
Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

Microsoft Research

Abstract

Rectified activation units (rectifiers) are essential for

state-of-the-art neural networks. In this work, we study

rectifier neural networks for image classification from two

aspects. First, we propose a Parametric Rectified Linear

Unit (PReLU) that generalizes the traditional rectified unit.

PReLU improves model fitting with nearly zero extra com-

putational cost and little overfitting risk. Second, we derive

a robust initialization method that particularly considers

the rectifier nonlinearities. This method enables us to train

extremely deep rectified models directly from scratch and to

investigate deeper or wider network architectures. Based

on the learnable activation and advanced initialization, we

achieve 4.94% top-5 test error on the ImageNet 2012 clas-

sification dataset. This is a 26% relative improvement over

the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our

knowledge, our result is the first1 to surpass the reported

human-level performance (5.1%, [26]) on this dataset.

1. Introduction

Convolutional neural networks (CNNs) [19, 18] have

demonstrated recognition accuracy better than or compara-

ble to humans in several visual recognition tasks, includ-

ing recognizing traffic signs [3], faces [34, 32], and hand-

written digits [3, 36]. In this work, we present a result that

surpasses the human-level performance reported by [26] on

a more generic and challenging recognition task - the clas-

sification task in the 1000-class ImageNet dataset [26].

In the last few years, we have witnessed tremendous im-

provements in recognition performance, mainly due to ad-

vances in two technical directions: building more powerful

models, and designing effective strategies against overfit-

ting. On one hand, neural networks are becoming more ca-

pable of fitting training data, because of increased complex-

ity (e.g., increased depth [29, 33], enlarged width [37, 28],

and the use of smaller strides [37, 28, 2, 29]), new non-

linear activations [24, 23, 38, 22, 31, 10], and sophisti-

cated layer designs [33, 12]. On the other hand, bet-

ter generalization is achieved by effective regularization

1reported in Feb. 2015.

techniques [13, 30, 10, 36], aggressive data augmentation

[18, 14, 29, 33], and large-scale data [4, 26].

Among these advances, the rectifier neuron [24, 9, 23,

38], e.g., Rectified Linear Unit (ReLU), is one of several

keys to the recent success of deep networks [18]. It expe-

dites convergence of the training procedure [18] and leads

to better solutions [24, 9, 23, 38] than conventional sigmoid-

like units. Despite the prevalence of rectifier networks,

recent improvements of models [37, 28, 12, 29, 33] and

theoretical guidelines for training them [8, 27] have rarely

focused on the properties of the rectifiers.

Unlike traditional sigmoid-like units, ReLU is not a sym-

metric function. As a consequence, the mean response of

ReLU is always no smaller than zero; besides, even assum-

ing the inputs/weights are subject to symmetric distribu-

tions, the distributions of responses can still be asymmetric

because of the behavior of ReLU. These properties of ReLU

influence the theoretical analysis of convergence and empir-

ical performance, as we will demonstrate.

In this paper, we investigate neural networks from two

aspects particularly driven by the rectifier properties. First,

we propose a new extension of ReLU, which we call

Parametric Rectified Linear Unit (PReLU). This activation

function adaptively learns the parameters of the rectifiers,

and improves accuracy at negligible extra computational

cost. Second, we study the difficulty of training rectified

models that are very deep. By explicitly modeling the non-

linearity of rectifiers (ReLU/PReLU), we derive a theoret-

ically sound initialization method, which helps with con-

vergence of very deep models (e.g., with 30 weight layers)

trained directly from scratch. This gives us more flexibility

to explore more powerful network architectures.

On the 1000-class ImageNet 2012 dataset, our network

leads to a single-model result of 5.71% top-5 error, which

surpasses all multi-model results in ILSVRC 2014. Fur-

ther, our multi-model result achieves 4.94% top-5 error on

the test set, which is a 26% relative improvement over the

ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To the

best of our knowledge, our result surpasses for the first time

the reported human-level performance (5.1% in [26]) of a

dedicated individual labeler on this recognition challenge.
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Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the

negative part is not constant and is adaptively learned.

2. Approach

In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization

method for deep rectifier networks (Sec. 2.2).

2.1. Parametric Rectifiers

We show that replacing the parameter-free ReLU by a

learned activation unit improves classification accuracy2.

Definition. Formally, we define an activation function:

f(yi) =

{

yi, if yi > 0

aiyi, if yi ≤ 0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the

negative part. The subscript i in ai indicates that we allow

the nonlinear activation to vary on different channels. When

ai = 0, it becomes ReLU; when ai is a learnable parameter,

we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1

shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-

lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is small and fixed, PReLU becomes Leaky ReLU

(LReLU) [23] (ai = 0.01). The motivation of LReLU is to

avoid zero gradients. Experiments in [23] show that LReLU

has negligible impact on accuracy compared with ReLU.

