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Abstract

The two most popular Java platforms that use the
HotSpot Java Virtual Machine (JVM) are Oracle and
OpenJDK. The HotSpot JVM automatically manages ap-
plication memory for the developer using generational
garbage collection (GC). Unfortunately, this managed
memory fails to give developers the power to adequately
sanitize sensitive data in objects and defend against
memory disclosure attacks, i.e., attackers who can read
the memory of a process containing Java objects. This
problem stems from two design flaws in the GC tasks.
First, the generational GC allows more than one copy of
an object to exist in multiple heaps, even though they
are unreachable. Second, when objects become garbage,
they’re not sanitized or zeroed by the garbage collector;
they survive until the memory is reused for a new ob-
ject. Even if a developer wants to explicitly sanitize crit-
ical data, such as cryptographic keys for closed network
connections, there are no manual mechanisms for this
activity because the data is out of the developers reach.
Consequently, this sensitive data can be extracted from
garbage after applying object reconstruction techniques
to the heap. For this paper, we show that up to 40%
of the observed TLS encryption keys can be recovered
from a Java heap using Oracle’s TLS 1.2 implementa-
tion. This paper also shows how modest GC changes
reduce the amount of recoverable data, albeit with per-
formance overheads as high as 50% in the worst case.

1 Introduction

Managed memory runtime environments like the Java
platform eliminate many kinds of programming errors
that can become security vulnerabilities. For exam-
ple, Java programs are not vulnerable to buffer over-
flow attacks, making Java (and any other “safe” lan-
guage) attractive for building security-critical software.
Meanwhile, techniques such as just-in-time compilation,
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hot-spot optimization, and parallel garbage collection,
have largely eliminated the performance penalty of using
managed runtime environments. These features along
with a rich set of standard libraries have led to a broad
adoption of Java and other such languages.

However, selecting runtimes that depend on the
HotSpot JVM may be a risky proposition when dealing
with sensitive user or application data. Viega first iden-
tified this risk in 2001 [19]. Our research shows that the
HotSpot JVM allows latent secrets (e.g. sensitive data
found in garbage objects) to remain in the heap. De-
pending on the amount of memory pressure, latent se-
crets might stick around for a long time. Furthermore,
because Java provides no direct access to the underly-
ing memory, developers cannot manually sanitize their
sensitive data once it expires. An attacker, on the other
hand, might still be able to gain access to the raw mem-
ory, perhaps through a hypervisor bypass attack, perhaps
through access to a swap or hibernation file, or perhaps
through a variety of other means. Of course, we would
hope that other security mechanisms can keep an attacker
away from this data, but it’s still highly desirable to san-
itize sensitive data as soon as it’s no longer necessary,
minimizing the damage such an attacker might cause.

Managed runtimes typically employ two forms of
automated memory management. Reference counting,
which is used by runtimes like Python or Swift, main-
tains a count of handles or references to an object. When
a referent acquires a reference to the object, the count is
increased, and when the referent releases the reference,
the count on the object is decreased. Once the count
reaches zero, the object can be deleted or deallocated.
In such systems, it would be trivial to add logic to zero
out these dead objects, but Java utilizes a different form
of garbage collection.

Java uses tracing garbage collection, which measures
reachability from a set of root objects to every object in
memory. When an object can no longer be reached from
the root set, the object is considered garbage. Modern



GC performance is heavily dependent on laziness. There
will always be a gap between the time an object becomes
unreachable and the time the garbage collector notices
and ultimately reuses that memory. The GC can also re-
arrange the memory heap to help improve collector per-
formance and reduce pause times. This rearrangement
process inherently involves copying objects, which can
leave behind multiple “old” copies that will not be im-
mediately zeroed. Our findings are similar to other work
(e.g. [3, 7]) that demonstrate potential confidentiality
failures because of a semantic gap between the language
that programmers use, the implementation of that lan-
guage, and its underlying execution environment.

In this paper, we establish the volume of secrets that
an unsanitized heap can expose, using a TLS web client
atop Oracle’s HotSpot JVM, driven by a synthetic load
under different levels of memory contention. We capture
whole system memory images and then use binary string
searches to find TLS keys and other sensitive data, no
matter where in memory they may be, whether they’re
reachable or not. We then made changes to the TLS code
and the garbage collector in attempt to eliminate these
secrets. Our benchmarks show a worst-case hit of 50%,
with common cases being more reasonable.

2 HotSpot Memory Background

Java, and systems like it, use garbage collection (see,
e.g., [5, 12]), to manage their memory. A common strat-
egy in most GC implementations is to support gener-
ational copying, where new objects are allocated in a
young generation and are later promoted to a tenured
generation if they’re still reachable. The HotSpot JVM
implements several different garbage collectors, all of
which follow some variation of this strategy. Figure 1
shows a typical Java heap memory layout.

The young generation is partitioned into an eden space
where objects are created (and where most die [13]), and
two survivor spaces that hold objects that are copied out
of the eden space. The eden space is further partitioned
into thread local allocation buffers (“TLAB”), where al-
location is performed using a “bump-the-pointer” tech-
nique which minimizes the number of locks required for
multi-threaded applications. As objects age and survive
GC, they are generally migrated from the eden space to
the survivor spaces and are then tenured if the objects
either surpass an age threshold or if the young genera-
tion runs out of memory. Because of its focus on per-
formance, the JVM does not clear the contents of mem-
ory when an object is moved from one generational area
to another [18]. Stale data will eventually be overwrit-
ten when one of these memory spaces is reused, but this
won’t happen immediately.

