
Strathcona Example Recommendation Tool

Reid Holmes & Robert J. Walker
Department of Computer Science

University of Calgary
2500 University Dr. NW

Calgary AB Canada T2N 1N4

rtholmes, rwalker@cpsc.ucalgary.ca

Gail C. Murphy
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver BC Canada V6T 1Z4

murphy@cs.ubc.ca

ABSTRACT
Using the application programming interfaces (API) of large
software systems requires developers to understand details
about the interfaces that are often not explicitly defined.
However, documentation about the API is often incomplete
or out of date. Existing systems that make use of the API
provide a form of implicit information on how to use that
code. Manually searching through existing projects to find
relevant source code is tedious and time consuming. We have
created the Strathcona Example Recommendation Tool to
assist developers in finding relevant fragments of code, or
examples, of an API’s use. These examples can be used by
developers to provide insight on how they are supposed to
interact with the API.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program Editors;
D.2.3 [Coding Tools and Techniques]: Object-Oriented
Programming

General Terms
Languages

Keywords
recommender, examples, software structure

1. INTRODUCTION
Learning how to use complex object-oriented frameworks

is a difficult task. Frameworks often provide four sources of
information that a developer might use to understand such
properties: (1) high-level documentation; (2) code-level doc-
umentation, such as API details; (3) hand-crafted examples
that illustrate how to use specific parts of the framework;
and (4) the source code of the framework itself, including
embedded comments. Unfortunately, developers often find
that documentation and hand-crafted examples are sparse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05,September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

in content, completely absent, or out-of-date [6]. One of the
best ways to understand a framework is to see it in use [4].

Ideally, a developer who is new to using a framework could
approach one of their experienced colleagues with questions
about how to use the framework appropriately. This experi-
enced colleague, who is often constrained for time, is liable
to provide some code, or a pointer to relevant code inside
a larger system they have written before, for the other de-
veloper to explore. If a colleague is not readily available,
the developer would need to both locate the source code
for another project that uses the framework to explore and
search it, through lexical searches, in order to find code that
could help them with their task. The developer would decide
what to search for by looking at any high-level and code-level
documentation that exists and by iteratively looking at the
results returned by their queries. However, this is a time
consuming and error prone task and it can be difficult to
locate relevant API usages for a complex framework.

We have created a tool that aims to help developers
quickly and easily access the framework usage information
embedded in existing projects. Our tool, Strathcona, lever-
ages the structural characteristics of both the past projects
and the developers current context to automatically recom-
mend relevant examples. These examples can be navigated
visually and textually; applicable source code from the ex-
amples extracted from the existing code can be integrated
into the developers current project.

The Strathcona prototype has been implemented as a
plug-in for the Eclipse Integrated Development Environ-
ment.1 Although the tool itself is made for Eclipse, it can
be used as a development aid for any framework that has
had a repository populated for it. Repositories are easy to
create as the tool can automatically extract all of the nec-
essary structural information from past projects by travers-
ing their source code. Our ICSE 2005 paper [3] highlights
the primary contribution of our approach: the method by
which we match the developer’s context to the repository
to find the most relevant examples. Queries to the reposi-
tory are automatically generated from structural details of
the developer’s current development activity; examples are
then matched and returned for further investigation. As a
result, finding source code examples relevant to the devel-
oper’s current task costs the developer little effort when the
Strathcona tool is used.

We have made several improvements to Strathcona since

1http://eclipse.org

237

our ICSE paper was published. Strathcona now includes
a tool that automates the addition of new projects to the
example repository. Multiple frameworks are supported,
and we have created example repositories for Eclipse, JHot-
Draw2, and HttpClient3 . Earlier versions of Strathcona
were hampered by usability issues that have now been ad-
dressed. This first public demo of Strathcona highlights its
features and the tasks for which it was designed to assist
developers.

