes precise

measurements of several facial landmarks to the developer. The biggest advantage of

this setup is that it only relies on the device’s built-in components without requiring

extra accessories. This is power efficient and portable. The open-source head-based in-

terface components on iOS were built on top of ARKit 2. Even though the tools I built

existed only on that iPhone model, which may have limited its usability at the time of

this research, according to the report of Strategy Analytics [76], the iPhone X was the
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world’s best-selling smartphone model in that year, shipping an impressive 16 million

units during the first quarter of 2018. These numbers, together with the promising fu-

ture of AR applications, led me to believe that most of the smartphones on the market

would intend to adopt similar features in the near future. Overall, a smartphone-based

solution is more affordable, portable, and beneficial than many of the common external

solutions that heavily rely on separate gaze or head-tracking gadgets.

3.2 System Design and Implementation

3.2.1 Head-based Pointing

To meet the design requirements, I first implement a hands-free, auxiliary-free,

mobile-friendly interaction system. The system consists of two main modules. A module

for head-based pointing and a customized UI module for the interaction with on-screen

pointer and feedback visualization.

3.2.1.1 Head-tracking

ARKit 2 comes with stable head-tracking capability where the 3D location and

orientation of the tracked head can be queried at each AR session through ARFaceAn-

chor object. Abbaszadegan et al. [1] used the same technique to highlight the potential

of using the True-Depth front-facing camera of an iPhone X for tracking.
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Figure 3.1: Mobile head tracking architecture to control button using head “pointing”.
I created a set of modules to extend native UIKit to handle head tracking, pointer
visualization, head gaze event detection, triggering, and forwarding.

3.2.1.2 Head-to-pointer Mapping

However, the limitation of ARKit head-tracking is that it does not provide

additional information regarding the location on the screen at which the head or nose

is pointing. To bridge this gap between 3D head posture and pointing location on the

phone screen, I designed an intuitive virtual stylus model to give users stable control

of their pointing direction and instant feedback on the pointing location on the screen.

Figure 3.1 illustrates how the model works. To aid the calculation of pointing location,

I model the phone screen as a 2D plane perpendicular to the z-axis at position z=0.

A proxy ray is spawned from the head center and passes through the nose. The ray-

plane intersection is then calculated and is considered as the pointing location. Another

possible solution is to project the nose position directly on the screen and take its screen

space coordinates as the pointing location. I found that, in practice, the virtual stylus

model takes into consideration the distance between the head and the phone, which

allows distance-based sensitivity adjustment. Such a feature is adorable as it adapts

to a UI interface with widgets/controls that vary in size, shape, and gap. To compute
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the intersection, let p0 ∈ R4 denote the homogeneous coordinates of the original head

position in the object space, and W ∈ R4×4 denote the world transformation matrix

from ARFaceAnchor object updated at each frame. The initial virtual stylus direction

is denoted by d0 ∈ R3 and points to the negative z direction perpendicular to the screen.

At each frame, the head center is updated to p = W · p0 and the pointing direction is

updated to d = W · d0. The resulting ray-plane intersection b in Normalized Device

Coordinate (NDC) space [0, 1] × [0, 1] is then calculated by b = p + d × t, where

t = −p.z/d.z. I further apply viewport transformation to map the NDC coordinates to

the screen space that can be used for the UI widget intersection test.

3.2.1.3 Pointer Visualization

To give users instant visual feedback on head-pointing, I visualize the location

as an on-screen cross-hair using Apple SpriteKit API. Specifically, to cover the full screen

and to provide precise tracking feedback, I add to the application a UIHeadGazeView

layer that inherits from SKView to make UIHeadGazeView a Spritekit Scene object

that serves as a canvas on rendering 2D geometry on the screen to represent pointing

location.

3.2.2 UI Module

3.2.2.1 Selection Method

Native UI widgets implemented by the Apple UIKit package only react to

user physical touch events such as touch down, touch up, pinch, etc. Unfortunately,
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there is nothing to support interacting with the UI from mid-air. This requires a new

definition of interaction for head-based pointer and native UI components. To bridge this

gap between the pointing location and interaction with existing UI, I defined several

interactions and implemented them through customized UI widgets on top of Apple

UIKit so that they can be seamlessly integrated into new iOS applications or extend the

existing ones with minimum effort. For example, I created a UIHoverableButton class

in Swift by extending iOS’ default UIButton class to respond to the pointer interaction.

Such a customized button senses the pointer’s location change and triggers hovering

events whenever the pointer enters the button. It will further trigger a selection event if

the pointer hovers beyond a user-specified time interval, hence dwelling. During pointer

hovering, a user-customized animation effect can be added to the UIHoverableButton to

serve as a visual cue on the elapsed hovering duration. For instance, gradually increasing

the button size or gradually filling the background with different colors. See Figure 3.2

for illustration.

Besides UIHoverableButton, other customized classes are implemented to ex-

tend native UIKit to support head tracking, pointer visualization, head gaze event de-

tection, triggering, and forwarding. The inter-module connection is illustrated in Figure

3.1. At a high level, UIHeadGazeViewController keeps track of head motion and passes

the head’s world transformation matrix to UIHeadGazeView. UIHeadGazeView then

computes the head-to-pointer mapping, updates the current pointer location, and no-

tifies the registered event recognizer UIHeadGazeRecognizer about the updates. These

updates are encapsulated in a UIHeadGazeEvent object. The design follows iOS UIKit
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Figure 3.2: Illustration of a sample eCommerce application that we designed and open
sourced. Cursor is shown as a cyan circle with dot at its center. Navigation buttons are
filled with blue when they are fully activated (left image). Action buttons expand fully
for activation (right image).

protocol and blends into the regular event handling scheme. Such a design requires

minimum effort to modify the existing code base to support the head-based pointing

feature.

Users can select different types of UIHeadGazeEvent depending on how long

the pointer needs to hover over a button before triggering the corresponding type of

UIHeadGazeEvent. I currently have predefined two types based on the length of the

dwelling duration: glance (1 sec) and gaze (2 secs). The trade-off has to be made on

setting the duration, as a longer duration reduces the chance of accidental clicking but

increases latency. By default, the duration is 1 second (glance). This configuration re-

duces the accidental clicking of unintended buttons while maintaining the interaction at

high throughput. Furthermore, to avoid unintentional repeated clicks on the same but-
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tons, the button is configured not to emit another UIHeadGazeEvent until the pointer

reenters that button. With this limitation, the user has to move the pointer away from

the button to emulate touch up before they can re-click the button if needed. While this

is an extra effort for intentional re-clicking, the effort is actually negligible compared

to the one incurred by undoing the unintentional re-clicking, which normally requires

clicking different buttons to reverse it.

3.2.3 Simple Online Shopping Interface Design

Once I implemented the head-based interaction system, I integrated this sys-

tem into a simple shopping application to allow people with motor impairments to shop

online.

3.2.3.1 Product Browsing Page

The shopping application starts with a product browsing page, which takes

up the application’s main screen (figure 3.2). It presents one product at a time on

the screen with a reasonably large photo along with title and price information. At

the bottom of the screen are the three action buttons that allow users to share items

on social media, check out items, or add items to shopping carts. Each of the three

action buttons brings up a separate hands-free page for the subsequent process. For the

interest of space, we focus our discussion on the main product view page.

Items are organized in a 2D grid and grouped in each row by their category.

The item view is surrounded by four direction buttons, allowing users to browse items

28



(horizontal swipe) and categories (vertical swipe). Users are presented with one cell of

the grid at a time while they can swipe the item by ”clicking” the direction buttons.

3.2.3.2 Open Source

eBay open-sourced the head-based pointing solution with advanced mobile UI

components compatible with head-based pointing. Such a generic library can benefit

researchers and developers in many different use cases. Through a sample online shop-

ping application, we addressed several design concerns and showed the practicality of

the proposed solution.

3.3 Experiments

Beyond the online shopping application I implement, I believe that the primary

contribution of this work is the open-source tools for head-based pointing on iOS which

is one of the most common mobile platforms all around the World. To see the end-

user experience and understand these tools’ relative performance, usability, and user

preference, eBay supported me in conducting a field experiment with 75 able-bodied

participants during an internal company showcase. Although the research states the

target user group is people with motor impairments, anyone would benefit from a hands-

free smartphone interaction. Providing a baseline evaluation of this system with able-

bodied participants would be an important contribution since the results would inspire

the community for future work. In addition to the field study, the company recruited 27

able-bodied participants for a lab-based user study to test my head-based interface for
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possible future work not limited by online shopping. Finally, I participated in a simpler

experiment as a person (24, male) with motor impairments to try the same interface

and provide feedback for comparison.

3.3.1 Participants

With the assistance of my colleagues, we conducted 2 separate experiments.

In the field study, we recruited 75 able-bodied unpaid participants (35 female, 40 male)

to experience the online shopping app. We randomly picked the participants during a

crowded event and solicited their initial feedback on my approach right after they played

with the app. In the lab-based study, we recruited 27 able-bodied unpaid participants

from the company and involved them in an instructed user study. Among them, 16

were male and 11 were female. The participants had no prior experience with head-

based pointing methods or the dwelling function in both experiments. They were of

different ages and various races. Some of them wore glasses during the experiment.

With this diverse group of participants, we intended to get a realistic insight into the

learnability and usability of the system from novice adopters of the technology since

this methodology is uncommon, especially on mobile. These studies are insightful on

the practicality of our approach to a real-world application such as an online shopping

solution.
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3.3.2 Design and Procedure

I implemented a separate UI design for the lab-based study as a single mobile

application. We conducted the experiment by running this App on an Apple iPhone X

running iOS 11.2 with a resolution of 1125×2436 px and a pixel density of 458 ppi. This

corresponds to a resolution of 375×812 Apple points (pt), an abstract unit covering two

pixels on retina devices. The camera was also the iPhone X’s embedded 7-megapixel

front-facing True-Depth Camera [45]. We fixed the phone’s position by placing it on

a holder in portrait mode. The participants were required to sit against the phone at

3 different distances for each test. We placed the phone on a holder attached to an

adjustable table. Before the experiment, participants were also informed of the purpose

and instructed to complete the tasks. The experiment lasted about 15 minutes per

participant.

The user study App for this experiment had 5 different screens (figure 3.3) to

show in order during each session. The user study App opens with a welcome screen

with the instructions for the overall experiment. Then, it has an unlimited practice

session that familiarizes the participants with head-based pointing. It includes two

consecutive tests with different layouts on separate pages to get different feedback on

participants’ performance. During the experiment, the app also collected the times-

tamps of participants’ each action and the cursor’s position for analysis. At the end of

this experiment, we also asked each participant to fill a questionnaire for recording their

user experience. The experiment is carried out on two layouts with three distances:
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(a) (b) (c) (d) (e)

Figure 3.3: UI design for user study via 2 tests. Each test is performed at 3 different
distances between face and screen (near, mid, far). A test is complete when the desired
sequence is complete. The next button in the sequence to be selected is shown in
orange. To reduce response time, I highlight the following button in the sequence in
gray. Buttons fill up blue during dwell time, after which the next button is highlighted
in orange and the following button in gray. (a) welcome screen with instructions (b)
unlimited practice session for warm-up in different distance modes (c) first test for
densely packed buttons around the center of the screen (d) second test with buttons
uniformly distributed across the screen (e) summary is shown in the final screen.

Near (11 to 15 inches), Mid (15 to 19 inches), and Far (19 to 23 inches).

Test 1 (Numbers) was designed for densely packed targets around the center

of the screen (figure 3.3c). The first test screen contains 10 targets labeled from zero

to nine by digits, similar to the numeric keypads. In addition to highlighting the next

target in orange by the predefined order, I also displayed the whole desired sequence on

the upper part of the screen and colored the sequence accordingly. The desired order

was [12345678901928376405]; we especially selected this sequence to catch participants’

performance on vertical, horizontal, and diagonal trials with different lengths.

Test 2 (Alphabets) was with targets uniformly distributed across the screen

(figure 3.3d). I aimed to see the reachability of targets positioned on different parts of

the screen. Test 2 had 15 same-sized targets which were labeled by the letters, from A

to N. The targets had almost the same distances with their neighbors and were required
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to be selected in the alphabetic order. Here, I expected that the participants could

select the targets around the center of the screen easily, but it could be hard to select

the targets far from the center, especially the targets at the bottom.

In total, there were 27 participants × 3 distances × (20 + 15 targets) = 2835

trials in the user study.

3.3.3 Results

The lab-based study tended to evaluate the practicality of the proposed inter-

action precisely. Therefore, I applied a quite similar study with Fitts’ Law [32] since it

is the standard way to evaluate this kind of approach and derive the dependent measure

throughput (Fitts’ index of performance) as part of the comparison and evaluation [89].

3.3.3.1 Objective Evaluation

I calculated throughput (TP) as follows:

TP =
Effective index of difficulty

Movement time
=

IDe

MT
, (3.1)

where IDe is derived from the movement amplitude A, and effective target

width We and MT is averaged movement time per trial over a sequence. They have

units ”bits” and ”seconds” respectively; the units of TP are ”bits per second (bps)”.

The effective index of difficulty is also a measurement of the difficulty and user precision

in completing a task:

IDe = log2(
A

We
+ 1), (3.2)
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where A is the movement amplitude, the distance between the centers of two

consecutive targets, and We is the effective target width, calculated from the width

distribution of selection coordinates made by a participant over a sequence of trials,

which is calculated as below:

We = 4.133 · Sx, (3.3)

Note that I used the standard deviation method to calculate throughput [63].

This is because my specific design utilizes the dwelling function and has no error rate

[108]. Also, I followed Roig-Maimó’s [89] equations and applied our own Non-ISO tests.

A detailed description of the calculation of throughput can be found in [89, 108]. I show

the summary result of dwell time and throughput in Fig. 3.4. The top row shows the

average dwell time of all users at the 3 distances. The box and whisker plot goes from

the lower to upper quartile values of the dwell time data collected from all users at all

3 distances, with a line at the median. The whiskers extend from the box to indicate

the data range. The median value of the data range is plotted in black, while mean

values per distance are shown in the legend. I also follow the same fashion to show the

throughput per motion sequence in the middle row. Finally, at the bottom row we show

throughput per user averaged over all motion sequences.

