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Abstract

We obtain a generalized diffusion equation in modified or Riemann-
Liouville form from continuous time random walk theory. The waiting
time probability density function and mean squared displacement for dif-
ferent forms of the equation are explicitly calculated. We show examples
of generalized diffusion equations in normal or Caputo form that encode
the same probability distribution functions as those obtained from the gen-
eralized diffusion equation in modified form. The obtained equations are
general and many known fractional diffusion equations are included as spe-
cial cases.
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1. Introduction

Brownian motion, the classical model for normal diffusion, can be ex-
plained within random walk theory according to which the particle in equal
time intervals performs steps in random direction (left or right) to the near-
est neighbor site. From the master equation for such a stochastic process
one can find that the probability density function (PDF)W (x, t) to find the
particle at position x at time t satisfies the standard diffusion equation in
the continuum limit. The corresponding solution for a point initial condi-
tion is the well-known Gaussian PDF, and the mean squared displacement
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(MSD) has a linear dependence on time. The continuous time random walk
model (CTRW) represents a generalization of the Brownian random walk
model. The mathematical theory of CTRW was developed by Montroll and
Weiss (1965) [34], and first applied to physical problems by Scher and Lax
(1973) [52]. Nowadays it has become a very popular framework for the
description of anomalous, non-Brownian diffusion in complex systems, and
even after its 50 years’ history the model is still trendy with applications
in various fields [23]. The Brownian random walk model is the limit case of
CTRW when the waiting time PDF ψ(t) is of Poisson form and the jump
length PDF λ(x) is of Gaussian form. Moreover, in the more general case of
any finite characteristic waiting time T =

∫∞
0 t ψ(t) dt and any finite jump

length variance Σ2 =
∫∞
−∞ x2λ(x) dx, the corresponding process in the dif-

fusion limit shows normal diffusive behavior with Gaussian PDF W (x, t),
[19].

It has been shown that the CTRW process with a scale-free waiting
time PDF of power-law form ψ(t) � t−1−α with 0 < α < 1, leads in the
continuum limit to the time fractional diffusion equation, represented by
a power-law dependence of the MSD on time of form

〈
x2(t)

〉 � tα [1, 33].
Since 0 < α < 1 this process is subdiffusive. Processes for which the
anomalous diffusion exponent is α > 1, are superdiffusive. An example is
the case of Lévy walks with long tailed jump length PDF λ(x) � |x|−1−μ,
μ < 2, and spatiotemporal coupling [33]. Anomalous diffusion, either sub-
diffusion or superdiffusion, has been observed, for example, in the charge
carrier motion in amorphous semiconductors [54], in aquifer problems [53],
in living biological cells [62], including superdiffusion [2, 43] and subdiffu-
sion [14, 21], in weakly chaotic systems [20, 60], or turbulence [44], to name
a few. Furthermore, from the CTRW theory one may obtain distributed
order fractional diffusion equations for ultraslow diffusive processes [4, 6, 7],
where the MSD has logarithmic dependence on time found for Sinai-type
disorder [57], ageing CTRW [24] or interacting subdiffusive CTRW-walkers,
[45].

In this work we consider a CTRW model whose corresponding diffusion
equation is of general form in the Riemann-Liouville sense. In Section 2
we provide an introduction to the generalized derivatives in the Riemann-
Liouville and Caputo sense. We derive the generalized diffusion equation in
the Riemann-Liouville sense from the CTRW model in Section 3. Several
special cases of the model are analyzed in Section 4. In Section 5 we
compare the generalized diffusion equation in normal and modified form,
and we show under which conditions both equations are equivalent. A
summary is given in Section 6.
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2. Generalized derivatives and Mittag-Leffler functions

A string of recent works that were summarized and discussed in [36, 63]
concerned definitions of new operators of fractional calculus. Some of the
newly introduced derivatives belong to a class of generalized derivatives
with memory kernels either in modified (or Riemann-Liouville (R-L)) form

