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Abstract. Independent Subspace Analysis (ISA; Hyvarinen & Hoyer, 2000) is an
extension of ICA. In ISA, the components are divided into subspaces and compo-
nents in different subspaces are assumed independent, whereas components in the
same subspace have dependencies.In this paper we describe a fixed-point algorithm
for ISA estimation, formulated in analogy to FastICA. In particular we give a proof
of the quadratic convergence of the algorithm, and present simulations that confirm
the fast convergence, but also show that the method is prone to convergence to local
minima.

1 Introduction

Independent Component Analysis (ICA) has successfully been used in the past on a
variety of data, but because it is a linear model and it requires independent sources un-
derlying the data, its range is limited. This motivates an extension of ICA, in which
certain dependencies between sources can also be modeled. ISA is such an extension,
where the inclusion of a pooling stage and a nonlinear transformation augments the
linear filtering. The pooling organizes filters into subspaces inside which dependencies
are allowed. The estimation is very similar to ICA, as it follows the assumption that the
subspaces are mutually independent. It can be performed by maximizing a nonlinear
contrast function with gradient descent, which is however quite slow and inefficient.
This motivates a fixed-point algorithm for ISA, which we present in this paper. Like the
FastICA algorithm [1], the method combines quick convergence with simplicity and
usability. Here we discuss some of the mathematical background of the ISA frame-
work, followed by a convergence proof for the algorithm and simulations showing the
convergence properties.

2 Model and algorithm

ICA[2] is a method for separating a multivariate signal x into statistically independent
components s. This can be formulated as x = As where A is a mixing matrix. Inverting
the system to s = Wx, we can identify W as the demixing matrix we wish to form, such
that the independence of the sources is maximized. For ISA, we introduce ”independent
feature subspaces”. We do not require independence of individual sources, but instead
between norms of projections on these subspaces. Thus the model can be estimated by
maximizing the independence of these norms. We define one such element as

ui = ( ∑
j∈Si

s2
j)

1/2 = ( ∑
j∈Si

(wT
j x)2)1/2 (1)
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i.e. we project onto the group Si of elements which belong to the i-th subspace and
compute the norm. Note that taking the norm is a nonlinear mapping, which makes the
method capable of modeling complicated dependency structures that linear ICA cannot
capture. For the estimation of the model we need to maximize the independence of
these norms. To do this, we define the probability distribution of the model as:

log p(s1, ...,sm) =
m

∑
j=1

(
− logZ j −

G(∑i∈S j
s2
i )

b

)
(2)

where the square root has been replaced by the more general nonlinear contrast function
G(.). Z normalizes the distribution and b ensures unit variance, they can be computed
in closed form for some choices of G(.) [3]. For our simulations we used the function
G(x) =

√
x+ γ, where γ is a small, arbitrary constant to aid with stability, and was

chosen to be 0.1.
Here, we propose the following new algorithm for the estimation of ISA. To esti-

mate the components s, we iteratively update the rows w of the demixing matrix, which
correspond to the feature vectors, with the update rule, which is formulated in analogy
to fastICA:

w+
j = E

{
x(wT

j x)g( ∑
i∈S j

(wT
i x)2)

}
−E

{
g( ∑

i∈S j

(wT
i x)2)+ 2(wT

j x)2g′( ∑
i∈S j

(wT
i x)2)

}
w j

(3)
where E{.} denotes the expectation value, S j is the set of indices of components belong-
ing to the subspace, g(.) and g ′(.) are the first and second derivatives of the nonlinearity
G(.). The algorithm requires the data to be whitened. We orthogonalize W after each
step, which is equal to decorrelation since we are in whitened space.

3 Convergence proof

To show the convergence of our new algorithm, we make a change of variables to z =
AT w, so the update rule, here given for the kth element of the first vector, becomes:

zk+
1 = E

{
sk(zT

1 s)g(
n

∑
i=1

(zT
i s)2)

}
− zk

1E

{
g(

n

∑
i=1

(zT
i s)2)+ 2(zT

1 s)2g′(
n

∑
i=1

(zT
i s)2)

}
(4)

We denote subspace size by n and consider the first subspace for notational simplicity.
The lower index on z indicates the vector it is taken from, and the upper index indicates
the position within that vector.

Now we assume that we are near to a solution up to a perturbation ε, so Z = A T W is
near diagonal, and the vector z1 is of the form z1 = (1+ε1,ε2,ε3, ...)T . This is a special
case, since in general Z will converge to a permutation of a block-diagonal matrix with
blocks of size n. However, we do not lose generality by considering this particular case
only. We follow the update step and analyze the dynamics of the perturbation that we
introduced. Since we are going to show that the convergence is quadratic, it is sufficient
to write out terms that are linear in the perturbation and show that they vanish. Thus we
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will use the notation O(||.||2) for all terms of a higher (i.e. smaller) order than linear
terms. To evaluate the above expression, we need to make two approximations. At first
we expand all occurrences of the square term as follows:

n

∑
i=1

(zT
i s)2 =

n

∑
i=1

(ziT
i si)2 + 2

n

∑
�=1

(z�
�s�)(z�T

−�s−�)+O(||ε||2) (5)

where zT
−ks−k denotes the inner product of the vectors with the k-th element removed.

