
43

MANAGING THE NETWORK

Dionisis X. Adamopoulos, George Pavlou, Constantine A. Papandreou and
Emmanuel Manolessos

Distributed Object Platforms
in Telecommunications:
A Comparison Between

DCOM and CORBA
Continuous advances in telecom-
munications technology coupled
with the development of powerful
desktop workstations, and
increased user demands for
complex service provision chains,
integrated service offerings, and
new sophisticated telecommunica-
tions services with multimedia
characteristics are fueling the
growth of object-oriented distrib-
uted computing. Recognising the
growing importance of distributed
object platforms in telecommunica-
tions service engineering, this
paper attempts to compare the two
most important of them; namely
Microsoft’s COM/DCOM and OMG’s
CORBA. After a brief overview of
both architectures, a decision
framework is proposed by identify-
ing a set of core and service
engineering related properties and
examining the way that DCOM and
CORBA supports these properties.
Based on the proposed decision
framework, some conclusions are
drawn about the suitability of each
platform for different service
development requirements.

Introduction

There are many driving forces which
have compelled telecommunications
operators and vendors to seek new
solutions in telecommunications
service engineering. Among them,
growing competition and the progres-
sive convergence of information and
telecommunications technologies has
led to an increased focus on how a
great variety of advanced multimedia
telecommunications services
(telematic services) with enhanced
functionality can be efficiently and
effectively developed and deployed in
shorter time-frames taking advan-
tage of different network technolo-
gies, end-systems, communications
protocols, operating systems, and
programming language environ-
ments. Distributed object platforms
have been recognised as a key
technology solution to this problem,
mainly due to recent developments in
object orientation and distributed
computing.

Upon these platforms, which are
actually object-oriented distributed
processing environments (DPEs),

telecommunications services are
isolated by the underlying computing
and networking technology and are
realised by a (possibly large) set of
interacting service objects/compo-
nents, which are distributed across
different network elements. Cur-
rently the two most important
available distributed object platforms
are Microsoft’s (Distributed) Compo-
nent Object Model (COM/DCOM) and
the Common Object Request Broker
Architecture (CORBA), which is
supported by the Object Management
Group (OMG).

This paper examines DCOM and
CORBA as the current key general-
purpose distributed object-oriented
environments. A comparison between
them is attempted based on a set of
carefully selected core and service
engineering related properties, and
as a result a decision framework is
proposed with the objective to guide
service designers/developers during
the selection process.

Distributed Objects in
Telecommunications

As the telecommunications environ-
ment is gradually changing its face
towards an open market of informa-
tion services, it is becoming apparent
that major private and public
networks are actually large distrib-
uted object systems. These systems
are populated by a dispersed set of
objects that can request services from
one another through a communica-
tions mechanism, using interfaces
defined in a consistent interface
definition language (IDL). The most
important benefits offered by distrib-

Dionisis X. Adamopoulos:
Centre for Communication Systems
Research
School of Elect. Eng. and Mathematics
University of Surrey, England
D.Adamopoulos@ee.surrey.ac.uk
Prof. George Pavlou:
Centre for Communication Systems
Research
School of Elect. Eng. and Mathematics
University of Surrey, England
D.Adamopoulos@ee.surrey.ac.uk

Dr. Constantine A. Papandreou:
Hellenic Telecommunications
Organisation (OTE)
Athens,
Greece
kospap@org.ote.gr
Emmanuel Manolessos:
IBM Hellas
274 Kifissias Avenue
Athens,
Greece
manoleso@gr.ibm.com

44

MANAGING THE NETWORK

uted object technology to telecommu-
nications systems are ease of devel-
opment and maintenance,
abstraction, modularity, reusability,
and granularity flexibility 8, 9, 14.

Distributed object technology is
already in use in the telecommunica-
tions world2, 14. A characteristic
example is the telecommunications
management network (TMN)
development (especially its informa-
tion model), and an example where
this influence is maximised is the
telecommunications information
networking architecture (TINA),
standardised by the TINA Consor-
tium (TINA-C). The main objective of
TINA-C is to define and validate an
innovative architectural framework
(a long-term service architecture)
that will address in an integrated
manner service control and service
management. TINA-C services are
considered as a set of distributed
computational objects that operate
on a distributed object platform13.