For the Numbers test, it is worth noting that it is easier for the participants to

navigate in theMid range compared to the Near range, and most participants completed

the test in the shortest time under the Far range setting. This is because the spacing

between the buttons is relatively large in this test. If the users are operating at a
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Figure 3.4: Analysis of dwell time and throughput. Top: elapsed time per motion
sequence averaged over all participants. Middle: Throughput per motion sequence
averaged for all participants. I also show box and whisker plots for data collected from
all participants at each sequence. The range plot shows the median of the range of a set
of data collected from all participants across all 3 distances. Bottom: throughput per
participant averaged over all motion sequences, sorted by throughput averaged across
all distances. Note that for the numbers experiment, the throughput is generally higher
at far distances, while for the alphabet experiment, throughputs are usually higher at
near distances. See Sec. 6 for details
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Figure 3.5: Analysis of dwell points. (a-b) Randomly selected dwell points from a
participant. (c-d) Directions of eigenvectors derived from dwell point coordinates.

closer distance to the screen, it requires more head movements to control the cursor

to move across larger distances. This is especially true when the participants perform

large diagonal movements from number 0 to 1 or from 1 to 9. On the contrary, for the

Alphabets test, participants complete under the Near setting in the shortest amount of

time with the highest throughput. As the button size and spacing become smaller (See

Fig. 3.3), it is easier to navigate in the Near range as it offers more precise control. The

above observations can also be verified at the bottom plot from Fig. 3.4.

For the Numbers experiment, throughputs are generally higher at far distances,

while for the Alphabets experiment, throughputs are usually higher at near distances.

In addition to throughput calculation, we also studied the direction of selection points

with respect to buttons at different locations (see Fig. 3.5). I calculated the eigenvectors

of selection point coordinates on the covariance matrix to see if there is a pattern. I

found that for the first column of buttons, statistics show that most users point to
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the left side. This may indicate that the participants are trying to position the cursor

more toward the left side of the screen, and most of the cursors overshoot the center

position of the buttons. For the center column of the buttons, the eigenvectors show a

pattern of a path placed more toward the right side. For the third and final column,

most participants tend to reverse the path more toward the left side in order to hit the

buttons sequentially. On the third row, the pattern changed compared to the previous

two rows, indicating participants getting more familiar with the app and thus exhibiting

better control.

3.3.3.2 Subjective Evaluation:

We applied a questionnaire to the participants of the lab-based study right

after their individual sessions. 96.3% of participants considered moving the cursor by

head was easy and normal. The majority of them also reported that the selection

method was normal. 48.1% reported no scientific difference between the difficulty of

selection based on the target regions (upper, lower, and middle portions of the screen

in portrait mode). Only 18.5% thought the lower region was the hardest to reach, while

29.6% disagreed and said the targets at the upper region were the hardest to select. The

majority of the participants claimed that practicing the tests by keeping the distance

at mid from the phone was easier to use the system, while 29.6% said the far distance

was easier.

As a person with motor impairments, I also completed both tests and experi-

enced the shopping app. I completed the first test slower than other participants since I
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had difficulty keeping my head stable for dwelling. I showed average performance on the

second test as I got more familiar with dwelling and the software interface. Ultimately,

I found the system quite practical for several use cases, including typing. I think the

system’s pointing accuracy is quite better than the software I use on a daily basis for

communication, which runs on Windows via a webcam.

We also applied a questionnaire to the participants who experienced my online

shopping interface during the field study. We sought their initial thoughts about the

proposed hands-free online shopping App. Among 75 participants, 51 of them thought

this was a useful idea. 41.3% reported the app was easy to use even though they were

unfamiliar with this interaction method. 31 participants also found it enjoyable, while

5 of the participants could not find a use case and said this solution was not for them.

Only 9.3% claimed moving the cursor by head was hard for them, while 52% thought

it was easy, and 38.7% thought it was normal to practice. Furthermore, 50 participants

reported that this solution would fit somebody’s needs they know.

3.4 Discussion

I pointed out that online shopping has several barriers for people with motor

impairments. The proposed design led me to address this problem with a hands-free,

auxiliary-free, completely mobile online shopping sample application. My application al-

lows users to browse several deals from different categories and select/share the desired

products. Users do not need any external device or a fine calibration step to use my
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approach. This eliminates the need for a touch screen, which requires fine motor control.

The initial user feedback also shows that this interaction with an online shopping appli-

cation is practical and enjoyable. Beyond this application, this work actually proposed

hands-free interface components as an open-source solution so that developers may in-

corporate head tracking into their mobile applications, not limited to eCommerce. The

open-source solution can be used in several applications, from communication tools for

people with motor impairments to a hands-free recipe or DIY application.

The lab-based study suggests keeping the phone at mid-distance (15 to 19

inches) from the face increases the interaction quality and is more comfortable since

it provides an accurate and robust interaction. There is a trade-off between cursor

speed and stableness. To be specific, small phone-to-head distances require bigger head

movements that can easily cause fatigue but deliver fine control with higher stableness,

while larger distances require minor head movements but with higher precision and

stable head movements, which is potentially stressful as well. Future work on head-

based interaction may consider this fact and design its interface accordingly. Another

fact is that, while the majority of the participants reported that there was no significant

difference between the difficulty of selection based on the target regions, I concluded

that the targets around the center of the screen are more reachable than the targets on

the lower portion of the screen since there are higher throughput values for the center

sequence of Alphabets test (see Fig. 3.4). This is natural since pitching the head up or

down is a relatively more uncomfortable task than yawing the head left or right. Placing

the frequently visited targets around the screen center while reserving the lower portion
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for information display or less commonly used targets like the ones in the provided

design (Fig. 3.2) would provide a more ergonomic interaction via head-based pointing

on mobile and keeps the amount of uncomfortable pitching tasks to the minimum.

This research highlights the potential of the proposed approach as an important

number of people who experienced our approach considered it useful for them in several

use cases such as baby feeding or fixing automobiles with dirty hands. In addition to

the able-bodied user group, I was also able to practice precise target selection on such

a small screen for the very first time as a person With motor impairments. I can also

add that hands-free smartphone interaction is especially a serious need for wheelchair

riders, even if they have fine hand control since they also want to keep interacting

with their phones while moving. In so many cases like this, the open-sourced, hands-

free UI components would be really helpful for developers to build new applications in

consideration of these needs. Therefore, future work would be developing any kind of

mobile applications on top of the published framework or adding new head-pointing

sensitive UI components to the open-sourced tool set.
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Chapter 4

Designing and evaluating head-based

pointing on smartphones for people with

motor impairments

Figure 4.1: A user is using our mobile head tracker.
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I was mainly focused on showing the applicability of head-based pointing

(HBP) in different concepts in the previous chapter. Also, during that research, I

had no chance to evaluate it with the target group, people with motor impairments. In

this chapter, I extended the first research and completed the evaluation by conducting

a user with the target group. The chapter explains my research during my summer in-

ternship at Google 2019. The project was led by me and supervised by Jeffrey Nichols,

the team manager of a user experience research team at the time. Several colleagues

in the team also supported the project, especially in terms of running the user studies

and validating the implementation. The published work [15] was written by me and

peer-reviewed by my colleagues before the final submission.

HBP is an effective input method for Virtual Reality and Gaming [10, 20, 40,

54], as well as for accessibility [8, 64, 65, 67, 70, 91]. As computer vision techniques

advance, vision-based HBP has become feasible for interaction on mobile devices using

their built-in hardware. HBP on smartphones can leverage the front-facing camera and

thus can be especially useful for users with hand motor impairments since it is portable,

easy to install, and requires no specialized equipment. Despite its great potential as

an assistive technology, most existing HBP research has focused on desktop/stationary

settings. Few studies have included participants with motor impairments [91, 109],

fewer have investigated HBP on mobile devices [2, 69], and none I was aware of have

explored both. To fill this research gap, Google employed me to conduct the first HBP

Fitts’ Law study on smartphones with users with motor impairments and quantitatively

studied its practicality with throughput (Fitts’ index of performance [32]). Through
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these standardized outputs, one may compare any pointing methodology with the results

and claim its practicality for people with motor impairments.

The research team asked me to identify three major requirements for the design

of a mobile head tracker based on my lifelong experience using HBP. It should 1) be easy

to use and require no cumbersome settings or calibration before or during use; 2) support

precise pointing to match the requirements expected by typical user interface designs,

and 3) be configurable and adaptive to personal needs. The research then proposes a

low-cost, device-independent, calibration-free pointing technique based on head tracking

using the front-facing camera on mobile devices. It uses neural-network-based face

detection to provide pixel-level precision and allows for multiple selection methods,

including dwell time, smile, and blink. To further ensure its customizability and truly

enable personalization at scale, the Android implementation was open-sourced1.

The user studies of the mobile HBP not only show its effectiveness compared

with the state-of-the-art Eva Facial Mouse (EFM) [69] but also shed light on future

directions for mobile HBP for assistive technology in general. The design of the studies

followed previous practice [90] of Fitts’ Law studies on mobile devices. We conducted

two user studies with the research team to evaluate Fitts’ Law performance across users

with and without motor impairments (see Figure 4.1). The first was a between-subjects

user study with 42 participants without motor impairments, to compare the proposed

technique with an existing product (Eva Facial Mouse) and provide a baseline to under-

stand the performance difference across user groups. The second study was performed

1https://github.com/muratcancicek/mobile_head_based_pointing
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with 15 participants with motor impairments. It revealed a number of invaluable lessons

and edge cases. Three participants in the second study participated remotely in uncon-

trolled environments, demonstrating the method’s robustness to various device settings

and lighting conditions. The experimental results show that the mobile HBP can work

across environments and devices for users with different degrees of motor impairments,

and the throughput of the proposed technique compares favorably with previous work

[24, 64, 69] under similar conditions. Therefore, the research recommends HBP for users

with motor impairments as an alternative interaction method on mobile devices.

The contributions in this chapter are three-fold:

1. I designed and refined a calibration-free mobile head-based pointing mechanism

based on the in-depth lessons learned from motor impairment experience;

2. We conducted the first Fitts’ Law study on participants with motor impairments

on small-screen mobile devices, performed a comprehensive evaluation and ana-

lyzed with quantitative results, compared the proposed method with the state of

the art [69] and suggest a set of guidelines for future accessibility studies of mobile

HBP;

3. Google open-sourced the proposed HBP2 framework to allow for personalized mo-

bile HBP at scale.

2Implementation at https://github.com/muratcancicek/mobile_head_based_pointing
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4.1 Designing a Mobile Head-based Pointing System

This section describes the design principle for the mobile HBP. As a person

with motor impairments, I have more than 15 years of personal experience using sim-

ilar technologies. This background provided inspiration for the following list of design

requirements.

4.1.1 Motivation

I, a person with motor impairments, have an immediate need for a head-

tracking mechanism that provides pointing functionality on mobile. While I have bene-

fited from HBP in stationary desktop settings for years, the number of available solutions

on mobile is limited. With a few exceptions, existing mobile HBP solutions either lack

an objective evaluation [2, 69] or are not publicly available [2, 88, 91] for further devel-

opment. I both properly evaluated and open-sourced its implementation in the previous

chapter. However, head-tracking in that approach relied on specialized hardware. Here,

I develop an HBP technique that can function on a wider range of devices that feature

a front-facing camera, such as the vast majority of smartphones.

4.1.2 Personal User Experience

Despite living with significant motor impairments, I have pursued a career

requiring heavy computer usage. This has led to over ten years of experience with head-

based pointing on a number of computing devices and, thus, insight into the essential

design requirements for an HBP method. All of my work on this dissertation, including
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the implementation of the methods, designing the pointing tasks, and writing the papers,

was done through the use of HBP methods. Ultimately, this work presents an interaction

method for people with motor impairments designed and developed by a person with

motor impairments.

4.1.3 Base Requirements for Mobile Head-based Pointing

Based on personal experiences with head-based pointing, I summarize a list of

requirements that I consider critical for HBP on mobile devices with small screens:

• Hardware-free: the proposed mobile HBP should exploit existing built-in sensors

and be standalone. Requiring additional non-standard assistive hardware would

undermine its availability and usability. As such, I employ a completely vision-

based method that relies on the standard front-facing cameras available on today’s

smartphones.

• Customizable: I understand that users’ physical abilities vary across individuals.

A usable HBP should be able to adapt to basic personal needs. Therefore, the

proposed HBP is designed to provide a set of selection options, including dwell,

blink, and smile, to provide a degree of customizability to the user’s ability level.

• Calibration-free: calibration is generally intrusive to user experience and per-

haps even tedious and time-consuming if frequent re-calibration is required. To

improve in-situ usability and mitigate the dependency on external supervision

from a person without motor impairments, the proposed HBP is designed to be
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calibration-free.

• Precise: on-screen visual targets can be very close, particularly on mobile devices,

sometimes making target selection challenging even for people without motor im-

pairments. To address this, our HBP must be able to provide precise pointing

while requiring minimal physical effort by the user.

• Available and extendable: besides making the mobile device accessible, the so-

lution itself also should be available and extendable by third parties for other

potential users. To meet these two requirements, we believe the solution must be

open-sourced.

These requirements help me to refine the existing technology on mobile and

carefully choose the implementation tools to build on.

To avoid biasing by my personal experience alone, the research team at Google

assisted me in conducting multi-person evaluations of our HBP mechanism, which will

be discussed in the following sections.