On the contrary, our method adaptively learns the PReLU

parameters jointly with the whole model. We hope that end-

to-end training will lead to more specialized activations.

PReLU introduces a very small number of extra param-

eters. The number of extra parameters is equal to the total

number of channels, which is negligible when considering

the total number of weights. So we expect no extra risk

of overfitting. We also consider a channel-shared variant:

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is

shared by all channels of one layer. This variant only intro-

duces a single extra parameter into each layer.

Optimization. PReLU can be trained using backpropaga-

tion [19] and optimized simultaneously with other layers.

The update formulations of {ai} are simply derived from

2Concurrently, [1] also investigated learning activations.

the chain rule. The gradient of ai for one layer is:

∂E

∂ai
=

∑

yi

∂E

∂f(yi)

∂f(yi)

∂ai
, (2)

where E represents the objective function. The term ∂E
∂f(yi)

is the gradient propagated from the deeper layer. The gradi-

ent of the activation is given by:

∂f(yi)

∂ai
=

{

0, if yi > 0

yi, if yi ≤ 0
. (3)

The summation
∑

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
∂E
∂a

=
∑

i

∑

yi

∂E
∂f(yi)

∂f(yi)
∂a

, where
∑

i sums over all chan-

nels of the layer. The time complexity due to PReLU is

negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

∆ai := μ∆ai + ε
∂E

∂ai
. (4)

Here μ is the momentum and ǫ is the learning rate. It is

worth noticing that we do not use weight decay (l2 regular-

ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without

regularization, the learned coefficients rarely have a magni-

tude larger than 1 in our experiments. We use ai = 0.25 as

the initialization.

Comparison Experiments. The improvement of PReLU

over ReLU has been observed on various models. Here we

present comparisons on a deep but efficient model with 14

weight layers. The model was studied in [11] (model E of

[11]) and its architecture is described in Table 1.

As a baseline, we train this model with ReLU applied

in the convolutional (conv) layers and the first two fully-

connected (fc) layers. The training implementation follows

[11]. The top-1 and top-5 errors are 33.82% and 13.34% on

ImageNet 2012, using 10-view testing (Table 2).

Then we train the same architecture from scratch, with

all ReLUs replaced by PReLUs (Table 2). The top-1 error

is reduced to 32.64%. This is a 1.2% gain over the ReLU

baseline. Table 2 also shows that channel-wise/channel-

shared PReLUs perform comparably. For the channel-

shared version, PReLU only introduces 13 extra free pa-

rameters compared with the ReLU counterpart. But this

small number of free parameters play critical roles as ev-

idenced by the 1.1% gain over the baseline. This implies

the importance of adaptively learning the shapes of activa-

tion functions.

We also show the result of LReLU with a = 0.25 in

Table 2, which is no better than ReLU. In our experiments,

we found that choosing the fixed value a in LReLU very

carefully (by cross-validation) can lead to better results than
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learned coefficients

layer channel-shared channel-wise

conv1 7×7, 64, /2 0.681 0.596

pool1 3×3, /3
conv21 2×2, 128 0.103 0.321

conv22 2×2, 128 0.099 0.204

conv23 2×2, 128 0.228 0.294

conv24 2×2, 128 0.561 0.464

pool2 2×2, /2
conv31 2×2, 256 0.126 0.196

conv32 2×2, 256 0.089 0.152

conv33 2×2, 256 0.124 0.145

conv34 2×2, 256 0.062 0.124

conv35 2×2, 256 0.008 0.134

conv36 2×2, 256 0.210 0.198

spp {6, 3, 2, 1}
fc1 4096 0.063 0.074

fc2 4096 0.031 0.075

Table 1. A small but deep 14-layer model [11]. The filter size and

filter number of each layer is listed. The number /s indicates the

stride s that is used. The learned coefficients of PReLU are also

shown. For the channel-wise case, the average of {ai} over the

channels is shown for each layer.

top-1 top-5

ReLU 33.82 13.34

LReLU (a = 0.25) 33.80 13.56

PReLU, channel-shared 32.71 12.87

PReLU, channel-wise 32.64 12.75

Table 2. Comparisons between ReLU, LReLU, and PReLU on the

small model. The error rates are for ImageNet 2012 using 10-

view testing. The images are resized so that the shorter side is

256, during both training and testing. Each view is 224×224. All

models are trained using 75 epochs.

ReLU, but needs tedious, repeated training. On the contrary,

our method adaptively learns this parameter from the data.

Table 1 shows the learned coefficients of PReLUs for

each layer. There are two interesting phenomena in Table 1.

First, the first conv layer (conv1) has coefficients (0.681 and

0.596) significantly greater than 0. As the filters of conv1

are mostly Gabor-like filters such as edge or texture detec-

tors, the learned results show that both positive and nega-

tive responses of the filters are respected. We believe that

this is a more economical way of exploiting low-level in-

formation, given the limited number of filters. Second, for

the channel-wise version, the deeper conv layers in general

have smaller coefficients. This implies that the activations

gradually become “more nonlinear” at increasing depths. In

other words, the learned model tends to keep more informa-

tion in earlier stages and becomes more discriminative in

deeper stages.