Microsoft’s COM/DCOM

COM constitutes the foundation of
Microsoft object services and has
been assigned to the Open Group for
standardisation10. Distributed COM
(DCOM) is the distributed extension
to COM that builds an object remote
procedure call (ORPC) layer on top of
DCE RPC to support remote objects.
DCOM makes COM objects location-
independent, and adds security and
multithreading to COM3.

A DCOM server can create object
instances of multiple object classes.
Each DCOM server object can
support multiple interfaces, each
representing a different view or
behaviour of the object. An interface
consists of a set of functionally
related methods. A DCOM client
interacts with a DCOM object by
acquiring a pointer to one of the
server object’s interfaces. Thus, it
invokes the server object’s exposed
methods through the acquired
interface pointer as if the server
object resided in the client’s address
space.

As long as a platform supports
COM services, DCOM can be used on
that platform. DCOM is extensively
supported on the Windows platform.
Companies like Software AG provide
DCOM service implementations
through their EntireX product for
Unix, Linux and mainframe plat-
forms, Digital for the Open VMS
platform, and Microsoft for the
Solaris platform.

OMG’s CORBA

CORBA is supported by the Object
Management Group (OMG) as part of
an initiative to develop a comprehen-
sive object management architecture
(OMA) for object-oriented comput-
ing11. CORBA adopts an object-
oriented approach. Object interfaces
are described in terms of an imple-
mentation language-neutral IDL.
CORBA has a special component,

called the Object Request Broker
(ORB), which is responsible for
making object distribution transpar-
ent and providing a mechanism for
trading, enabling object requests to
be carried out in a heterogeneous
distributed environment.

Besides CORBA, OMA also
defines certain key object interfaces.
These can be divided into the lower-
level CORBA services and the
higher-level CORBA facilities.

Table 1 Comparing DCOM and CORBA: Basic characteristics

Basic Characteristics DCOM CORBA

Inheritance of a Every object implements Every interface inherits from
base interface IUnknown CORBA.object

Unique identification of a Through its interface pointer Through an object reference (objref)
remote server object

Unique identification of Using the concept of Using the interface name
an interface interface IDs (IIDs)

Unique identification of a Using the concept of Class IDs By the mapping to a name in the
named implementation (CLSIDs) the mapping of implementation repository
of a server object which is found in the registry

Reference generation of Performed on the wire Performed on the wire protocol by
the remote server object protocol by the Object Exporter the Object Adapter

Handling of common tasks Either explicitly performed by Performed implicitly by the
like object registration, the server program or handled constructor
skeleton instantiation, etc. dynamically by the DCOM

run-time system

Underlying remoting Object Remote Procedure Internet Inter-ORB Protocol (IIOP)
protocol Call (ORPC)

Activation of a server object Mainly by using Mainly by binding to a naming or a
CoCreateInstance() trader service

Mapping of object name Handled by the registry Handled by the implementation
to its implementation repository

Storage of type information Type library Interface repository

Client side stub Called a proxy Called a proxy or stub

Server side stub Called a stub Called a skeleton

Definition of parameters Defined in the interface at the All interface types are passed by
passed between the client interface definition file. reference. All other objects are
and server objects Depending on what the IDL passed by value including highly

specifies, parameters are complex data types
passed either by value or by
reference

Definition of complex types Complex types that will cross Complex types that will cross
interface boundaries must be interface boundaries must be
declared in the IDL declared in the IDL

Support of distributed On the wire by a pinging No
garbage collection mechanism which garbage

collects remote object
references and encapsulates
them in the IOXIDResolver
interface

Platform support Any platform as long as there Any platform as long as there is a
is a COM service CORBA ORB implementation for that
implementation for that platform
platform

Programming language Since the specification is at Since it is just a specification,
support the binary level, diverse diverse programming languages

programming languages can be can be used, as long as there are
used ORB libraries suitable for coding in

a specific language

45

MANAGING THE NETWORK

CORBA services define such object
interfaces as naming, life cycle,
persistence, transaction, concurrency
control, relationship, time, and
security. CORBA facilities provide
horizontal and vertical application
frameworks, by defining collections of
facilities that processes may use
through CORBA objects, such as
compound documents, user inter-
faces, and system management12.

