All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesDo something for our planet, print this page only if needed. Even a small action can make an enormous difference when millions of people do it!
Indicator Assessment
The energy efficiency of conventional thermal electricity production (which includes both public plants and autoproducers) is defined as the ratio of transformation outputs from conventional thermal power stations (electricity and heat) to transformation inputs to conventional thermal power stations. It is expressed as a percentage.
The output from conventional thermal power stations consists of gross electricity generation, as well as any heat sold to third parties (combined heat and power plants) by conventional thermal public power stations (public or main activity), district heating, and autoproducer thermal power stations.
Gross electricity generation is measured at the outlet of the main transformers, i.e. the consumption of electricity in the plant auxiliaries and in transformers is included. Public supply is defined as undertakings that generate electricity (and heat) for sale to third parties as their primary activity. They may be privately or publicly owned. Autoproducers are defined as undertakings that generate electricity, either wholly or partly for their own use, as an activity that supports their primary activity (e.g. industrial processes).
Fuel inputs include solid fuels (coal, lignite and equivalents), oil and other liquid hydrocarbons, gas, thermal renewables (industrial and municipal waste, wood waste, biogas and geothermal energy) and other non-renewable waste.
Fuel input, and electricity and heat output are measured in thousand tonnes of oil equivalent (ktoe).
This indicator shows the efficiency of electricity and heat production from conventional thermal plants. A distinction is made between public conventional thermal plants (i.e. main activity producers), district heating conventional thermal plants and autoproducer conventional thermal plants. Public thermal plants mainly produce electricity (and heat) for public use. Autoproducers produce electricity (and heat) for private use, for instance in industrial processes.
The efficiency of electricity and heat production is an important factor since losses in transformation account for a substantial part of primary energy consumption (see ENER 036). Higher production efficiency therefore results in substantial reductions in primary energy consumption, hence reducing environmental pressures as a result of avoided energy production.
However, the overall environmental impact of energy transformation has to be seen in the context of the type of fuel and the extent to which abatement technologies are used. Compliance with environmental legislation (for example the Large Combustion Plant Directive 2001/80/EC, the CARE package, etc.) requires the application of a series of abatement technologies (e.g. to reduce SO2 emissions requires retrofitting the plant with flue-gas desulphurisation technology, carbon capture and storage to capture CO2 emissions, etc.), increasing the energy consumption of the plant, thus reducing its efficiency. This is why it is important to promote highly efficient generation units, such as IGCC (Integrated Gasification Combined Cycle) units, which can operate at higher efficiencies.
Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU, and repealing Directives 2004/8/EC and 2006/32/EC: This Directive established a set of binding measures to help the EU reach its 20 % energy efficiency target by 2020. Under the Directive, all EU countries are required to use energy more efficiently at all stages of the energy chain, from production to final consumption. To reach the EU's 20 % energy efficiency target by 2020, individual EU countries have set their own indicative national energy efficiency targets. Depending on country preferences, these targets are based on primary and/or final energy consumption, primary and/or final energy savings, or energy intensity. New national measures must ensure major energy savings for consumers and industry. The European Commission published guidance notes (COM(2013) 762) to help the Member States implement the Energy Efficiency Directive.
Council Directive 2013/12/EU of 13 May 2013, adapting Directive 2012/27/EU of the European Parliament and of the Council on energy efficiency, by reason of the accession of the Republic of Croatia.
Commission Guidance COM(2013) 762, Communication from the Commission to the European Parliament and the Council, implementing the Energy Efficiency Directive.
Earlier legislation: In 2009, the Council adopted the climate-energy legislative package, which contains measures to fight climate change and promote renewable energy. This package is designed to achieve the EU's overall environmental target of a 20 % reduction in greenhouse gases and a 20 % share of renewable energy in the EU's total energy consumption by 2020. The climate action and renewable energy (CARE) package includes the following main policy documents:
Regulation (EC) No. 443/2009 of the European Parliament and the Council setting emission performance standards for new passenger cars as part of the community’s integrated approach to reduce CO2 emissions from light-duty vehicles;
Communication from the Commission (COM(2008) 771 final): the main objectives of this communication are to report on the current status of combined heat and power generation (CHP or cogeneration) and to present possibilities for its development.