(RLGη,tf) (t) =
d

dt

∫ t

0
η(t− t′)f(t′) dt′, (2.1)

or in the normal (or Caputo) form

(CGγ,tf) (t) =

∫ t

0
γ(t− t′)

df(t′)
dt′

dt′. (2.2)

The R-L fractional derivative is a special case of the generalized derivative
(2.1) in which the memory kernel is of power-law form η(t) = t−α/Γ(1−α),
0 < α < 1, [40],

RLD
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− t′)−α f(t′) dt′. (2.3)

Similarly, the Caputo fractional derivative is a special case of the general-
ized derivative (2.2) for γ(t) = t−α/Γ(1− α), 0 < α < 1, [40],

CD
α
t f(t) =

1

Γ(1− α)

∫ t

0
(t− t′)−α d

dt′
f(t′) dt′. (2.4)

As we will see later, the distributed order and tempered fractional
derivatives are special cases of these generalized derivatives (2.1) and (2.2)
as well. An extensive study of the generalized derivatives is presented by
Kochubei [22], Luchko and Yamamoto [26], and Sandev et al. [46, 47, 49], to
name but a few. Such generalized derivatives have been used in anomalous
diffusion modeling by fractional and generalized Langevin equations with
memory kernels of power-law, exponential, Mittag-Leffler, and tempered
form, or combinations thereof [27, 28, 41, 48, 50, 51, 58, 64, 65, 66].

The famed Mittag-Leffler (M-L) functions play an important role in the
theory of fractional and generalized differential equations. Here we consider
the three parameter M-L function, introduced by Prabhakar [42] as follows:

Eδ
α,β(z) =

∞∑
k=0

(δ)k
Γ(αk + β)

zk

k!
, (2.5)

where (δ)k = Γ(δ+ k)/Γ(δ) is the Pochhammer symbol. The more familiar
one parameter M-L function Eα(z) and the two parameter M-L function
Eα,β(z) are special cases of the three parameter M-L function for β = δ = 1
and δ = 1, respectively, see e.g. [8, 29, 40]. Introducing the Laplace

transform of a function f(t) as f̂(s) = Ls[f(t)] =
∫∞
0 f(t)e−st dt, for the

three parameter M-L function (2.5) we get [42]
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Ls

[
tβ−1Eδ

α,β(±atα)
]
=

sαδ−β

(sα ∓ a)δ
, �(s) > |a|1/α. (2.6)

The three parameter M-L function has many applications in the description
of anomalous diffusion and non-exponential relaxation processes, see for
example [11, 12, 13, 15, 46, 47, 49, 51, 61].

There are many generalizations of the M-L function. We will use here
the multinomial M-L function [25] defined by

E(a1,a2,...,aN ),b (z1, z2, . . . , zN ) =

∞∑
j=1

k1+k2+...+kN=j∑
k1≥0,k2≥0,...,kN≥0

(
j

k1 k2 . . . kN

)

×
∏N

i=1 (zi)
ki

Γ
(
b+

∑N
i=1 aiki

) , (2.7)

where (
j

k1 k2 ... kN

)
=

j!

k1!k2!...kN !
, (2.8)

are the so-called multinomial coefficients. This function has been shown to
play an important role in description of the MSD of anomalous diffusion
processes [46, 47, 50].

3. CTRW theory and subordination

Here we give a brief introduction to the fundamental results of the
continuous time random walk (CTRW) theory. This stochastic model is
based on the fact that individual jumps are separated by independent,
random waiting times. For the PDF W (x, t) a simple algebraic form for

the Fourier-Laplace transform
˜̂
W (k, s) = Fk [Ls [W (x, t)]] can be found.