Comparing DCOM and
CORBA

Taking into account the basic
characteristics of DCOM and
CORBA, as were presented in the
previous sections, Table 1 represents
an initial attempt at comparing the
two technologies. This table reveals
the wide scope and the richness of
both platforms, and it is believed to
be much more concise and informa-
tive than other comparison attempts
found in the literature, which are
based extensively on code exam-
ples4, 6. These code examples, while
reasonable and correct, are extremely
limited and involve choices among a
variety of possible approaches.
Furthermore, it is very difficult to
keep the two implementations
exactly equivalent. Therefore,
comparisons based heavily on code
examples can be used only as a
means to become familiar with
DCOM and CORBA, and not as a
basis for general conclusions about
either technology.

In order to derive such desired
conclusions, a set of core properties
that should characterise every
distributed object platform are
identified. Table 2 summarises the
way that DCOM and CORBA
supports each of these properties,
and offers an insight on the capabili-
ties of the platforms pertaining to
their use in practical situations. It is
explained in more detail in the
subsection on ‘Core Properties’.

Furthermore, a set of service
engineering related properties is also
identified, and their support by
DCOM and CORBA is summarised in
Table 3. This table focuses on how
DCOM and CORBA provide a
solution for developing effective
(possibly large-scale) telematic
services, and how they assist in the
deployment of these telematic
services across the Internet, within
an intranet, over an extranet, or
simply with a web front end.

During this comparison attempt,
the various value-added services

provided by DCOM and CORBA are
considered. These include, for DCOM,
the Microsoft Transaction Server
(MTS), the MicroSoft Message Queue
server (MSMQ), the Microsoft
Cluster Server (MCS), and the
Microsoft Management Control
(MMC), and for CORBA (2.0), the
naming, events, life cycle, persistence,
relationship, externalisation, transac-
tion, concurrency, property, licensing,
time, trader, and security services
(CORBA services)7, 12. Table 3 is
explained in more detail in the sub-
section on ‘Service Engineering
Related Properties’.

Core properties

Object locator
A mechanism by which objects can be
located and subsequently activated is
necessary. DCOM allows for a locally
maintained object locator on the
server machine using object names,

while CORBA and MTS centralise
the locator on a single (or perhaps a
few) domain machines that can
identify object servers in the domain.
More specifically, the most well-
known object locator in DCOM is the
registry. It maps a CLSID (or a
readable name called ProgID) to the
path name of the server executable
that supports the CLSID. However,
the registry is consulted only after
the Service Control Manager (SCM)
has failed to locate any running
object instance. In CORBA, an object
can locate another object in a system,
by using either the naming service or
the trader service.

Server activation
A DCOM object server is not neces-
sary to be running when a client
request is made to instantiate an
object. DCOM locates the server code
through the registry, and will start
the server using SCM. DCOM also

Table 2 Comparing DCOM and CORBA: Core Properties

Basic Characteristics COM / DCOM CORBA

Object Locator Locally maintained Centralised in the domain

Server Activation Yes (Service Control Manager) Yes (Basic Object Adapter)

Data Typing Strong and predetermined Strong and predetermined (Static
(vtable method) Interface Invocation, SII)

Dynamic Invocation Dispatch interface Dynamic Interface Invocation (DII)

Communication Type Synchronous, Asynchronous Synchronous, Asynchronous,
(callback support) Deferred Synchronous

Inheritance Interface, Implementation Implementation
(containment, aggregation)

State Persistence Yes (2 models) Yes (Persistence Service)

Load Balancing No No

Exceptions Handling Not directly (error reporting) Yes (CORBA IDL)

Multithreading Yes (2 models) Yes

Table 3 Comparing DCOM and CORBA: Service Engineering Related Properties

Service Engineering Related COM / DCOM CORBA
Properties

Scalability MTS, Active Directory Service Naming service, Trader service
Interface (Win NT 5.0)

Reliability MTS, MCS, MSMQ Transaction service

Security Built-in: NT LAN Manager, Platform dependent: 3 security
MTS, MS Crypto API, levels (0, 1, 2)
Authenticode SDK

Manageability MMC Vendor specific tools, Transaction
service

Support for Web-based ActiveX, MS Active Server JavaScript/Java
Telematic Services Page Technology

