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Abstract. We consider boolean circuits as a discrete model of learning
devices such as neural nets. The circuits are of polynomial size with
threshold gates of unbounded fan-in. The gates are restricted to realize
threshold functions with weights from {—1,0,+1}. We prove that con-
cept classes representing n-ary boolean functions f(Z) with a hyperpoly-
nomial set of quasi-singular tuples & where f(&) = 1 cannot be realized
by circuits of depth two, that means, at least three layers are necessary
for the corresponding learning devices. Among these concept classes are
e.g. functions representing simple arithmetical properties. Furthermore,
the presented approach is extended to circuits of depth four.

1. Introduction

The interest in constant depth circuits results from the small depth of real nets
of neurons (which contain, however, also feedback edges). By Maass, Schnitger,
and Sontag [8] it was shown that constant depth sigmoid circuits of polyno-
mial size with polynomially bounded weights compute the same class of boolean
functions as the corresponding threshold circuits; there is only a difference for
constant size circuits. In order to characterize boolean functions which are reali-
zed by constant depth circuits of polynomial size the relation to other complexity
classes is investigated, e.g. to AN'C! -the family of boolean circuits with boun-
ded fan-in, gate number n°); and depth O(logn). For a deeper analysis of
NC! the class AC was introduced, representing languages accepted by poly-
nomial size, constant depth circuits consisting of NOT gates and unbounded
fan-in AND and OR gates (that means gates with fixed thresholds ¥y = 1 and
¥ = n). The subclass of circuits with constant depth O(1) is denoted by AC°.
As a first result Furst/Saze/Sipser [4] proved that parity cannot be computed
by circuits from AC®. The consequence is that depth-bounded circuits for mul-
tiplying integers or taking the transitive closure of graphs require more than a
polynomial number of AND and OR gates. J. Hdstad [7] obtained a lower bound
Q(log(n)/ loglog(n) ) for the depth of circuits from .AC realizing the parity func-
tion ®P_,z;. A. Hajnal et al. [6] separated subclasses from 7C° of small depth.
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In particular, they showed that the inner product mod 2 of two binary vectors
of length n, the function f(&,§) = z1y1 ® T2y2 D ... ® Tnyn, belongs to depth-
three circuits from 7C°, but not to depth-two circuits. In [10] A.C. Yao has
shown that languages accepted by monotone depth & threshold circuits require
exponential size for depth 2 - k circuits from AC°. In contrast to lower bounds
E. Allender [3] proved that any language accepted by depth k AC® circuits is
accepted by depth-three threshold circuits of size n®Uo8" 7).

We consider boolean circuits of polynomial size with threshold gates of unboun-
ded fan-in, where the gates are restricted to realize threshold functions with
weights from {—1,+1}. That type of circuits is an important class in the theory
of neural network synthesis, see e.g. [9]. In [5] Goldmann/Hédstad/Razborov pro-
ved that the depth d class with arbitrary weights is contained in depth d + 1
with small weights. The present paper is based on the methods and results from

[6], [1], and [2].

2. Local Properties of Depth-two Circuits

The set of all n-ary boolean functions is denoted by B,,. We consider threshold
circuits whose basic functions are from the set

TFY, := {h: 3w, 9] (@ € {~1,0,+1}" A h(%) = 1 & Z":w" o > )},

where ¥ € N[—~(n + 1),+(n + 1)]. The inputs to the circuits are from X
{zo, ..., £n—1} because of the transformation —1-z; = —1+1- (1-2;) = —-1+1-3;.
The corresponding class of sequences F = {f,}5%; of boolean functions which
are realized by threshold circuits consisting of a polynomial number n®(1) of
gates (functions from TF%;,, n =1, 2,....) with unbounded fan-in is denoted by
TChin. Hfor F = {fa}3%, € TC;,;,, exists a constant k as a universal upper
bound for the depth of all circuits C1,Cy, ...,Chy, ..., we say that F is realized
by bounded depth threshold circuits. The class of sequences F having bounded
depth circuits is denoted by TCy;,,.