We note that the Fourier transform of f(x) is given by F̃ (k) = F [f(x)] =∫∞
−∞ f(x)eıkx dx, and the inverse Fourier transform is defined by f(x) =

F−1
[
F̃ (k)

]
= 1

2π

∫∞
−∞ F̃ (k)e−ıkx dk. With these definitions, one finds for

the PDF in the Fourier-Laplace space [33, 54]

˜̂
W (k, s) =

1− ψ̂(s)

s

1

1− ψ̂(s)λ̃(k)
. (3.1)

Here ψ̂(s) is the Laplace transform of the waiting time PDF ψ(t), and

λ̃(k) is the Fourier transform of the jump length PDF λ(x). The Fourier
transform of the Gaussian distribution of jump lengths with variance σ2 is
1− 1

2σ
2k2 for small k, where σ2 has the dimension of length. To avoid di-

mensions, we set σ2 = 2. Therefore, in this paper we assume λ̃(k) � 1−k2,
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[33]. As it was already mentioned in the Introduction, the CTRW process
with a scale-free waiting time PDF of a power law form ψ(t) � t−1−α,
0 < α < 1, and Gaussian distribution for the jumps leads to the subdif-
fusive time fractional diffusion equation exhibiting mono-scaling behavior
[33]. In this paper we present a CTRWmodel with generalized waiting time
PDF and Gaussian distribution of jump lengths, for which we can derive
the corresponding generalized diffusion equation.

We introduce the generalized waiting time PDF

ψ̂(s) =
1

1 + 1/η̂(s)
(3.2)

in Laplace space, where η(t) has the property

lim
s→0

1

η̂(s)
= 0, (3.3)

in order to ensure normalization of the waiting time PDF. To guarantee

that this generalized function is a proper PDF its Laplace transform ψ̂(s)
should be completely monotone [9, 55]. Here we note that the function

g(s) is completely monotone if (−1)ng(n)(s) ≥ 0 for all n ≥ 0 and s > 0.
An example of a completely monotone function is sα, where α < 0. The
requirement ψ̂(s) to be completely monotone is fulfilled if the function

1/ψ̂(s) = 1+1/η̂(s) is a Bernstein function, that is a non-negative function
whose derivative is completely monotone. Here we employ the Theorem
that the function f(g(s)) is competely monotone if the function f(s) is
completely monotone, and the function g(s) is a Bernstein function [55].
In what follows we consistently check this requirement for all the specific
examples considered in the paper. The waiting time PDF (3.2) together

with a Gaussian jump length PDF with λ̃(k) � 1 − k2 yield the Fourier-
Laplace form

˜̂
W (k, s) =

1

s

1− 1/[1 + 1/η̂(s)]

1− (1− k2)/[1 + 1/η̂(s)]
=

1/[sη̂(s)]

s/[sη̂(s)] + k2
, (3.4)

of the PDF W (x, t). Rewriting Eq. (3.4) as

s
˜̂
W (k, s)− W̃0(k) = −k2 sη̂(s) ˜̂W (k, s),

from inverse Fourier-Laplace transform we obtain the generalized diffusion
equation

∂W (x, t)

∂t
=

d

dt

∫ t

0
η(t− t′)

∂2W (x, t′)
∂x2

dt′ (3.5)

with the memory kernel η(t). In this generalized diffusion equation the
memory kernel appears on the right hand side of the equation, i.e., this
equation is of what we call the modified form in comparison to the general-
ized diffusion equation in normal form (or natural form) where the memory
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kernel appears on the left side of the equation. Special cases of the general-
ized equations in normal and modified forms have been extensively investi-
gated in different contexts, for example, in [3, 4, 6, 7, 10, 22, 26, 46, 47, 59].