Support for Two-factor authentication, Two-factor authentication, Secure
Internet/Extranets Remote Data Service (RDS) Socket Layer (SSL)

Support for Intranets Desktop tools, ActiveX, Active Desktop tools (via a bridge), Event
Data Objects, MSMQ service, Persistence service

46

MANAGING THE NETWORK

allows access to servers that are
already running when the client
request is made, as running objects
are registered with the Running
Object Table (ROT). In CORBA,
server activation is handled by the
Basic Object Adapter (BOA). If a
client makes a request for an object
that is not running, then the BOA
finds the server and launches it to
create the object. In this process it
uses the implementation repository,
which holds information about the
location of every server object.

Data typing
Once an object has been located and
activated, the client will need to be
able to communicate with it. Strong
data typing is supported by both
DCOM and CORBA through the use
of interfaces. In the static method of
invoking operations on DCOM
objects, the MIDL compiler, based on
the IDL definition of the object and
its interfaces, creates the correspond-
ing proxy and stub code. Due to the
way that the static invocation is
implemented, this is often referred to
as the vtable method for invoking
objects. In CORBA, in the case of the
static interface invocation (SII), all
methods are specified in advance and
are known to the client and server
through the stubs and skeletons that
are produced by the IDL compiler.

Dynamic invocation
Although strong and predetermined
data typing is extremely important
for the creation of complex and
robust code, sometimes the flexibility
of slightly looser typing, similar to
the kind which is important to
interpreted scripting languages, is
necessary. This can be allowed by
providing dynamic querying of
objects for the functionality that they
support. DCOM provides this facility
through its IDispatch interface, and
CORBA through its DII mechanism.
In essence, predetermined typed
interfaces are used that allow a
dynamic interface to be queried15.

Communication type
The communication between objects
can be either synchronous or asyn-
chronous. DCOM is mainly synchro-
nous. However, it allows for flexible
callback mechanisms, such as
connection points, to be implemented.
In CORBA, a client can invoke a
method, either synchronously or post
it asynchronously. Posting means
that the calling object is not blocked
waiting for the reply. Instead, it can

specify which of its methods the
response should invoke. It has to be
noted that the receiver cannot tell
the difference between a synchronous
or an asynchronous call.

Inheritance
DCOM allows interface inheritance,
whereas CORBA allows implementa-
tion inheritance. In interface inherit-
ance when one interface is derived
from another, the derived interface
must supply an implementation for
the methods of the base interface; all
it inherits is the responsibility to
supply the interface. In implementa-
tion inheritance a derived interface
inherits the interface and an imple-
mentation. DCOM provides a similar
mechanism using containment or
aggregation7.

State persistence
Objects represent both functionality
and data. A client wishing to access
an object would typically create the
object, access its services, and then
destroy it. The object server needs to
be able to associate a client connec-
tion with a particular object, since
each client has some assumption
about the state of the object when it
last accessed it.

Both DCOM and CORBA use the
notion of saving object state for later
reactivation. DCOM has two persist-
ence models. The original model
requires that objects implement an
interface that supports persistence
using one of several known storage
media (file, stream or storage). A
more recent persistence model in
MTS provides server-managed
storage. In CORBA, the persistence
mechanism is completely transparent
(persistence service). The client has
no legitimate means of determining
where or how an object is stored
(unless some object with knowledge
of the storage details provides an
interface with a method that divulges
the information). The implementa-
tion is exclusively responsible for
managing persistence12.

Load balancing
A server machine may provide
several object servers, and each of
these may provide several object
types. Thus, the server machine may
become a bottleneck in the distribu-
tion of objects, and this leads to the
need for load balancing. This facility
is not offered currently, neither in
DCOM, nor in CORBA. Generally,
load balancing is an area that has
little available support in the

mainstream distribution framework
at present, but intensive develop-
ment is currently underway15.

Exceptions handling
DCOM has a standard way of
handling error data through the
return of a 32 bit error code, called
an HRESULT, by all methods. At the
language/tool level, a set of conven-
tions and system provided services
(the IErrorInfo object) allows failure
HRESULTs to be converted into
exceptions in a way natural to the
programming language. On the other
hand, CORBA specifies an extensible
exception capability that maps
naturally into languages that have
native exceptions, like C++ and Java,
and that maps into exception data in
languages that do not. It is based on
user-defined exception types declared
in CORBA IDL.

