
Reinforcement Learning

Piyush Rai

Introduction to Machine Learning (CS771A)

November 6, 2018

Intro to Machine Learning (CS771A) Reinforcement Learning 1

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Reward

 State
(observations)

Action

Agent

Environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.

Intro to Machine Learning (CS771A) Reinforcement Learning 2

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Reward

 State
(observations)

Action

Agent

Environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.

Intro to Machine Learning (CS771A) Reinforcement Learning 2

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Reward

 State
(observations)

Action

Agent

Environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.

Intro to Machine Learning (CS771A) Reinforcement Learning 2

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Reward

 State
(observations)

Action

Agent

Environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.

Intro to Machine Learning (CS771A) Reinforcement Learning 2

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Reward

 State
(observations)

Action

Agent

Environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.

Intro to Machine Learning (CS771A) Reinforcement Learning 2

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Markov Decision Processes (MDP)

MDP gives a formal way to define RL problems

An MDP consists of a tuple (S ,A, {Psa}, γ,R)

S is a set of states (discrete or continuous valued)

A is a set of actions

Psa is a probability distribution over possible states

Psa(s
′): Prob. of switching to s ′ if we took action a in s

For discrete states, Psa is an |S | length probability vector

Another notation for Psa(s
′): T (s, a, s ′)

R : S × A 7→ R is the reward function

Reward for reaching state s: R(s, a)

γ ∈ [0, 1) is called discount factor for future rewards

Psa and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]

Actions = [Slow, Fast]

T(Standing, Slow, Moving) = 1
T(Standing, Fast, Moving) = 0.6
T(Standing, Fast, Fallen) = 0.4
…

0.6

0.4

1.0

0.80.2

1.0

0.6

0.4

Intro to Machine Learning (CS771A) Reinforcement Learning 3

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

The expectation E is w.r.t. all possibilities of the initial state s0

Intro to Machine Learning (CS771A) Reinforcement Learning 4

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s)

. Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Policy Function and Value Function

Policy Function or Policy is a function π : S 7→ A, mapping from states to actions

For an agent with policy π, the action in state s: a = π(s). Want to learn the best π

For any policy π, we can define the Value Function

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

For finite state spaces, V π(s) will be a vector of size |S |

Bellman’s Equation: Gives a recursive definition of the above Value Function:

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)× V π(s ′)

= R(s) + γEs′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

Intro to Machine Learning (CS771A) Reinforcement Learning 5

Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)V π(s ′)

For finite-state MDP, it gives us |S | equations with |S | unknowns ⇒ Efficiently solvable

The Optimal Value Function is defined as

V ∗(s) = max
π

V π(s)

It’s the best possible expected payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Intro to Machine Learning (CS771A) Reinforcement Learning 6

Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)V π(s ′)

For finite-state MDP, it gives us |S | equations with |S | unknowns ⇒ Efficiently solvable

The Optimal Value Function is defined as

V ∗(s) = max
π

V π(s)

It’s the best possible expected payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Intro to Machine Learning (CS771A) Reinforcement Learning 6

Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)V π(s ′)

For finite-state MDP, it gives us |S | equations with |S | unknowns ⇒ Efficiently solvable

The Optimal Value Function is defined as

V ∗(s) = max
π

V π(s)

It’s the best possible expected payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Intro to Machine Learning (CS771A) Reinforcement Learning 6

Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)V π(s ′)

For finite-state MDP, it gives us |S | equations with |S | unknowns ⇒ Efficiently solvable

The Optimal Value Function is defined as

V ∗(s) = max
π

V π(s)

It’s the best possible expected payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Intro to Machine Learning (CS771A) Reinforcement Learning 6

Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s
′)V π(s ′)

For finite-state MDP, it gives us |S | equations with |S | unknowns ⇒ Efficiently solvable

The Optimal Value Function is defined as

V ∗(s) = max
π

V π(s)

It’s the best possible expected payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Intro to Machine Learning (CS771A) Reinforcement Learning 6

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Given the optimal value function V ∗, the Optimal Policy π∗ : S 7→ A:

π∗(s) = arg max
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′) (1)

π∗(s) gives the action a that maximizes the optimal value function for that state

Three popular methods to find the optimal policy

Value Iteration: Estimate V ∗ and then use Eq 1

Policy Iteration: Iterate between learning the optimal policy π∗ and learning V ∗

Q Learning (a variant of value iteration)