4.2 Implementing Mobile Head-based Pointing

According to the above requirements, we developed an HBP algorithm for

mobile devices. Our system first detects the head and key facial information from the

front-facing camera on a smartphone. It then utilizes the coordinate of the nose tip and

maps its movement onto the on-screen cursor location.
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4.2.1 Platform and Libraries

I implemented the proposed HBP algorithm on Android so it can be available

for a large population of potential users in both the developed and developing world. I

used the Flutter (flutter.dev) UI toolkit for the user interface and ML Kit for Firebase

to track facial features using the front-facing camera on mobile devices. ML Kit for

Firebase is a mobile SDK with a set of ready-to-use machine-learning APIs. Its face

detection API allows me to detect faces in an image, identify key facial features, and

retrieve the detected face contours. It also provides high-level facial information, such

as eye openness and smiling, which I use to implement the selection methods.

Given these off-the-shelf toolkits, my technical challenge becomes two-fold:

1. To map the movement of the identified facial features into the movement of an

on-screen pointer; and

2. To implement selection methods that translate facial gestures or lack of head

movement into a click on the screen.

4.2.2 Mapping Head Movement to On-Screen Cursor Location

This section describes my mapping function from the physical head movement

to the on-screen pixel coordinate. There are two types of descriptors: one is with

respect to the screen coordinate, such as the pixel location of eye corners; the other is

with respect to the camera coordinate, such as the estimated head pose given by the

vision tracking algorithm. The proposed HBP opts for the former, as it is unaffected
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by head pose estimation error and the camera intrinsic parameters across devices.

4.2.2.1 Mapping onto Cursor Relative Change v.s. Absolute Location

As I aim to achieve calibration-free HBP, I map the head movement onto the

relative change of cursor location, rather than the absolute location. This is because, in

my experience, the one-to-one mapping from head location to cursor absolute location

is hard to use. In order to point at a certain on-screen location, the user has to make

a specific head pose w.r.t. the camera. This inevitably requires head calibration in

practice. In case of pose change from either the user or the device, a re-calibration is

needed. Such a design violates the base design requirements defined in Section 4.1.3.

Instead, my mapping function incrementally changes the cursor location according to

head movements. In this case, the ways to point the cursor to an exact location are non-

deterministic, meaning that users have the flexibility to start from an arbitrary head

pose, move their heads in a natural fashion, and gradually approach the intentional

target.

4.2.2.2 Clipping to the Edge of the Screen

To provide truly calibration-free interaction, the proposed HBP introduces a

clipping mechanism. It clips the cursor location when the cursor reaches the screen edge,

and the user continues moving in the same direction. Figure 4.2 shows an example in

which, through some occurrence, the cursor is located at the center of the screen when

the user’s nose is pointed 15◦ off center. At this point (a) the user may likely feel the

49



Figure 4.2: A demonstration of clipping the cursor at the screen edge when head move-
ments overshoot. This mechanism allows for the intuitive adjustment of the head-to-
cursor mapping.
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need to realign the face angle with the cursor location (e.g. 0◦ head yaw onto screen

center). To accomplish this, the user can turn left (-15◦) until the cursor touches the

screen edge and (c) keep turning along the original movement (-30◦). Once the cursor

reaches the left edge, the proposed HBP will discard the leftward control signal from

head movements. I refer to this phase as overshoot. When the user (d) starts to move

back toward the screen (0◦), the cursor will start to follow from its position on the

screen edge. By enabling this head movement overshoot, I believe users will be able to

adjust the head-to-cursor mapping on the fly easily. I later found this to be true in the

user studies.

4.2.2.3 Pointing by Nose

A key choice in my algorithm is how to convert the extracted facial features

into a two-dimensional space to guide the on-screen pointer. The main challenge is

detection reliability in practice; as more components are involved, the more intrusive

detection noise becomes. To alleviate this issue, I exploit just one facial feature: the

nose tip. Specifically, I define an input velocity function Vinput by the nose tip pixel

coordinates nt on the captured image in the frame t as follows:

Vinput(nt) = Sinput(nt)− Sinput(nt−1), (4.1)

The smoothing function on the input Sinput is defined as the mean filter with

a constant window length sinput where
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Sinput(nt) =
1

sinput

sinput−1∑
k=0

nt−k (4.2)

Empirically, I found that sinput = 3 gives a good consistency between head and

cursor when the system runs at around 40 fps. The input velocity vinput = Vinput(nt)

presents the input change as the user changes head position. A mapping function ϕ

translates vinput to the output velocity voutput as voutput = ϕ(vinput) where

ϕ(vinput) = gainFactor ∗ ( vinput
Rimage

∗Rscreen), (4.3)

Rimage is the resolution of the input image in units of physical pixels, while

Rscreen is the resolution of the mobile screen in units of logical pixels. A gain factor,

empirically set to gainFactor = (6, 8), transforms the head motion to the cursor motion

linearly, and it yields consistent user perception across different device sizes. The out-

put velocity voutput in this formulation can be too sensitive to input changes since the

scaling factors also amplify the high-frequency noise while reducing the physical head

movement. Therefore, I introduce a motion threshold function Λ(voutput). It ignores

the subtle noise and returns values only greater than the predefined thresholds, i.e.,

Λ(vx, vy) = (λ(vx,mx), λ(vy,my)) where

λ(v,m) =


0, if |v| < m

v, otherwise

, (4.4)

I observed that mx = 5 and my = 5 resulted in a good trade-off between the

physical efforts to start driving the cursor and to maintain the head pose to keep the
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cursor stationary. I apply thresholds on each axis independently to allow the user to

travel linearly along one axis while excluding the noise from the other axis. Applying

Λ gives me an intermediate on-screen cursor location as c′t where c′t = ct−1 −Λ(voutput),

where ct−1 denotes the cursor location in the last frame.

In my design, as is common in other approaches, the cursor is required to

stay within the screen when the user input would otherwise push the cursor beyond

the edge. I confine the pointing space within the screen by encapsulating the proposed

location with a boundary check function β as β(c′t). This function is used to achieve

the re-center procedure described above. In addition to smoothing the input, the final

pointing coordinates ct also include additional smoothing on β(c′t) to improve stability,

and it is defined as

ct = Soutput(β(c
′
t)) (4.5)

where Soutput has the same behavior with Sinput in the equation 4.2 and applies

a mean filter with the same window length as so = 3. In conclusion, the end-to-end

head to cursor mapping function Φ that calculates the final pointing coordinates ct from

the given nose tip coordinates nt is defined as:

Φ(nt) = Soutput(β(Λ(gainFactor ∗ (Vinput(nt)

Rimage
∗Rscreen)))) (4.6)

Notice that Φ is designed to be device-independent by introducing scaling into

logical pixels and tends to be calibration-free by only relying on relative input change.
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However, it also includes a set of constants {sinput, gainFactor, (mx,my), soutput} which

are predefined based on our initial exploration and kept fixed through the study. This, on

the other hand, offers flexibility for those who want to customize the mapping function Φ.

It is straightforward to fine-tune these parameters in an optional calibration according

to personal needs.

4.2.2.4 Selection Methods

To provide a full mechanism that completes point-and-select tasks, I introduce

multiple selection methods alongside the HBP implementation. Dwell-based selection

is preferable when the available input channels are limited since dwelling depends on

users’ behavior with the pointing mechanism as a selection is fired when the pointer is

kept within a constrained region (dwelling circle) for a certain time period. I found that

a dwelling diameter of d = 20 logical pixels and a dwelling time of p = 0.8 seconds work

well with my algorithm. I also implemented smiling and blinking as visual selection

methods and also included them in the user study.

4.3 Evaluation Method

To evaluate the pointing performance of my implementation objectively, I em-

ploy a Fitts’ Law [32] pointing task since it is the standard way to evaluate pointing

methods and derive the dependent measure of throughput (Fitts’ index of performance)

as part of the comparison and evaluation [89]. This section describes the common el-

ements of the evaluation across the two experiments. Details where the procedure or
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apparatus varied will be discussed in the next section.

4.3.1 Multi-directional Corner Task

The standard multi-directional pointing task (MD) described in the ISO 9241-

9 standard [49] employs a circular arrangement of targets that does not fully utilize

the long rectangular shape of most mobile device screens. Using this arrangement is

possible, but the range of possible indices of difficulty would not be representative of real-

world mobile device tasks because the longer dimension of the device is not explored.

Roig-Maimó et al. [90] noted this challenge and developed a new Multi-Directional

Corner task which takes better advantage of the space available on a mobile screen

while maintaining some consistency with the standard task. I replicate this method in

the studies, though with a wider range of indices of difficulty.

The Multi-directional Corner Task [90] consists of four ”subspaces,” each of

which starts with a target in one corner of the device screen, then requires the user to

choose one of three targets on an arc a fixed radius from the initial target, and then

return to select the initial target. This results in six pointing tasks per subspace. After

completing one subspace, the user must select the initial target for the next subspace

and then targets within that subspace using the same approach. This gives a total of 24

pointing tasks per ”block.” Note that only targets selected within a subspace are used

for evaluation, and movements between targets in different subspaces were not included

in the analysis. Please refer to the Figure 4.3.

For most trials, users completed three blocks at each difficulty level. I reduced
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Figure 4.3: Illustration of the Multi-Directional Task. Amplitude = 125 dp, Target
Width = 60, Index of Difficulty = 1.65 bits, corresponding to Test 1 in our experiment
design. (a) The target appears on a blank screen with the current test info above. The
pointer is an orange crosshair. (b) In dwell selection mode, hovering over the target
turns it gray, and the crosshair fills, indicating the time until selection. (c) The next
target appears immediately after selection. (d) Shows all targets for one block of a test,
requiring 24 consecutive pointing tasks across 4 subspaces. The movements from the
last target in one subspace to the first target in the next are not recorded.
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the number of blocks in some conditions to address fatigue or time constraints, as

discussed later in the chapter. The vast majority of trials with the implemented software,

and all of the trials with Eva Facial Mouse, made use of the dwelling selection method

to select targets. Some trials conducted with the implemented software made use of my

blinking and smiling selection techniques, but often just to get users’ impressions of the

techniques rather than conduct a formal evaluation.

4.3.2 Apparatus and Procedure

All of the experiments were conducted on Android devices, with the vast ma-

jority of subjects using a Google Pixel 2 device with a 5-inch display with 1920x1080

resolution (441 ppi). The phone was placed on a mount, which was stuck to the table

immediately in front of the subject’s chair at a distance of two feet. The only variation

from this was for the small number of remote participants with motor impairments,

who each used their personal Android device and placed it as was comfortable for their

environment. I implemented a custom Head Pointing Test App, which implemented the

Multi-directional Corner Task [90] mentioned above and was installed on the devices in

advance of the experiment. The entire testing procedure took place within the app.

Participants were recruited through the recruitment service of Turkey. Every

participant signed a consent form before beginning the study and also provided responses

to a pre-study questionnaire, which collected details such as previous experiences with

related technology, whether they wear glasses and basic demographic information. Af-

terward, participants were briefed about the goal of the study, were shown the running
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software, and were allowed to play with a practice mode of the testing application for as

long as they desired. Most users practiced for less than one minute. During the practice,

my colleagues instructed participants on the self-calibration technique and asked them

to find a comfortable position so that they could point at all corners of the screen. We

also informed them that they were free to take breaks or stop at any point.

Once they were ready to begin, we started the first block of the study. After

each block, the user had the opportunity to rest, and then either the subject or the

experimenter could press an on-screen button to start the next block. In the able-bodied

experiments, subjects generally continued to the next block on their own, whereas the

experimenter often helped the subjects in the motor impairment experiments.

Following the study, participants were asked to fill out a post study question-

naire, which allowed participants to comment on the interaction methods and any fatigue

they may have been feeling. For most experiments, participants needed 30 minutes to

complete the study.

4.3.3 Throughput Calculation

For each sequence of trials that the subject completed consecutive pointing

tasks, I calculated throughput (TP) as follows:

TP =
Effective index of difficulty

Movement time
=

IDe

MT
, (4.7)

where MT is averaged movement time per trial and IDe is derived as:
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IDe = log2(
Ae

We
+ 1), (4.8)

where Ae is the mean of the actual movement amplitudes andWe is the effective

target width, calculated as We = 4.133 · SDx, where SDx is the standard deviation in

the selection coordinates as well-defined by MacKenzie [62]. The units of TP are ”bits

per second (bps)” since IDe and MT have units of ”bits” and ”seconds” respectively.

Note that I used the standard-deviation method to calculate throughput [63]

following the same strategy as Cuaresma and MacKenzie [23]. This is because my

specific design utilizes the dwelling function and has no error rate [108]. One may find

the details of the throughput calculation in the previous work [23, 62, 90, 108].

4.4 Experiments

We conducted two evaluation experiments of our head-based pointing system

with my colleagues at Google.

1. Comparison with the state-of-the-art. We compared my algorithm against

Eva Facial Mouse [69], a freely available head-based pointing method for An-

droid, to show statistically how the state-of-the-art HBP performs on mobile and

how comparable our performance is against this. Able-bodied participants were

recruited for this comprehensive Fitts’ Law study, where numerous participants

completed various pointing tasks, as we inferred this study could not be so prac-

tical with participants with motor impairments.

59



2. Exploration with participants with motor impairments. We evaluated

my algorithm with participants with motor impairments in several settings. We

generally used the same procedure for these experiments as for the comparison

study, though it was necessary to make modifications to suit the abilities of some

participants. In this study, our goal was not so much to understand the Fitts’

Law performance characteristics but to understand users’ varied experiences.

4.4.1 Comparison with Eva Facial Mouse

Our first evaluation compared my technique to Eva Facial Mouse (EFM) [69],

which. is a refined piece of commercial software with a lot of bells and whistles (e.g.,

a drag and drop mode, long tap, etc.) that is freely available for Android. We used a

between-subjects design in this experiment, with each participant experiencing just one

of the two pointing methods. The main reason for this choice was time, as it is much

easier at the company to recruit for a 30-minute study than a 60-minute study, and

we found 30 minutes to be the minimum time needed to evaluate a single technique.