Multithreading
DCOM supports multithreaded
server objects, but it requires that
the DCOM libraries be initialised in
the threads that use them. There are
two main models (the apartment
model and the free threading model).
A third model (still to be released) is
called the rental model. In this
model, which will be used by the
MTS, one thread ‘helps’ another, in a
fashion that still behaves as if the
object is single threaded. CORBA
object servers can also be
multithreaded. Issues such as (for
example) whether an object is
created in a new process or in a new
thread are handled by the ORB
through the object adapter.

Service engineering related
properties

Scalability
MTS provides a set of DCOM
interfaces and libraries that allow
telematic services to easily scale as
the number of users and user data
increase. With the forthcoming
Windows NT 5.0, DCOM will obtain
the Active Directory Service Interface
(ADSI), which will allow components
to seamlessly use a variety of
existing naming services, such as
NetWare Directory Service (NDS),
Lightweight Directory Access
Protocol (LDAP) or even the Win-
dows registry. In that way, a
telematic service will be able to
handle an increasing number of
geographically dispersed users.

In CORBA, the Object Activation
Daemon (OAD) and the implementa-

47

MANAGING THE NETWORK

tion repository allow efficient use of
resources by only instantiating
objects when required. The central-
ised naming service provides location
independence for applications and
their users, while the trader service
allows more sophisticated component
searches. Static load-balancing
among replicas of an application is
available via the naming service.

Reliability
Distributed objects should offer
transparency to a client, and part of
this transparency is the guarantee
that the object connection will be
reliable throughout the client’s use of
an object. In the optimum case, a
remote object must be as reliable as a
local object.

Reliability can be achieved by
using a transaction monitor, like
MTS or the OMG transaction service.
MTS allows telematic services to use
distributed transactions to reliably
update data across disparate data
stores, while the OMG transaction
service supports an Open Group
Distributed Transaction Processing
(DTP)-compliant model for distrib-
uted transactions. As far as DCOM is
concerned MCS and MSMQ also
increase reliability.

Security
DCOM has been designed with
security built in, while CORBA
objects can implement their own
security mechanisms for the platform
on which they are implemented.
More specifically in DCOM, the NT
LAN Manager (NTLM) and the MTS
authenticate users and authorise
checking via Access Control Lists
(ACLs). Additionally, the MS Crypto
API provides data encryption and
integrity to prevent eavesdropping
and tampering, while the
Authenticode SDK uses digital
signatures to provide non-repudia-
tion. The challenge for the future is
to integrate all these value-added
services in a single solution.

On the other hand, CORBA
defines two security levels; Level 1
and Level 2. Level 1 allows a
telematic service that is unaware of
security to participate in a secure
domain. It provides user authentica-
tion, authorisation via ACLs, data
encryption and integrity, and
optional non-repudiation. Level 2
requires telematic services to be
security-aware, thus enforcing
stronger versions of the security
policies. Some CORBA vendors, such
as Iona and Inprise, have provided a

Secure Socket Layer (SSL) imple-
mentation of IIOP, called Level 0,
that allows user authentication and
data encryption.

Manageability
Microsoft Management Console
(MMC) provides a unified GUI for
managing MTS and MSMQ based
components. Features include
centralised configuration and
administration, as well as remote
deployment of components. As far as
CORBA is concerned, both Inprise
and Iona have sophisticated tools for
centrally configuring and administer-
ing CORBA applications. Iona also
allows CORBA applications to be
centrally managed from any SNMP-
compliant system management
console (for example, OpenView).

Support for web-based telematic
services
A telematic service is web-based
when its front end (or presentation
layer) is a web browser, and it does
not necessarily mean that the
telematic service is deployed over the
Internet5. In this case, DCOM front
ends in the form of ActiveX controls
can execute within Internet Explorer
and, via a plug-in, within Netscape
Navigator. Furthermore, Microsoft’s
Active Server Page technology allows
the seamless integration of both
HTML and ActiveX clients with
DCOM servers. It also allows DCOM
services such as MTS and MSMQ to
be used with web-based telematic
services. On the other hand, Java-
based front ends to CORBA telematic
services can execute on all major
browsers and platforms, and the
Netscape Enterprise Server provides
the Web Application Interface, which
allows HTTP-based clients to
communicate with CORBA servers.

