
Learning with monotonicity requirements for
optimal routing with end-to-end quality of

service constraints

Antoine Mahul1 and Alexandre Aussem2

1- Université Blaise Pascal Clermond-Ferrand II - LIMOS / UMR 6158
Campus des Cézeaux, B.P.10125, 63173 Aubière - FRANCE

2- Université Claude Bernard Lyon I - Laboratoire PRISMa
8, boulevard Niels Bohr, 69622 Villeurbanne cedex - FRANCE

Abstract. In this paper, we adapt the classical learning algorithm for
feed-forward neural networks when monotonicity is required in the input-
output mapping. Monotonicity can be imposed by adding of suitable pe-
nalization terms to the error function. This yields a computationally effi-
cient algorithm with little overhead compared to back-propagation. This
algorithm is used to train neural networks for delay evaluation in an opti-
mization scheme for optimal routing in a communication network.

1 Introduction

The multiplication of services in communication networks and the increasing de-
mand for quality and reliability generate new challenges for the researchers. We
consider here the optimization problems arising typically in Traffic Engineering
where the overall operational performance of the communication network is to
be maximized while satisfying some predefined Quality of Service (QoS) require-
ments. Unfortunately, the QoS, usually expressed in terms of average response
time and/or loss rate, is difficult to express analytically in terms of the incoming
traffic characteristics. It is also particularly appealing to train a feed-forward
neural network as a ”black-box” for the evaluation of the QoS values. As delay
and loss are monotonically increasing with respect to the incoming traffic rates,
inclusion of this prior knowledge into the training procedure can lead to better
generalization. Moreover this monotonicity is also a stringent requirement for
the optimization algorithm to converge.

To include the monotonicity as prior knowledge during learning, in [1], au-
thors add virtual examples (hints) in the learning base. At the opposite, a
specific neural architecture which is intrinsically monotonic is presented in [2].
We propose here a different strategy: to impose the monotonic property to neural
networks by adding constraints in the learning problem.

First, we briefly present our traffic engineering problem and our resolution
strategy using feed-forward neural networks as evaluation function of the QoS.
Then, we propose a computationally efficient learning algorithm for feed-forward
neural networks that takes into account monotonicity requirements. Finally, we
present some numerical results.

455

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

455

2 Optimal routing problem with end-to-end constraints

We focus on the problem of routing a set of demands with distinct QoS re-
quirements in an MPLS backbone in order to distribute the load equally in the
network. We investigate how the classical M/M/1 assumption for delay evalua-
tion could be relaxed by considering a slightly more accurate neural model in a
multicommodity flow problem.

2.1 Problem description and resolution

In this paper, we restrict ourselves to the end-to-end delay defined, for each
commodity, as the mean delay of packets between the departure time at the
origin and the arrival time at the destination. The optimization problem is to
route each commodity on the network in order to minimize the overall load on
the network, defined as the overall sum of the arc loads, while respecting all QoS
requirements.

The problem can be formulated as a multicommodity flow problem (see [3]
for more details and a complete formulation) with a supplementary constraint for
QoS on every active path. We propose the following nonlinear QoS constraints:

xk
p

(∑
a∈p

ψsk
a (fa)−Dsk

)
6 0 ∀k ∈ K,∀p ∈ Pk (1)

where K is the set of demands, Pk the set of all paths for demand k ∈ K, xk
p

the quantity of flow for the demand k ∈ K routed on a path p ∈ Pk, fa the
bandwidth vector (aggregated by class of service) for each class of an arc a. The
evaluation function ψs

a(fa) represents the delay for class of service s ∈ S on arc
a ∈ A and Ds is the upper bound on the end-to-end delay for every demand
associated with the service class s.

Therefore, our problem is an optimization problem with a nonlinear objec-
tive function, linear flow constraints and an exponential number of nonlinear
non-convex QoS constraints. These constraints can be deported in the objective
function by a lagrangian relaxation. We need to use an augmented lagrangian
scheme in order to deal with the non-convexity of QoS constraints. In [4], we
propose to adapt the flow deviation method (cf. [5]) for solving the inner prob-
lem. This algorithm converges toward a local optimum of the initial problem.
However, this procedure is valid only if the evaluation function is increasing.

2.2 Neural approximation of quality of service

Typically, the M/M/1 approximation is used as the delay function ψ. But it
ignores the class of service and therefore it is not valid in the case of differentiated
services. A more realistic evaluation function of delay on an arc can be obtain
with neural networks trained on discrete-event simulations (see [6]).

In the optimization process, input traffics are only characterized by band-
width. So, from these rates aggregated per class, a neural network will be able

456

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

456

to estimate the mean delay for each class. The neural network was trained to
approximate the function: {fs}s∈S → {ds}s∈S , where fs is the aggregated traf-
fic of class s and ds is the average delay for class s. The neural network was
trained on examples generated by simulation of a router output interface.

However we have to ensure the monotonicity of evaluations for using the
neural network into the optimization algorithm. We propose in the following to
force the monotonicity during the learning of the neural network.