From Eq. (3.4) we derive the general form of the n-th moment (n ∈ N),
by using

〈xn(t)〉 = L−1
s

[
ın
∂n

∂kn
˜̂
W (k, s)

]∣∣∣∣
k=0

. (3.6)

Therefore, we conclude that the PDF W (x, t) is normalized since〈|x|0〉 = L−1
s

[
s−1

]
= 1, (3.7)

and the MSD is given by〈
x2(t)

〉
= 2L−1

s

[
s−1η̂(s)

]
. (3.8)

Next we need to show the non-negativity of the PDFW (x, t) in order to
have an appropriate stochastic process governed by the generalized CTRW
model. For this reason, we employ the subordination technique. From
Eq. (3.4) one finds that

˜̂
W (k, s) =

1

sη̂(s)

∫ ∞

0
e−u/η̂(s)+k2 du =

∫ ∞

0
e−uk2Ĝ(u, s) du, (3.9)

where the function Ĝ(u, s) is given by

Ĝ(u, s) =
1

sη̂(s)
e−u/η̂(s). (3.10)

Thus, the PDF W (x, t) is given by [30, 31]

W (x, t) =

∫ ∞

0

e−
x2

4u√
4πu

G(u, t) du. (3.11)

The PDF G(u, t) provides a subordination transformation, from time scale
t (physical time) to time scale u (operational time). It is normalized with
respect to u for any t,∫ ∞

0
G(u, t) du = L−1

s

[∫ ∞

0

1

sγ̂(s)
e−u/γ̂(s) du

]
= L−1

s

[
s−1

]
= 1. (3.12)

Here we again use the definitions and properties of the completely mono-
tone and Bernstein functions. Therefore, G(u, t) is positive if its Laplace

transform Ĝ(u, s) is completely monotone on the positive real axis s [55].
This condition is satisfied if, [49]: (a) the function 1/[sη̂(s)] is a completely
monotone function, and (b) the function 1/η̂(s) is a Bernstein function. The
constraint (b) ensures that the function e−u/η̂(s) is completely monotone,
since the exponential function is completely monotone and the composi-
tion of a completely monotone and a Bernstein function is itself completely
monotone [55]. Moreover, Ĝ(u, s) is completely monotone, as the product
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of the two completely monotone functions e−u/η̂(s) and 1/[sη̂(s)]. Alterna-
tively, we can check that 1/η̂(s) is a complete Bernstein function. This is
an important subclass of the Bernstein functions [55]. An example is the
function sα with 0 ≤ α ≤ 1. This condition is enough for complete mono-
tonicity of Ĝ(u, s) due to the property of the complete Bernstein function: if
f(s) is a complete Bernstein function, then f(s)/s is completely monotone
[55].

4. Specific examples

4.1. Diffusion equation. Let us consider several special cases of Eq. (3.5).
First we set η(t) = 1, i.e., the generalized diffusion equation becomes the
classical diffusion equation

∂W (x, t)

∂t
=
∂2W (x, t)

∂x2
. (4.1)

Therefore, by replacing η̂(s) = 1/s in the general form of the waiting time
PDF (3.2), we find

ψ(t) = L
[

1

1 + s

]
= e−t, (4.2)

i.e., the Poisson waiting time PDF, as it should be for the Brownian motion.
In accordance with the last remarks in Section 3 the solution of the

standard diffusion equation is non-negative since 1/η̂(s) = s is a complete
Bernstein function.

From the general relation (3.8), for the MSD one finds the well known
result for Brownian motion,〈

x2(t)
〉
= 2L−1

[
s−2

]
= 2 t, (4.3)

i.e., the linear dependence of MSD on time.

4.2. Fractional diffusion equation. Next, let us use the power-law mem-
ory kernel η(t) = tα−1/Γ (α), 0 < α < 1. For this kernel Eq. (3.5) corre-
sponds to the following time fractional diffusion equation

∂W (x, t)

∂t
= RLD

1−α
t

∂2W (x, t)

∂x2
. (4.4)

Since η̂(s) = s−α, the generalized waiting time PDF (3.2) becomes the two
parameter M-L waiting time PDF [16, 17]

ψ(t) = L−1
s

[
1

1 + 1/s−α

]
= tα−1Eα,α (−tα) . (4.5)

The solution of the fractional diffusion equation (4.4) is non-negative
since 1/η̂(s) = sα is a complete Bernstein function for 0 ≤ α ≤ 1.