Given the subsets W C {—1,0,+1}" and T C W x N[—(n + 1),+(n + 1)], we
denote 7 :=|T|, and TF(T) C TF%" is the corresponding subset consisting of
g1, -, gr- We consider at first the case of depth-two circuits C,, € TCy,,,, where
the input gates of {C,}52, are from TF(T) and the output gate is of fan-in 7;
Cy, realizes f,. For & € {0,1}" we denote || & ||:= .-, 0:.

Let C? from a sequence of 7Cj;, denote a circuit of depth 2. The output gate
G, has p inputs with positive weights, q inputs with negative weights, and the
threshold is 9,, p + q = 7. We transform the output gate G, to a threshold
gate G; with J; = 9, + q and the q input gates with a negative weight are
transformed to the opposite inequalities where the thresholds ¥; are changed to
—(9; —1). These transformations can be performed also for circuits with a depth
larger than two. Therefore, one obtains
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Lemma 1 Circuits from Tcg,,,, having n°() gates can be transformed to poly-
nomial size threshold circuils of the same depth where only the input gates may
have negative weights.

In the following we consider only circuits having the canonical structure of
lemma 1. By G :={gi, i =1, ..., 7} we denote the set of input gates of C2. Let

a(g) be the characteristic functlon on G with respect to & : xa(g) =1 <=
g(&) = 1. Furthermore, we use the notations V' := {& || & [=m}, Q := {&|
a€eVvy and f(a) = 1}, and we set P := VP \Q and ¢ :=|Q |, p:=| P|. Let
Y1 be the threshold of the output gate of C2. As in [6] we consider the following
inequalities :

Sk 2 00 3 bl < 91— 1),

&GQ i=1 BEP i=1

From both inequalities we obtain

(1) Z[ 3 x%@) - = Zxﬂ(yz ] >

i=1 aeQ

We are especially interested in sets @ having a distribution in the whole set
{0,1}" which induces that the negative part in (1) dominates the part defined
by Q. For this reason we consider partitions of X, = {z¢, z2, ..., Zn_1} into three
sets X!, X2, and X3, where | X! |=0, | X? |=r,and | X3 |=k:=n—1—r.
The corresponding to X parts of & € {0,1}" are denoted by &', i = 1, 2, 3;
furthermore, we set | @' |=a, | & |= b, and | & |]= c. Given a gate g(¥) € G
with the threshold ¥, we have Z E (é) . (Z) . (;:L__Tb) tuples &
atbtc=m a>9+

from V™ with x®*(g) = 1; the set of & satlsfymg a > Y+ b for fixed a and b is
denoted by R(a,b). Finally, we denote for a given partition of X,

(2) M(a,b) := R(a,b) N Q.
We introduce the following notation :

Definition 1 The sequence @ = {Qn}r%, where Qn C VI*, is called a homo-
geneous distributed sequence, iff for any p(n) — oo there exists a function
¥(n) — oo such that for any partition [X', X% X3] and arbitrary conditions
a > ¥+ b satisfying

3) ' | R(a,b) | > n*™)
it holds
IR(a’b)l_IM(a’b)l _ B < 1 ‘IR(aﬂb)l—'M(a:b)I'
| M(a,b) | g| = n¥® | M(a,b) |
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In fact, we consider sequences of threshold gates g,, sequences of partitions
(X1, X2 X3] et.c. But for simplicity we will speak about only a particular
gate, partition, and so on. Furthermore, we consider definition 1 w.l.o.g. mainly
for particular values of m; that means, we will use definition 1 for arbitrary
m € [y(n), n — y(n)] only if it is necessary.

Now, we illustrate definition 1 by a positive and a negative example :

At first we consider as a negative example the inner product f(#,9) = z1y1 &
Zoys @ ... D ToYn. Based on standard methods for estimating (’;) one can prove
that the sequence { f,(Z, g’)}n does not satisfy definition 1.