Most garbage collectors can take advantage of addi-
tional RAM, gaining additional performance when faced
with less pressure to compact live objects and reuse
memory. Consequently, as the heap size grows, there is a
higher probability that latent secrets stick around longer
and can be recovered from RAM, even though they’re
no longer “reachable” by the original program. While it
might seem tempting to solve the problem by artificially
capping the size of the heap, and thus forcing more mem-
ory reuse, such a drastic tactic would lead to serious per-
formance problems.

Consequently, this research digs deeply into how the
HotSpot JVM’s memory system operates. To a reader
with a general familiarity with garbage collection but no
specific familiarity with the HotSpot JVM, the most sur-
prising aspect of the JVM is its use of a region-based al-
locator. These regions can be used for a variety of things
outside of the standard heap, like Java class metadata.
They are also allocated by the garbage collector and used
for its various spaces. This means that we must look be-
yond the garbage collected heap to understand how latent
secrets might land in other memory regions.

3 Prior Work

In 2001 Viega identified that memory is not cleared
when it is deallocated in C, C++, Java, and Python run-
times [19]. Chow et al. showed that Unix operating
systems and standard libraries failed to sanitize mem-
ory when it was deallocated. Attackers could exploit
this issue to recover latent secrets from common appli-
cations like Apache and OpenSSH. The authors imple-
mented proper sanitation in the Unix operating systems
with roughly a 1% impact on performance [3, 4]. How-
ever, Chow et al.’s techniques cannot address the latent
secrets found in the JVM. Remember, the JVM uses it’s
own memory management primitives, and GC only ex-
acerbates this problem in the Java heap.

The process of extracting latent secrets from dump
files or system memory seems challenging, but many
researchers have found the task to be quite surmount-
able. For example, Harrison and Xu identified RSA
cryptosystem parameters in unallocated memory that had
been inadvertently written to untrusted external storage
as the result of a Linux kernel bug [9]. Halderman et
al. showed that AES encryption keys can be trivially
detected in RAM from their key schedule [8]. Case
presented an approach for analyzing the contents of the
Dalvik virtual machine [2]. Similar attacks are possible
against Android smartphones, allowing for the recovery
of disk encryption keys [14] and Dalvik VM memory
structures [10]. Jin et al. used symbolic execution and
intra-procedural analysis to accurately extract the com-
position of type data generated by C++ programs [11].
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Figure 1: A typical generational heap layout used by the JVM, with multiple “thread local allocation buffers” (TLABs)
in the eden space. Surviving objects are eventually relocated to one or more “survivor” spaces before finally landing

in a “tenured” space.

Finally, there are a variety of memory disclosure at-
tacks and techniques. The most straightforward tech-
nique uses one process to read the memory of another
process utilizing a suitable device driver or kernel mod-
ule (e.g. /dev/mem or the /proc/nnn/mem devices). Be-
cause such devices are commonly exploited by malware,
many operating systems no longer include devices for
reading the memory of other processes. Until recently,
employing memory-acquisition kernel modules on a run-
ning system was complicated. Compilation of kernel
modules required the specific source code used to create
the target system’s kernel. Stiittgen and Cohen overcame
this obstacle, developing an approach for safely loading
a pre-compiled kernel modules into memory on running
Linux systems [17]. This approach is now used by the
Rekall Memory Forensics Framework [6].

Halderman et al. developed the “cold-boot attack™ in
which the DRAM memory from the target computer is
physically chilled and then transferred to a computer that
is known not to wipe memory on boot [8]. It is possi-
ble to physically read the contents of a computer’s mem-
ory using hardware that provides direct memory access
(DMA). Consumer firewire interfaces, JTAG interfaces,
or even specially constructed interface cards use DMA,
making this vector quite pervasive. VoMel and Freil-
ing survey these and other techniques for acquiring main
memory in computers running the Windows operating
system [20]. Consequently, the threat of an attacker con-
ducting a memory disclosure attack is significant, justi-
fying efforts to mitigate these attacks.

We note that this class of attack may apply in a vari-
ety of different devices. Smartphones and laptops may
be physically stolen or otherwise captured, giving a mo-
tivated attacker physical access to the device. Cloud
servers (e.g., Amazon’s EC2) may run in virtual ma-
chines that can migrate from system to system, allowing
for a variety of attacks such as capturing a system im-
age while it’s migrating, or accessing the system’s mem-
ory from a potentially compromised hypervisor. This re-
search is predicated on the assumption that an attacker

has somehow found a way to capture a system memory
image. We will now explore how much damage this class
of attacks can cause.

4 Measuring Latent Secrets

This section describes the experiments, infrastructure,
and software we used to measure latent secrets in the
HotSpot JVM. For simplicity, we chose black-box anal-
ysis techniques. We measure latent secrets by externally
capturing important inputs (e.g., TLS key data) and then
scanning system memory dumps of a TLS web client for
those data.

Our approach is simple and reliable. Consider the al-
ternatives: we might instead try to perform dictionary at-
tacks on TLS sessions, or we might try to use one of the
“integrity-only” TLS ciphersuites. But why do that when
we can just build a custom TLS server that logs all of the
relevant key material for our search? Similarly, we could
try to engineer a search through the reachable live mem-
ory of the JVM, but this would miss the latent secrets
we’re interested in, and would also miss any buffers allo-
cated through the “region” system that’s used below the
garbage collector (see Section 2).