Learning effects and fatigue were other concerns. Participants reported minor issues

with fatigue in our study, such as dry eyes, but none dropped out. We suspect fatigue

would have become a greater concern, and some participants would have dropped out

with a 60-minute study, which would have complicated our analysis.
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4.4.1.1 Participants

Forty-two able-bodied participants (16 females) were recruited from Google

using the company’s user study recruitment service. The ages of participants ranged

from 18 to 52, with a mean of 31.79 years (SD = 7.14). It was a prerequisite of

participation that participants did not identify as a person with motor impairments

and were not suffering from any injuries that might impact their ability to use a head-

based pointer (e.g., a neck injury). Participants were compensated the equivalent of $15

US in internal corporate credits.

4.4.1.2 Procedure

All studies were conducted in the interior conference rooms of the company.

Target widths and distances are listed in Table 4.1 for all trials. 20 participants used my

pointing method, and 22 used Eva Facial Mouse. In both cases, participants were told

that they were testing pre-release software and not informed of the actual provenance

of the software until after completing the post-study questionnaire.

Besides the pointing software, two additional differences existed between the

study conditions. Due to a mistake in software configuration, the smaller target width

differed: 30dp in the Eva Facial Mouse condition and 15dp in the condition with the

implemented software. The discrepancy was noticed too late to correct it without

throwing away the work of nearly all participants in one of the conditions. Throughput

calculations take into account differences in target width, so I believe the results can still

be taken up with confidence. Participants using the implemented software completed
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Table 4.1: Fitts’ Law Performance of Participants Comparison

A W ID MT MT TP TP

Test SM (dp) (dp) (bit) (s) (stdev) (bps) (stdev)

EFM 1 D 125 60 1.62 2.96 0.22 0.62 0.10

2 D 535 60 3.31 3.57 0.52 0.88 0.13

3 D 125 30 2.37 3.05 0.20 0.76 0.08

4 D 535 30 4.24 3.69 0.35 1.06 0.13

Grand Mean 3.32 0.28 0.83 0.09

HBP 1 D 125 60 1.62 1.89 0.30 0.84 0.12

2 D 535 60 3.31 3.06* 0.37 0.88* 0.11

3 D 125 15 3.22 3.02 0.40 0.92 0.13

4 D 535 15 5.20 4.57 0.68 0.95 0.15

Grand Mean 3.14 0.34 0.90 0.10

5 B 535 60 3.31 3.43* 0.80 0.80* 0.20

6 S 535 60 3.31 3.09* 0.58 0.83 0.14

3 Selection Methods (SM): Dwelling (D), Blinking (B), and Smiling (S). In

the cells, the asterisks (*) indicate that the difference between those values

and the corresponding values in Test 2 was statistically significant (p <

0.05) within the HBP design. Also, the corresponding Bold values in two

designs indicate their differences from each other were significant.
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two extra tests, one each using the blinking and smiling selection methods in order to

collect feedback on these other options. These tests consisted of one block of tasks at a

single index of difficulty. While I calculated throughput for these tasks for completeness,

these values should be considered with caution. All other tests in both conditions used

the dwelling selection method.

4.4.1.3 Results

I report the Fitts’ Law performance of participants in Table 4.1 for each test

in addition to a grand mean of participants calculated from participants’ individual

performances. The grand means for movement time and throughput were 3.20 s and

0.87 bps, respectively, for my method. The standard deviation of throughput at 0.05

across all dwelling trials indicates my method performs consistently across different

Index of Difficulties without requiring calibration.

In the comparison of the two methods, I observe that the movement times and

throughput values for the participants who used my method were strongly correlated

to the test’s Index of Difficulty (ID), while the participants who used Eva Facial Mouse

seem to demonstrate non-linear performance as difficulty increases. Figure 4.4 shows

that the two methods reach the same efficiency around the ID of 4 while HBP outper-

forms at lower IDs, whose values are actually more common in mobile environments.

I ran a two-tailed t-test with type 2 (between subjects) to evaluate whether there was

a difference between the conditions. In Tests 1 & 4, the easiest and hardest tests in

both experiment designs, I measured that the performance differences between HBP and
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EFM were statistically significant (p ¡ 0.05) in terms of the moment times and through-

put values. However, the difference in throughput values in Test 2 and the difference in

movement times in Test 3 were not statistically significant. There was no significant dif-

ference in overall throughput, but there was a significant difference in overall movement

time (p ¡ 0.05). The insignificance in the other tests and overall throughput could be

the result of close performances around the intermediate IDs, as HBP and EFM seem

to behave similarly around ID = 4 bits, while HBP may be superior at the edge cases.

Tests 2, 5, and 6 (Table 4.1) in HBP design, all at the same index of difficulty,

can be compared to get a sense of the differences between selection methods. Per-

formance seems remarkably similar across these tasks, though they performed slightly

better with dwelling and achieved a throughput of 0.88 bps, while they only achieved

0.80 bps with blinking and 0.83 bps with smiling. The differences between dwelling and

the other two methods respectively were statistically significant (p ¡ 0.05 in both cases),

although the performance difference between the blinking and smiling methods was not

statistically significant. The p values were calculated based on two-tailed t-tests with

type 1. More trials would need to be conducted with the alternate selection methods

to reach a conclusive result.

4.4.2 Exploration with participants with motor impairments

After conducting our comparison study, we were interested to see how my

method might fare with the target user population. We found that reaching such partic-

ipants was challenging, and thus, we carried out two sub-experiments with two different

64



sub-populations:

A field study at Ability Now Bay Area, a non-governmental organization that

offers adults with developmental and physical disabilities a variety of programs, includ-

ing education, wellness, and community integration.

A remote study with participants with motor impairments recruited by the

user study recruitment service of the company. These participants installed my software

on their own phones and participated in a video conference while they completed the

pointing tasks.

4.4.2.1 Participants

Sixteen participants (8 females) were recruited in total from two different

sources. Ages ranged from 25 to 65, with a mean of 38.2 years (SD = 16.05). There were

no requirements for prior experience to participate in the study except for identifying

as a person with motor impairments. Field study participants were compensated the

equivalent of $100 US in gift cards; remote participants were compensated the equiv-

alent of $75 also in gift cards. The difference in compensation is due to the shorter

anticipated duration of the remote study.

We recruited 13 field study participants. Due to their severe physical limita-

tions, 5 participants were not able to complete any tasks, while 8 participants completed

at least one of the given tasks. In all cases, the participants were able to provide valuable

feedback on the usefulness of the technique.

The three remote participants were much more capable on average than the
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field study participants. Each had a different type of motor impairment. Each was able

to install the software on their own device and complete all trials.

4.4.2.2 Procedure

The procedure generally followed that for the comparison study, though I had

to make modifications for the setting and participants’ ability levels.

The remote participants’ experience was the closest to the comparison study.

The order of trials, blocks, and the indices of difficulty can be found in Table 4.2. The

other difference with these trials is that we could not ensure consistent placement of

the device compared to the comparison and field study experiments. Participants were

told not to hold the device and asked to place it on a solid surface at which it was

comfortable to view the full screen.

We originally planned for a much more comprehensive set of trials during the

field study, but found that our plan was too ambitious given the ability level of most

of the field study participants. To address this challenge, we modified our plan in two

phases:

• Phase 1: We found that participants could only complete a few tasks, and we

were uncertain of the validity of a Fitts’ Law study. We revised our goal to simply

have participants complete trials at one, and at most two, difficulty levels.

• Phase 2: After some experience with the first phase design, we revised our design

to have fewer iterations of the same task and more task variety.
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Table 4.2: Fitts’ Law Performance of Participants with Motor Impairments Within-Test
and Within-Experiment Design

A W ID MT TP

Test SM P Bs (dp) (dp) (bit) (s) (bps)

FP1 1 D 4 3 250 60 2.37 5.34 0.44

2 D 1 3 250 40 2.86 2.81 0.94

FP2 1 D 5 2 550 40 3.88 7.92 0.78

2 B 2 2 550 40 3.88 3.16 0.95

3 D 2 2 550 20 4.88 3.81 1.09

R 1 D 3 3 125 60 1.62 2.38 0.80

2 D 3 3 535 60 3.31 2.91 1.15

3 B 3 1 535 60 3.31 4.53 0.78

4 D 3 3 125 30 2.37 2.45 0.95

5 D 3 3 535 30 4.24 3.81 1.00

6 S 3 1 535 60 3.31 2.26 1.11

Study includes three experiment designs as Field Phase 1 (FP1), Field

Phase 2 (FP2), and Remote (R). These designs include three Selection

Methods (SM): Dwelling (D), Blinking (B), and Smiling (S). Participation

(P) and number of blocks (Bs) in each test also vary.
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Table 4.2 shows the details of each design, such as the block counts for each

test and Fitts’ Law parameters. As its Participants column states, participation in the

tests was not equal since some participants had to quit the experiment after completing

just a few blocks. Two participants in phase one and three participants in phase two

quit the experiment without completing any blocks.

We were particularly careful during the field study to ensure that participants

were aware that they could rest or quit at any time. We monitored participants for

frustration and fatigue, checked in on them as necessary, and reminded them of their

options if we felt it was warranted.

4.4.2.3 Results

Based on overall ability, we split the 16 participants with motor impairments

into 3 subgroups.

1. The group with mild motor impairments includes 6 participants who have fine

head control ability and were able to complete the given tasks in similar amounts

of time. They reported that their physical impairments limit or completely block

their interaction with smartphones via standard methods but did not affect their

head-based interaction.

2. The group with moderate motor impairments includes 5 participants that were able

to complete at least one block of the given tasks. But, the completion times were

inconsistent among the participants and we observed that their overall pointing
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performance was low compared to the first group.

3. The group with severe motor impairments includes the remaining 5 participants

who were unable to complete any block of the given tasks due to ability-related

reasons while they spent approximately the same amount of time in the sessions

with the other participants.

We choose to report the means based on participants’ overall performances

calculated across the tests they individually completed. We believe this is still informa-

tive, given that a participant’s overall performance suggests how head-based pointing

likely works for that individual. Table 4.3 shows that the grand mean for throughput

was 0.61 bps. however, we noticed that the participants with mild impairments per-

formed noticeably better than the group with moderate impairments and thus reported

the mean for each group separately as 0.96 bps and 0.20 bps.

Participation in the tests that explored the blinking and smiling selection meth-

ods was low (Table 4.2) and only included the participants in the group with mild im-

pairments. Analyzing the results of Tests 2, 3, and 6 in the Design for Remote study

would be a fair comparison for the selection methods as they introduced the same Index

of Difficulty and were performed by the same 3 participants. The participants appeared

to perform slightly better with smiling than as they completed the trails slightly faster,

2.26 s and 2.91 s respectively. Blinking appears to be the slowest method with an average

movement time of 4.53 s. However, the differences were not statistically significant.
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4.5 Discussion

I designed and evaluated head-based pointing (HBP) on smartphones for peo-

ple with motor impairments. For the evaluation, With the help of my colleagues, we

conducted two separate user experiments that included participants with and without

motor impairments; the first also included a comparison with Eva Facial Mouse (EFM).

4.5.1 Evaluation Against the State of the Art

In the comparison experiment with participants without motor impairments,

the grand means for movement time and throughput were 3.14 s and 0.90 bps, respec-

tively, for the proposed HBP, while they were 3.32 s and 0.83 bps For EFM (Table 4.1).

These values in Figure 4.4 indicate that the proposed HBP approach slightly outper-

forms EFM at the IDs lower than 4 bit (target widths ¿ 30 dp). Considering Android’s

Material Design principles that recommend touch target width should be at least 48 dp,

HBP has superiority in the most common point tasks on mobile. For reference, HBP also

outperforms FittsFace [23], another head-based pointing implementation, and reports

a movement time of 7.14 s and throughput of 0.47 bps. However, my measurements

stayed short compared to the original Multi-Directional Corner Task Experiment [90]

where the grand means for movement time and throughput per trial were 1.41 s and

1.54 bps, respectively. However, they utilized screen touch as a selection method, which

was not practical for my target group as their fine hand control was so limited.
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Figure 4.4: Comparison of Average Trail Durations (Target-to-Target Movement Time)
for HBP (n=20) and EFM (n=22) at different Indices of Difficulty.

4.5.1.1 Takeaways

HBP’s superiority over EFM is likely due to EFM’s earlier development and

my focus on evaluating pointing performance. I recommend my algorithm as a reference

point to build from for future researchers and developers of HBP techniques. However,

I recommend EFM to everyday users with an immediate need as it is a much more

polished product than my current software.

4.5.2 Evaluation with Target User Group

In the second experiment with participants with motor impairments, the grand

mean for throughput was 0.61 bps (Table 4.3), though the results also show that the

performance of participants with different levels of impairments can vary substantially.
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Table 4.3: Fitts’ Law Performance of Participants with Motor Impairments.

MT (s) MT (stdev) TP (bps) TP (stdev)

Physical Mild 3.29 0.73 0.96 0.19

Impairment Moderate 12.86 8.28 0.20 0.09

Group Severe N/A N/A N/A N/A

Experiment Field Phase 1 6.30 3.33 0.53 0.31

Design Field Phase 2 6.47 5.17 0.87 0.27

Remote 3.19 0.89 0.97 0.21

Grand Mean 7.70 7.22 0.61 0.42

In this case, I suggest narrowing the target user group when developing real applications

with HBP and providing different functionalities for users from different ability groups.

For example, one may provide multiple selection methods as optional to different groups.

I also believe that developers tend to build their applications for the worst-case scenarios

and target the group with severe impairments. However, this trend leaves out the

intermediate groups out of the market. This group is not willing to be limited with

very basic tools since they have greater abilities, but on the other hand they cannot

fully utilize the off-the-shelf products due to their impairments. While this is just an

observation and needs further investigation, this work showed that the intermediate user

groups can complete complex pointing tasks at higher IDs through head-based pointing.
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4.5.2.1 Limitations

During the evaluation with the target group, I noted several limitations of the

study design that affected the overall results. I would like to share these limitations

here as an observation and to guide future studies with similar settings.