Support for Internet/extranets
Telematic services that need to
operate across the public Internet or
the semi-public extranet are typically
deployed across great distances and
often through several firewalls. Such
telematic services, when they involve
transactions executed over the
Internet, require additional security
measures to ensure accuracy, confi-
dentiality, and credibility.

DCOM provides two-factor
authentication (through public
certificate and smart cards), and
Remote Data Service (RDS) support
for Internet/extranet applications.
Currently, there is limited support
for SSL and its integration with

NTLM security. However, this will be
expanded to include SSL-to-Kerberos
integration in Windows NT 5.0. On
the other hand, several CORBA
vendors support both SSL and two-
factor authentication in their
implementation, although these
features are still immature.

Support for intranets
Telematic services which are limited
inside an intranet are usually
optimised for use within an organisa-
tion, have higher network bandwidth,
and little or no firewall restrictions.
Therefore, they can be built with
more sophisticated front ends, both
in terms of user interface and
functionality.

DCOM-based telematic services
can be built with sophisticated user
interface and functional features, as
every major development environ-
ment on Windows supports the rapid
development of graphical DCOM
applications. Furthermore, Active
Data Objects allows the support of
persistence, while MSMQ provides
publish/subscribe capabilities. On the
other hand, CORBA-based telematic
services can be integrated with
desktop tools using a DCOM/CORBA
bridge available from several CORBA
vendors. CORBA services such as
event and persistence can also be
used to add publish/subscribe and
persistence features.

Comparison remarks
From Table 1, Table 2, and Table 3,
which collectively constitute a
decision framework supporting the
selection between DCOM and
CORBA, it is evident that DCOM and
CORBA have similar architectures as
both provide the infrastructure for
supporting remote object activation
and remote method invocation in a
client-transparent way. They adopt a
client/server based programming
style and agree on the most funda-
mental aspects of their object models.

As far as the support of service
engineering related properties is
concerned, DCOM and CORBA differ
in many respects. Most significantly,
while DCOM provides a rich set of
tools and technologies, it is essentially
a Windows-only solution. Even though
DCOM is available on other operating
systems, key pieces such as MTS,
MSMQ and MCS are not currently
offered. Additionally, many of DCOM’s
value-added services are very new
and are still maturing. On the other
hand, CORBA’s main strength, which
is its availability from different

48

MANAGING THE NETWORK

vendors, is also its biggest weakness.
Since no vendor has a complete
solution, integration issues are
usually introduced when CORBA is
used to build telematic services. For
this reason, neither technology
provides a complete solution for
service engineering activities. How-
ever, both provide a solid infrastruc-
ture, and there are specific scenarios
in which each excels over the other.

Another important remark that
has to be stressed is that DCOM and
CORBA have a comparable perform-
ance. However, DCOM’s performance
can be improved in certain circum-
stances by extending its remoting
architecture (that is, the entire
infrastructure that connects clients to
server objects). This is possible
because DCOM’s remoting architec-
ture has built-in extensibility. By
supporting a mechanism called
custom marshalling, DCOM allows a
server object to bypass the standard
remoting architecture and construct a
custom one, optimised for a particular
situation, without requiring source
code modifications to the former7.

In general, the proposed decision
framework makes it evident that
DCOM and CORBA have much in
common and continue to converge in
several aspects. However, each
architecture has different origins,
with consequent strengths and
weaknesses.

Interoperability Between
DCOM and CORBA

Because both DCOM and CORBA are
being used in practice with consider-
able success, and because of the
economic implications that result
from this fact, it is unlikely that one
platform will soon overwhelm the
other. Therefore, interoperability
between DCOM and CORBA is
crucial5.

Since CORBA 2.1, the
interoperability of DCOM and
CORBA is part of the CORBA
specification. More specifically,
bridges receive object invocations
from a CORBA application, translate
them into equivalent data structures
for DCOM, and have the function call
executed in the DCOM application.
In a similar manner, DCOM clients
can access CORBA objects through
bridges14.