Analysis. We investigate how PReLU may affect training

via computing the Fisher Information Matrix (FIM). If the

off-diagonal blocks of FIM are closer to zero, SGD which

is a first-order solver becomes closer to natural gradient de-

scent which is second-order and converges faster ([25, 35]).

For simplicity, we consider a two-layer MLP with weight

matrices W and V:

z = Vf(Wx), (5)

where f is ReLU/PReLU. Following [25, 35], we con-

sider the case where z follows a Gaussian distribution p ∼
N (μ, σ2) with μ=Vf(Wx). FIM has off-diagonal blocks:

−
1

T

∑

t

〈
∂

∂vij

∂

∂vi′j′
log p〉 =

1

σ2
i

δ(i, i′)
1

T

∑

t

fj(Wxt)fj′ (Wxt),

(6)
where i, j, i′, j′ are indices of weights, δ(i, i′) = 1 if i = i′

and 0 otherwise, and t is the sample index on a batch of a

size T . The notation 〈·〉 is the expectation over the distri-

bution of z. Assuming that elements of y = Wx subject to

independent zero-mean Gaussian distributions and the ele-

ments in f are uncorrelated, we have that in (6) the term
1

T

∑
t fj(Wxt)fj′ (Wxt) ≈ E[fj , fj′ ] = E[fj ]E[fj′ ] where E[·]

is the expectation over samples x. As E[f ] = 1

2
(E[y|y ≥

0] + aE[y|y < 0]), for a = 0 (ReLU) E[f ] is greater than 0,

and for a > 0 (PReLU) it can be closer to 0. So PReLU

is able to push these off-diagonal blocks of FIM closer to

zero. We note that FIM involves other off-diagonal blocks

and it is not realistic for the above assumptions to hold when

training evolves, so we evaluated with real data following

[25, 35] (see supplementary). We observed that PReLU im-

proves the conditioning, which explains the faster conver-

gence than ReLU as observed in experiments (Figure 4).

In [20, 25, 35] the analysis of FIM was a motivation of

centering the nonlinear responses of each layer, which eases

training of symmetric, sigmoid-like units. But ReLU is not

a symmetric function, and has a positive mean. The slope

a in PReLU is an adaptively learned parameter that can off-

set the positive mean of ReLU. This hypothesis is justified

in Figure 2, in which the mean responses of PReLU is in

general smaller than those of ReLU.
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Figure 2. Mean responses of each layer for the trained models in

Table 1. PReLU in general has smaller mean responses.

2.2. Initialization of Filter Weights for Rectifiers

Rectifier networks are easier to train [9, 18, 38] com-

pared with traditional sigmoid-like activation networks. But

a bad initialization can still hamper the learning of a highly

non-linear system. In this subsection, we propose a robust

initialization method that removes an obstacle of training

extremely deep rectifier networks.

Recent deep CNNs are mostly initialized by random

weights drawn from Gaussian distributions [18]. With fixed
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standard deviations (e.g., 0.01 in [18]), very deep models

(e.g., >8 conv layers) have difficulties to converge, as re-

ported by the VGG team [29] and also observed in our ex-

periments. To address this issue, in [29] they pre-train a

model with 8 conv layers to initialize deeper models. But

this strategy requires more training time, and may also lead

to a poorer local optimum. In [33, 21], auxiliary classi-

fiers are added to intermediate layers to help with conver-

gence. Glorot and Bengio [8] proposed to adopt a properly

scaled uniform distribution for initialization. This is called

“Xavier” initialization in [16]. Its derivation is based on the

assumption that the activations are linear. This assumption

is invalid for ReLU and PReLU.

In the following, we derive a theoretically more sound

initialization by taking ReLU/PReLU into account. In our

experiments, our initialization method allows for extremely

deep models (e.g., 30 conv/fc layers) to converge, while the

“Xavier” method [8] cannot.

Forward Propagation Case. Our derivation mainly fol-

lows [8]. The central idea is to investigate the variance of

the responses in each layer. For a conv layer, a response is:

yl = Wlxl + bl. (7)

Here, x is a k2c-by-1 vector that represents co-located k×k
pixels in c input channels. k is the spatial filter size of the

layer. With n = k2c denoting the number of connections

of a response, W is a d-by-n matrix, where d is the number

of filters and each row of W represents the weights of a

filter. b is a vector of biases, and y is the response at a

pixel of the output map. We use l to index a layer. We

have xl = f(yl−1) where f is the activation. We also have

cl = dl−1.