In our experiments, we’ll be looking at memory
dumps of a Java TLS client. If we were to instrument it
in order to capture TLS keys as they’re used, our instru-
mentation might perturb the system that we’re trying to
measure. Consequently, we instead instrumented a TLS
web server, built from the OpenSSL library. Our client-
side Java application makes TLS connections, over and
over, to our instrumented web server, creating an abun-
dance of latent secrets in the heap. On the web server,
the modified OpenSSL library records each session’s key
material (i.e., the pre-master secret (PMS) and the mas-
ter secret (MKB)). Given a memory dump of our Java
client’s Linux virtual machine, we simply search the en-
tire memory dump for all of the observed key material
from every TLS session.

We run these experiments on a small cluster of PCs



running Linux KVM. We limit the number of simul-
taneous virtual machines on a given machine to avoid
resource contention, which might otherwise impact our
performance measurements. Ultimately, we run only one
TLS client per physical machine at a time. Furthermore,
we reboot each Linux virtual machine after each exper-
iment completes, allowing us to restart each run from
an identical starting point, including all user and kernel-
level state.

Our experiment infrastructure is composed of several
virtualization servers consisting of over 8 logical cores
and at least 32 GiB of system RAM. The servers all run
Ubuntu 14.10. Two of the servers are designated to run
the virtual machines executing the Java client and two
others are used to run the web servers. Additionally,
two machines are used solely for performing the memory
analysis, which consists of identifying and pin-pointing
TLS keys, string extraction, and aggregating the analy-
sis of each experiment. These machines have 24 logical
cores with either 96 GiB or 384 GiB of RAM. The larger
machines were necessary to efficiently post-process the
large memory dumps.

Our TLS web server and synthetic client both run on
an x64 Ubuntu 14.04 LTS virtual machine. The web
server uses NGINX and TLS 1.2 to serve several static
web pages. The web server VMs utilize four logical
cores and 2 GiB of RAM—enough to ensure that server
performance wasn’t the bottleneck for our client mea-
surements. The virtual machines that run the Java clients
have several different configurations, such as varying
the maximum heap size, to induce different amounts of
memory pressure.

4.1 Synthetic Client Functionality

Our synthetic Java client is best described as a multi-
threaded, configurable TLS web client. The client uses
several parameters that allow us to manipulate the mem-
ory pressure exerted on the heap, the number of con-
current threads, the maximum number of HTTPS re-
quests, and the lifetime of a thread sending the web re-
quests. These parameters give us the ability to model
basic transactions for applications like a thick- or web-
service client. However, for the purposes of this paper’s
experiments, we choose two specific memory pressure
configurations and measure the latent secrets produced
in the Java process.

In particular, we use a configuration that creates as
much heap memory contention as possible in the JVM
and then another that attempts to keep contention low.
Both configurations allow up to 192 concurrent TLS con-
nections that are active for at least 96 seconds. The two
configurations differ in amount of heap memory allowed
that can be allocated from the JVM, and they also differ
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Figure 2: Functional overview of our synthetic web
client.

by the number of requests allowed per thread. The high
memory pressure (HMP) experiment allows for the allo-
cation of at most 80% of the JVM’s heap memory and
allows up to 192 requests per thread, The the low mem-
ory pressure (LMP) experiments only allow a maximum
of 20% of the JVM’s heap memory and up to 48 requests
per thread.

Figure 2 shows how the two main components of the
synthetic client work. The first component, Java Ex-
periment Manager (JEM), manages all the experimental
sessions (threads). The second component, Java Experi-
mental Sessions (JES), implements the web client func-
tionality in a Java thread. The JEM is responsible for
managing the number of JESs and enforcing the exper-
imental behavior and garbage collection parameters. A
Python script starts the experiment with parameters that
define the experimental behavior of the synthetic client,
the IP address of the server, and the place to store log
files containing events and other data.

Each JES is started by the managing JEM, using the
behavior and garbage collection parameters given to the
JEM. The JEM controls the number of concurrent JESs,
JES allocation behavior, JES HTTPS requests, and the
overall lifetime of the JES thread. Parameters controlling
the garbage collection define the frequency of collection,
when to start collecting, and whether or not to pause JESs
after the first GC. Our experiments also allow us to vary
the TLS library in use (Oracle vs. BouncyCastle) and
to use the Apache HttpClient vs. a basic TLS socket
connections.

We implement and use three different TLS web clients
in the JES. The most basic TLS client is the Socket TLS
client. This type of client opens a TLS socket to the re-
mote server, sends the raw HTTP request in a formatted
string, receives the data, and then closes the socket. The
second client uses the Apache “HTTPComponents” li-
brary, to create an HttpClient, which then connects to
the remote host in the url and retrieves the uri. Most



of the internal HTTP mechanics are abstracted away,
simplifying the entire retrieval task. However, this ab-
straction removes sensitive data like usernames and pass-
words from our control, which we hypothesize might
lead to a larger volume of latent secrets. The final client
type is a variant of the Apache HttpClient that uses the
BouncyCastle cryptography library instead of Oracle’s
cryptography library. This option allows us to measure
whether the TLS implementation, itself, can contribute
to the volume of latent secrets.

Each implementation makes every effort to re-
move excess references and prepare the connecting
object for a future collection. In the Socket TLS
Client, we close the Socket and set our references
to it to null as soon as possible. The Apache
HttpClient does not have an explicit close or shut-
down API, so we can only set our reference to it to
null and hope the internals aren’t hanging onto any-
thing. We also note that the Apache HttpClient uses
an HttpClientConnectionManager to manage client
connections. This manager may choose to maintain open
connections to the remote hosts. This socket reuse makes
reconnecting to an old peer much faster, avoiding the
overhead of rebuilding a TLS connection, but also keeps
key material live in memory longer.