A short description of our approach is given in Section 2.
Section 3 describes a scenario that demonstrates how Strath-
cona forms queries on an example repository, finds relevant
examples, and presents them to the developer. Related work
is covered in Section 4 and Section 5 concludes.

2. THE APPROACH
Strathcona helps developers by automatically locating

source code examples that are relevant to their work. We
have developed a series of heuristics to match software arti-
facts inspired by the way a developer might try to search for
them. The process is as follows. (1) A query is generated
based on the structural context of the developer’s environ-
ment. (2) This query is sent to the example repository (typ-
ically on another machine) and is compared against a corpus
of existing projects. (3) The most structurally relevant ex-
amples are returned to the developer. (4) These examples
can then be navigated, both graphically and textually, to
determine which are most applicable to the current task.
(5) The developer can then integrate any source code from
the example into their project.

Our prototype is implemented as a client/server system
allowing a team of developers to access a single example
repository, centralizing the management of the repository
for the team. In the remainder of this section we will de-
scribe how the query is formed, outline the role of the server
and how it is populated with examples, and describe how
examples are navigated and utilized.

2.1 Forming the Query
One of our goals when designing Strathcona was to mini-

mize the amount of effort required for a developer to interact
with the tool. The first step in this process was to automat-
ically generate the query so the developer would not need to
learn any query languages or have any knowledge of how the
repository is organized. The query is initiated by the devel-
oper by selecting a program element and selecting the query
option; currently, Strathcona supports classes and methods
as query selections. The query is based exclusively on the
structural context of the source code selected by the devel-
oper. For a class, its structural characteristics include its
type, the types of its parents, and the types of its fields. For
a method, its structural characteristics include its signature
and the message sends and object instantiations it invokes.
The names of fields, methods, and their parameters are not
used as these are not structural and are subject to the nam-
ing problems that hinder other text-matching approaches.
This structural information is sent to the example reposi-
tory for analysis.

Typically, the developer would write some simple code
based on their investigation of the frameworks documen-

2http://jhotdraw.sf.net
3http://jakarta.apache.org/commons/httpclient/

tation, API, or code. The code doesn’t need to compile
in an error free manner (for example, you can write code
that calls a method on an interface). Often initial queries
are used solely as an investigation tool to examine different
framework APIs. As the developer gains a better under-
standing of the APIs, and their constraints, their context
becomes more complete and the examples that are returned
by Strathcona help with more fine-grain interactions or de-
tails such as error handling.

2.2 Locating Examples
Structurally relevant examples are located within the

repository by comparing the structural context of the query
against the structural context of the classes and methods
within the repository. Queries generally take less than ten
seconds to return to the developer. We have developed six
heuristics that match the context against the repository [3].
These heuristics are based on the inheritance hierarchy, field
types, method calls, and object usages. The structural con-
texts of the ten most relevant examples are returned to the
developer for their perusal.

2.3 Navigating Relevant Examples
The developer can then navigate through the returned

examples to determine which are most relevant to the task
at hand. These examples are displayed graphically by de-
fault, with the option to view both the rationale explaining
why they were selected as well as their source code. Once a
relevant example has been identified, the developer can inte-
grate any of its source code into their current development
environment. If necessary, the repository can be queried
again after more code has been written as the developer may
have a better idea of which parts of the framework they are
interested in.

2.4 The Example Repository
The example repository can be automatically generated

from existing source code. There is no minimal set of code
required to create a repository, although the size of the code
base will affect the diversity of the returned examples. The
source code is parsed and its structural relationships added
to the repository database. Our existing example reposito-
ries range in size from 1,000 classes to over 25,000 classes.
Developers who want to add projects to an existing repos-
itory, or create a new repository, can use another tool we
have created to automatically extract the source structure
and code from the project into a zip file. This file can be
sent to the repository maintainer who can automatically add
the project to an existing repository or seed a new one with
it.