We let the initialized elements in Wl be independent and

identically distributed (i.i.d.). As in [8], we assume that the

elements in xl are also i.i.d., and xl and Wl are independent

of each other. Then we have:

Var[yl] = nlVar[wlxl], (8)

where now yl, xl, and wl represent the random variables of

each element in yl, Wl, and xl respectively. We let wl have

zero mean. Then the variance of the product of independent

variables gives us:

Var[yl] = nlVar[wl]E[x2
l ]. (9)

Here E[x2
l ] is the expectation of the square of xl. It is worth

noticing that E[x2
l ] �= Var[xl] unless xl has zero mean. For

ReLU, xl = max(0, yl−1) and thus it does not have zero

mean. This will lead to a conclusion different from [8].

If we let wl−1 have a symmetric distribution around zero

and bl−1 = 0, then yl−1 has zero mean and has a symmetric

distribution around zero. This leads to E[x2
l ] =

1
2Var[yl−1]

when f is ReLU. Putting this into Eqn.(9), we obtain:

Var[yl] =
1

2
nlVar[wl]Var[yl−1]. (10)

With L layers put together, we have:

Var[yL] = Var[y1]

(

L
∏

l=2

1

2
nlVar[wl]

)

. (11)

This product is the key to the initialization design. A proper

initialization method should avoid reducing or magnifying

the magnitudes of input signals exponentially. So we ex-

pect the above product to take a proper scalar (e.g., 1). A

sufficient condition is:

1

2
nlVar[wl] = 1, ∀l. (12)

This leads to a zero-mean Gaussian distribution whose stan-

dard deviation (std) is
√

2/nl. This is our way of initializa-

tion. We also initialize b = 0.

For the first layer (l = 1), we should have n1Var[w1] = 1
because there is no ReLU applied on the input signal. But

the factor 1/2 does not matter if it just exists on one layer.

So we also adopt Eqn.(12) in the first layer for simplicity.

Backward Propagation Case. For back-propagation, the

gradient of a conv layer is computed by:

∆xl = Ŵl∆yl. (13)

Here we use ∆x and ∆y to denote gradients (∂E
∂x

and ∂E
∂y

)

for simplicity. ∆y represents k-by-k pixels in d channels,

and is reshaped into a k2d-by-1 vector. We denote n̂ = k2d.

Note that n̂ �= n = k2c. Ŵ is a c-by-n̂ matrix where the

filters are rearranged in the way of back-propagation. Note

that W and Ŵ can be reshaped from each other. ∆x is a c-
by-1 vector representing the gradient at a pixel of this layer.

As above, we assume that wl and ∆yl are independent of

each other, then ∆xl has zero mean for all l, when wl is

initialized by a symmetric distribution around zero.
In back-propagation we also have ∆yl = f ′(yl)∆xl+1

where f ′ is the derivative of f . For the ReLU case, f ′(yl)
is zero or one with equal probabilities. We assume that
f ′(yl) and ∆xl+1 are independent of each other. Thus we
have E[∆yl] = E[∆xl+1]/2 = 0, and also E[(∆yl)

2] =
Var[∆yl] =

1
2Var[∆xl+1]. Then we compute the variance

of the gradient in Eqn.(13):

Var[∆xl] = n̂lVar[wl]Var[∆yl]

=
1

2
n̂lVar[wl]Var[∆xl+1]. (14)

The scalar 1/2 in both Eqn.(14) and Eqn.(10) is the result

of ReLU, though the derivations are different. With L layers

put together, we have:

Var[∆x2] = Var[∆xL+1]

(

L
∏

l=2

1

2
n̂lVar[wl]

)

. (15)

We consider a sufficient condition that the gradient is not

exponentially large/small:

1

2
n̂lVar[wl] = 1, ∀l. (16)
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Figure 3. Left: convergence of a 22-layer model (B in Table 3).

The x-axis is training epochs. The y-axis is the top-1 val error.

Both our initialization (red) and “Xavier” (blue) [8] lead to conver-

gence, but ours starts reducing error earlier. Right: convergence

of a 30-layer model. Our initialization is able to make it converge,

but “Xavier” completely stalls. We use ReLU in both figures.

The only difference between this equation and Eqn.(12) is

that n̂l = k2l dl while nl = k2l cl = k2l dl−1. Eqn.(16) results

in a zero-mean Gaussian distribution whose std is
√

2/n̂l.

For the first layer (l = 1), we need not compute ∆x1

because it represents the image domain. But we can still

adopt Eqn.(16) in the first layer, for the same reason as in the

forward propagation case - the factor of a single layer does

not make the overall product exponentially large/small.

We note that it is sufficient to use either Eqn.(16) or

Eqn.(12) alone. For example, if we use Eqn.(16), then

in Eqn.(15) the product
∏L

l=2
1
2 n̂lVar[wl] = 1, and in

Eqn.(11) the product
∏L

l=2
1
2nlVar[wl] =

∏L
l=2 nl/n̂l =

c2/dL, which is not a diminishing number in common net-

work designs. This means that if the initialization properly

scales the backward signal, then this is also the case for the

forward signal; and vice versa. For all models in this paper,

both forms can make them converge.