For this case the MSD reads〈
x2(t)

〉
= 2L−1

s

[
s−α−1

]
= 2

tα

Γ(α+ 1)
, (4.6)
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i.e., we obtain a subdiffusive process since 0 < α < 1.

4.3. Bi-fractional diffusion equation. If we consider a memory kernel
of the form η(t) = a1 t

α1−1/Γ (α1) + a2 t
α2−1/Γ (α2), 0 < α1 < α2 < 1,

a1+ a2 = 1, the generalized diffusion equation (3.5) yields the bi-fractional
diffusion equation studied earlier by Chechkin et al. [7]

∂W (x, t)

∂t
= a1 RLD

1−α1
t

∂2W (x, t)

∂x2
+ a2 RLD

1−α2
t

∂2W (x, t)

∂x2
. (4.7)

Since η̂(s) = a1 s
−α1 + a2 s

−α2 , the corresponding waiting time PDF is
represented by an infinite series in three parameter M-L functions [47]

ψ(t) =
tα1−1

a1

∞∑
n=0

(−1)n

an1
tα1nE

−(n+1)
α2−α1,α1n+α1

(
−a2
a1
tα2−α1

)
. (4.8)

Series in three parameter M-L functions of the form (4.8) are indeed con-
vergent, see e.g. [37, 38, 39, 51].

Here we also check the non-negativity of the solution of the bi-fractional
diffusion equation (4.7). We have that the function c(s) = a1 s

α1+a2 s
α2 is a

complete Bernstein function for 0 < α1 < α2 < 1 as a linear combination of
two complete Bernstein functions. Then 1/c(1/s) = 1/[a1 s

−α1+a2 s
−α2 ] =

1/η̂(s) is a complete Bernstein function as well [55], which represents a proof
of the non-negativity of the PDF.

For the bi-fractional diffusion equation the MSD is given by [7]

〈
x2(t)

〉
= 2 a1 t

α1E−1
α2−α1,α1+1

(
−a2
a1
tα2−α1

)
=

2 a1t
α1

Γ(α1 + 1)
+

2 a2 t
α2

Γ(α2 + 1)
,

(4.9)

which represents accelerating subdiffusion [3, 7] crossing over from the scal-
ing

〈
x2(t)

〉 � tα1 at short times to
〈
x2(t)

〉 � tα2 at long times.

4.4. N-fractional diffusion equation. One may consider a memory ker-
nel of power-law form withN scaling exponents η(t) =

∑N
j=1 aj t

αj−1/Γ (αj),

0 < α1 < α2 < · · · < αN < 1,
∑N

j=1 aj = 1, which leads to the N -fractional
diffusion equation

∂W (x, t)

∂t
=

N∑
j=1

aj RLD
1−αj

t

∂2W (x, t)

∂x2
. (4.10)

By setting η̂(s) =
∑N

j=1 aj s
−αj in Eq. (3.2), the waiting time PDF is given

in terms of multinomial M-L functions
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ψ(t) = L−1
s

[
1

1 + 1/
∑N

j=1 aj s
−αj

]
= L−1

s

[ ∑N
j=1 aj s

−αj

1 +
∑N

j=1 aj s
−αj

]

=

N∑
j=1

aj t
αj−1E(α1,α2,...,αN ),αj

(−a1 tα1 ,−a2tα2 , . . . ,−aN tαN ) . (4.11)

The proof of the non-negativity of the solution of Eq. (4.10) is the
same as the one for the bi-fractional diffusion equation in modified form.
Since c(s) =

∑N
j=1 aj s

αj is complete Bernstein function for 0 < α1 < α2 <
· · · < αN < 1 as a linear combination of complete Bernstein functions, then
1/c(1/s) = 1/η̂(s) is a complete Bernstein function too, which completes
the proof of the non-negativity of the PDF.