Detailed guidelines for the implementation and application of Annex II to Directive 2004/8/EC; (2008/952/EC): Guidelines for the calculation of electricity from high-efficiency co-generation.
Action Plan for Energy Efficiency, Realising the Potential (COM(2006) 545): the Commission will develop minimum binding energy efficiency requirements for electricity generation facilities, heating and cooling for facilities operating with less than 20 megawatts of power and possibly for more powerful facilities too (not published yet).
Directive on the limitation of emissions of certain pollutants into the air from large combustion plants (Directive 2001/80/EC): this aims to control emissions of SOx, NOx and particulate matter from large (>50 MW) combustion plants and hence favours the use of higher efficiency combined cycle gas turbines as opposed to coal plants.
Directive 2012/27/EU on energy efficiency establishes a common framework of measures for the promotion of energy efficiency within the European Union in order to achieve the headline target of a 20 % reduction in primary energy consumption by 2020. Member States are requested to set indicative targets. It is up to each Member State whether it bases its targets on primary energy consumption, final energy consumption, primary or final energy savings or energy intensity. Art.14 (Promotion of efficiency in heating and cooling) and Art.15 (Energy transformation, transmission and distribution) are directly relevant to the indicator.
Efficiency for autoproducers = transformation output in autoproducer conventional power stations divided by transformation input in autoproducer conventional power stations
Overall scoring - historical data (1 = no major problems, 3 = major reservations):
No methodology for gap filling has been specified. Probably this info has been added together with indicator calculation.
No methodology references available.
The efficiency of electricity production is calculated as the ratio of electricity output to total fuel input. However, input to conventional thermal power plants cannot be disaggregated into separate inputs for heat and electricity production. Therefore, the efficiency rate of electricity and heat production equals the ratio of both electricity and heat production to fuel input, which assumes there is an efficiency rate for heat production.
Wherever possible, country specific data have been scrutinised for efficiencies of above 100 %, which indicates incorrect input and/or output data. Wherever this has been detected, country data were removed from the indicators as mentioned in the notes to the figures and indicator texts.
The collection of input and output data, and subsequent derivation of efficiencies for district heating and autoproducer power plants revealed efficiencies of over 100 % for a number of EU-28 countries. These incorrect data have been removed from the indicators presented in Figures 5a, 5b, 6a and 6b (see the notes to the Figures). However, the incorrect data are probably also included in the EU-28 aggregated input and output data that were taken from Eurostat and used in the trend (Figures 2 and 3). A detailed analysis of Eurostat data is needed to correct aggregated EU-28 data for incorrect data.
Also, electricity data (unlike that for overall energy consumption) for 1990 refer to the western part of Germany only, so there is a break in the series between 1990 and 1992.
Data have been traditionally compiled by Eurostat through the annual joint questionnaires, which are shared by Eurostat and the International Energy Agency, and follow a well established and harmonised methodology. Methodological information on the annual joint questionnaires and data compilation can be found in Eurostat's web page for metadata on energy statistics. http://ec.europa.eu/eurostat/web/energy/methodology. See also information related to the Energy Statistics Regulation http://ec.europa.eu/eurostat/web/energy/legislation.
No uncertainty has been specified
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/efficiency-of-conventional-thermal-electricity-generation-4/assessment-2 or scan the QR code.
PDF generated on 05 Nov 2024, 06:24 AM
Engineered by: EEA Web Team
Software updated on 26 September 2023 08:13 from version 23.8.18
Software version: EEA Plone KGS 23.9.14
Document Actions
Share with others