To separate the linear term out of the function g, we make a Taylor expansion up to the
second term,

g(
n

∑
i=1

(zT
i s)2) = g(

n

∑
i=1

(zi
isi)2)+ 2

n

∑
�=1

(z�
�s�)(z�T

−�s−�)g′(
n

∑
i=1

(zi
isi)2)+O(||ε||2) (6)

The same expansion applied to g ′(.) gives, evaluating the series to the same order,

g′(
n

∑
i=1

(zT
i s)2) = g′(

n

∑
i=1

(zi
isi)2)+ 2

n

∑
�=1

(z�
�s�)(z�T

−�s−�)g′′(
n

∑
i=1

(zi
isi)2)+O(||ε||2) (7)

now we can substitute these expressions into the original formula for the update step.
We have split zT s into a perturbation and an unperturbed term, so we get

z1+
k = E

{
sk(z1

ksk + z1T
−ks−k)

[
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n
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n
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We can now analyze the behavior of this for values of k that are either within the sub-
spaces under consideration or outside of it. For k ≤ n, the subspace under consideration
is the one that we have nearly converged to. In this case we do not require that the
change in an individual variable goes to zero, since the algorithm can only determine
each subspace up to an arbitrary rotation. Thus a linear term may remain. For k being
larger that n however, we shall show the quadratic convergence in the following. We
separate and expand the sums and take them out of the expectations, so we can clearly
see the order of the individual terms. For clarity, we split z1+

k = A+B+O(||ε||2).

A = E
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k(sk)2g(
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}
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}
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The first terms of A and B cancel since s2
k in A is independent and has an expectation

of unity due to the unit norm properties, e.g. E{s 2
k} = 1. The second term in A is

zero because again sk can be separated due to independence, and it has zero mean,
i.e.E{sk} = 0. This leaves only terms that are either proportional to z 2

k or to other
squared terms of off-diagonal elements. Since these are of the same order, they fall
into the category of O(||ε||2). We have thus shown that the linear terms in ε vanish, so
we have established quadratic convergence. It should be noted that the proof did not
depend on the assumption of spherical symmetry that is typically made with ISA. The
algorithm converges for more general dependency structures as well.

4 Simulations

To investigate the convergence properties of FastISA, we generated mixtures of super-
gaussian data with an embedded subspace structure, and used the algorithm to iden-
tify the sources. The data was generated by first taking 50,000 samples from a 40-
dimensional white Gaussian distribution with zero mean and unit variance. We then
divided this into subspaces of dimensionality four, and multiplied each member of a
subspace by a random variable drawn from a uniform distribution. This serves a dual
purpose, as it produces the required supergaussian distribution, and also introduces de-
pendencies in the subspaces. We randomly generated a mixing matrix to obtain the
observed mixtures, which were then whitened. As can be seen in figure 2a, only few
steps are required to achieve convergence. To investigate whether the algorithm con-
verged to a local minimum instead of the global solution, we computed the matrix
Z = AT W. Initializing W randomly, it was observed that convergence was always to a
local minimum. Therefore we validated the convergence properties by starting the op-
timization not on a random point on the error surface, but close to the optimal solution,
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(b) Z reaching the global minimum, 40-dim. data
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(c) Z after reaching a local minimum, 40-dim. data

Figure 1: Simulations on the algorithm: (a) The convergence is fast, the algorithm
usually converges to a minimum in 5-15 steps. The algorithm was initialized with
the correct solution perturbed by white noise of unit norm. Under these conditions,
convergence is to the global minimum for 6 of the 15 random trials. (b) The product
Z of the mixing and filter matrices is plotted, which gives a block-diagonal matrix
for the global optimum. The residual log Amari-index is −6.2 which corresponds to
an residual error of the order 10−3. This is mainly due to the assumption of infinite
expectations. (c) It cannot be guaranteed in general that the global minimum of the
error surface is found. Here a local minimum is reached, indicated by multiple blocks
in the bottom and leftmost position. The log Amari-index [4] here is −5, confirming
that this is a local minimum.
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which is known in this case since the mixtures are artificially generated. Under these
conditions we get convergence to the global minimum, given that the starting point was
close enough. This is depicted in Fig. 2c for data with a dimensionality of 40. Z should
converge to a permuted block-diagonal matrix, since rotations inside subspaces do not
affect the likelihood. Here, the Amari-index[4] for subspaces was computed by adding
up the absolute values of all elements of the blocks of the main diagonal.

5 Conclusion

We presented a fixed-point algorithm for ISA, analogous to the ones presented in [1, 5].
The convergence of the algorithm was proven to be quadratic. Simulations show that the
convergence is fast, but they also point out the problem of local minima. The problem
of local minima is probably more related to the model specification itself because it was
already encountered in [6], and not due to our particular algorithm.
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