The positive example for homogeneous distributed sequences is based on the set
Q 7 of natural numbers which are divisible by an odd number u = 2 -¢ + 1,
t>1:

(4) fLE) =1 < > 21 = D.u.
0; =1
lon |= n/2

We take only the simple special case © = 3. An arbitrary number 2/ can be
represented by 2/ = V - 3 + (—1)/. That means, we have the residue 1 for an
even j and the residue 2 for an odd j. Given a partition [X?, X2, X3], one has
to distinguish only between the odd and even variables in X*. By an inductive
method one can prove

Lemma 2 The sequence Q3 = {Q 3(m)}s represents a homogeneous
fn n=[log 3]

distributed sequence of boolean functions.
Now, we consider arbitrary homogeneous sequences :

Theorem 1 If F = {f,}3, is defined by a homogeneous sequence Q of hyper-
polynomial sets Q C VI, then F cannot be realized by depth-two circuits from
TCy

bin-
The proof is based on the inequality (1). As a consequence one obtains

[s.¢]

Corollary 1 Sequences Q3 = {Qfs }n=[loga

TCY:,, of depth two.

1 cannot be realized by circuils from

We note, that the sequence Q3(m) can be realized by threshold circuits of depth
three.

3. Threshold Circuits of Depth Three

We consider threshold circuits C3 of depth three realizing functions f(z, ..., ).
Because of lemma 1 the circuits C2 have starting from the second level only gates
with positive weights. Let go denote the output gate of C5. The number of in-
puts of go is 7(go) = n°®) . Let hy, ""hT(go) denote the gates that are
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connected to go; H H is the set of input tuples producing the output & at h;.
As before we set ¢ :=| Q | and p :=| P |=| V*\Q |. We make the following
observation :

Lemma 3 IfC32 realizes f, from Q, then there ezists a gate h;, such that | H]-l0
> O(—q——) and

nO(1)

H! n
(5) | ]10 Q|22<1+ - p 01).
|H, nP| = p | H} 0P| n°"

One can show that (5) cannot be satisfied if f, represents a homogeneous
distributed sequences Q with hyperpolynomial sets of tuples : We consider a
single input gate g := 9iy of h representing a hyperpolynomial number of tuples
from H!. We assume that g has the properties required in definition 1; other-
wise the input gates of & could not realize 0(;»%) elements of Q. The main
goal is to show that a hyperpolynomial number of elements ¢ € H! N Q,
which are equal to 1 on g, forces a defined number of tuples 7 € H! N P
also to produce the output 1 for the threshold gate g. We use the notations

GHQl:={a : 9(&) = 1 Afa(&) = 1} and G'[P] := {8 : ¢(B) = 1 A f(B) = 0}.

Lemma 4 If g is an input gate representing a hyperpolynomial number of tuples
from H' N Q, then

|GH@In A | 1
©) iamna S p ()

is satisfied, where £(n) — oo is a (slowly) growing function.
From lemma 3 and lemma 4 follows » '

Theorem 2 Sequences of functions F = {f,}5%, which are defined by homo-
geneous distributed hyperpolynomial sets Q cannot be realized by polynomial
threshold circuits of depth three with weights from {—1,0,+1}.

That means, if Q can be realized by depth three circuits, there exist subsets
of variables such that a relatively large number of tuples from R(a,b) satisfies
defined threshold equalities. These properties can be used e.g. for learning
procedures of functions having depth three circuits.

4. Concluding Remarks

For learning circuits with binary weights we described a method for obtaining
lower bounds for circuit depth which is based on local properties of the func-
tion. These properties can be used for the design of learning algorithms, e.g. in
the case of discrete pac algorithms. As candidates for homogeneous distributed
sequences of depth at least four we see the elementary operation div,(&, 8) of
division and the function f2™*™ representing prime numbers. It was shown by
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L. Adleman in in 1978 that f2™'™ can be realized by circuits of polynomial size
O(n®), where c is a small number not exceeding 3. The number 7(N) of prime
numbers p < N and the distribution of prime numbers within natural numbers
are well studied.

The presented approach cannot be extended immediately to circuits of depth
five or a larger depth, because after the first decomposition (from depth four to
depth three) it seems to be difficult to ensure the relation g (1 ;;1(3) for the
decomposition from depth three to depth two. '

We think that lower bounds for threshold circuits provide a better insight into
the computational power of neural nets from organic structures.
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