The MSD for the N -fractional diffusion equation is then given by

〈
x2(t)

〉
= 2L−1

s

⎡
⎣s−1

N∑
j=1

aj s
−αj

⎤
⎦ = 2

N∑
j=1

aj
tαj

Γ(αj + 1)
, (4.12)

from which we observe accelerating subdiffusion as well.

4.5. Distributed order diffusion equation. Another interesting special
case of the generalized diffusion equation (3.5) is the distributed order dif-
fusion equation in the modified form [7] which can be obtained if one uses

a memory kernel of the form η(t) =
∫ 1
0 p(α)

tα−1

Γ(α) dα, where p(α) is a non-

negative weight function with
∫ 1
0 p(α) dα = 1. Substituting this memory

kernel into Eq. (3.5) one obtains
∂W (x, t)

∂t
=

∫ 1

0
p(α)RLD

1−α
t

∂2W (x, t)

∂x2
dα. (4.13)

The Laplace transform of the distributed order memory kernel is given by

η̂(s) =
∫ 1
0 p(α) s

−α dα, therefore the waiting time PDF (3.2) becomes

ψ̂(s) =
1

1 + [
∫ 1
0 p(α) s

−α dα]−1
. (4.14)

Here we give a short proof of the non-negativity of the solution of
Eq. (4.13). The linear combination

∑
j pjs

αj of complete Bernstein func-
tions is a complete Bernstein function for 0 ≤ αj ≤ 1, therefore the point-

wise limit of this linear combination c(s) =
∫ 1
0 p(α)s

α dα is a complete Bern-

stein function as well. This implies that 1/c(1/s) = 1/
[∫ 1

0 p(α)s
−α dα

]
=

1/η̂(s) is a complete Bernstein function, [55].
For the uniformly distributed order memory kernel with p(α) = 1, the

Laplace transform of the memory kernel is given by η̂(s) = s−1
s log(s) . This,

implies
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ψ(t) = L−1
s

[
1

1 + s log s/(s− 1)

]
. (4.15)

The long time limit of the waiting time PDF becomes

ψ(t) � L−1
s [1/(1− s log s)] � t−2, (4.16)

and the MSD is 〈
x2(t)

〉
= L−1

s

[
(s− 1)(s2 log s)

] � t/ log t, (4.17)

both in accordance to CTRW theory [1].

4.6. Tempered fractional diffusion equation. As a last example we
consider a power-law memory kernel with truncation η(t) = e−bttα−1/Γ (α),
0 < α < 1, b > 0, i.e., the following equation

∂W (x, t)

∂t
=

1

Γ(α)

d

dt

∫ t

0
e−b(t−t′)(t− t′)α−1 ∂

2W (x, t′)
∂x2

dt′. (4.18)

By substitution of η̂(s) = (s + b)−α, in the generalized waiting time PDF
(3.2), we find

ψ(t) = L−1
s

[
1

1 + (s+ b)α

]
= e−bttα−1Eα,α (−tα) . (4.19)

Therefore, the tempered M-L waiting time PDF (4.19) generates a stochas-
tic process governed by the tempered time fractional diffusion equation in
the modified form (4.18).

Since 1/η̂(s) = (s + b)α is a complete Bernstein function, the solution
of Eq. (4.18) is non-negative. Here we use that the function f(s) = sα with
0 ≤ α ≤ 1 is a complete Bernstein function, and so is the function f(s+a),
a = const, [55].

The MSD is represented by help of the three parameter M-L function

〈
x2(t)

〉
= 2L−1

s

[
s−1

(s+ b)α

]
= 2 tαEα

1,α+1 (−bt) , (4.20)

which in the short time limit encodes the subdiffusive behavior
〈
x2(t)

〉 �
2 tα/Γ(α + 1), while in the long time limit one observes the saturation〈
x2(t)

〉 � 2 b−α = const.
A graphical representation of the MSDs (4.20) and (4.9) is given in

Figure 1. From the figure one can see that in absence of a truncation
(blue solid line) the MSD (4.20) behaves as for the mono-fractional diffu-
sion equation,