4.2 Memory and data analysis

Data analysis and extraction happens in three distinct
phases. After an experiment, the resulting memory, TLS
session data, and web client logs containing sensitive
HTTP parameters like the username and password pair,
etc. are queued for analysis. First, the analysis process
scans the memory dump for latent secrets (e.g. PMS and
MKBs) using jbgrep. This scan is conducted using two
perspectives of the memory dump. The first perspective
is the raw memory dump, which reveals all the latent se-
crets along with a count for each one found. The second
perspective reconstructs the process memory using a vir-
tual memory mapping, which informs us where the latent
secret exists in the Java process (e.g., which generational
heap space or the address in the Java process).

After all the latent secrets are identified and counted, a
post-processing step enumerates every HTTP request for
each JES and pairs these requests using the TLS session
data. These pairings are made based on time. Specif-
ically, we use monotonically increasing timestamps to
pair the sessions. We are unable to pair the exact TLS
session to the corresponding web request, but this granu-
lar knowledge is not necessary to create an approximate
timeline showing live objects versus latent garbage in the
heap.

4.3 Experiments

Here we provide an overview of experiments and the
overall goals, but we describe the exact configuration of
the experimental parameters alongside the description of
each experiment in Section 5. Each experiment explic-
itly configures the JVM to use a serial garbage collector,
to divide the young and tenured generation equally, and
to preallocate all memory from the operating system. We
configure the JVM in this manner to reduce the amount
of variability from one experiment to the next. For ex-
ample, preallocating memory and specifying the size of
the young and tenured generation allows us to efficiently
map latent secrets into specific heap regions. Otherwise,
we would need to extract and parse GC logs or JVM
memory structures to learn the actual heap layout.

We performed four different experiments. The first
experiment measures the persistence of latent secrets in
a web client using an unmodified Oracle HotSpot JVM
with the goal of saturating the heap with latent secrets.
In this experiment, a HMP configuration using either the
Socket TLS Client and the Apache TLS Client without
BouncyCastle are used. We use the measurements from
the first experiment to develop mitigations that zero out
latent secrets.

The next three experiments assess whether or not our
mitigations work. The fixes include patches to the Java
Cryptography Extensions (JCE) and Java Secure Sockets
Extensions (JSSE) libraries and modifications to the de-
fault generational serial garbage collector. We leverage
the OpenJDK source code to help us with our analysis
and make the changes as necessary. In both cases, we
aim to reduce the number of latent secrets through ex-
plicit sanitation of primitive data arrays.

Experiment Two compares the modified OpenJDK
HotSpot JVM and the patched runtimes to an unmodi-
fied Oracle HotSpot JVM. We conduct the experiment
with three different runtime configurations in conjunc-
tion with our three different TLS clients. Using infor-
mation from the first experiment, we wait until at least
10K TLS sessions have been observed to ensure that the
4 GiB heap is saturated.

Experiment Three compares the modified OpenJDK
HotSpot JVM to the Oracle HotSpot JVM. This exper-
iment duplicates most of the memory parameters from
the first experiment; we use a reduced number of itera-
tions for the modified HotSpot JVM because of the low
variance in the number of latent secrets.

Experiment Four focuses on eliminating all the latent
secrets from the heap. In the second and third experi-
ment, we observe latent secrets in the tenured space, and
normally, these items are only collected if there is an al-
location failure in the tenured space. We conduct this
experiment by stopping the on-going experiment after a



Heap Socket TLS Apache TLS
Size Keys Keys
(MiB) | Sessions Recovered | Sessions Recovered
512 5186 489 7005 286
1024 4943 1059 6762 499
2048 9949 1845 13997 929
4096 9948 3177 13364 1608
8192 14942 4786 19497 3008
16384 23491 9058 34088 5354

Table 1: The average number of TLS sessions and recov-
erable unique keys for two different TLS clients.

specified number of TLS sessions have been observed.
GC is then performed at regular time intervals for a spec-
ified number of iterations.

5 Removing Latent Secrets

Figure 3 shows the results from the initial assessment.
This experiment uses the Oracle HotSpot JVM to execute
two different web clients employing a high memory pres-
sure (HMP) configuration. We see that the JVM retains
a large number of latent secrets as the heap size becomes
sufficiently large, making it a viable target for memory
disclosure attacks. For each TLS key recovered, there are
roughly 1-2 copies of the pre-master secret (PMS) data
and 3-4 copies of fully intact master key blocks (MKB),
i.e., TLS session keys. Multiple copies of key data are
the result of extraneous copies and excessive references
to these copies. When our results refer to “unique keys,”
we note that an MKB can be derived from a PMS, so if
we find both, we’ll only count them as one “unique key.”

Where are these key copies coming from? A cursory
inspection of the OpenJDK Java JDK source code re-
veals that local variable references are not set to null
and cloned byte [] values are not zeroed when they are
no longer needed, so the latent data will certainly stay in
memory until the garbage collector reuses it. And, be-
cause of the generational structure of the GC, there may
be additional copies of older keys.

Table 1 shows the average number of recoverable
unique keys in each heap size. The table also shows the
number of TLS session opened and closed by the Socket
and Apache TLS Clients. Unsurprisingly, the number
of latent secrets nearly doubles as the heap size dou-
bles. The Apache TLS Client has notably fewer recov-
erable keys than Socket TLS Client, which we believe
is attributable to the larger memory footprint of each
HttpClient. The Socket TLS Client requires less heap
memory per connection because it’s a single socket that
closes after each session.