Accessing and working with people with motor impairments had several limi-

tations, including the physical ones like distance and time. In the field, we had to recruit

all the candidates with motor impairments we could access based on self reports of ca-

pabilities such as head control. However, these reports were not well calibrated, and as

a result, the group had a much wider range of physical abilities and more significant

impairments than I expected. Although I tried to adjust my test design accordingly,

5 participants with severe impairments could not complete the tests even though they

were able to use the system. Despite the difficulty, a few of these participants enjoyed

using the system so much that they wanted and were allowed to continue using the

system long after their scheduled time, even though they were only able to complete

only a couple of the easiest trials. It seemed that these participants likely could have

completed many tasks via HBP if I could have further reduced the index of difficulty

or had additional technology to filter spasmodic movements while the participants were

trying to dwell. But, in that case, the difficulty level would not be realistic for the

participants with mild and moderate impairments.

I further observed that some participants with motor impairments had condi-

tions that made head-based pointing difficult, such as a lack of stability in their chairs.
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While most of the participants had fine control of their heads, their conditions would

cause involuntary movements of their limbs, which affected their head position, and

this dramatically affected their pointing performance in the Fitts’ Law Study. This

was especially true during the dwelling time when they were trying to stay still. In-

deed, for some participants, it seemed that trying to stay still would make involuntary

spasms more likely. Interestingly, one of the highest performing participants was nearly

completely restrained in his chair with his arms strapped tightly to his body, and this

seemed to greatly assist him in maintaining stability. Many other participants did not

have this benefit, possibly because many seemed to be in loaner chairs because their

main chair was being repaired.

4.5.2.2 Takeaways

In future work, the recruitment criteria for participants with motor impair-

ments should be narrowed down to sub-groups based on ability levels, and separate test

designs should be adapted for each impairment group. This helps to show the true

benefit of HBP when appropriate pointing tasks are given to each group. Additionally,

the potential external constraints of head-based pointing need to be well-considered.

While I was able to gather statistical results from this Fitts’ Law study, they do not

necessarily show the effectiveness of HBP for the target group that has such limited

options. HBP also needs to be evaluated as a communication tool for the same group

by different measurements rather than Fitts’ Law.

It was also interesting that few of the participants used mobile phones and
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most were very dependent on visiting the rehabilitation facility to be able to use a

computer, which enabled them to communicate with friends and even conduct business.

If I could make it possible for them to use a mobile device, then that could lead to a

very big change in their independence and communication ability. Many were unaware

that a free head-based pointing system (i.e., EFM [69]) was available for everyday usage,

except for one participant who used a sophisticated head-based pointing system on a

daily basis. I believe head-based pointing techniques would help many more users if

they were made aware of their availability.

To further explore head-based pointing on mobile and improve its practicality

for people with motor impairments, I was considering several possibilities for future

work. First, it seems that more advanced HBP techniques are needed that will work

for difficult cases and address issues such as the involuntary movements I mentioned

above. Filtering out such movements might be possible using machine learning that

detects spasms based either on visual input or pointer behavior. Another possibility

might be to employ an interaction technique that does not require the on-screen pointer

to be tightly connected with the head position at all times. For example, a ”clutched”

method that would somehow allow participants to disconnect the pointer from their head

when a spasm occurs might be very helpful. Second, the small size of many targets on

mobile user interfaces makes them difficult to use. If a system was able to understand

the constructions of these user interfaces, then it might be possible to modify the user

interface itself to be more usable, such as with larger buttons, fewer targets, etc. Such

techniques would be beneficial not only for users with motor impairments but also for
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those with cognitive impairments and likely other conditions.

4.5.3 Meeting the Base Requirements

In Section 4.1.3, I stated four base requirements for a robust head-based point-

ing solution. Here, I discuss how my proposed HBP meets these requirements. It is a

hardware-free solution as it does not require any external hardware. It employs a com-

pletely vision-based method that relies on the standard front-facing cameras available on

today’s smartphones. It is customizable with different selection methods and performs

consistently. The first experiment supports this as the participants achieved a through-

put of 0.88 bps with dwelling, 0.80 with blinking, and 0.83 with smiling at the same

ID (3.31 bits). It is calibration-free and performs consistently across different Index of

Difficulties and different user groups without requiring an initial calibration per condi-

tion. I found the performance of HBP stayed stable while the Index of Difficulties (IDs)

increased within the range we tested. Movement time per trial linearly increased, as

shown in Figure 4.4, while the standard deviation of throughput was 0.05 across all IDs.

I furthermore observed this behavior with HBP in both experiments with participants

with and without impairment (see Tables 4.1 and 4.2). It stays precise even beyond

the limits of Android’s Material Design principles, which recommend that touch target

width should be at least 48 dp. My HBP method achieved a throughput of 0.95 bps

(above the grand mean) in an extreme setting with the ID of 5.20 bits where the target

width was 15 dp. As Google open-sourced my implementation, it became available and

extendable.
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Chapter 5

Data Collection For Personalized

Head-Tracking Pointing

In the previous chapters, I proposed two different head-based pointing mech-

anisms and provided their evaluations with several user studies. These systems use a

camera (e.g., embedded in a computer screen) to track the user’s head motion using

computer vision algorithms. Typically, measurements are taken in terms of a “face

box” or of a specific facial figure (e.g., the nose tip [15]). These measurements are then

mapped to the pointer location in the screen using a pre-defined algorithm.

A main drawback of this approach is that the mapping from head motion

to pointer location is not necessarily representative of the user’s intent. For example,

moving one’s head to the right may lead to a rightward motion of the pointer faster

than the user intended. This may result in an overshoot, which must be corrected by

a leftward head motion. In practice, the user must learn to use the system with head
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patterns that may not feel “natural”. While these algorithms typically afford some

parameter tuning, the general mapping mechanism remains unchanged.

In this dissertation, I propose a user-centric approach to designing a pointing

algorithm based on head tracking. Rather than imposing a pre-defined algorithm map-

ping head position to pointer position, I would like to learn a flexible mechanism that

adapts to the user’s intent. With Prof. Manduchi’s greater efforts, we created a data

set where the measured data (head position from video frames) is associated with the

desired location of the pointer. To build such a data set, we resorted to the follow-

ing strategy. We showed a well-visible marker (a white disk) moving on the screen in

specific patterns. While watching the marker moving, participants were asked to move

their heads “as if” they were controlling the marker themselves. A screen-embedded

camera collected images and time-registered with the marker’s location on the screen

each time. We believe that the videos thus recorded are representative examples of the

way participants would move their heads if asked to move the cursor to replicate the

same trajectories traversed by the pattern they saw moving on the screen.

This chapter describes the data collection strategy accomplished remotely due

to COVID-19 social distancing constraints, which work[16] we already published with

Prof. Manduchi. I also present examples of the dynamic of a specific facial feature (the

nose tip) while participants were following different trajectories of the pattern in the

screen and provide a simple analysis of the variance of the location measured for this

feature across participants.
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5.1 Data Collection

With Prof. Manduchi, we recruited 8 participants (3 female) from our univer-

sity. One participant has a motor impairment due to cerebral palsy and is a regular

user of head-based pointing technology. Although this is a relatively small sample size,

it is adequate for a proof-of-concept.

This study aimed to collect videos of the participants as they moved their

heads, following the path of a small white disk shown on their computer screen. The

participants were instructed to pretend that they were controlling the white disk with

their head motion. They were asked to not just follow the disk with their eye gaze,

but by moving their head. No other instructions (e.g., how much to move their head,

whether to rotate it vs. move it, etc.) were given. Hence, we can assume that the head

motion of each participant was as “natural” and spontaneous as it could be.

I first generated a number of “trajectory videos” with a small white disk moving

along a predetermined trajectory against a black background. Some of these trajectories

were repeated at a slower velocity. Some trajectories included “pause” points, where

the disk would stop for one second. Participants were able to see the future path of the

disk (shown with dimmed brightness) so that they would know in advance where the

disk would move next. Examples of disk trajectories are shown in Fig. 5.1. Note that

in all trajectories, the disk started and ended at the center of the screen. I uploaded

these trajectory videos (17 in total) on YouTube and created separate playlists for each

participant, with the order of the video randomly permuted for each playlist.
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Figure 5.1: Samples of trajectory videos. The whole trajectory of the white disk is
visible, with a lighter color indicating earlier locations in the trajectory. Small circles
correspond to the location where the white disk stopped for one second.

The study was conducted remotely due to the social distancing requirements

imposed by the COVID-19 pandemic. We utilized the Zoom platform to run the data

collection sessions, including recording the participants’ visual input during the pointing

tasks.

For each participant, I scheduled a one-hour online meeting via Zoom. I col-

lected information about the computer they would use for the test, whether they would

use the embedded camera in the screen or an external camera, and the screen size and

resolution. In the teleconference, Prof. Manduchi explained to each participant how

the test would be conducted, then asked them to go to the YouTube site using the

playlist assigned to them and to expand the browser window to full screen. In this way,

participants would only interact with the moving disk in the trajectory videos, while

images of their heads were taken by the camera and recorded in the cloud via Zoom.

Consecutive trajectory videos within the playlist were separated by 10-second
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intervals. Participants could use these time intervals to briefly rest and were allowed

to pause the playlist between trajectory videos. An acoustic signal was played at the

beginning and the end of each trajectory video in the playlist. This was used to syn-

chronize the video displayed to the user with the video of the user recorded via Zoom

(“user video”). These user videos were recorded at a resolution of 1280×720 pixels and

at a rate of 25 frames per second. The whole session for each participant, as recorded

by Zoom, was exported as a single video for simplicity. I then cropped individual user

videos, using as a reference the acoustic signal recorded at the beginning and the end of

each trajectory video. This way, I obtained pairs of synchronized trajectory-user videos

for my analysis. 17 such video pairs were recorded for each user. I had to discard only

2 such video pairs, one due to noticeable latency caused by Zoom and one because I

mistakenly interrupted the video. In total, I obtained 136 synchronized video pairs from

8 participants, with the length of the user videos varying between 536 and 2267 frames.

5.2 Head Motion Computation

One of the goals of this study is to explore whether the motion of the white disk

on the screen could be predicted from the user video. For this purpose, I first extracted

a number of visual “features” that can be used to describe the user’s head’s motion.

These features can then be mapped, using suitable machine learning mechanisms, to

the position of the disk on the screen.

A very simple, though perhaps not very informative, feature is the location
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Figure 5.2: Facial landmarks produced by the PFLD algorithm [38] for one of the
participants, taken at the time the white disk appeared in the location shown in the left
half of the figure.

of the “face box”, defined as a rectangle encompassing the whole face image [25, 58,

98]. A richer description can be obtained by identifying specific facial landmarks. I

experimented with three state-of-the-art facial landmark detection models [38, 102, 105].

For example, Fig. 5.2 shows the location of the facial landmarks produced by the PFLD

algorithm [38] for one of the participants at the times when the white disk being followed

was situated in the vicinity of the four corners of the screen.

A higher-level feature that I will consider in the following chapters is the pose

(3-D location + orientation) of the user’s head, which can be computed using 3-D

deformable models (e.g., [29, 92, 106]).

5.3 Trajectories Analysis

It is instructive to compare the trajectory of the tracked visual features against

that of the white disk on the screen. This can provide some intuition about how a user

would move their head in relation to the desired pointer location. In Fig. 5.3, I show
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the trajectory of a specific facial feature, the user’s nose tip, for two participants (P2

and P6), viz-a-viz the trajectory of the white disk. Note that the nose tip location

was successfully used for head-based pointing control in prior work [15]. While the

trajectories of the nose tips may vaguely resemble the trajectory of the white disk on

the screen, it is clear that precise one-to-one positional mapping would be hard, if not

impossible.

Figure 5.3: Trajectories of the nose tip features for two participants (P2 and P6) asso-
ciated with the white disk trajectories shown in the left half of each row.

The trajectories of the nose tip feature shown in Fig. 5.3 are clearly different

across the two considered participants. This is to be expected since the dynamic of head
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motion associated with tracking the white disk on the screen is completely subjective

(remember that participants were not given instructions about how to move their heads).

In some cases (see, e.g., the last case of Fig. 5.3), a positional bias is visible (possibly

because the users positioned themselves at different locations in front of the camera).

In these cases, the bias could be easily recovered and compensated for.
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Figure 5.4: Average standard deviation of the X and Y coordinate of the nose tip across
participants for each trajectory video.

To quantify the difference between trajectories across participants, I computed

a measure of variance as follows. For each trajectory video, I measured, at each time,

the variance in the X and Y coordinate of the nose tip location across all participants.

(I excluded P5 in this analysis, as facial feature detection was unreliable for this par-

ticipant.) Then, I computed the average of these variances over the whole trajectory.

The squared root of the average variance (i.e., the standard deviation) for the X and Y

coordinates of the nose tip are plotted for each trajectory video in Fig. 5.4. These values

vary between 28 and 42 pixels for X and between 31 and 53 pixels for Y (remember

that the recorded images have a resolution of 1280× 720 pixels).
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5.4 Conclusions

This chapter presents a unique data set collected for the purpose of under-

standing the different head motion dynamics adopted by different participants while

imagining controlling a moving disk on a screen. We are currently using this data set

to train a machine learning system that can predict the desired location of the cursor

based on the user’s head motion. Our hope is that, by learning from videos collected in

response to a stimulus on the screen, this system can do a better job of mapping image

features to cursor locations than current, hand-tailored algorithms.

Our initial analysis of the collected data shows that there is a fairly large

variance in the location of facial features (e.g., the nose tip) across participants while

following the same disk trajectory. This suggests that a certain degree of personalization

may be necessary, in order to adjust the algorithm to the specific head dynamics of each

user.
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Chapter 6

Towards Personalized Head-Tracking

Pointing

Chapter 5 explains how I created ”trajectory videos” showing a target moving

on a screen, which participants watched while mimicking the motion with their heads

as if controlling the target. The study aimed to capture natural head movements with-

out the participants directly controlling the cursor. Participants were informed about

the target’s future trajectory but received no other feedback. Their head movements,

recorded by a camera, were proposed to indicate natural, active head motion patterns

that could be used in designing a pointer control system where the cursor moves as the

user intends.