〈
x2(t)

〉 � 2 tα/Γ(1 + α). In presence of a truncation in the
short time limit one has the same behavior as for the mono-fractional dif-
fusion equation, and in the long time limit the saturation

〈
x2(t)

〉 � 2 b−α

is observed (red dashed and green dot-dashed lines). Accelerating diffusion
from

〈
x2(t)

〉 � 2a1 t
α1/Γ(1+α1) to

〈
x2(t)

〉 � 2a2 t
α2/Γ(1+α2) in the case
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Figure 1. MSD for the fractional diffusion equation (4.6)
with α = 1/4 (blue solid line), MSD for the tempered frac-
tional diffusion equation (4.20) with α = 1/4 and b = 0.1
(red dashed line), b = 0.5 (green dot-dashed line). The MSD
(4.9) for the bi-fractional diffusion equation in modified form
with, a1 = a2 = 1/2, α1 = 1/4 and α2 = 3/4 is multiplied
by factor 2 (black dotted line).

of the bi-fractional diffusion equation is observed from the figure (brown
dotted line), as well.

5. Normal versus modified generalized diffusion equation

In our previous work [46] we demonstrated that the CTRW model with
waiting time PDF of form

ψ̂(s) =
1

1 + sγ̂(s)
, (5.1)

where γ̂(s) is completely monotone and sγ̂(s) is a Bernstein function [49]
(or alternatively, sγ̂(s) is a complete Bernstein function), and a Gaussian
distribution of jump lengths yields the generalized diffusion equation in
normal form ∫ t

0
γ(t− t′)

∂

∂t′
W (x, t′) dt′ =

∂2

∂x2
W (x, t). (5.2)

In comparison to the waiting time PDF (3.2) we conclude that there is a
connection between both models simply by exchanging γ̂(s) → 1/[sη̂(s)].
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Thus, if this connection is fulfilled the solutions of both generalized diffusion
equations in normal (5.2) and modified form (3.5) will be identical.

Let us illustrate this point. We saw that in the case of η(t) = 1 (η̂(s) =
1/s) we have a Poisson waiting time PDF (4.2) and the classical diffusion
equation (4.1). So, if we use that γ̂(s) = 1/[sη̂(s)] = 1, i.e., γ(t) = δ(t),
from relations (5.1) and (5.2) we obtain the same results.

Next, the memory kernel η(t) = tα−1/Γ(α), 0 < α < 1, and η̂(s) = s−α,
corresponds to the M-L waiting time PDF (4.5) and the fractional diffusion
equation (4.4). Therefore, by using γ̂(s) = 1/s1−α, γ(t) = t−α/Γ(1−α), the
generalized diffusion equation (5.2) becomes the time fractional diffusion
equation in the Caputo sense,

CD
α
t W (x, t) =

∂2

∂x2
W (x, t), (5.3)

which, as we know [46] is an equivalent formulation of the fractional dif-
fusion equation (4.4) as long as the initial values are properly taken into
account.

From the previous results [7, 47] we know that the bi-fractional diffusion
equations in normal and modified form do not give the same results for the
PDF and the MSD. The first one leads to decelerating subdiffusion, and
the second one to accelerating subdiffusion. In order to find the equivalent
formulation for the bi-fractional diffusion equation in modified form (4.7),
we should use γ̂(s) = 1/[s(a1 s

−α1 + a2 s
−α2)], 0 < α1 < α2 < 1, from

where, by inverse Laplace transform, we find that γ(t) is given by

γ(t) = L−1
s

[
1

a1 s1−α1 + a2 s1−α2

]
=

1

a1
t−α1Eα2−α1,1−α1

(
−a2
a1
tα2−α1

)
.

(5.4)

Therefore, the equation in normal form corresponding to (4.7) in modified
form is given by∫ t

0

(t− t′)−α1

a1
Eα2−α1,1−α1

(
−a2
a1

(t− t′)α2−α1

)
∂

∂t′
W (x, t′) dt′ =

∂2

∂x2
W (x, t).