3. MOTIVATING EXAMPLE
This example highlights how the Strathcona Example

Repository may be used by a developer to complete a task.
The developer has been asked to evolve their current system
to use a third party library, called HttpClient, for handling
http connections from their current home-grown solution.
The system must be able to use http POST to send an XML
file to a remote server.

The developer started by looking at the documentation for
HttpClient. Through the documentation they learned that
they would need to use the HttpClient and PostMethod

classes. The fragment shown in the text pane in Figure 3

238

shows the results of this investigation, along with some of
the developer’s existing code for parsing an XML file which
they took from their previous implementation. Based on
this context the developer queried the example repository.

The visual representation of one of the ten returned ex-
amples is shown at the bottom of Figure 3. This example
seemed applicable and by looking at the code the developer
was able to see that it dealt with their exact task. From this
example the developer also learned that parsing the XML
file was unnecessary as the file was just treated as a stream.
Upon copying code from the example, and removing the ex-
traneous parsing code, the developer was able to complete
the task. The developer then checked other returned exam-
ples and found that one showed a better way of checking
the response code; they integrated this code into their envi-
ronment as well. The final result is shown in Figure 2. By
using an example the developer did not waste time trying
to find out how to integrate a parsed XML document with
HttpClient; they also learned how to set the content-type
for the POST and how to properly handle error conditions.

private void sendXMLDocument() {
HttpClient client = new HttpClient();
PostMethod post = new PostMethod("http://foo.com");
String fName = "xmlFile.xml";
String contentType = "text/xml; charset=ISO-8859-1";

File xmlFile = new File(fName);

post.setRequestEntity(new InputStreamRequestEntity(
new FileInputStream(xmlFile), xmlFile.length()));
post.setRequestHeader("Content-type", contentType);
try {

client.executeMethod(post);

if (post.getStatusCode() == HttpStatus.SC_OK)
System.out.println(fName+" posted");

else
System.out.println("Error: "+post.getStatusLine());

} catch (HttpException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} finally {
post.releaseConnection();

}
}

Figure 2: Initial Method Stub with Integrated Ex-
ample Code

This simple demonstration illustrates shows how a rele-
vant example was found by matching on only two object
instantiations (HttpClient and PostMethod). Strathcona
found for the developer not only examples of the desired
functionality, but also examples of related functionality (set-
ting the content type and handling the response code) that
the developer would not otherwise have recognized as rele-
vant.

4. RELATED WORK
Several past projects have aimed to help developers locate

source code examples. These approaches have relied on a
variety of methods to help locate relevant examples.

CodeBroker [8, 7] is the most similar tool to Strath-
cona. CodeBroker automatically searches a repository of
code using comments the developer has entered into the
code. CodeBroker also compares method signatures from
the code to the repository in order to refine its results. Code-
Broker actively queries the repository without developer in-

tervention to keep the results as up to date as possible. The
primary drawback with the CodeBroker approach is that it
relies heavily on comments, both in the example code and
in the code being written by the developer.

CodeFinder [2] uses a query browser to help the developer
construct queries that can then be sent to the repository.
This helps the developer make more effective queries to the
repository as the tool is able to craft the query in a way
that can be best used by the repository. By constructing
the queries automatically Strathcona avoids this query con-
struction phase and at the same time manages to send the
most optimal query to the repository for matching.

Another tool that automatically builds queries to send to
the repository is the Hipikat tool [1]. Hipikat creates links
between different sources of information in a project, in-
cluding source files, cvs commits, bug reports, newsgroup
postings, and web articles. Developers can find related doc-
uments by selecting query on the currently open document.
Strathcona takes a more specific approach than Hipikat by
supporting only code-level entities in a more fine grain fash-
ion.

The Reuse View Matcher [5] uses a repository of con-
structed examples to demonstrate how individual classes in a
framework are to be used. As these example are constructed
by the framework authors their correctness and applicability
can be more assured. However, this approach suffers from
the fact that creating the examples is time consuming and
their coverage cannot be complete. As Strathcona can au-
tomatically extract the structure of existing code to create
examples it can overcome the time burden required to create
a repository.