This chapter analyzes the collected data in depth. I considered several types

of features (different facial landmarks and geometric head pose). For each feature type,

I computed a simple affine transformation (via least squares regression) mapping the
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Figure 6.1: Examples of mapped trajectories (red), shown along with their smoothed
version (black) and target trajectory (blue), for the 6 landmarks xyz feature. Each plot
displays the participant ID (e.g., P7), trajectory ID (e.g., T1), and resulting RMSE in
screen pixel units. The gray frame represents the screen viewport.

chosen features to pointer locations on the screen. I then compared the “mapped”

pointer trajectories with the trajectories of the marker the participants were following

with their heads. Ideally, the mapping would reflect the user’s intent, and the two

trajectories would coincide. In practice, I observed large discrepancies. This should not

come as a surprise: the participants did not receive any feedback about whether their

head movement would map to the desired movement of the pointer. In a real application,

users rely on visual feedback from the mapped pointer motion on the screen to control

their own head motion.

Still, the discrepancy between mapped and desired trajectories in this “feed-

forward” system, which operates by predicting and acting without receiving real-time
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feedback, may reveal the extent to which the considered mapping enables “natural”

head motions to accomplish desired pointer movements.

With Prof. Manduchi’s heavy contributions, we already published The work[17]

presented in this chapter. It is structured into three main tasks:

Task 1: Feature Selection. I measured the root square mean error (RSME) of tra-

jectory discrepancy for two families of features: facial landmarks and geometric

pose (3-D head rotation along with 3-D head location).

Task 2: Trajectory Bias. I computed the spatial distribution (over 25 regions on the

screen) of bias and standard deviation of discrepancy (difference between mapped

and target location). Bias reveals consistent errors that could potentially be miti-

gated by an appropriate mapping design. Standard deviation is an inverse measure

of consistency: whether or not a participant moved his/her head in the same way

when the target trajectory was going through the same region of the screen.

Task 3: Orientation. Professor Manduchi measured the angular discrepancy between

the velocity of the mapped and target trajectories. This analysis is especially in-

sightful for head-pointing systems based on velocity mapping. Such mapping also

enables simple resting position reset strategies and is detailed in Section 2. In

addition, to account for angular discrepancies that can result from the activation

of different muscle groups when moving one’s head in different directions, we com-

puted the distribution of angular bias and standard deviation over the 8 octants

of the plane.
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6.1 Method

6.1.1 Video Data Set

As described in Section 5, this data set contains videos of 9 participants (3

female, 6 male) taken by a screen camera as they moved their heads while imagining

following a moving dot visible on the screen (target trajectory). All participants except

for P9 had no mobility impairment. P9, who has cerebral palsy, has limited control of

his limbs but regularly uses a head-pointing system (Enable Viacam) as an interface

device.

Participants in the study were shown 17 short target trajectory videos with

a small target (a white disk) moving along a predetermined trajectory against a black

background. They were able to see the future path of the target (shown with dimmed

brightness) so that they would know in advance where the target would move next.

Participants were instructed to move their head while watching each video “as if” they

were controlling the target with their head motion. No other instructions (e.g., how

much to move their head, whether to rotate it vs. displace it, etc.) were given. Some of

the target trajectories in the videos were repeated at a slower velocity. Some trajectories

included “pause” points, where the target would stop for one second. Examples of

trajectories are shown in Fig. 6.1.

Target trajectory videos were shown on a screen with a resolution of 1920 by

1080 pixels. Videos of the participants were taken at 1280 by 720 pixels resolution and

at a frame rate of 25 Hz.
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Feature type RMSE (pixels)

nose tip xy 333.24

nose tip xyz 332.40

6 landmarks xyz 296.71

Euler angs 324.88

Euler angs loc 307.66

Figure 6.2: The table shows the RMSE values (averaged over all participants) for the
features considered.

6.1.2 Features

6.1.2.1 Facial Landmarks

I used mediaPipe [60] for face and hand landmark detection. I found it more

practical during the implementation. Moreover, the MediaPipe framework detects 468

landmarks as opposed to the alternatives like OpenFace[6], which detects only 68 land-

marks. MediaPipe uses weak perspective (scaled orthography) to compute each land-

mark’s (x, y) coordinates. In addition, it computes the relative depth (z coordinate) of

each feature. The (x, y, z) coordinates are then rescaled by a common factor.

I consider the following features based on facial landmarks:

nose tip xy : This is formed by the (x, y) coordinates of MediaPipe landmark #4.

The location of the nose tip in the image has been considered in prior systems

described in the literature [15, 37] as well as in [16].

nose tip xyz : While the prior work cited above only used the 2-D nose tip location in
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the image, for this feature, I considered all three (x, y, z) coordinates of MediaPipe

landmark #4. I aimed to verify whether the inclusion of depth (the z coordinated)

could prove beneficial.

6 landmarks xyz : This feature contains the (x, y, z) coordinates of 6 selected Medi-

aPipe landmarks (#4, #61, #152, #159, #291, #386). These landmarks repre-

sent the nose tip, the left mouth corner, the chin tip, the left outer eye corner, the

right mouth corner, and the right outer eye corner, respectively. I selected these

landmarks as they form a minimal face shape with richer information than the

nose tip. They implicitly indicate the head location and rotation, which are more

effective in determining the orientation and focus of the head.

6.1.2.2 Head Pose Landmarks

Since one’s head can be approximately modeled as a rigid object, its pose

(location + orientation) can be considered as a feature. I computed the full pose of

the participant’s head at each frame using the Perspective-n-Point (PnP) algorithm

[56], which aligns 3D head model points to 2D facial landmarks detected in the image,

providing accurate pose estimation with minimal computational overhead. Note that

this computation requires camera calibration, and the calibration accuracy may affect

the quality of pose estimation. I defined the following features:

Euler angs : This feature contains the three Euler angles representing the head rota-

tion with respect to a fixed reference frame.
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Euler angs loc : In addition to the three Euler angles, I included here the location,

with respect to a fixed frame, of a frame attached to the head, forming a 6-

dimensional feature vector.

6.1.3 Affine Mapping

Given a feature vector f(t) at time t, I map it to a pixel location p(t) =

(px(t), py(t)) using an affine transformation: p = Af(t) + b. In this equation, b is a

2-D vector, while A is a matrix whose dimensions vary from 2 × 4 for nose tip xy to

2 × 12 for 6 landmarks xyz. The parameters A and b are computed via least squares

regression. Specifically, given the target trajectory p̂(t), I minimize the average squared

residual ∥Af(t) + b− p̂(t)∥2.

Each feature type’s parameters were computed individually for each partici-

pant (representing a sort of “personalization”). To minimize the risk of overfitting, I

employed the leave-one-out policy: for each participant, when evaluating the mapping

for a certain trajectory, the parameters were computed on the 16 remaining trajectories.

In addressing the jitter observed in the mapped locations, attributed to fluctu-

ations in landmark localization, I employed an exponential smoothing technique. This

method integrates the current location data with previously smoothed values to mitigate

rapid changes, using the formula ps(t) = (1−α)ps(t−1)+αp(t), where α, the smoothing

constant, was chosen as 0.1. This selection of α reflects a deliberate balance, prioritizing

the stability of historical data over the volatility of new measurements, thereby ensuring

a more consistent trajectory by dampening the effects of noise.
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Figure 6.3: The bar graph at the top RMSE for all participants using feature
6 landmarks xyz. The table at the bottom shows the RMSE values (averaged over
all participants) for the features considered.

6.1.4 Quantitative Feature Comparison

For each feature and each participant, I considered each target trajectory in

turn, computed the affine parameters based on the remaining trajectories, and computed

the residual error ps(t)− p̂(t). I then averaged the squared norm of this error over all

trajectories and took the square root of the result, obtaining one RMSE value per feature

and per participant.

At this point, Prof. Manduchi tested the null hypothesis that neither partici-

pant nor feature had an effect on the RMSE values. 2-way ANOVA rejected this null hy-

pothesis and found a significant effect of both feature and participant (in this and other

tests in this dissertation, statistical significance was set at p ≤ 0.05). Tukey’s multiple
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comparison test revealed a significant difference between the mean MSE obtained with

6 landmarks xyz and that obtained with any other feature except for Euler angs loc.

Fig. 6.2 shows the RMSE values for each feature, averaged over all participants. Based

on this result, we conducted the rest of our analysis using the 6 landmarks xyz feature,

which produced the smallest average RMSE value (the distribution of RMSE across

participants is shown in Fig. 6.3). Examples of mapped trajectories for different target

trajectories and participants are shown in Fig. 6.1.

6.1.5 Spatial Distribution of Location Discrepancies

I divided the screen area into 5 × 5 regions uniformly and computed the bias

(average) and the total standard deviation (square root of the trace of the covariance

matrix) of the error e(t) = ps(t)− p̂(t). For each participant and each region, the error

was averaged over all t for which any target trajectory was located in that region. Note

that while the bias is a 2-D vector, the total standard deviation is a scalar. For each

participant and each screen region, we thus have two coordinates of bias and one value

of total standard deviation. The x (y) coordinate of the screen region was found to

have a significant effect on the x (y) coordinate of bias. No significant effect of region

location was found on the total standard deviation. A significant effect of participants

was found on the total standard deviation only. Fig. 6.4, left, shows the distribution of

location bias and total standard deviation across regions.
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Figure 6.4: Top: The spatial distribution of location discrepancies. Location bias vectors
are shown as arrows centered at each region. The region’s color indicates the total
standard deviation at a region. Units in the accompanying color bar are screen pixels.
Bottom: The distribution of angular discrepancies across octants. The bisector of each
octant is shown rotated by an amount equal to the angular bias in that octant. The
color of the octant reflects the angular standard deviation in that octant. Units in the
accompanying color bar are in degrees.

6.1.6 Angular Distribution of Velocity Discrepancies

In the previous section, I considered localization errors. Here, Prof. Man-

duchi looks at the angular discrepancy between the velocity of the target and that of

the mapped trajectory, which is an important consideration for controllers based on

velocity mapping. More precisely, he considered the angular difference at each time be-

tween the tangent to the mapped and the target trajectories distributed across octants.

Specifically, for each octant ([k · 45◦ − 22.5◦, k · 45◦ + 22.5◦], he considered the times

t in which any target trajectory p̂(t) had tangent with a slope that was within that

octant. For these time intervals, he computed the angular difference between the slope

of the tangent to the target trajectories and that to the mapped trajectories. He then

computed the bias (mean) and standard deviation of these differences. This results in

one value of angular bias and one value of angular standard deviation per participant

and per octant. Neither participant nor octant were shown to have a significant effect on
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bias. Averaged across participants, the angular bias was positive for all octants (total

average: 3.14◦). This means that participants always move their heads in a direction

slightly more counterclockwise compared to the direction of the target.

Both participant and octant affected angular standard deviation. Multiple

comparison analyses did not reveal a significant pairwise difference in angular standard

deviation across different octants. As an additional test, He averaged together the

angular standard deviation values for even-ordered and odd-ordered octants. He found

a significant effect of the octant group (even- or odd-ordered) on this statistic. Fig. 6.4,

right, shows the distribution of angular bias and standard deviation across octants.

6.2 Discussion

6.2.1 Analysis of Results

My analysis (Fig. 6.2) compared multiple feature types to find which of these

features could be mapped (through an affine transformation) to screen points forming

a trajectory that best resembles the target trajectory. A set of 6 facial landmarks

(6 landmarks xyz) was shown to give significantly better results (in terms of RMSE)

than just the nose tip or the vector of Euler rotation angles. This feature type can be

computed robustly using modern software packages such as MediaPipe.

As shown in Fig. 6.4, analysis of the residual location bias (discrepancy between

mapped and target trajectories) revealed a distinct spatial pattern. (Note that, although

I only show results with 6 landmarks xyz, a similar pattern was also observed when
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using other features.) This clearly indicates that the simple affine transformation used

to map features to screen points may not be sufficient to reproduce the intended pointer

motion. Different mapping models (e.g., polynomials) could reduce or eliminate these

localized biases. Importantly, the total standard deviation of the error (discrepancy)

was generally very large (in excess of 200 pixels, or about 10% of the screen width).

This indicates that the participants were not consistent in their head motion in response

to the same target trajectory; each participant had slightly different motions. While a

careful mapping function could potentially remove localized bias, this will not help with

poor consistency.

Spatial inconsistency could be due to multiple reasons. For example, users may

not be able to exactly replicate a certain head pose due to proprioceptive bias [4, 5, 99].

It is also conceivable that trying to reach a certain head position/orientation starting

from different points may result in slightly different trajectories of head movement. If,

for example, one is trying to move the pointer to the upper left corner of the screen,

different neck muscle groups would be activated depending on whether the pointer is

currently in the lower left area (extension), in the top right area (axial rotation), or

the center of the screen (motion around an oblique axis). Activation of different muscle

groups may affect the velocity and precision of coordinated motion [85]. I conjecture

that more complex sequence-to-sequence maps (e.g., recurrent neural networks) may

help mitigate the lack of consistency by modeling different trajectories of head motion,

thus producing a closer approximation to the intended pointer location at each time.

Prof. Manduchi’s analysis of the distribution across octants of the angular error
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revealed that its standard deviation is larger for “diagonal” octants (Fig. 6.4, right).

Moving the pointer along the “horizontal” or “vertical” octants requires moving one’s

head left/right (rotation) or up/down (extension/flexion). In each of these movements,

only one group of muscles is generally activated. However, for the “diagonal” octants

(diagonal head circumduction), multiple neck muscles need to work in coordination,

which may be the cause of the observed reduced consistency in these movements.