Intro to Machine Learning (CS771A) Reinforcement Learning 7

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V ∗ as follows

For each state s, initialize V (s) = 0

Repeat until convergence

For each state s, update V (s) as

V (s) = R(s) + max
a∈A

∑
s′

Psa(s′)V (s′)

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = arg maxa∈A
∑

s′∈S Psa(s ′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in some order

Intro to Machine Learning (CS771A) Reinforcement Learning 8

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Policy Iteration

Iteratively compute the policy π until convergence

Initialize π randomly

Repeat until convergence

1 Let V = Vπ

2 For each state s, set π(s) = arg maxa∈A
∑

s′ Psa(s′)V (s′)

Step (1) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (2) gives the policy that is greedy w.r.t. V

Intro to Machine Learning (CS771A) Reinforcement Learning 9

Finding the Optimal Policy: Q Learning

This is a variant of value iteration

However, instead of iterating over V , we iterate over a “Q function”

Recall the optimal value function

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Define Q(s, a) = R(s) + γ
∑

s′∈S Psa(s ′)V ∗(s ′) then

V ∗(s) = max
a∈A

Q(s, a)

We can iteratively learn Q(s, a) until convergence

Qt+1(s, a) = R(s) + γ
∑
s′∈S

Psa(s ′) max
a′∈A

Qt(s, a
′)

Then set V ∗(s) = arg maxa∈A Q(s, a)

Intro to Machine Learning (CS771A) Reinforcement Learning 10

Finding the Optimal Policy: Q Learning

This is a variant of value iteration

However, instead of iterating over V , we iterate over a “Q function”

Recall the optimal value function

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Define Q(s, a) = R(s) + γ
∑

s′∈S Psa(s ′)V ∗(s ′) then

V ∗(s) = max
a∈A

Q(s, a)

We can iteratively learn Q(s, a) until convergence

Qt+1(s, a) = R(s) + γ
∑
s′∈S

Psa(s ′) max
a′∈A

Qt(s, a
′)

Then set V ∗(s) = arg maxa∈A Q(s, a)

Intro to Machine Learning (CS771A) Reinforcement Learning 10

Finding the Optimal Policy: Q Learning

This is a variant of value iteration

However, instead of iterating over V , we iterate over a “Q function”

Recall the optimal value function

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Define Q(s, a) = R(s) + γ
∑

s′∈S Psa(s ′)V ∗(s ′) then

V ∗(s) = max
a∈A

Q(s, a)

We can iteratively learn Q(s, a) until convergence

Qt+1(s, a) = R(s) + γ
∑
s′∈S

Psa(s ′) max
a′∈A

Qt(s, a
′)

Then set V ∗(s) = arg maxa∈A Q(s, a)

Intro to Machine Learning (CS771A) Reinforcement Learning 10

Finding the Optimal Policy: Q Learning

This is a variant of value iteration

However, instead of iterating over V , we iterate over a “Q function”

Recall the optimal value function

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Define Q(s, a) = R(s) + γ
∑

s′∈S Psa(s ′)V ∗(s ′) then

V ∗(s) = max
a∈A

Q(s, a)

We can iteratively learn Q(s, a) until convergence

Qt+1(s, a) = R(s) + γ
∑
s′∈S

Psa(s ′) max
a′∈A

Qt(s, a
′)

Then set V ∗(s) = arg maxa∈A Q(s, a)

Intro to Machine Learning (CS771A) Reinforcement Learning 10

Finding the Optimal Policy: Q Learning

This is a variant of value iteration

However, instead of iterating over V , we iterate over a “Q function”

Recall the optimal value function

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Define Q(s, a) = R(s) + γ
∑

s′∈S Psa(s ′)V ∗(s ′) then

V ∗(s) = max
a∈A

Q(s, a)

We can iteratively learn Q(s, a) until convergence

Qt+1(s, a) = R(s) + γ
∑
s′∈S

Psa(s ′) max
a′∈A

Qt(s, a
′)

Then set V ∗(s) = arg maxa∈A Q(s, a)

Intro to Machine Learning (CS771A) Reinforcement Learning 10

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

Intro to Machine Learning (CS771A) Reinforcement Learning 11

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

Intro to Machine Learning (CS771A) Reinforcement Learning 11

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

Intro to Machine Learning (CS771A) Reinforcement Learning 11

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

Intro to Machine Learning (CS771A) Reinforcement Learning 11

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

Intro to Machine Learning (CS771A) Reinforcement Learning 11

Learning an MDP Model

Maximum likelihood estimate of state transition probabilities:

Psa(s ′) =
of times we took action a in state s and got to s ′

of times we took action a in state s

Note: if action a is never taken in state s, the above ratio is 0/0

In that case: Psa(s
′) = 1/|S | (uniform distribution over all states)

Psa is easy to update if we gather more experience (i.e., do more trials)

.. just add counts in the numerator and denominator

Likewise, the expected reward R(s) in state s can be computed

R(s) = average reward in state s across all the trials

Intro to Machine Learning (CS771A) Reinforcement Learning 12

Learning an MDP Model

Maximum likelihood estimate of state transition probabilities:

Psa(s ′) =
of times we took action a in state s and got to s ′

of times we took action a in state s

Note: if action a is never taken in state s, the above ratio is 0/0

In that case: Psa(s
′) = 1/|S | (uniform distribution over all states)

Psa is easy to update if we gather more experience (i.e., do more trials)

.. just add counts in the numerator and denominator

Likewise, the expected reward R(s) in state s can be computed

R(s) = average reward in state s across all the trials

Intro to Machine Learning (CS771A) Reinforcement Learning 12

Learning an MDP Model

Maximum likelihood estimate of state transition probabilities:

Psa(s ′) =
of times we took action a in state s and got to s ′

of times we took action a in state s

Note: if action a is never taken in state s, the above ratio is 0/0

In that case: Psa(s
′) = 1/|S | (uniform distribution over all states)

Psa is easy to update if we gather more experience (i.e., do more trials)

.. just add counts in the numerator and denominator

Likewise, the expected reward R(s) in state s can be computed

R(s) = average reward in state s across all the trials

Intro to Machine Learning (CS771A) Reinforcement Learning 12

Learning an MDP Model

Maximum likelihood estimate of state transition probabilities:

Psa(s ′) =
of times we took action a in state s and got to s ′

of times we took action a in state s

Note: if action a is never taken in state s, the above ratio is 0/0

In that case: Psa(s
′) = 1/|S | (uniform distribution over all states)

Psa is easy to update if we gather more experience (i.e., do more trials)

.. just add counts in the numerator and denominator

Likewise, the expected reward R(s) in state s can be computed

R(s) = average reward in state s across all the trials

Intro to Machine Learning (CS771A) Reinforcement Learning 12

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence

1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Intro to Machine Learning (CS771A) Reinforcement Learning 13

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some regression algorithm

Optimality guarantee is lost however

Intro to Machine Learning (CS771A) Reinforcement Learning 14

MDP with Continuous State Spaces

A car moving in 2D: s = (x , y , θ, ẋ , ẏ , θ̇). Thus S = R6

Helicopter flying in 3D: s = (x , y , z , φ, θ, ψ, ẋ , ẏ , ż , φ̇, θ̇, ψ̇). Thus S = R12

In general, the state space could be infinite S = Rn

How to handle these continuous state spaces?

Intro to Machine Learning (CS771A) Reinforcement Learning 15

MDP with Continuous State Spaces

A car moving in 2D: s = (x , y , θ, ẋ , ẏ , θ̇). Thus S = R6

Helicopter flying in 3D: s = (x , y , z , φ, θ, ψ, ẋ , ẏ , ż , φ̇, θ̇, ψ̇). Thus S = R12

In general, the state space could be infinite S = Rn

How to handle these continuous state spaces?

Intro to Machine Learning (CS771A) Reinforcement Learning 15

MDP with Continuous State Spaces

A car moving in 2D: s = (x , y , θ, ẋ , ẏ , θ̇). Thus S = R6

Helicopter flying in 3D: s = (x , y , z , φ, θ, ψ, ẋ , ẏ , ż , φ̇, θ̇, ψ̇). Thus S = R12

In general, the state space could be infinite S = Rn

How to handle these continuous state spaces?

Intro to Machine Learning (CS771A) Reinforcement Learning 15

MDP with Continuous State Spaces

A car moving in 2D: s = (x , y , θ, ẋ , ẏ , θ̇). Thus S = R6

Helicopter flying in 3D: s = (x , y , z , φ, θ, ψ, ẋ , ẏ , ż , φ̇, θ̇, ψ̇). Thus S = R12

In general, the state space could be infinite S = Rn

How to handle these continuous state spaces?