Conclusions

Advances in distributed object
platforms have been rapid in the past

few years. These advances have been
largely driven by increasing demand
for efficient object creation, interac-
tion, management, and distribution.
Both DCOM and CORBA address
these issues, and are increasingly
being used to develop new telecom-
munications services as distributed
object applications. However, further
progress is expected, and as both
technologies are still evolving, it is
likely that in the near future they
will converge in more areas.

DCOM is built on a proven
desktop component architecture.
DCOM-based applications are robust
and perform well, while DCOM’s
integration into development lan-
guages and tools greatly simplifies
application development. Further-
more, as Windows-based desktop
systems exist in nearly all organisa-
tions today, these organisations will
probably choose to use DCOM.
Additionally, Microsoft services
(MTS, MSMQ, and other mainframe
integration tools) make DCOM an
attractive infrastructure even for
large organisations in enterprise-
wide applications. However, DCOM is
not a well-partitioned architecture
and relies on a key optimisation for a
single platform.

In contrast, CORBA has a more
complete and well-defined architec-
ture and provides a better solution
for heterogeneous environments. It
offers advantages in (value-added)
services, platform and tool support,
maturity, and overall architectural
integrity. Furthermore, OMG IDL
ensures an extensible architecture
and support for both new and legacy
applications. The disadvantages of
CORBA are its complexity and
variation in vendor implementations.

Therefore, DCOM is an effective
solution for the development of
telematic services in Windows-based
environments, particularly by small
organisations and departments. On
the other side, a requirement for
multi-platform support or for a choice
with the least technological risk will
drive an organisation towards a
CORBA solution. However, such a
decision will (should) be highly
influenced by more general factors,
such as the available information
technology (IT) resources and skills,
the IT structural characteristics and
its relation to business units of the
organisation, the desired level of
standardisation, and the capability to
adopt new technologies. It has to be
noted that Java is also a candidate
for the development of telematic

services, but not the most prominent
as a lot of the transparencies built on
the core object models of OMA and
COM/DCOM are yet to be defined for
Java. The significance of Java is
expected to rise rapidly as its
standardisation proceeds1.

It is envisaged that in the near
future CORBA and COM/DCOM will
interoperate via a standardised
single two-way gateway specification
(a bridge) between them5. However,
with dissimilar object models,
components will not collaborate as
effectively across the gateway
between the two environments as
they can within each of them. For
this reason, the service designer/
developer will always consider a
choice between CORBA and OLE/
COM on the client, and between
CORBA and COM/DCOM on the
server. The decision framework
proposed in this paper is expected to
significantly assist the selection
process.

Developing new telecommunica-
tions services using distributed object
technology presents many challenges
and alternatives. The correct choice
is never at either end of the spec-
trum, but falls somewhere in the
continuum that lies in between.
Where it falls depends on both the
user/customer (business) require-
ments that have to be satisfied, and
the technical problems that have to
be solved.

References

1 ADAMOPOULOS, D. X.; and
PAPANDREOU, C. A. Distributed
Processing Support for New
Telecommunications Services.
Proceedings of the IEEE/IEE
International Conference on
Telecommunications (ICT ’98),
Chalkidiki, Greece, 1998, Vol. III,
pp. 306–310.

2 AIDAROUS, S.; and PLEVYAK, T. (Eds.),
Telecommunications Network
Management. IEEE Press, 1998.

3 BROWN, N.; and KINDEL, C. Distrib-
uted Component Object Model
Protocol—DCOM/1.0. Microsoft
Corporation, Nov. 1996.

4 CHUNG, P. E.; HUANG, Y.; and
YAJNIK, S. DCOM and CORBA
Side by Side, Step by Step, and
Layer by Layer. Bell Laboratories,
Murray Hill, NJ, 1998. http://
www.bell-labs.com/~emerald/
dcom_corba/Paper.html

5 DOLGICER, M.; and FISCHER, P.
DCOM, Active X and CORBA
Must Live Together. Application

49

MANAGING THE NETWORK

Development Trends, April 1997,
pp. 38–52.

6 GOPALAN, S. R. A Detailed Com-
parison of CORBA, DCOM and
Java/RMI. Sept. 1998. http://
www.execpc.com/~gopalan/misc/
compare.html

7 GRIMES, R. Professional DCOM
Programming. Wrox Press, 1997.

8 KRIEGER, D.; and ADLER, M. The
Emergence of Distributed Compo-
nent Platforms. IEEE Computer,
31(3), March 1998, pp. 43–53.