The primary advantages of Strathcona compared to past
projects is the automatic query generation and repository
generation. This allows minimal developer effort to query
the server or create an example repository. Only CodeBro-
ker has these same traits and this approach relies heavily
on comments in the code, which developers often find to
be absent, incomplete, or inaccurate [6]. By relying on the
structure of the software we ensure that our results remain
current with respect to how the system is actually being
used.

4.1 Drawbacks of our Approach
This approach is not perfect. The primary problem with

this approach is that the developer must have some idea
of where to start before they can write any code to query
Strathcona with. This initial insight would hopefully be
supported by some type of documentation or code explor-
ing. We have performed a case study to ensure that Strath-
cona can return relevant results for developers working on
pre-selected tasks [3]. Preliminary informal evaluation at
the University of Calgary (conducted after the ICSE pa-
per) indicates that undergraduate students were often able
to identify a starting point for a query, although the factors
determining quality of this starting point have not been de-
termined.

The effectiveness of the approach also depends on com-
prehensiveness of the example repository. By providing sup-
port for the automatic analysis and addition of projects to
the repository we aim to ease the set-up process for the
tool. In order to prevent low-quality examples from being
returned to developers the repository maintainer needs to
make a judgement call when deciding which projects to add

239

Figure 1: Strathcona: Showing a returned example and the code snippet that led to its selection

to the repository. One potential solution is to only add the
framework itself, along with code produced by the frame-
work developers. This is the approach we have used for our
Eclipse example repository.

5. CONCLUSION AND FUTURE WORK
The Strathcona tool has been created to bridge the gap

between source code and documentation. Existing projects
that make use of a framework implicitly document how the
framework can be used. By providing a low-cost querying
mechanism on an example repository that can be populated
automatically from existing source code, we have created
a tool that can help the developer learn how use a frame-
work. Currently we have populated three repositories with
systems ranging from 10KLOC to over 2MLOC. We have
successfully used the Strathcona tool to complete tasks us-
ing each of these repositories. By providing developers with
an easy mechanism to search a large corpus of previously
written code we hope to reduce their development burden
by leveraging past code that has been written, tested, and
deployed.

Our initial informal evaluations into the difficulty of cre-
ating blocks of code to query from needs to be expanded to
determine what factors of the query affect the quality of the
results. Going forward we hope to use the tool to support
the developer reuse examples instead of just using them to
highlight how a framework is to be used.

6. REFERENCES
[1] D. Cubranic and G. C. Murphy. Hipikat:

Recommending pertinent software development
artifacts. In Proceedings of the 25th International
Conference on Software Engineering, pages 408–418.
IEEE Computer Society, 2003.

[2] S. Henninger. Retrieving software objects in an
example-based programming environment. In
Proceedings of the 14th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 251–260. ACM Press,
1991.

[3] R. Holmes and G. C. Murphy. Using structural context
to recommend source code examples. In ICSE ’05:
Proceedings of the 25th International Conference on
Software Engineering, New York, NY, USA, 2005.
ACM Press.

[4] R. E. Johnson. Documenting frameworks using
patterns. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 63–72, 1992.

[5] M. B. Rosson and J. M. Carroll. The reuse of uses in
Smalltalk programming. ACM Transactions on
Computer-Human Interaction, 3(3):219–253, 1996.

[6] J. Singer. Practices of software maintenance. In
International Conference on Software Maintenance,
pages 139–145, 1998.

[7] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In
Proceedings of the 24th International Conference on
Software Engineering, pages 513–523. ACM Press, 2002.

[8] Y. Ye, G. Fischer, and B. Reeves. Integrating active
information delivery and reuse repository systems. In
Proceedings of the 8th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 60–68. ACM Press, 2000.

240