Based on these experiments, it’s quite clear that latent
data is a serious concern. When key material from thou-
sands of closed connections sticks around in memory,
that radically increases the exposure of that key material
to compromise.

Consequently, we devise two approaches to address
this issue, both requiring changes to the OpenJDK source
code. First, we patch the JCE and JSSE to zero-out sen-
sitive data when it’s no longer necessary, based on man-
ual code audits. Second, we modify the JVM internals
and explicitly zero out data pages on all deallocations
and unused heap after GC. Obviously, the second tactic
will have a significant performance cost, but it’s useful to
measure how much.

5.1 Patching the JCE and JSSE

Our code audit revealed several faults that we try to
address. First, the JCE and JSSE neglect to imple-
ment the javax.security.auth.Destroyable inter-
face and call the destroy API in the SecureKeySpec
implementation class. The whole purpose of this API
is to assist developers with zeroing unneeded key data.
Second, the JSSE cannot signal the JCE implementations
when a socket closes. Closing a socket should force the
destruction of TLS sensitive key material. OpenSSL, as a
brief comparison, sanitizes all dead key data and deriva-
tive material.

To mitigate these issues, we first added
code to the SecretKeySpec in the JCE
that sanitizes key data by default. Next,
we  modify the TlsKeyMaterialGenerator,
TlsMasterSecretGenerator, and TlsPrfGenerator
classes. These changes focused on sanitizing local vari-
ables used for PMS and MKB data. Our modifications
prove to be challenging, because there are no explicit
contracts between callers and callees defining how to
handle sensitive key material. For example, meth-
ods may clone byte[] objects and then pass the
reference onto other methods. These references are
used later by implementation classes, with no way to
track when they become unnecessary to keep around.
Consequently, we modified JSSE by creating a method
in SSLSessionImpl. When the socket closes, the
SSLSocketImpl uses a callback to destroy the MKB
data in the SSLSessionImpl!. Unfortunately, after
testing our changes, we found that the modifications
were ineffective. We only made these measurements in
conjunction with JVM-level changes (described in the
next section), but our results clearly show the impact of

'We note that Java normally uses digital signatures to protect the
integrity of its crypto libraries. We defeated this by breaking the signed
code verifier. A production system, obviously, would need to be prop-
erly signed along with the JDK distribution.
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Figure 3: These plots shows the average amount of sensitive data in the form of pre-master secrets (PMS), master key
blocks (MKB), and recoverable unique TLS keys from a set of heap sizes.

these changes is quite small. The number of recoverable
latent keys slightly increases when we try to zero things
out from the JCE source code. These results are shown
in Table 2.

5.2 Adding Sanitation to the JVM

We modify the OpenJDK HotSpot JVM source code to
implement a global sanitation solution in the heap. For
simplicity, we chose to modify only the serial garbage
collector implementation—the default garbage collector
that’s used with the HotSpot JVM. First, we focus our
efforts on cleansing the young generation, and then we
tackle the problem in the tenured generation.

The default HotSpot GC is generational, but does
a variant of mark-and-sweep in the tenured generation
searching of each memory block We tagged along with
the sweep phase, zeroing out regions of the memory cor-
responding to dead objects. When compaction is happen-
ing, we can similarly zero out the original objects, one by
one, after they’re relocated. (Unfortunately, the Hotspot
VM’s GC doesn’t ever do a giant copy-compaction dur-
ing collection in the tenured space with a from-space and
a to-space, so there’s never a huge block of memory we
can blindly zero out.)

Zeroing individual objects, or arrays, as the sweep
phase or copy phase figures out that they’re garbage,
seems like a relatively efficient change to make to the
garage collection, since the memory in question was
just recently touched, so should already be in the CPU’s
cache. Unfortunately, this strategy requires us to under-
stand all of the specific tricks that the garbage collector
uses, so we know when it’s truly safe to write zeros into

memory.

Notably, we encountered cases where invalid dummy
objects were placed in the heap. Without knowing this
fact, we would check pointers and class types using in-
ternal APIs, and these checks caused segmentation faults
in the JVM. After some investigation, we discovered that
this issue was the result of a hack to make the heap
appear to be contiguous during collection, which is a
precondition to make GC work correctly. Recall, each
thread-local allocation buffer (TLAB) is a small parti-
tion of the eden space, so the JVM fills the empty spaces
with dummy objects during GC or when a TLAB is in-
validated. We work around this issue by ensuring Klass
pointers (i.e., pointers to the C++ representation of a Java
class) fall inside the Java metaspace, where all Java meta-
objects (e.g. classes, methods, etc.) reside.

We also had a variety of other minor issues. For exam-
ple, dealing with primitive Java types (like byte arrays)
versus class types (like Byte arrays) led to confusion in
our analysis. We had to add specific logic to deal with
many such cases.