Intro to Machine Learning (CS771A) Reinforcement Learning 15

Discretization

Suppose the state space is 2D: s = (s1, s2). Can discretize it

Call each discrete state s̄, discretized state space S̄ , and define the MDP as

(S̄ ,A, {Ps̄a}, γ,R)

Can now use value iteration or policy itearation on this discrete state space

Limitations? Piecewise constant V ∗ and π∗ (isn’t realistic). Doesn’t work well in high-dim state
spaces (resulting discrete space space too huge)

Discretization usually done only for 1D or 2D state-spaces

Intro to Machine Learning (CS771A) Reinforcement Learning 16

Discretization

Suppose the state space is 2D: s = (s1, s2). Can discretize it

Call each discrete state s̄, discretized state space S̄ , and define the MDP as

(S̄ ,A, {Ps̄a}, γ,R)

Can now use value iteration or policy itearation on this discrete state space

Limitations? Piecewise constant V ∗ and π∗ (isn’t realistic). Doesn’t work well in high-dim state
spaces (resulting discrete space space too huge)

Discretization usually done only for 1D or 2D state-spaces

Intro to Machine Learning (CS771A) Reinforcement Learning 16

Discretization

Suppose the state space is 2D: s = (s1, s2). Can discretize it

Call each discrete state s̄, discretized state space S̄ , and define the MDP as

(S̄ ,A, {Ps̄a}, γ,R)

Can now use value iteration or policy itearation on this discrete state space

Limitations? Piecewise constant V ∗ and π∗ (isn’t realistic). Doesn’t work well in high-dim state
spaces (resulting discrete space space too huge)

Discretization usually done only for 1D or 2D state-spaces

Intro to Machine Learning (CS771A) Reinforcement Learning 16

Discretization

Suppose the state space is 2D: s = (s1, s2). Can discretize it

Call each discrete state s̄, discretized state space S̄ , and define the MDP as

(S̄ ,A, {Ps̄a}, γ,R)

Can now use value iteration or policy itearation on this discrete state space

Limitations? Piecewise constant V ∗ and π∗ (isn’t realistic). Doesn’t work well in high-dim state
spaces (resulting discrete space space too huge)

Discretization usually done only for 1D or 2D state-spaces

Intro to Machine Learning (CS771A) Reinforcement Learning 16

Discretization

Suppose the state space is 2D: s = (s1, s2). Can discretize it

Call each discrete state s̄, discretized state space S̄ , and define the MDP as

(S̄ ,A, {Ps̄a}, γ,R)

Can now use value iteration or policy itearation on this discrete state space

Limitations? Piecewise constant V ∗ and π∗ (isn’t realistic). Doesn’t work well in high-dim state
spaces (resulting discrete space space too huge)

Discretization usually done only for 1D or 2D state-spaces

Intro to Machine Learning (CS771A) Reinforcement Learning 16

Policy Learning in Continuous State Spaces

Policy learning requires learning the value function V ∗

Can we do away with discretization and approximate V ∗ directly?

To do so, we will need (an approximate) model of the underlying MDP

Intro to Machine Learning (CS771A) Reinforcement Learning 17

Policy Learning in Continuous State Spaces

Policy learning requires learning the value function V ∗

Can we do away with discretization and approximate V ∗ directly?

To do so, we will need (an approximate) model of the underlying MDP

Intro to Machine Learning (CS771A) Reinforcement Learning 17

Policy Learning in Continuous State Spaces

Policy learning requires learning the value function V ∗

Can we do away with discretization and approximate V ∗ directly?

To do so, we will need (an approximate) model of the underlying MDP

Intro to Machine Learning (CS771A) Reinforcement Learning 17

Approximating the MDP Model

Execute a set of trials

Use this data to learn a function that predicts st+1 given st and a, e.g.,

A and B can be estimate from the trial data

Can also make the function stochastic/noisy: st+1 = Ast + Bat + εt where εt ∼ N (0,Σ) is the
random noise (Σ can also be learned)

Intro to Machine Learning (CS771A) Reinforcement Learning 18

Approximating the MDP Model

Execute a set of trials

Use this data to learn a function that predicts st+1 given st and a, e.g.,

A and B can be estimate from the trial data

Can also make the function stochastic/noisy: st+1 = Ast + Bat + εt where εt ∼ N (0,Σ) is the
random noise (Σ can also be learned)

Intro to Machine Learning (CS771A) Reinforcement Learning 18

Approximating the MDP Model

Execute a set of trials

Use this data to learn a function that predicts st+1 given st and a, e.g.,

A and B can be estimate from the trial data

Can also make the function stochastic/noisy: st+1 = Ast + Bat + εt where εt ∼ N (0,Σ) is the
random noise (Σ can also be learned)