6.3 Conclusions

I presented an analysis of the discrepancy between the intended target trajec-

tories and mapped trajectories using a simple affine transformation of selected features

from images of participants’ heads. This analysis was based on an existing data set with

videos of users moving their heads while following a moving target on the screen. Our

analysis has shown that a set of 6 facial landmarks is superior, in terms of mapping er-

ror, to other commonly used features (nose tip, head rotation). I also reported mapping

errors (in terms of bias and standard deviation) for both mapped locations and mapped

velocities (angular error). In future work, I will consider more complex mapping using

machine learning in an effort to ensure that the mapped trajectory faithfully reflects

the user intent.
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Chapter 7

Comparison of Personal, Generic, and

Fine-tuned Head-Tracking Pointing

I analyzed the collected video data and explored that individuals have unique

head movement patterns for similar pointing tasks, necessitating tailored mappings

from head to pointer motion. I utilized affine transformation as the mapping function

in the chapter 6. As the input for pointing, I relied on the feature sets, including facial

landmark estimations and head pose calculation as described in Section 6.1.2. However,

the correlation between the participant’s head pointing and the desired pointer motion

would be a conditional and possibly complex relationship rather than a straightforward

proportional one. I also showed in Chapter 6 that the individuals have different biases

based on the location and the direction of the pointing. Affine transformation cannot

capture such biases as it only provides a straightforward proportional mapping. On

the other hand, neural networks may also learn such non-linear correlations. They can

99



learn several biases in the input patterns and generate a non-linear transformation by

activating different neurons conditionally through the network. It would improve the

overall pointing precision and may lead to training a generic model that can work for

multiple users with little fine-tuning.

I evaluated fully connected neural networks (FCNs) and recurrent neural net-

works (RNNs) to transform input features to the desired pointing coordinates. Utilizing

an FCN instead of affine transformation was straightforward, as the data formation was

the same for both algorithms. I only have to batch data samples for FCN as it is trained

better by iterating over small batches, while affine transformation is calculated once over

the entire data set. One can also adjust the capacity of an FCN by choosing different

hyperparameters for the number of neurons at each layer and the number of hidden

layers. A wider FCN can capture local patterns and several biases in the input features.

It may structure a nonlinear transform through its neurons that can be conditionally

activated. This is also true for RNNs. However, different data formations are available

for RNNs that allow me to learn sequence-to-sequence mapping. I can feed RNNs by

sequences of input features from current and previous steps rather than considering in-

put features at the current step alone. This introduces the utilization of previous steps

in estimating the current pointing coordinates and allows the model to react to velocity

or direction changes. I consider shaping the window of these input steps in different

fashions, including step skipping and overlapping. I also explored the effects of stateful

and stateless training of RNNs.

I started by extending the feature comparison study with FCNs and RNNs
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and trained individual models for each feature set. For the feature comparison study, I

trained personal models for each participant separately. I split one participant’s data

into four approximately equal folds and applied cross-validation by leaving one fold out

each time as the test set. This study also reports the performance of personal head-

tracking pointing, where the models are trained for the specific participant with 75%

of their existing data. I called such models personal as they were built for only one

person. I reported the performance and discussed the practicality of such methods due

to the necessity of data collection in significant amounts.

To compare with personal models, I aimed to learn a generic head-tracking

pointing, tested on unseen participants not included in the training. I collected the data

from 9 participants as described in Chapter 5. In this case, I trained the model with 8

participants and tested it with data from the 9th participant. I reported the results by

9-fold validation and highlighted the drawbacks of generic models. I also explored the

effects of normalization with generic models by pointing out each individual has unique

ranges for input features. I applied standard normalization for most experiments to

bring the participants’ input in the same range, as I only focused on end-to-end pointing.

Generic models underperformed compared to personal models, as expected.

I then introduced fine tuned models where I assumed the data from the target user

exists but is limited. I examined the fine-tuning capacity of neural networks, which

is specifically beneficial in this case. I compared their performance against the simple

affine mapping with fine-tuning data alone and with the extended data containing the

training and fine-tuning data. I had several options to fine-tune neural networks with
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new data, such as freezing the weights in the first layers and lowering the learning

rate. I ran different experiments to investigate each option and only reported the ones

fine-tuned with lower learning rates and no weight freezing.

7.1 Method

7.1.1 Video Data Set

Each participant in the data set was recorded through 17 distinct trajecto-

ries described in Chapter 5. For personal models, I applied 4-fold cross-validation and

trained the models on approximately 75% of the participant data. I grouped 17 tra-

jectories based on their length and ensured that the folds contained a similar number

of frames in total. Each fold contains 6318, 6344, 6178, and 6689 frames, respectively.

They consist of four complete trajectory videos except for the fourth one, which con-

sists of five complete videos. Participant 4 missed a single video, and Participant 6

missed two videos due to errors in the recording process. However, those were some of

the shortest videos, and all went into the fourth fold. In conclusion, I maintained the

balance of the folds in size.

7.1.2 Features

7.1.2.1 Feature Sets

I used the future set already described in Section 6.1.2. To revisit each,

nose tip xy and nose tip xyz represent the facial landmark estimated by MediaPipe[60].
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The only difference is nose tip xyz also includes the landmark’s Z coordinate estima-

tion by MediaPipe. While the nose-tip is a strong feature for head-tracking pointing,

6 landmarks xyz includes six individual facial landmarks that represent different con-

cerns of the face shape. Together, they represent a rigid shape in the future shape rather

than a single point. On the other hand, Euler angs and Euler angs loc was calcu-

lated via the Perspective-n-Point (PnP) algorithm [56], which aligns 3D head model

points to 2D facial landmarks detected in the image, providing accurate pose estima-

tion with minimal computational overhead. Note that this computation requires camera

calibration, and the calibration accuracy may affect the quality of pose estimation.

7.1.2.2 Standard Normalization

I applied standard normalization to balance the impact of individual dimen-

sions in the selected feature sets. Standard normalization is a preprocessing step used

to rescale features to have the properties of a standard normal distribution with a mean

of zero and a standard deviation of one. This is particularly useful when features have

different units or scales, ensuring each feature contributes equally to the analysis.

The standard normalization formula is given by:

X ′ =
X − µ

σ

where:

• X is the original feature value,
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• µ is the mean of the feature values,

• σ is the standard deviation of the feature values,

• X ′ is the normalized feature value.

By applying standard normalization, we ensure that the features are on a

common scale, which can improve the performance of many machine learning algorithms,

particularly those that rely on distance measurements such as k-nearest neighbors and

support vector machines.

7.1.2.3 Mapping Types: Velocity Against Exact Coordinates

Pointing on a screen is the task of identifying the coordinates that the user

intends to interact with. In the settings where the screen itself is interactable, like a

touchscreen, pointing happens instantly and only at the moment of interaction. For

example, physical touch on a touchscreen indicates the exact interaction point, and an

additional cursor is not necessary. On the other hand, some settings require external

pointing mechanisms since the screen is not interactable. Such mechanisms rely on a

virtual cursor on the screen and relocate it based on momentary input change captured

by an external mechanism. Head-tracking pointing is not so different; it updates the

cursor location based on the input change on the camera. Relativity is preferred for

these pointing mechanisms with static mapping function as discussed in Section 4.2.2.1

and the previous work [15]. Relative pointing also introduces edge clipping, allowing

users to re-calibrate their position as explained in Section 4.2.2.2.
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I collected a data set where participants were allowed to express head-pointing

as naturally as possible. I only asked them to align their head with the center of

the screen before each session. Also, no feedback was provided on their alignment

with the target during the pointing sessions so they were not aware if they needed re-

calibration during the session. Under these conditions, participants had no presumptions

regarding the correlation between the target and their movements when following the

target. They would assume an exact correlation where they should have a specific

head position to point to a specific coordinate on the screen and revisit the exact head

position every time the target visits the same coordinate. Alternatively, they would

assume a relative correlation where they change their head position in correlation with

the target movement. In this assumption, participants ignore the exact positions and

only focus on maintaining their velocity with respect to the target. To investigate the

dominant assumption, I evaluated two different transformations. One transformation

was from exact values of features to the exact target coordinates that represent one-

to-one mapping and the other from delta values, which were the feature change in

200 milliseconds (or between 5 frames) to the target relocation in the same period.

When generating the final outputs, I still applied edge clipping described in Section

4.2.2.2 for the transformation with delta values. I also limited the output space of

the transformation with exact values with the screen size, which was 1920X1080. I

moved the estimations that fell out of the screen to the corresponding edges.
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7.1.3 Transformations

I defined three transformation functions that map the input at time t to a pixel

location p(t) = (px(t), py(t)). The first two take a feature vector f(t) as the input. The

last one takes a feature matrix consisting of consecutive feature vectors from a time

interval.

For comparison, I included the affine transformation I defined in Section 6.1.3

in the experiments explained in this chapter. I also explored the potential of neural

networks to learn tailored mappings from head to pointer motion. Since the affine

transformation provided a strong benchmark, I tended to build simple architectures

with a few hidden layers. I implemented a custom fully connected neural network

(FCN) with three hidden layers, each consisting of 4096 neurons. I applied dropout

with the rate of 20%. The learning rate was set to 0.0001, with a batch size of 16. The

network was optimized using Adam [50].

Additionally, I implemented a custom recurrent neural network. I evaluated

two of the popular architectures, namely, Long Short-Term Memory[42] (LSTM) and a

network with Gated Recurrent Units[14] (GRU). I found that GRU trained faster than

LSTM while reaching lower error rates. Since the difference between their performances

was slight but consistent, I excluded LSTM from the study. I referred to the network

with GRUs as the recurrent neural network to highlight its recurrent functionality, which

was its key difference against the FCN and the affine transformation. The architecture

started a recurrent layer with 4096 gated units, followed by a fully connected layer
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with 1024 neurons, and ended with an output layer that generates 2D estimations for

pointing coordinates. I did not apply dropout for RNN. The learning rate was set to

0.0001, with a batch size of 16. The network was optimized using Adam [50]. I prepared

the input windows with a length of 3 while skipping four frames between each step. I

also benefited from overlapping with one step. Therefore, I did not utilize stateful where

the windows must be consecutive as the hidden state kept across the windows until the

actual sequence ends. Instead, I trained it in a stateless fashion so that I was able to

generate a higher number of windows by overlapping. I could also randomize the order

of windows at each epoch. I found the stateless training preferable as it improved the

overall performance.

7.1.4 Personalization Models

I evaluated different personalization models for head-tracking pointing to in-

vestigate the amount of data required for a personalized mechanism. I introduced three

main models as described below.

Personal Head-Tracking Pointing : I regressed or trained models specific to the

participant. Personal models were optimized with 75% of the data available from

that participant. I also proposed personal quick models that were optimized with

only 25% of the same data. In both cases, I ran 4-fold cross-validation to generalize

the results.

Generic Head-Tracking Pointing : I proposed generic models that were tested on
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participants who were left out of the training set. The data set with nine par-

ticipants allowed me to run a 9-fold cross-validation, leaving out each participant

once.

Fine-tuned Head-Tracking Pointing Note that collecting data from each individ-

ual user would not be practical. My previous observations show that the end

users’ time investment in data collection would not be sufficient. Additionally, we

cannot guarantee how strictly the user followed the instructions for data acquisi-

tion without supervision. Therefore, models trained solely on the data from the

end user would be unreliable for pointing. Instead, a potential end product would

employ the models that are pretrained on reliable data and only fine-tuned with

the limited data from the end user. I also investigated this case by fine-tuning the

generic models by 25% of the data available from the test participant to obtain

fine tuned models and evaluating their performance on the rest.

7.1.5 Experiment Space

This study has four independent variables that generate 120 results in total,

as given below.

• 5 Feature Sets X 2 Mapping Types X 3 Transformations X 4 Personalization

Models = 120 Separate results

As the validation folds varied between 4 and 9, 1080 individual experiments

were conducted.
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Transformations

Mapping

Type

Feature

Set

RNN FCN Affine

Exact Values nose tip xy 203.71 229.67 223.42

nose tip xyz 202.50 228.76 222.25

6 landmarks xyz 200.42 204.41 202.63

Euler angs 216.43 236.07 218.47

Euler angs loc 202.89 219.56 207.85

Delta Values nose tip xy 258.80 272.94 268.47

nose tip xyz 257.95 270.24 267.35

6 landmarks xyz 250.91 263.43 259.72

Euler angs 292.54 325.53 295.07

Euler angs loc 253.17 281.44 261.33

Table 7.1: The RMSE values measured for the personal pointing. The errors for the
delta values are computed over the reconstructed trajectory by summing together the
delta values at each step.

7.2 Results

7.2.1 Quantitative Feature Comparison

For each result, I considered each target trajectory in turn, computed the

residual error ps(t)− p̂(t). I then averaged the squared norm of this error over all test

points and took the square root of the result, obtaining one RMSE value per result.
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Transformations

Mapping

Type
Feature Set RNN FCN Affine

Exact Values nose tip xy 202.33 286.51 335.07

nose tip xyz 202.52 287.78 338.83

6 landmarks xyz 199.22 297.57 331.28

Euler angs 216.01 294.09 311.33

Euler angs loc 200.06 284.58 310.53

Delta Values nose tip xy 257.87 274.29 310.07

nose tip xyz 257.71 276.58 309.63

6 landmarks xyz 253.27 282.79 306.99

Euler angs 296.51 287.11 325.16

Euler angs loc 253.50 274.38 308.97

Table 7.2: The RMSE values measured for the generic pointing. The errors for the
delta values are computed over the reconstructed trajectory by summing together the
delta values at each step.
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For personal models, I confirmed my previous finding in section 6.1.4 that

suggested a significant effect of both feature and participant (in this and other tests in

this article, statistical significance was set at p ≤ 0.05). The results are provided in

Table 7.1. As Table 7.2 shows the details, I also tested the null hypothesis that nei-

ther participant nor feature affected the RMSE values for the generic models. Again,

2-way Analysis of Variance (ANOVA) rejected this null hypothesis and found a sig-

nificant effect of both feature and participant. Lastly, I repeated the same test with

the three different transformations and provided detailed results in 7.3, 7.4 and 7.5.

6 landmarks xyz outperformed other feature sets in each transformation. However, I

noticed that the performance difference between the feature sets gets quite lower with

RNN transformation, except Euler angs is still high compared to the remaining features.

Based on this conclusion, I only investigated the results with 6 landmarks xyz in the

next sections.