Modifying the garbage collector, as described above,
was necessary, but we still found more latent key material
that survived, and it was outside of the garbage-collected
heap. As we described earlier, the JVM maintains mem-
ory blocks that can be explicitly allocated and freed. La-
tent secrets were getting copied there as well. We ad-
dressed the problem by sanitizing all internal memory
deallocations (similar to [3]). We leverage the JVM’s
native memory tracking (NMT) for this task. Typically,
NMT is used to track internal memory allocations to help
with profiling, diagnostics, and debugging. For our pur-



Keys recovered after GC
Bouncy Apache Pure TLS
JVM Version Castle Sockets
Low Memory Pressure (LMP) Results
Oracle JVM 1542+ 92 2972 £81 1084 + 84
Modified JVM 341+ 55 827+£30 304 £117
Modified JIVM/ICE | 364 £102 848 £44 371 £ 89
High Memory Pressure (HMP) Results
Oracle JVM 1671 £ 86 3052 +60 1202 + 86
Modified JIVM 406 £ 87 944 +£ 78 371 £ 94
Modified JVM/ICE | 375+103 1010 &+ 55 387 £ 56

Table 2: The number of unique TLS keys, exploiting
all latent secrets in the heap, that are recoverable after
garbage collection in the LMP and HMP experiment con-
figurations. Three different TLS client implementations
are compared using three different JVMs with low mem-
ory pressure.

poses, we use NMT to identify the size of each alloca-
tion, and then we zero the buffer before the memory is
returned to allocation pool. The NMT documentation
states that it produces a 5-10% performance penalty [15].
We’ll discuss our performance measurement findings in
Section 5.4.

5.3 Sanitation Effectiveness

As described in Section 4.3, we conducted four different
experiments. Our first experiment represents a control
group, with an unmodified JVM.

Our second experiment uses three different Java
runtime configurations, namely the unmodified Oracle
HotSpot JVM, the modified OpenJDK HotSpot JVM,
and the modified OpenJDK HotSpot JVM with the mod-
ified JCE, JSSE, and rt. jar, and we run our three dif-
ferent TLS client applications on top of these configura-
tions. The experiment is set-up to perform a single GC
using System.gc (), and then all the JESs are paused
until the system memory gets dumped. This explicit GC
event allows us to evaluate whether or not the latent se-
crets are wiped from the heap. This second experiment
uses a heap size of 4 GiB with four logical cores available
to the Linux VM. The experiments all ran for about 20
minutes, and we collected 10 memory dumps per client
and configuration. In this time period, we observe 11.9K
TLS sessions using the Socket TLS Client, and the ex-
periments using Apache TLS Client and Apache TLS
Client with BouncyCastle average 16.6K and 16.8K re-
spectively.

Table 2 shows an overview of the results for the Or-
acle HotSpot along with the two configurations using
the modified OpenJDK HotSpot JVMs. For both the

LMP and HMP configurations, there is a significant drop
in the number of latent secrets present. However, this
massive reduction is mostly attributable to the sanitation
we added to the young generation’s memory sweeping.
Since sanitation of the heap generations depends largely
on allocation failures, the tenured generation needs more
collection activity to trigger the removal of latent secrets.

We also see that the JCE and JSSE modifications mod-
estly increased the number of latent secrets in the heap.
We’re not entirely sure why this occurred. It’s possi-
ble that our code modifications had other impacts on
the code generation and GC behavior that we couldn’t
predict. These negative findings do reinforce the im-
portance of support from the garbage collector. Purely
application-level zeroing of data isn’t going to ade-
quately address the problem.

We’re intrigued by the differences between the “Boun-
cyCastle” configuration and the “Apache” configuration.
Both are using the same Apache HTTP client library, so
the only significant difference is that the “Apache” con-
figuration is using the Oracle TLS library. Why is the
BouncyCastle version doing so much better? A manual
inspection of the BouncyCastle code shows that they’re
being very disciplined about their key management; they
make fewer copies. That said, the “Pure TLS sockets”
experiment drops the Apache HTTP client library and
directly drives the Oracle TLS libraries. This gives up
the performance and concurrency features of the Apache
library, but it has the fewest latent secrets. These results
suggest that complex interactions between libraries and
networking layers can have unforseen increases in the
volume of latent secrets.

In our third set of experiments, we recreate the condi-
tions from our initial evaluation to compare the overall
reduction of latent secrets. This time, we vary the JVM
heap size from 512 MiB to 16 GiB on a Linux VM utiliz-
ing four logical CPUs, and we only compare the Apache
and Socket TLS Client with LMP and HMP configura-
tions. Figure 4 shows the results of these observations.
The number of recoverable unique keys is dramatically
smaller, as before, but in some circumstances the volume
of latent secrets stays small regardless of heap size, while
in other circumstances the volume of latent secrets starts
small, but with very large heaps it grows significantly.
We believe this is a consequence of the tenuring process.
Once an important secret is tenured, it’s unlikely to be
noticed again by the garbage collector due to inadequate
memory pressure that would otherwise force the garbage
collector to process the tenured blocks of the heap.

We performed a follow-up experiment to determine if
it is possible to forcibly cleanse the heap. Figure 5 shows
the number of explicit GC calls required to sanitize the
heap. Here we use our modified OpenJDK HotSpot JVM
with a 4 GiB heap size with the LMP Socket TLS client.
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Figure 4: These plots compare the results for the Socket TLS Client the Apache TLS Client. The lines show how
many latent secrets can be removed from memory by sanitizing the heap space after garbage collection. High- and

Low- pressure applications are also shown.

We control for the number of GC iterations and then tim-
ing between each collection. Our experiment waits to
observe 12K requests before pausing all the JES threads
and starting the GC with a call to System.gc (). With
this modification, zero to four more iterations of GC hap-
pen at regular intervals of 30 milliseconds, 10, 20, and
30 seconds. Four GC iterations appear to do the job.
We also performed this experiment with the Apache TLS
Client with four iterations, and the outcome is the same.

Overall, the findings from each of the experiments
demonstrate the difficulty of managing and eliminating
sensitive data in a managed runtime like Java and the
JVM. When the JVM does not perform heap sanitation,

many latent secrets will persist for an indefinite time pe-
riod. This problem only gets worse if third party libraries
are used, because control over the sensitive data is relin-
quished to these libraries. Furthermore, there are never
any guarantees that libraries will be good stewards in
managing the data. Hence, even if the JVM sanitizes all
data, there will always be the risk that third party code
will run afoul of the developer’s efforts.