Analysis. If the forward/backward signal is inappropriately

scaled by a factor β in each layer, then the final propagated

signal will be rescaled by a factor of βL after L layers,

where L can represent some or all layers. When L is large,

if β > 1, this leads to extremely amplified signals and an

algorithm output of infinity; if β < 1, this leads to diminish-

ing signals. In either case, the algorithm does not converge

- it diverges in the former case, and stalls in the latter.

Our derivation also explains why the constant standard

deviation of 0.01 makes some deeper networks stall [29].

We take “model B” in the VGG team’s paper [29] as an

example. This model has 10 conv layers all with 3×3 filters.

The filter numbers (dl) are 64 for the 1st and 2nd layers, 128

for the 3rd and 4th layers, 256 for the 5th and 6th layers, and

512 for the rest. The std computed by Eqn.(16) (
√

2/n̂l) is

0.059, 0.042, 0.029, and 0.021 when the filter numbers are

64, 128, 256, and 512 respectively. If the std is initialized

as 0.01, the std of the gradient propagated from conv10 to

conv2 is 1/(5.9× 4.22 × 2.92 × 2.14) = 1/(1.7× 104) of

what we derive. This number may explain why diminishing

gradients were observed in experiments.

It is also worth noticing that the variance of the input

signal can be roughly preserved from the first layer to the

last. In cases when the input signal is not normalized (e.g.,

in [−128, 128]), its magnitude can be so large that the soft-

max operator will overflow. A solution is to normalize the

input signal, but this may impact other hyper-parameters.

Another solution is to include a small factor on the weights

among all or some layers, e.g., L

√

1/128 on L layers. In

practice, we use a std of 0.01 for the first two fc layers

and 0.001 for the last. These numbers are smaller than they

should be (e.g.,
√

2/4096) and will address the normaliza-

tion issue of images whose range is about [−128, 128].
For the initialization in the PReLU case, it is easy to

show that Eqn.(12) becomes: 1
2 (1 + a2)nlVar[wl] = 1,

where a is the initialized value of the coefficients. If a = 0,

it becomes the ReLU case; if a = 1, it becomes the lin-

ear case (the same as [8]). Similarly, Eqn.(16) becomes
1
2 (1 + a2)n̂lVar[wl] = 1.

Comparisons with “Xavier” Initialization [8]. The main

difference between our derivation and the “Xavier” initial-

ization [8] is that we address the rectifier nonlinearities3.

The derivation in [8] only considers the linear case, and its

result is given by nlVar[wl] = 1 (the forward case), which

can be implemented as a zero-mean Gaussian distribution

whose std is
√

1/nl. When there are L layers, the std will

be 1/
√
2
L

of our derived std. This number, however, is

not small enough to completely stall the convergence of the

models actually used in our paper (Table 3, up to 22 lay-

ers) as shown by experiments. Figure 3(left) compares the

convergence of a 22-layer model. Both methods are able to

make them converge. But ours starts reducing error earlier.

We also investigate the possible impact on accuracy. For

the model in Table 2 (using ReLU), the “Xavier” initializa-

tion method leads to 33.90/13.44 top-1/top-5 error, and ours

leads to 33.82/13.34. We have not observed clear superior-

ity of one to the other on accuracy.

Next, we compare the two methods on extremely deep

models with up to 30 layers (27 conv and 3 fc). We add up

to sixteen conv layers with 256 2×2 filters in the model in

Table 1. Figure 3(right) shows the convergence of the 30-

layer model. Our initialization is able to make the extremely

deep model converge. On the contrary, the “Xavier” method

completely stalls the learning, and the gradients are dimin-

ishing as monitored in the experiments.

These studies demonstrate that we are ready to investi-

gate extremely deep, rectified models by using a more prin-

cipled initialization method. But in our current experiments

on ImageNet, we have not observed the benefit from train-

ing extremely deep models. For example, the aforemen-

tioned 30-layer model has 38.56/16.59 top-1/top-5 error,

3There are other minor differences. In [8], the derived variance is

adopted for uniform distributions, and the forward and backward cases are

averaged. But it is straightforward to adopt their conclusion for Gaussian

distributions and for the forward or backward case only.
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input size VGG-19 [29] model A model B model C

224
3×3, 64 7×7, 96, /2 7×7, 96, /2 7×7, 96, /2
3×3, 64

2×2 pool, /2

112
3×3, 128
3×3, 128

2×2 pool, /2 2×2 pool, /2 2×2 pool, /2 2×2 pool, /2

56

3×3, 256 3×3, 256 3×3, 256 3×3, 384
3×3, 256 3×3, 256 3×3, 256 3×3, 384
3×3, 256 3×3, 256 3×3, 256 3×3, 384
3×3, 256 3×3, 256 3×3, 256 3×3, 384

