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Abstract. The recurrent least squares (RLS) learning approach is
proposed for controlling the learning rate in parallel principal subspace
analysis (PSA) and in a wide class of principal component analysis (PCA)
associated algorithms with a quasi—parallel extraction ability. The pur-
pose is to provide a useful tool for applications where the learning process
has to be repeated in an on-line self-adaptive manner. The methods are
compared with a sequential PCA method for image compression.

1. Introduction

Independently of the learning algorithm that is applied for neural network based
principal component analysis (PCA) [2,5,8] a higher order principal component
m can be estimated if and only if all the previous components (1,2, ...,m —
1) are already extracted or exactly estimated. This means that we are not
able to extract all required principal components in a fully parallel way (i.e.
simultaneously).

An alternative approach to signal (or image) compression and feature ex-
traction is the principal subspace analysis (PSA) [6]. Its advantage is a fully
parallel working ability, i.e. a simultaneous calculation of the subspace spanned
by specified number of principal components. Instead of a relatively simple
scalar algebra, like in sequential PCA, a computationally more expensive but
compact matrix algebra is required for PSA. From a parallel method we usually
expect that good quality results will be available in a very fast manner. This is
not automatically guaranteed by the original PSA algorithm which converges
very slowly. A class of quasi—parallel PCA algorithms, which we call ordered
PSA can also be considered in this context [3,7]. These methods are given in
matrix form, like the PSA method, but they do not work fully parallel due to
additional control by specific ordering operators (matrix).

In order to provide the fast learning convergence of parallel PSA and quasi~
parallel PCA methods in this paper a recurrent least squares (RLS) learning
rate adaptation is proposed for them. The performance to speed trade—off
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of such fast converging methods will be compared with the recently proposed
CRLS method, that is a reliable and fast sequential PCA algorithm [4].

2. The CRLS method for PCA

The standard PCA, called also. Karhunen-Loeve transformation, (KL) deter-
mines an optimal linear transformation y = Wa of an input vector &, where
£ € R™ is a zero—mean input vector, y € R™ is the output vector and
W = [w1,w2,...,wn]T € R™*" is a desired transformation matrix. The or-
thogonal vectors w; = [wj1,w;2,...,w;n), (§ = 1,2,...,m), are called principal
components (usually m << n).

The task of principal component extraction can be accomplished in a se-
quential manner by using a cascade neural network. A recently proposed learn-
ing algorithm, called CRLS [4], combines advantages of three techniques: RLS
learning rate adaptation, Hebbian-like learning rule and signal reduction (de-
flation). ,

Let k(k = 1,2..., N) be the index of signal samples (k) and j(j = 1,2,..m)
be the index of principal components. For the first principal component ex-
traction the signal e;(k) = ®(k) is used. The RLS approach of learning rate
adaptation allows an automatic setting according to current signal energy:

=T - 1 g )

where y;(k) = w;f"(k — 1)e;(k). The synaptic weight vector w;(k) is updated
according to following formula:

i(k
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The signal reduction for next component extraction w;;, is as follows:
ej+1(k) = e;(k) — y;(k)w;(k) 3)

where y;(k) = w] (k)e; (k).

3. PSA and associated PCA with RLS

The adaptive algorithm of principal subspace analysis (PSA) has been devel-
oped by Oja and Karhunen [6]. It can be written in generalized (modified)
form as
W(t+1) = W(t) +n(t)[y(0)z" () - y()y" ()W (1) (4)

where y(t) = W(¢)x(t) and #(t) is a suitable positive—definite matrix.

The PSA algorithm is able to learn only a rotated basis of the PC’s subspace,
i.e. PSA determines the subspace spanned by the first m (m < n) principal
eigenvectors with imposed constraint

'wmewi =0; fori#j; where R,, = E{xaT}. (5)
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In order to extract true principal components some non-symmetry must
be introduced in the learning rule or some nonlinearity must be incorporated.
We extend two learning algorithms from a class called here ordered PSA: the
Brockett subspace algorithm (BSA) and Sanger’s generalized Hebbian algo-
rithm (GHA).

The Brockett learning rule differs from the PSA rule by the introduction of
a nonsingular diagonal matrix D [3]:

W(t+1) = W) +n@)Dy®)=" (1) - y(t)y" () DW (1)), (6)
D(t) = diag(di,ds,...,dm); wherel>dy >dp > ... > dp > 0(7)

The second modified form of ordered PSA in our experiments is the gener-
alized Hebbian algorithm (GHA), proposed by Sanger [7]:

W(t+1) = W(t) +n()y(t)=" () — LT(y(t)y" ()W (2)). (8)

LT(.) means the Lower Triangular operation, i.e. it sets the above diagonal
entries of the matrix to zero.

4. RLS technique in matrix form

The initial learning rate is a diagonal matrix with values on the diagonal equal
to 1(0) = (¢2;,)I; where 02;, is the variance of the input signal. After # steps
the learning rate can be computed as follows:

o~ L n(t — Dy(©)yT(&)n(t — 1)
n(t) = (k;y(k)yT(k)) =nt=1) - = e ©

Let us notice that in our formulation n(t) is a matrix and not a scalar. The
elements of this matrix are converging to zero with different speed during the
learning process according to the above rule.