5.4 Benchmarking

To measure the impacts of our modifications, we use two
benchmarks. First, we use the DaCapo benchmark suite,
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Figure 5: After the number of garbage collections re-
quired to clear the heap (4) is reached, no latent secrets
can be recovered from memory. The time intervals used
are 30 ms., 10, 20 and 30 seconds. Changing the interval
between GC resulted in no significant change.

version 9.12 [1] to provide an overall assessment of our
modifications. DaCapo provides a number of different
applications, but we choose to use only five. We also use
our synthetic client to compare the request throughput of
an unmodified OpenJDK HotSpot JVM and our modified
OpenJDK HotSpot JVM. We decide to include this com-
parison, because the DaCapo benchmark reveals some
potential deficiencies in our modifications. We want to
see if these impacts are observable in our TLS client us-
ing some of our past experimental parameters.

We use only five applications from the DaCapo frame-
work, because these are the only applications that ex-
perience at least one GC event when the heap size is
1 GiB. Before we continue, we provide an overview of
each benchmark program. lusearch is a text search-
ing service. The tradebeans and tradesoap are day
trader applications that perform workloads on a server
and client, respectively. h2 is a database implemented in
Java, and jython is an off-shoot of Python that is inter-
pretted and executed on a JVM. Separately, each applica-
tion provides a reasonable evaluation of the performance
impacts.

The DaCapo benchmarks run inside of a virtual ma-
chine, so we perform 100 benchmarks to prevent jitter
and improve accuracy. We also use four different vir-
tual machine configurations (one and four CPUs, with
1 GiB or 4 GiB of heap) with three different HotSpot
JVM implementations: unmodified OpenJDK HotSpot,
Oracle HotSpot, and the modified OpenJDK HotSpot
JVMs. The unmodified OpenJDK HotSpot is built on the
same machine using the same build settings our modified
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Application Allocation System.gc  Total
Failure Events Events
1GiB RAM
h2 1 1 205
jython 3 1 402
lusearch 12 1 1300
tradebeans 5 1 605
tradesoap 10 1 100
4GiB RAM
h2 0 1 101
jython 0 1 101
lusearch 3 1 400
tradebeans 1 1 204
tradesoap 2 1 305

Table 3: Garbage collection information for each bench-
mark application: number of Java object allocation fail-
ures (triggering a GC), number of GC events triggered
using System.gc, and the benchmark’s overall number
of GC events.

OpenJDK HotSpot JVM, which help eliminate any build
or code optimization variables that might influence the
benchmark results.

Table 3 shows the number of GC events per applica-
tion for the two different heap sizes, and Table 4 shows
the average execution time for each benchmark. These
two tables show that adding sanitation to the GC work-
load is going to decrease performance. Aside from this
point, we are unable to discern any other notable is-
sues. lusearch does experience some significant per-
formance impacts, but these impacts are due to how
much memory contention the program creates. Specif-
ically, in a time window of 1.3—4.1 seconds, each ap-
plication benchmark handles 12 or 3 allocation failures
on average, depending on memory of 1 GiB or 4 GiB.
Looking specifically at the benchmarks with four CPUs,
each individual benchmark writes roughly 6 GiB of ze-
ros to RAM in the span of 1.3 seconds, while executing
the programs actual function.

Realistically, our synthetic client behavior matches
most closely to tradesoap. This program is a web client
that sends SOAP requests to a web server and waits for
a response, which is what our client does. This program
experiences roughly 2 or 10 GC events on average over
the course of roughly 10 seconds for the four CPU bench-
mark with a heap size of 4 GiB and 1 GiB. The modified
OpenJDK HotSpot takes about 10 and 11 seconds for the
two different cases. When there is a real threat of attack
and the value of the information very high, the 1-2 sec-



Java VM
Application (A) (B) © (D)
One vCPU with 1GiB RAM
h2 3353ms  154%) 2.5%) 22.6%.
jython 2650ms 424% | 11.2% 1 1.2% 1
lusearch 4132ms  6.4% 7 1.7% ] 32.0% |
tradebeans 10403 ms 14.6% 1T 17.2% 71 3.1% 1
tradesoap 17822 ms  20.2% 1 93%1  0.5%7
One vCPU with 4GiB RAM
h2 3326 ms  9.6%) 02%71T 10.4% .
jython 2436 ms  14.5% 1 1.3% 1T 29.5% |
lusearch 4115 ms 51% | 9.7% | 32.9% |
tradebeans 10242 ms 18.7% 1T 245%1T 35%7T
tradesoap 17527 ms 5.6% 1 3.7% | 8.9% |
Four vCPUs with 1GiB RAM
h2 7115ms 123% 1 108% ) 33%]
jython 2290 ms 48.1%) 45%] 21.0% ]
lusearch 1278 ms  42%J) 9.7%] 532%]
tradebeans 9836 ms 27.5% 1 2.3% | 8.0% |
tradesoap 9677ms  7.8%1T 57%] 147% |
Four vCPUs with 4GiB RAM
h2 7688 ms 23.9%1 4.1%] 27%]
jython 2458 ms  9.8%1 83%1 6.1%|
lusearch 1281 ms 0.3% | 34% | 54.8%
tradebeans 10033 ms 13.2% 1 1.7% | 1.1% 1
tradesoap 9334 ms 4.5% 1 1.2%1 11.8% ]

Table 4: Comparision of VMs: (A) OpenJDK; (B) Open-
JDK with NMT enabled; (C) Oracle HotSpot; and (D)
our sanitizing OpenJDK HotSpot JVM benchmark re-
sults. A | indicates a performance decrease.

ond penalty is worth the added security.

