
78 communications of the acm | february 2009 | vol. 52 | no. 2

research highlights

doi:10.1145/1461928.1461948

Back in the old days of the Web (before
1995), Web browsers were fairly simple
devices. They downloaded HTML, laid
out the text, and loaded a few images.
There was neither JavaScript nor Java
nor Flash. There was only the begin-
ning of e-commerce sites, where all
the code ran exclusively on the server.
While security vulnerabilities certainly
existed in both browsers and servers,
the server’s Web interface was simple
enough that an auditor could at least
look at it and reason about its security.

Today, it’s a different world. With
powerful client-side JavaScript and
asynchronous Web requests (called
“Ajax”), we now have Web “applica-
tions” that have significant portions of
their state on the client side. This gets
even further complicated by “mash-
ups,” where code from many Web sites
might interact within a single Web
browser. Building systems like this typ-
ically requires careful engineering of
the whole system; the server side must
be secure even if a non-conforming cli-
ent is making arbitrary requests.

Meanwhile, a new generation of
tools, such as the Google Web Toolkit
(GWT), promise to simplify the client-
server programming process by blur-
ring the distinction between the client
and server. You just write one mono-
lithic program and draw a line through
it saying “these parts go on the client
and these parts go on the server.” This
sounds great for improving developer
productivity, particularly by abstracting
away the inconsistencies and peculiari-
ties of each Web browser’s JavaScript
runtime system. Because the RPCs
are generated automatically, possible

information leaks, security holes, or a
host of other issues could well present
themselves, and the source code is suf-
ficiently abstract so that it’s no longer
obvious how to audit such a system for
correctness.

This concern motivates the following
research paper, “Building Secure Web
Applications with Automatic Partition-
ing,” where the authors describe a tool
they built—Swift—that provides a gen-
eral-purpose programming language,
an extension of Java, for building par-
titioned Web applications. The secret
sauce in Swift is its handling of annota-
tions, placed by the programmer, which
declare security properties for objects
and variables within the program. These
annotations speak toward secrecy or in-
tegrity constraints on the data.

For example, say you’ve got a list of
passwords (or hashed passwords or
whatever else) on the server and you
want to validate a client-supplied pass-
word. Clearly, you want to perform that
comparison on the server side, such
that an attacker cannot access other
passwords or impersonate other us-
ers. But how do you guarantee such a
thing? Swift lets us declare the list of
passwords to be “sensitive.” We don’t
want to disclose it to any user. With
such annotations, the program parti-
tioning system can figure out that the
password-checking logic can only hap-
pen on the server side, satisfying the
information flow constraints.

Sounds easy, right? Not really. In
fact, there’s an important problem.
Information flow systems are really
good at saying “no.” You validated the
password, and now you want to let the

user know. Unfortunately, that very
fact is sensitive information because
it was derived from sensitive informa-
tion. We can’t release that to the user?
That’s a problem. Clearly, we need to
carve out exceptions to the rules in or-
der to get anything useful done. Swift
allows a programmer to make these
sorts of exceptions in a controlled fash-
ion, but those will still need to be care-
fully audited.

Information flow technologies,
whether operating statically like Swift,
or operating dynamically like the
“tainting” mechanism used in Perl, are
clearly an important mechanism for
building and maintaining secure Web
applications. One only has to look at
the never-ending parade of cross-site
scripting, cross-site request forgery,
SQL injection, and other such Web at-
tacks, none of which rely on traditional
buffer overflows, to recognize the im-
portance of high-level automated sys-
tems built into the development tool
chain to improve our assurance that
systems are secure. Manual, labor-in-
tensive code audits by security experts
cannot scale to support the vast num-
ber of new Web applications being de-
ployed each and every day.

The challenge for the research
community, with sophisticated tools
like Swift, is to simplify the develop-
ment process, making it easier to get
the security labels written properly.
Ultimately, our ability to prove that a
system is secure, whether Web-based
or anything else, is limited by our abil-
ity to understand the security model
and convince ourselves that the labels
we’ve written and properties we’ve de-
rived from those labels are consistent
with our high-level security goals. Swift
takes us a big step closer to achieving
those goals.	

Dan Wallach (dwallach@cs.rice.edu) is an associate
professor in the Department of Computer Science at Rice
University, Houston, TX.

Technical Perspective
Tools for Information to
Flow Securely and Swift-ly
By Dan Wallach