7.2.2 Mapping Type Comparison

I ran every experiment with two different mapping types and provided the re-

sults in Table 7.3, 7.4 and 7.5. I also provided Fig. 7.1 that shows the effect of mapping

types for each test participant. I applied the paired t-test to the null hypothesis that sug-

gests there is no significant difference between the RMSE values of the (exact values

and the delta values. Again, I repeated the same test with the three different trans-

formations. The null hypothesis is rejected for each transformation. This indicates

that the difference in RMSE between exact values mappings and delta values map-
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Models

Mapping

Type

Feature

Set

Personal

Quick

Personal Fine-tuned Generic

Exact Values nose tip xy 203.71 200.66 198.88 202.33

nose tip xyz 202.50 199.04 199.07 202.52

6 landmarks xyz 200.42 184.33 193.41 199.22

Euler angs 216.43 211.54 212.45 216.01

Euler angs loc 202.89 196.16 195.57 200.06

Delta Values nose tip xy 258.80 256.13 257.87 251.12

nose tip xyz 257.95 255.25 257.71 250.93

6 landmarks xyz 250.91 247.28 253.27 246.20

Euler angs 292.54 291.04 296.51 291.69

Euler angs loc 253.17 250.34 253.50 246.88

Table 7.3: The RMSE values measured for the pointing with RNN transformation
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Models

Mapping

Type

Feature

Set

Personal

Quick

Personal Fine-tuned Generic

Exact Values nosetip xy 235.00 229.67 280.11 286.51

nose tip xyz 234.23 228.76 280.83 287.78

6 landmarks xyz 235.50 204.41 276.43 297.57

Euler angs 243.47 236.07 289.80 294.09

Euler angs loc 229.51 219.56 275.66 284.58

Delta Values nose tip xy 276.48 272.94 271.65 274.29

nose tip xyz 278.37 270.24 271.40 276.58

6 landmarks xyz 280.16 263.43 281.03 282.79

Euler angs 312.98 325.53 299.74 287.11

Euler angs loc 290.37 281.44 279.21 274.38

Table 7.4: The RMSE values measured for the pointing with FCN transformation
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Models

Mapping

Type

Feature

Set

Personal

Quick

Personal Fine-tuned Generic

Exact Values nose tip xy 227.95 223.42 327.02 335.07

nose tip xyz 227.07 222.25 327.61 338.83

6 landmarks xyz 220.49 202.63 296.11 331.28

Euler angs 225.39 218.47 303.65 311.33

Euler angs loc 221.58 207.85 292.70 310.53

Delta Values nose tip xy 270.67 268.47 310.07 308.77

nose tip xyz 269.64 267.35 309.63 308.14

6 landmarks xyz 262.04 259.72 306.99 304.32

Euler angs 297.20 295.07 325.16 324.48

Euler angs loc 263.89 261.33 308.97 303.53

Table 7.5: The RMSE values measured for the pointing with affine transformation
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pings is statistically significant across all the settings. Based on these statistics, I only

evaluated the experiments with exact values mappings in the following sections.

7.2.3 Transformation Comparison

I compared three transformation models. Differences in model performance

were statistically examined using one-way ANOVA. I concluded that there is a signif-

icant difference between the transformations. My exploration also delved into model

personalization, as shown in Fig. 7.2. It shows the RNN’s superior performance over

the affine transformation, with RNN achieving the lowest RMSE values (184.3266 for

personal and 199.2223 for generic models). While the FCN transformation’s perfor-

mance closely mirrored the affine transformation in personal models, it improved in

generic models but did not surpass the RNN transformation.

7.2.4 Personalization Comparison

The personal models reached lower RMSE values across all transformations,

highlighting the effectiveness of personalized models over generic ones, as visualized

in Fig. 7.2. The personal quick models, even with limited training data, demon-

strated considerable efficacy, especially within the RNN transformation, suggesting the

feasibility of quick personalization.
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Figure 7.1: The RMSE (Root Mean Square Error) values for different mapping types
(exact values and delta values across both personal (top) and generic (bottom)
models
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Figure 7.2: The RMSE (Root Mean Square Error) value by Transformation and Model
for exact values
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7.3 Discussion

This study explored the efficacy of different transformation models and feature

sets in improving head-tracking pointing accuracy. The results highlighted the superi-

ority of the 6 landmarks xyz feature set across various transformations and mapping

types, underpinning the importance of selecting appropriate features for head-tracking

technologies.

7.3.1 Feature Set Efficacy

The 6 landmarks xyz feature set consistently outperformed other feature sets

in terms of RMSE, suggesting its robustness in capturing essential facial landmarks for

accurate head-tracking. This finding corroborates the initial hypothesis that a com-

bination of landmarks representing a rigid face shape significantly enhances tracking

accuracy. Future research must further investigate the potential of composite features

in head-tracking applications, especially in scenarios requiring precise control.

7.3.2 Impact of Mapping Types on Accuracy

The comparison between exact values and delta values mapping types re-

vealed a significant impact on pointing accuracy. Exact values mappings led to bet-

ter accuracy, suggesting that one-to-one head positions to screen coordinates are more

effective for head-tracking pointing mechanisms. This insight could be instrumental

in designing head-tracking interfaces, particularly in applications where precision is

paramount.
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7.3.3 Transformations

Among the transformations, RNN demonstrated the lowest RMSE, indicating

its capability to effectively learn complex mappings between head movements and screen

coordinates. This finding suggests the potential of RNNs in developing adaptive and

efficient head-tracking systems. However, the FCN’s performance closely mirrors the

affine transformation, especially in fine tuned models, indicating that simpler models

can also achieve considerable accuracy with proper training and personalization.

7.3.4 Personalization and Model Efficiency

The study further emphasizes the significance of personalization in head-tracking

technologies. Transformations with personalized models, including those optimized with

limited data (personal quick models), showed remarkable performance, highlighting the

feasibility of developing efficient personalization strategies with minimal user data. This

has profound implications for user-centric designs of head-tracking systems, where per-

sonalization can significantly enhance user experience and accuracy.

7.3.5 Limitations and Future Directions

While this study provides valuable insights, it also has limitations. The data

set was relatively small, and experiments were conducted under controlled conditions.

It is important to note that the data being analyzed was collected without any feedback

to the participants, who were moving their heads as if controlling the target with their

head motion. In practice, the user of a head-pointing system relies on visual feedback to
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make the necessary adjustments to the pointer location. For example, if a user rotates

their head to the right to move the pointer to a checkbox and overshoots the desired

location, the user would then slightly move their head to the left to compensate for

it. Still, it is crucial that the controller should reflect the user’s intention as much

as possible to avoid the need for continuous adjustments, which can make the whole

experience of computer interaction slow and frustrating.

A limitation of this data set is that the data only included “smooth” pointing

tasks, with participants pretending to move a target with constant velocity along specific

trajectories. This type of motion could be representative of tasks such as drawing or

repositioning a window on the screen. A much more common interaction task is point-

select [26], whereby the user moves the pointer from a certain location to reach a target

and then selects it (normally, via a mouse click). The video trajectories considered are

poorly representative of point-select tasks, and new data collection would be necessary

to study head motion in these cases.

An obvious limitation of this data set is that all participants except for one

(P9) had no mobility impairments. Since the intended users of head-pointing systems

are people with mobility limitations, it will be important to acquire similar data for this

community of users.

Future research should aim to validate my findings in more diverse and realistic

settings, including different lighting conditions, user demographics, and applications.

Additionally, exploring the integration of the proposed transformations and feature

sets into real-world applications could validate their effectiveness and usability further.
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Investigating user feedback on the usability and comfort of these head-tracking systems

would also be beneficial.

7.3.6 Conclusion

In conclusion, my dissertation demonstrates the potential of using advanced

transformation models and carefully selected feature sets to enhance the accuracy of

head-tracking pointing systems. The findings underscore the importance of personal-

ization and the selection of appropriate mapping types and feature sets in designing

efficient and user-friendly head-tracking interfaces. As technology advances, these in-

sights could pave the way for more intuitive and accessible human-computer interaction

mechanisms.
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ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[15] Muratcan Cicek, Ankit Dave, Wenxin Feng, Michael Xuelin Huang, Julia Kather-

ine Haines, and Jeffry Nichols. Designing and evaluating head-based pointing on

smartphones for people with motor impairments. In Proceedings of the 22nd In-

ternational ACM SIGACCESS Conference on Computers and Accessibility, pages

1–12, New York, NY, United States, 2020. Association for Computing Machinery.

[16] Muratcan Cicek and Roberto Manduchi. Learning a head-tracking pointing in-

terface. In International Conference on Computers Helping People with Special

Needs, pages 399–406, Cham, 2022. Springer, Springer International Publishing.

[17] Muratcan Cicek and Roberto Manduchi. Towards personalized head-tracking

pointing. In Extended Abstracts of the 2024 CHI Conference on Human Fac-

tors in Computing Systems, CHI EA ’24, New York, NY, USA, 2024. Association

for Computing Machinery.

124



[18] Muratcan Cicek, Jinrong Xie, Qiaosong Wang, and Robinson Piramuthu. Mobile

head tracking for ecommerce and beyond. arXiv preprint arXiv:1812.07143, 2018.

[19] Muratcan Cicek, Jinrong Xie, Qiaosong Wang, and Robinson Piramuthu. Mobile

head tracking for ecommerce and beyond. In IS&T International Symposium on

Electronic Imaging 2020: Mobile Devices and Multimedia: Enabling Technologies,

Algorithms, and Applications proceedings, pages 303–1–303–11, San Francisco,

CA, USA, 2020. Society for Imaging Science and Technology, Society for Imaging

Science and Technology.

[20] Rory MS Clifford, Nikita Mae B Tuanquin, and Robert W Lindeman. Jedi force-

extension: Telekinesis as a virtual reality interaction metaphor. In 3D User In-

terfaces (3DUI), 2017 IEEE Symposium on, pages 239–240. IEEE, 2017.

[21] Albert M. Cook and Janice M. Polgar. Assistive Technologies: Principles and

Practice. Elsevier Health Sciences, 2014.

[22] Origin Instruments Corporation. Headmouse nano, 2017. Retrieved January 31,

2022 from http://www.orin.com/access/headmouse/.

[23] Justin Cuaresma and I Scott MacKenzie. Fittsface: Exploring navigation and

selection methods for facial tracking. In Universal Access in Human–Computer

Interaction. Designing Novel Interactions: 11th International Conference, UAHCI

2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9–

125



14, 2017, Proceedings, Part II 11, pages 403–416, Cham, 2017. Springer, Springer

International Publishing.

[24] Gamhewage C De Silva, Michael J Lyons, Shinjiro Kawato, and Nobuji Tetsutani.

Human factors evaluation of a vision-based facial gesture interface. In 2003 Con-

ference on Computer Vision and Pattern Recognition Workshop, volume 5, pages

52–52. IEEE, 2003.

[25] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Stefanos

Zafeiriou. Retinaface: Single-stage dense face localisation in the wild. CoRR,

2019.

[26] Sarah A Douglas, Arthur E Kirkpatrick, and I Scott MacKenzie. Testing pointing

device performance and user assessment with the iso 9241, part 9 standard. In

Proceedings of the SIGCHI conference on Human Factors in Computing Systems,

pages 215–222, New York, NY, USA, 1999. Association for Computing Machinery.

[27] Tobii Dynavox. Microsoft & tobii dynavox, 2018. Retrieved July 16, 2018 from

https://www.tobiidynavox.com/en-US/landing-pages/td_and_microsoft/.

[28] Electropages. 2024 electronics industry trends: Ai, evs & iot lead the way, 2024.

[29] Gabriele Fanelli, Juergen Gall, and Luc Van Gool. Real time head pose estimation

with random regression forests. In CVPR 2011, pages 617–624. IEEE, 2011.

[30] Torsten Felzer and Stephan Rinderknecht. Clickeraid: a tool for efficient clicking

using intentional muscle contractions. In Proceedings of the 14th international

126



ACM SIGACCESS conference on Computers and accessibility, pages 257–258.

ACM, 2012.

[31] Leah Findlater, Karyn Moffatt, Jon E Froehlich, Meethu Malu, and Joan Zhang.

Comparing touchscreen and mouse input performance by people with and without

upper body motor impairments. In Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems, pages 6056–6061. ACM, 2017.

[32] Paul M Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.

[33] National Center for Health Statistics. Disability and functioning (noninstitu-

tionalized adults aged 18 and over), 2017. Retrieved July 9, 2018 from https:

//www.cdc.gov/nchs/fastats/disability.htm.
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Chapter 8

Appendix

.1 Target Trajectories

The following figures visualize the target trajectories. They are the first frame

of each video that the participants viewed on the full screen. Note that the target is

represented by a white disk and follows the path from the brighter end to the darker

one. The participants were asked to indicate the target’s motion by their heads.
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Figure .1: the trajectory labeled as horizontal

Figure .2: the trajectory labeled as horizontal part1 slow
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Figure .3: the trajectory labeled as horizontal part2 slow

Figure .4: the trajectory labeled as infinity
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Figure .5: the trajectory labeled as infinity slow

Figure .6: the trajectory labeled as random1
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Figure .7: the trajectory labeled as random1 slow

Figure .8: the trajectory labeled as random4
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Figure .9: the trajectory labeled as random4 slow

Figure .10: the trajectory labeled as random5
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Figure .11: the trajectory labeled as random5 slow

Figure .12: the trajectory labeled as vertical
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Figure .13: the trajectory labeled as vertical part1 slow

Figure .14: the trajectory labeled as vertical part1 slow
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Figure .15: the trajectory labeled as zigzag

Figure .16: the trajectory labeled as zigzag part2 slow

148



Figure .17: the trajectory labeled as zigzag part2 slow

.2 Performance of Different Models

The following figures visualize the performance of different personal RNN mod-

els that are trained with exact values. Note that the target trajectory is represented in

green and moves from the brighter end to the darker one. The models estimate the de-

sired pointing coordinates at each step. Different colors indicate the estimations based

on different feature sets.
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