5. Computer simulation results

Several grey scale images have been used for tests of the PCA methods. The
images with resolution 512 x 512 are divided into 4096 blocks of 8 x 8 pixels
each and converted into vector samples of 64 elements. The quality of applied
methods is tested by using the extracted PC-s or PS-s, given by the weight
matrix W; (of size § x 64, where j = 1,2, ...,64), directly for reconstruction
of the images. This procedure can be described by a sequence of two following
steps: 1) y(t) = Wia(t); 2) 3(t) = W7 y(t); where W; € R*% a(t) €
R y(t) e BRI, j=1,2,...,64.

In Fig. 1 and 2 two image reconstruction results are shown, by applying
8 principal components or 8 subspace vectors respectively extracted by three
methods with RLS learning (CRLS, PSA, BSA). Two cases of the learning
time are considered: 1) the epoch number is equal to the number of requested
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Original For 8 PCs in 8 epochs For 8 PCs in 1 epoch
PSNR=24.92 dB (CRLS) PSNR=22.83 dB (BSA)

Fig. 1. The original image Girl (left image) and its reconstruction on the
basis of eight PC/PS-s, that are learned either in 8 epochs (center image) or
in 1 epoch (right image) of image data. The best reconstruction quality was
PSNR=24.96 dB after 22.51 epochs of CRLS learning.

Original For 8 PCs in 8 epoch§ For 8 PCs in 1 epoci; .
PSNR=33.11 dB (CRLS) PSNR=25.79 dB (GHA)

Fig. 2: The original image Road (left image) and its reconstruction on the basis
of eight PC/PS-s, that are learned either in 8 epochs (center image) or in 1
epoch (right image). The best reconstruction quality was PSNR=33.41 dB
after 42.9 epochs of CRLS learning.

PC/PS-s (e.g. 8 epochs for 8 PS/PC-s) and 2) there is only one epoch inde-
pendently of the number of requested PS/PC-s.

For quality judgment the best possible reconstruction quality should also
be known. This optimum was found by the CRLS method in a relatively long
learning process. Usually more than one epoch of the image data for every PC
is required in order to fulfill both the weight stability condition Aw; < 107°
and the normalization to unit length condition, i.e. |1 — ||w;||| < 1072

Quantitative results of image reconstruction related to above tests are pro-
vided in Fig. 3, 4. The peak signal to noise ratio (PSNR) is shown in all
drawings. From the above figures it is clearly evident, that the sequential ex-
traction of the principal components by the cascaded PCA method ensures
very high quality. The sequential CRLS method achieves the best performance
among all of the tested methods if the training time is one epoch for each com-
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ponent. As far as the first 4 PC—s are concerned this method can also learn
them in one epoch (i.e. 1/4 of the image data can be used for learning one
component) with well quality. A further time shortage for one component by
requesting more than four PC-s in one epoch, leads to worser quality of the
CRLS results. If the neural network has to learn in an on-line manner in one
epoch of image data and more than 6.25 % PC/PS-s (i.e. more than 4 from the
set of 64) are needed then a quasi—parallel PCA method gives better results.
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Fig. 3: The PSNR of the reconstructed image Girl for considered methods
while learning in one epoch. Optimum means the best possible reconstruction
performance.

70 T T T T 30 T T T . r
CRLS (optimum) —— CRLS (optimum) —
CRLS (j iterations) —+— CRLS (j iterations) —o—
60 b PSA (j iterations) - p 1 BT PSA (j iterations) -
GHA (j iterations) —~— i GHA (j iterations) -
BSA (j iterations) - BSA (j iterations)
26 b
_S50¢t 1.
a )
=t =
24
Z40 ] g
g g
2t
301
20 [ 4.
20
0 10 20 30 40 50 60 0 2 4 6 8 0 12 14 16
PC PC

Fig. 4: The PSNR of the reconstructed image Girl for considered methods if
the learning time is j epochs for total number of j PC/PS-s.
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6. Conclusions

In this paper the RLS based adaptation of the learning rate for PSA and
associated quasi—parallel PCA methods was proposed. It was searched for a
speed to quality trade—off between sequential and parallel working manner,
depending on the number of extracted PC/PS-s, while learning on natural
image data.

In our experiments the sequential CRLS method has outperformed the par-
allel PSA and quasi-parallel ordered PCA methods for any number of PC/PS-s
if the time of learning was in proportion to the number of PC/PS-s, where the
learning time for one principal component was longer than the time required
for visiting a subset of 25% of the whole image data. Although for the first
25% of PC/PS-s the quality difference is usually relatively small, but in this
case there is also no speed advantage of the quasi—parallel and parallel methods
over the sequential CRLS one.

In case of limited learning time the quasi—parallel PCA methods are a better
choice than the PSA method. In the Brockett algorithm the vector D controls
the parallelity behavior of learning (i.e. if D = I it simplifies the PSA algo-
rithm). This matrix can always be set according to the number of requested
PC-s in such a way, that in a longer learning case BSA will perform with at
least the same quality as the parallel PSA method does.
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