9 LEWANDOWSKI, S. M. Frameworks
for Component-Based Client/
Server Computing. ACM Comput-
ing Surveys, March 1998, 30(1),
March 1998, pp. 1–27.

10 Microsoft Corporation and Digital
Equipment Corporation. The
Component Object Model Specifi-
cation. Draft Version 0.9, Oct. 1995.

11 Object Management Group. The
Common Object Request Broker:
Architecture and Specification.
Revision 2.0 July 1995 http://
www.omg.org/library/o2indx.html

12 ORFALI, R.; HARKEY, D.; and
EDWARDS, J. Instant CORBA. John
Wiley & Sons, 1997.

13 PROZELLER, P. TINA and the
Software Infrastructure of the
Telecom Network of the Future.
Journal of Networks and Systems
Management, Dec. 1997, 5,
pp. 393–410.

14 REDLICH, J.-P.; SUZUKI, M.; and
WEINSTEIN, S. Distributed Object
Technology for Networking. IEEE
Communications Magazine, Oct.
1998, 36(10), pp. 100–111.

15 VINOSKI, S. CORBA: Integrating
Diverse Applications Within
Distributed Heterogeneous
Environments. IEEE Communica-
tions, Feb. 1997, 14(2), pp. 46–55.

Biographies

Dionisis X.
Adamopoulos
University of Surrey

Dionisis X. Adamopoulos holds a
degree in Computer Science from the
Athens University of Economics and
Business, and a Masters degree in
Telematics with distinction from the
department of Electronic and
Electrical Engineering of the Univer-
sity of Surrey. Currently, he is
involved in Ph.D. research at the
Centre for Communication Systems
Research (CCSR) of the University of
Surrey. His research interests include
service engineering, distributed
multimedia, object-oriented analysis
and design, telematic services,
distributed object platforms,
groupware, and telecommunications
management.

Dr. Constantine A.
Papandreou
Hellenic Telecommu-
nications Organisa-
tion (OTE)

Dr. Constantine A. Papandreou holds
a Dipl. Ing. degree as well as a
postgraduate degree in Engineering
Economics both from the Technical
University of Munich. He also holds a
Doctor degree in Telematics from the
University of Munich. He has served
since 1970 in the Hellenic Telecom-
munications Organisation (OTE) as
an expert in telecommunications and
informatics in various positions.
Since 1992, Dr. Papandreou has been
a Director in OTE. In parallel to
these activities, for several years he
has been teaching teleinformatics
and information technology at the
Athens University of Economics and
Business, the University of Piraeus,
and the Higher School of Telecommu-
nications of OTE. He is the author of
over 60 scientific papers pertaining
to his research activity in the fields
of telematics, information systems,
telecommunications policy, education
and training, multimedia, office
automation, service engineering, etc.

Prof. George Pavlou
University of Surrey

Prof. George Pavlou received his
Diploma in Electrical and Mechani-
cal Engineering from the National
Technical University of Athens, and
his M.Sc. and Ph.D. in Computer
Science, both from University College
London. Over the past 12 years he
has been undertaking and directing
research in the areas of data commu-
nications and telecommunications
with emphasis on performance
evaluation, network and service
control and management and the use
of distributed object-oriented tech-
nologies in new telecommunications
architectures. He has contributed to
ISO, ITU-T, NMF/TMF, OMG and
TINA standardisation work. He has
published around 50 papers in
international refereed conferences
and journals and he is the co-author
of two books. He is currently profes-
sor of information networking at the
University of Surrey, School of
Electrical Engineering and Informa-
tion Technology, where he leads the
activities of the networks research
group.

Emmanuel
Manolessos
IBM Hellas

Emmanuel Manolessos holds a
degree in Computer Science from the
Athens University of Economics and
Business, and a Masters degree in
Advanced Information Technology
from the department of Computer
Science of the Imperial College,
University of London. Currently, he
is a SAP consultant at IBM Hellas.
His research interests include
distributed-processing environments,
interactive teletraining, enterprise
resource planning, and management
information systems.