3×3, 256 3×3, 256 3×3, 384
3×3, 256 3×3, 384

2×2 pool, /2 2×2 pool, /2 2×2 pool, /2 2×2 pool, /2

28

3×3, 512 3×3, 512 3×3, 512 3×3, 768
3×3, 512 3×3, 512 3×3, 512 3×3, 768
3×3, 512 3×3, 512 3×3, 512 3×3, 768
3×3, 512 3×3, 512 3×3, 512 3×3, 768

3×3, 512 3×3, 512 3×3, 768
3×3, 512 3×3, 768

2×2 pool, /2 2×2 pool, /2 2×2 pool, /2 2×2 pool, /2

14

3×3, 512 3×3, 512 3×3, 512 3×3, 896
3×3, 512 3×3, 512 3×3, 512 3×3, 896
3×3, 512 3×3, 512 3×3, 512 3×3, 896
3×3, 512 3×3, 512 3×3, 512 3×3, 896

3×3, 512 3×3, 512 3×3, 896
3×3, 512 3×3, 896

2×2 pool, /2 spp spp spp
fc1 , fc2 , fc3 4096, 4096, 1000

depth 19 19 22 22
comp. 1.96 1.90 2.32 5.30

Table 3. Architectures of large models. Here “/2” denotes a stride

of 2. The “spp” layer [12] produces a 4-level {7, 3, 2, 1} pyramid.

The complexity (comp.) is operations in 1010.

which is clearly worse than the error of the 14-layer model

in Table 2 (33.82/13.34).

We found that this degradation is because of the increase

of training error when the model is deeper. Such a degrada-

tion is still an open problem. Accuracy saturation or degra-

dation due to depth was also observed in [29, 11, 38]. In

[29], the 16-layer and 19-layer models perform comparably

in image classification. In [11], aggressively increasing the

depth leads to saturated or degraded accuracy. In the speech

recognition research of [38], the deep models degrade when

using more than 8 hidden layers (all being fc).

Though our attempts of extremely deep models have not

shown benefits on accuracy, our initialization paves a foun-

dation for further study on increasing depth. We hope this

will be helpful in understanding deep networks.

2.3. Discussion on Rectifiers

The analysis in Sec. 2.1 and 2.2 involves the “rectified”

units that are asymmetric activation functions, unlike many

activations (e.g., tanh) that are symmetric. This leads to

some fundamental differences. The conclusions involving

Eqn.(6) (for FIM) and Eqn.(9) (for initialization) are heav-

ily biased by the fact that E[f ] is greater than zero in the

case of ReLU. The asymmetric behavior requires algorith-

mic changes that take this effect into account. Our paper

provides some explorations along this direction.

3. Architectures and Implementation

The above investigations provide guidelines of designing

our architectures, introduced as follows.

Our baseline is the 19-layer model (A) in Table 3. For a

better comparison, we also list the VGG-19 model [29]. Our

model A has the following modifications on VGG-19: (i) in

the first layer, we use a filter size of 7×7 and a stride of 2;

(ii) we move the other three conv layers on the two largest

feature maps (224, 112) to the smaller feature maps (56,

28, 14). The time complexity (Table 3, last row) is roughly

unchanged because the deeper layers have more filters; (iii)

we use spatial pyramid pooling (SPP) [12] before the first

fc layer. The pyramid has 4 levels - the numbers of bins are

7×7, 3×3, 2×2, and 1×1, for a total of 63 bins.

It is worth noticing that we have no evidence that our

model A is a better architecture than VGG-19, though our

model A has better results than VGG-19’s result reported

by [29]. In our earlier experiments with less scale aug-

mentation, we observed that our model A and our repro-

duced VGG-19 (with SPP and our initialization) are com-

parable. The main purpose of using model A is for faster

running speed. The actual running time of the conv lay-

ers on larger feature maps is slower than those on smaller

feature maps, when their time complexity is the same. In

our four-GPU implementation, our model A takes 2.6s per

mini-batch (128), and our reproduced VGG-19 takes 3.0s,

evaluated on four Nvidia K20 GPUs.

In Table 3, our model B is a deeper version of A. It has

three extra conv layers. Our model C is a wider (with more

filters) version of B. The width substantially increases the

complexity, and its time complexity is about 2.3× of B (Ta-

ble 3, last row). Training A/B on four K20 GPUs, or train-

ing C on eight K40 GPUs, takes about 3-4 weeks.

We choose to increase the model width instead of depth,

because deeper models have only diminishing improvement

or even degradation on accuracy. As we will show, the

deeper model B is just marginally better than A.

While all models in Table 3 are very large, we have not

observed severe overfitting. We attribute this to the aggres-

sive data augmentation used throughout the whole training

procedure, as introduced below.

Training. Our training mostly follows [18, 14, 2, 12, 29].