3 Learning with monotonicity requirements

3.1 Definitions and notations

In the following, we consider feed-forward network of arbitrary topology. Let N
be the set of neurons. Nin ⊂ N is the subset of input neurons and Nout ⊂ N
is the subset of output neurons. A is the set of arcs, and wc = wij the weight
of an arc c = (i, j) ∈ A. For given input vector x and weight vector w, si(x,w)
and ai(x,w) are respectively the input value and the activity of a neuron i ∈ N .
fi is the activation function of a neuron i ∈ N . The value of the input neurons
are set to x = {si, i ∈ Nin}. Hence, input and output of neurons are determined
by the relations:

si(x,w) =
∑

k∈N ,(k,i)∈A

wki ak(x,w) i /∈ Nin

ai(x,w) = fi(si(x,w)) i ∈ N

We also note a′i(x,w) = f ′i(si(x;)) and a′′i (x,w) = f ′′i (si(x,w)).

3.2 Learning problem subject to monotonicity constraints

Learning is classically achieved by a gradient descent method. Generally, we
seek to minimize the quadratic error of estimation E on a given base B of exam-
ples. We propose to impose monotonicity during the learning process by adding
constraints in the learning problem.

An output value yi (i ∈ Nout) of the neural network is increasing (resp.
decreasing), on a compact set K ⊂ R|Nin|, according to an input value xj (j ∈
Nin) if the corresponding element Jij(x,w) = ∂yi

∂xj
= ∂ai

∂sj
(x,w) of the jacobian

matrix is positive. However, the monotonicity is difficult to enforce on the
whole domain K. So we consider constraints only on examples given by the
learning base B. We suppose that the neural network will be able to generalize
the monotonicity property on the whole domain. The learning problem (L) is
then a nonlinear optimization problem subject to a finite number of nonlinear
constraints:

(L)

Min E(w) =

∑
(x,y)∈B

∑
i∈Nout

(
ai(x,w)− yi

)2
s.t. Jij(x,w) ≥ 0 ∀(x, ·) ∈ B, ∀i ∈ Nout, ∀j ∈ Nin (C)

w ∈ R|A|

457

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

457

3.3 Penalty method

We propose to use penalty methods (see [7] for details) to solve problem (L).
Penalty methods solve a sequence of unconstrained subproblems which approach
iteratively the infinite penalty function (σ(x) = 0 if all constraints are valid and
σ(x) = ∞ otherwise). The penalty function Φ(w, µ) associated to problem (L)
can be written (w ∈ R|A| is the vector of the weights of the neural network) as:

Φ(w, µ) =
∑

(x,y)∈B

(∑
i∈Nout

(
ai(x,w)− yi

)2
︸ ︷︷ ︸

E(x,w)

+µ
∑

i∈Nout

∑
j ∈Nin

ϕ
(
Jij(x,w)

)
︸ ︷︷ ︸

P (x,w)

)

where ϕ is a function from R to R. We use the quadratic penalty function
ϕ(x) = 1

2min(0, x)2. At an iteration k of the penalty method, we have to solve
the subproblems (Pk) minw Φ(w, µk) where the sequence µk is chosen such
that lim

k→∞
µk = ∞. In order to apply a gradient descent method for solving

these subproblems, we must be able to compute the gradient ∇Φ(w, µ). The
term ∇E(w, µ) can be computed by the classical back-propagation algorithm.
We focus on the penalty term ∇P (w, µ) in the next section.

4 Forward-backward algorithm for gradient computation

We propose in this section an algorithm to compute the penalty gradient ∇P .
We proceed in a way similar to the curvature-driven learning proposed by [8] in
the case of regularization.

Let x be an input vector of the neural network and w a weight vector. In
order to simplify the notations, we will omit x and w in the sequel. For a given
weight wkl, (k, l) ∈ A, the corresponding component of ∇P is

∂P

∂wkl
=

∑
i∈Nout

∑
j ∈Nin

∂Jij

∂wkl
ϕ′
(
Jij

)
(2)

We generalize the definition of Jij = ∂ai

∂sj
for all i ∈ N . When j is an input

neuron, sj is independant of any weights, so we can write:

∂Jij

∂wkl
=

∂

∂wkl

[
∂ai

∂sj

]
=

∂

∂sj

[
∂ai

∂wkl

]
= JilJkj + ak

∂Jil

∂sj

If we define J+
ij =

∑
k∈Nout

Jki ϕ
′(Jkj

)
and ν+

ij =
∑

k∈Nout

∂Jki

∂sj
ϕ′
(
Jkj

)
, for all

(i, j) ∈ N ×Nin then equation (2) becomes:

∂P

∂wkl
=
∑

j ∈Nin

(
Jkj J

+
lj + ak ν

+
lj

)
(3)

458

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

458

Let κij = ∂si

∂sj
, defined for (i, j) ∈ N × Nin. The calculation of jacobian

elements can be performed with the following forward relations:

Jij = a′iκij and κij =

δi
j if i ∈ Nin,∑

k,(k,i)∈A

wki Jkj otherwise. (4)

where δi
j is the Kronecker symbol. And we can establish back-propagation for-

mula for the calculation of J+
ij and ν+

ij (for i /∈ Nout):

J+
ij =

∑
k∈N

(i,k)∈A

wik a
′
i J

+
kj and ν+

ij =
∑

k∈N
(i,k)∈A

wik

(
a′′i κij J

+
kj + a′i ν

+
kj

)
(5)

Then when i ∈ Nout, we have J+
ij = a′i ϕ

′(Jij) and ν+
ij = a′′i κij ϕ

′(Jij).
Finally, the gradient ∇P (x) can be computed for a given input vector x

with the following forward-backward algorithm: first compute, in the topological
order (from inputs to outputs), κij and Jij using (4); then compute, in the
reverse topological order (from outputs to inputs), J+

ij and ν+
ij using (5); finally,

use (3) to compute the overall gradient. Like the standard back-propagation
algorithm for error gradient computation, the complexity of this algorithm is
linear according to the number of synaptic weights.

5 Numerical results

In these numerical experiments, we consider a DiffServ router with 3 classes of
services and a simplified scheduler (EF a priority class; AF1 and AF2 two sym-
metrical classes scheduled with a round robin algorithm). We build the learning
base by discrete-event simulation and examples are chosen randomly. We report
learning results in Table 1 with classical back propagation learning and with
constrained learning, and we have considered two models of traffic: poissonian
and On/Off traffic. The first columns are the normalized mean squared error
(NMSE) for each class of service, the fourth column is the mean squared of neg-
ative jacobian elements measuring the monotonicity error and the last column
is the percent of decreasing patterns. All values are measured on validation
sets of examples with a cross-validation technique. We observe that constrained
learning gives negligible error of monotonicity on unknown examples.

NMSE (×10−3) Monotonicity

Traffic Learning EF AF1 AF2 error %

Poisson
back prop. 1,10 6,21 6,22 1, 95 · 10−3 10,0%

penalty 3,01 20,01 14,85 0.0 0.0%

On/Off
back prop. 1,11 4,70 3,29 1, 14 · 10−2 28,8%

penalty 9,25 20,00 13,98 9, 94 · 10−6 1,7%

Table 1: Learning results with a 10 hidden units MLP

459

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

459

Then we use these models of delay in our optimization scheme, considering a
network instance of 10 nodes, 44 arcs and 20 demands. Results are reported in
Table 2 with three models of delay. Columns are respectively the network load
at the optimal solution (f∗), the maximal violation (‖ g ‖∞), nvio the number of
violating paths and ntot the number of active paths.

Delay model f∗ ‖ g ‖∞ nvio/ntot Iterations CPU (sec.)

M/M/1 22,483721 0. 0 / 43 28351790 3320

MLP:Poisson 22,456047 0. 0 / 40 11537021 13312

MLP:On/Off 22,730098 8, 08 · 10−8 1 / 61 4355476 6575

Table 2: Optimal routing with delay constraints and 3 functions of delay.

These results are useful in proving that the way the QoS is approximated has
a major impact on the routing solution obtained by the optimization procedure.
According to the QoS model used, the optimal routes differ significantly, in
particular with the neural model based on On/Off model.

6 Conclusion

We presented a learning algorithm satisfying monotonicity requirements for feed-
forward neural networks and we uses this learning approach to solve a routing
problem with delay constraints in communication networks. The neural network
was trained to estimate delays induced by the load of the network, which is an
unknown increasing function of the traffic rates. This neural estimator was then
used in a routing optimization scheme for which the monotonous condition of
the delay function is a fundamental condition.

References

[1] Joseph Sill and Yaser S. Abu-Mostafa. Monotonic hints. Advances in Neural Information
Processing Systems, 9:634, 1997.

[2] Joseph Sill. Monotonic networks. Advances in Neural Information Processing Systems,
10:661–667, 1998.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Networks Flows: Theory,
Algorithms and Applications. Prentice-Hall, 1993.

[4] Antoine Mahul. Apprentissage de la Qualité de Service dans les réseaux multiservices:
applications au routage optimal sous contraintes. PhD thesis, Université Blaise Pascal,
2005.

[5] L. Fratta, M. Gerla, and L. Kleinrock. The flow deviation method: An approach to store-
and-forward communication network design. Networks, 3:97–133, 1973.

[6] Antoine Mahul and Alexandre Aussem. Distributed neural networks for QoS estimation
in communication network. International Journal of Computational Intelligence and Ap-
plications, 3(3):297–308, 2003.

[7] Dimitri P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Acad-
emic Press, 1982.

[8] Christopher M. Bishop. Curvature-driven smoothing: a learning algorithm for feed-forward
networks. IEEE Transactions on Neural Networks, 4(5), September 1993.

460

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

460