Intro to Machine Learning (CS771A) Reinforcement Learning 18

Approximating the MDP Model

Execute a set of trials

Use this data to learn a function that predicts st+1 given st and a, e.g.,

A and B can be estimate from the trial data

Can also make the function stochastic/noisy: st+1 = Ast + Bat + εt where εt ∼ N (0,Σ) is the
random noise (Σ can also be learned)

Intro to Machine Learning (CS771A) Reinforcement Learning 18

Approximating the MDP Model

Can also learn nonlinear functions st+1 = f (st)

Any nonlinear regression algorithm can be used here

Intro to Machine Learning (CS771A) Reinforcement Learning 19

Approximating the Value Function

We will use “Fitted Value Iteration” methods

Recall the value iteation

Note: sum replaced by integral (since the state space S is continuous)

Want a model for V (s). Let’s assume V (s) = θ>φ(s)

We would need some training data in order to learn θ

{V (s i), φ(s i)}mi=1

We will generate such training data and learn θ in an alternating fashion

Intro to Machine Learning (CS771A) Reinforcement Learning 20

Approximating the Value Function

We will use “Fitted Value Iteration” methods

Recall the value iteation

Note: sum replaced by integral (since the state space S is continuous)

Want a model for V (s). Let’s assume V (s) = θ>φ(s)

We would need some training data in order to learn θ

{V (s i), φ(s i)}mi=1

We will generate such training data and learn θ in an alternating fashion

Intro to Machine Learning (CS771A) Reinforcement Learning 20

Approximating the Value Function

We will use “Fitted Value Iteration” methods

Recall the value iteation

Note: sum replaced by integral (since the state space S is continuous)

Want a model for V (s). Let’s assume V (s) = θ>φ(s)

We would need some training data in order to learn θ

{V (s i), φ(s i)}mi=1

We will generate such training data and learn θ in an alternating fashion

Intro to Machine Learning (CS771A) Reinforcement Learning 20

Approximating the Value Function

We will use “Fitted Value Iteration” methods

Recall the value iteation

Note: sum replaced by integral (since the state space S is continuous)

Want a model for V (s). Let’s assume V (s) = θ>φ(s)

We would need some training data in order to learn θ

{V (s i), φ(s i)}mi=1

We will generate such training data and learn θ in an alternating fashion

Intro to Machine Learning (CS771A) Reinforcement Learning 20

Approximating the Value Function

We will use “Fitted Value Iteration” methods

Recall the value iteation

Note: sum replaced by integral (since the state space S is continuous)

Want a model for V (s). Let’s assume V (s) = θ>φ(s)

We would need some training data in order to learn θ

{V (s i), φ(s i)}mi=1

We will generate such training data and learn θ in an alternating fashion

Intro to Machine Learning (CS771A) Reinforcement Learning 20

Fitted Value Iteration: The Full Algorithm

Intro to Machine Learning (CS771A) Reinforcement Learning 21

Fitted Value Iteration

Other nonlinear regression algorithms can also be used

V (s) = f (φ(s))

where f is a nonlinear function (e.g., modeled by a Gaussian Process)

Note: Fitted value iteration is not guaranteed to converge (though, in practice, mostly it does)

The final output is V (an approximation to V ∗)

V implicitly represents our policy π. The optimal action

arg max
a

Es′∼Psa [V (s ′)]

Intro to Machine Learning (CS771A) Reinforcement Learning 22

Other Topics related to RL

Inverse Reinforcement Learning (IRL)

Doesn’t assume the reward function to be known. Learns it

Imitation Learning: Imitate an demonstrator/demonstrations

Deep Reinforcement Learning

Intro to Machine Learning (CS771A) Reinforcement Learning 23

Other Topics related to RL

Inverse Reinforcement Learning (IRL)

Doesn’t assume the reward function to be known. Learns it

Imitation Learning: Imitate an demonstrator/demonstrations

Deep Reinforcement Learning

Intro to Machine Learning (CS771A) Reinforcement Learning 23

Other Topics related to RL

Inverse Reinforcement Learning (IRL)

Doesn’t assume the reward function to be known. Learns it

Imitation Learning: Imitate an demonstrator/demonstrations

Deep Reinforcement Learning

Intro to Machine Learning (CS771A) Reinforcement Learning 23

Summary

Basic introduction to Reinforcement Learning

Looked at the definition of a Markov Decision Process (MDP)

Looked at methods for learning the MDP parameters from data

Easily and exactly for the discrete state-space case

Using function approximation methods in the continuous case

Looked at methods for Policy Learning

MDP Learning and Policy Learning usually done jointly

Intro to Machine Learning (CS771A) Reinforcement Learning 24