From a resized image whose shorter side is s, a 224×224

crop is randomly sampled, with the per-pixel mean sub-

tracted. The scale s is randomly jittered in the range of

[256, 512], following [29]. A sample is horizontally flipped

at a chance of 50%. Random color altering [18] is also used.

Unlike [29] that applies scale jittering only during fine-

tuning, we apply it at the beginning. Unlike [29] that ini-

tializes a deeper model using a shallower one, we directly

train the very deep model using our initialization described

in Sec. 2.2 (Eqn.(16)). Our end-to-end training may help

improve accuracy, as it may avoid poorer local optima.

Other hyper-parameters that might be important are as

follows. The weight decay is 0.0005, and momentum is 0.9.

Dropout (50%) is used in the first two fc layers. The mini-

batch size is fixed as 128. The learning rate is 1e-2, 1e-3,

and 1e-4, and is switched when the error plateaus. The total

number of epochs is about 80 for each model.
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model A ReLU PReLU

scale s top-1 top-5 top-1 top-5

256 26.25 8.25 25.81 8.08

384 24.77 7.26 24.20 7.03

480 25.46 7.63 24.83 7.39

multi-scale 24.02 6.51 22.97 6.28

Table 4. Comparisons between ReLU/PReLU on model A in Ima-

geNet 2012 using dense testing.

Testing. We adopt the strategy of “multi-view testing on

feature maps” used in the SPP-net paper [12]. We fur-

ther improve this strategy using the dense sliding window

method in [28, 29]. We first apply the convolutional layers

on the resized full image and obtain the last convolutional

feature map. In the feature map, each 14×14 window is

pooled using the SPP layer [12]. The fc layers are then ap-

plied on the pooled features to compute the scores. This is

also done on the horizontally flipped images. The scores of

all dense sliding windows are averaged [28, 29]. We further

average the scores at multiple scales as in [12].

Multi-GPU Implementation. We adopt a simple variant of

Krizhevsky’s method [17] for parallel training on multiple

GPUs. We adopt “data parallelism” [17] on the conv layers.

The GPUs are synchronized before the first fc layer. Then

the forward/backward propagations of the fc layers are per-

formed on a single GPU - this means that we do not par-

allelize the computation of the fc layers. The time cost of

the fc layers is low, so it is not necessary to parallelize them.

This leads to a simpler implementation than the “model par-

allelism” in [17]. We implement based on our modification

of the Caffe library [16]. We do not increase the mini-batch

size (128) because the accuracy may be decreased [17].

4. Experiments on ImageNet

We perform the experiments on the 1000-class ImageNet

2012 dataset [26] which contains about 1.2 million training

images, 50,000 validation images, and 100,000 test images

(with no published labels). The results are measured by top-

1/top-5 error rates [26]. We only use the provided data for

training. All results are evaluated on the validation set, ex-

cept for the final test results in Table 7.

Comparisons between ReLU and PReLU. In Table 4, we

compare ReLU and PReLU on the large model A. We use

the channel-wise version of PReLU. For fair comparisons,

both ReLU/PReLU models are trained using the same total

number of epochs, and the learning rates are also switched

after running the same number of epochs. Figure 4 shows

the train/val error during training. PReLU converges faster

than ReLU. Moreover, PReLU has lower train error and val

error than ReLU throughout the training procedure.

Table 4 shows the results at three scales and the

multi-scale combination. For the multi-scale combination,
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Figure 4. Convergence of ReLU (red) vs. PReLU (blue) of

model A on ImageNet. Light lines denote the training error of

the current mini-batch, and dark lines denote validation error of

the center crops. In the zoom-in is the last few epochs. Learning

rates are switched at 20 and 65 epochs.

PReLU reduces the top-1 error by 1.05% and the top-5 er-

ror by 0.23% compared with ReLU. The results in Table 2

and Table 4 consistently show that PReLU improves both

small and large models. This improvement is with almost

no computational cost.

Comparisons of Single-model Results. Next we compare

single-model results. We first show 10-view testing results

[18] in Table 5. Here, each view is a 224-crop. The 10-view

results of VGG-16 are based on our testing using the pub-

licly released model [29] as it is not reported in [29]. Our

best 10-view result is 7.38% (Table 5). Our other models

also outperform the existing results.

Table 6 shows the comparisons of single-model results,

which are all obtained using multi-scale and multi-view (or

dense) test. For our models, the combination weights for

all scales are equal. Our baseline model (A+ReLU, 6.51%)

is already substantially better than the single-model result

of 7.1% reported for VGG-19 in the latest update of [29]

(arXiv v5). We believe that this gain is mainly due to our

end-to-end training, without the need of pre-training shal-

low models.

Moreover, our best single model (C, PReLU) has 5.71%

top-5 error. This result is better than all multi-model re-

sults in ILSVRC 14 (Table 7). Comparing A+PReLU with

B+PReLU, we see that the 19-layer model and the 22-layer

model perform comparably. On the other hand, increasing

the width (C vs. B, Table 6) can still improve accuracy. This

indicates that when the models are deep enough, the width

becomes an essential factor for accuracy.