(5.5)

We finally discuss one more example with the tempered memory kernel
η(t) = e−bttα−1/Γ(α), 0 < α < 1, b > 0, which leads to the tempered
fractional diffusion equation (4.18). Setting γ̂(s) = 1/[s(s + b)−α], (η̂(s) =
(s+ b)−α), we find that

γ(t) = L−1

[
s−1

(s+ b)−α

]
= t−α1E−α

1,1−α (−bt) , (5.6)

and the corresponding diffusion equation in normal form becomes
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∫ t

0
(t− t′)−αE−α

1,1−α

(−b(t− t′)
) ∂

∂t′
W (x, t′) dt′ =

∂2

∂x2
W (x, t). (5.7)

Conversely, let us consider the memory kernel γ(t) = a1 t
−α1/Γ(1 −

α1) + a2 t
−α2/Γ(1− α2), 0 < α1 < α2 < 1, which leads to the bi-fractional

diffusion equation in the normal form,

a1 CD
α1
t W (x, t) + a2 CD

α2
t W (x, t) =

∂2

∂x2
W (x, t). (5.8)

From the memory kernel we find that η̂(s) = [a1 s
α1 + a2 s

α2 ]−1, i.e.,

η(t) =
1

a2
tα2−1Eα2−α1,α2

(
−a1
a2
tα2−α1

)
. (5.9)

Therefore, the equation corresponding to the bi-fractional diffusion equa-
tion in normal form turns into the following equation in modified form

∂

∂t
W (x, t)=

d

dt

∫ t

0

(t−t′)α2−1

a2
Eα2−α1,α2

(
−a1
a2

(t−t′)α2−α1

)
∂2

∂x2
W (x, t′) dt′.

(5.10)

In case of a tempered memory kernel γ(t) = e−btt−α/Γ(1−α), 0<α<1,
b > 0, the corresponding equation of the tempered fractional diffusion
equation in normal form

1

Γ(1− α)

∫ t

0
e−b(t−t′)(t− t′)−α ∂

∂t′
W (x, t′) dt′ =

∂2

∂x2
W (x, t), (5.11)

is

∂

∂t
W (x, t) =

d

dt

∫ t

0
(t− t′)α−1Eα−1

1,α

(−b(t− t′)
) ∂2

∂x2
W (x, t′) dt′, (5.12)

since

η(t) = L−1
s

[
s−1

(s+ b)α−1

]
= tα−1Eα−1

1,α (−bt). (5.13)

With these examples we show that many different equations with a
wide range of memory kernels are special cases of the generalized diffusion
equations (3.5) and (5.2).

6. Conclusion

We provided a CTRW model that corresponds to the generalized diffu-
sion equation in modified form. We show that many different generalized
derivatives are special cases of the generalized derivative considered in this
paper. We also discuss the connection between the generalized diffusion
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equations in modified and normal form. We show that, for example, the bi-
fractional diffusion equation and the tempered fractional diffusion equation
in modified form can be represented in normal form by using Mittag-Leffler
memory kernels. The need for better fitting of the experimental results
[18, 35] requires introducing more flexible theoretical models as those ana-
lyzed in this work. Studying of ageing and weak ergodicity breaking [32, 56]
often observed in experiments for this more general setting is left for future
investigation.
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[18] F. Höfling and T. Franosch, Anomalous transport in the crowded world

of biological cells. Rep. Prog. Phys. 76 (2013), Art. # 046602.
[19] B.D. Hughes, Random Walks and Random Environments, Vol. 1: Ran-

dom Walks. Clarendon Press, Oxford (1995).
[20] M.C. Jullien, J. Paret, and P. Tabeling, Richardson pair dispersion in

two-dimensional turbulence. Phys. Rev. Lett. 82 (1999), 2872–2875.
[21] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K.
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