Comparisons of Multi-model Results. We combine six

models including those in Table 6. For the time being we

have trained only one model with architecture C. The other

models have accuracy inferior to C by considerable mar-
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model top-1 top-5

SPP [12] 29.68 10.95

VGG-16 [29] 28.07† 9.33†

GoogLeNet [33] - 9.15

A, ReLU 26.48 8.59

A, PReLU 25.59 8.23

B, PReLU 25.53 8.13

C, PReLU 24.27 7.38

Table 5. Single-model 10-view results for ImageNet 2012 val

set. †: Based on our tests.

method top-1 top-5

in

ILSVRC 14

SPP [12] 27.86 9.08†

VGG [29] - 8.43†

GoogLeNet [33] - 7.89

post

ILSVRC 14

VGG [29] (arXiv v2) 24.8 7.5

VGG [29] (arXiv v5) 24.4 7.1

ours (A, ReLU) 24.02 6.51

ours (A, PReLU) 22.97 6.28

ours (B, PReLU) 22.85 6.27

ours (C, PReLU) 21.59 5.71

Table 6. Single-model results for ImageNet 2012 val set. †: Eval-

uated from the test set.

method top-5 (test)

in

ILSVRC 14

SPP [12] 8.06

VGG [29] 7.32

GoogLeNet [33] 6.66

post

ILSVRC 14

VGG [29] (arXiv v5) 6.8

ours 4.94

Table 7. Multi-model results for the ImageNet 2012 test set.

gins. The multi-model results are in Table 7. Our result is

4.94% top-5 error on the test set. Our result is 1.7% better

than the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]),

which represents a 26% relative improvement.4

Comparisons with Human Performance from [26]. Rus-

sakovsky et al. [26] recently reported that human perfor-

mance yields a 5.1% top-5 error on the ImageNet dataset.

Our result (4.94%) exceeds the reported human-level per-

formance. The investigation in [26] suggests that algo-

rithms can do a better job on fine-grained recognition (e.g.,

120 species of dogs in the dataset). The second row of

Figure 5 shows some example fine-grained objects success-

fully recognized by our method - “coucal”, “komondor”,

and “yellow lady’s slipper”. While humans can easily rec-

ognize these objects as a bird, a dog, and a flower, it is non-

trivial for most humans to tell their species. On the negative

side, our algorithm still makes mistakes in cases that are not

difficult for humans, especially for those requiring context

4Concurrently, a Batch Normalization method [15] achieves results on

par with ours: 5.82% error for a single model (vs. ours 5.71%), and 4.82%

error for an ensemble (vs. ours 4.94%).

GT: forklift

1: forklift

2: garbage truck

3: tow truck

4: trailer truck

5: go-kart

GT: birdhouse

1: birdhouse

2: sliding door

3: window screen

4: mailbox

5: pot

GT: yellow lady's slipper

1: yellow lady's slipper

2: slug

3: hen-of-the-woods

4: stinkhorn

5: coral fungus

GT: horse cart

1: horse cart

2: minibus

3: oxcart

4: stretcher

5: half track

GT: coucal

1: coucal

2: indigo bunting

3: lorikeet

4: walking stick

5: custard apple

GT: komondor

1: komondor

2: patio

3: llama

4: mobile home

5: Old English sheepdog

Figure 5. Example validation images successfully classified by our

method. For each image, the ground-truth label and the top-5 la-

bels predicted by our method are listed.

understanding or high-level knowledge.

While our algorithm produces a superior result on this

particular dataset, this does not indicate that machine vision

outperforms human vision on object recognition in general.

On recognizing elementary object categories (i.e., common

objects or concepts in daily lives) such as the Pascal VOC

task [5], machines still have obvious errors in cases that are

trivial for humans. Nevertheless, we believe that our re-

sults show the tremendous potential of machine algorithms

to match human-level performance on visual recognition.

Object Detection on PASCAL VOC. An important appli-

cation of ImageNet-trained models is for transfer learning

[7] on other recognition tasks. We evaluate these models on

PASCAL VOC 2007 object detection [5]. We use the recent

Fast R-CNN [6] implementation (with public code). With

an ImageNet-trained model, we fine-tune the detectors on

VOC 2007 trainval and evaluate on the test set. The detec-

tion results are in Table 8, which are consistent with Ima-

geNet classification results. Note that using the same model

A, PReLU (68.4%) improves over ReLU (67.6%) on this

transfer learning task, suggesting that better features have

been learned with the help of PReLU.

network VGG-16 A+ReLU A+PReLU C+PReLU

mAP(%) 66.9 [6] 67.6 68.4 69.2

Table 8. Object detection mAP on PASCAL VOC 2007 using Fast

R-CNN [6] on different pre-trained nets.
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