In addition to using the DaCapo benchmark suite, we
assess the performance of our modifications using the
Apache and Socket TLS Clients. This benchmarks uses
two JVMS: the unmodified OpenJDK and the modified
OpenJDK JVM. We measure performance in terms of re-
quest throughput for each client (request per second av-
eraged over four experiments). Figure 6 shows how we
controlled for the benchmark varying heap size and the
number of requests sent. For each profile, we use a sim-
ilar number of requests to ensure the number of alloca-
tions failures, which lead to GC, are similar. Figure 7
shows the results of this benchmark. The unmodified
Open]DK HotSpot JVM performed better than the mod-
ified OpenJDK HotSpot JVM. The performance differ-
ence for the Apache TLS Client is 5% for all heap sizes.
The Socket TLS Client’s impact is 8.25% when the heap
size is greater than 4 GiB. Figure 7 shows some anoma-
lous activity for the 4 GiB memory profile for the unmod-
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Figure 6: This figure shows the average number of re-

quests for each of the Socket and Apache TLS Clients
configurations.

ified JVM, and we are not sure why. We performed sev-
eral additional experiments, and we analysed the number
of requests across all of the benchmarks, but the results
are all consistent with the findings in Figure 7.

Our conclusions from these benchmarks are that a
50% penalty may be possible with a memory or data in-
tensive Java program. We would not recommend using
our modified JVM in these cases; it would be advisable
to use a database that stores data encrypted and provides
methods for manipulating or handling the data in a secure
manner. For more general purpose applications and ser-
vices like tradesoap or our own synthetic web client,
the trade-off of performance for security are reasonably
palatable.

6 Discussion and Future Work

Cleansing latent secrets from managed memory is a chal-
lenging problem, and application or runtime demands
are going to dictate how these challenges are addressed.
Garbage collectors manage the Java heap, and these tasks
typically operate when an allocation failure occurs. Par-
allel collectors might offer some relief to these issues,
since data sanitation can be spread across more than one
thread, but a modified heap structure and garbage col-
lection implementation are needed to address sanitation
issues in a efficient manner. Of course, each and every
garbage collection system must be modified to take data
sanitation into account. The only way to implement data
sanitation without modifying the JVM would be to delib-
erately kill and restart the JVM on a regular basis. This
might be acceptable in some circumstances, but it’s not a
general-purpose solution.
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Figure 7: These figures in conjunction with Figure 6 show the average request throughput and number allocation
failures for the Socket and Apache TLS clients running on the OpenJDK JVM or the modified JVM.

GC operations on the young generation happen fre-
quently, so any modification that slows them down will
have a disproportionate impact on the final system per-
formance. In contrast, GC operations on the tenured gen-
eration are less frequent, but the tenured generation ac-
cumulates objects where they remain until a full garbage
collection occurs. If the heap is sufficiently large or the
program is not very active, full garbage collections may
never happen, leaving latent secrets vulnerable to ex-
posure, requiring additional expense to be spent on the
tenured generations. We simulate this by manually in-
voking the garbage collector, but a production-quality
garbage collector would need to have sanitation designed
into it from the beginning.

One possible future strategy might be to explicitly seg-
regate sensitive data into its own monitored space that
identifies and removes latent secrets promptly. Develop-
ers need the ability to define data lifetimes [4] at a high-
level from within Java, or any other managed language.
Java currently has meta-data tags, known as annotations,
that help with the compile-, build-, and runtime opera-
tions. Data lifetime annotations could help the JVM han-
dle, store, and sanitize these data items without causing
a performance burden on the rest of the JVM.

Figure 8 shows a hypothetical generational heap with
an additional monitored space. In the monitored space,
memory might be explicitly reference counted, allowing
for immediate sanitation when an object dies. Further-
more, these objects could have explicit “destroy” APIs,
so applications can explicitly kill them, as well as data
lifetime annotations an executive task that deletes them
when they’re expired.
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Functionally, references from the main heap to the
monitored space would act like weak references, making
it clear to the application author that sensitive, monitored
data could disappear at any time, and must be checked
explicitly before each use.

Such a strategy sounds straightforward, but it will have
a variety of thorny problems. Consider, for example, all
the layers of a protocol stack. Sensitive data can touch on
many of these layers. Buffers are assembled and passed
along, copies being made all the way. Zero-copy 1O tech-
niques (e.g., IO-Lite [16]) could help with this, but that
requires the entire stack to be engineered around the par-
ticular buffer management strategy. In other words, a
change like this will break existing APIs and will require
careful engineering of libraries.

This suggests that a customized garbage collector de-
sign might be preferable. The design of this is future
work, but even our modified version of the HotSpot
GC shows that it’s entirely possible to achieve reason-
able performance on many (but not all) workloads, while
gaining significant reductions in the volume of latent se-
crets.

7 Conclusion

Java and the HotSpot JVM are going to be around for
decades to come. This runtime offers a rich set of devel-
opment tools and libraries that help engineers construct
and deploy useful software. However, servers and ser-
vices are susceptible to a number of attacks through a va-
riety of vectors, so there is no guarantee that the system
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where the software executes will remain free from com-
promise. Attackers evolve quickly, and they will real-
ize that the JVM does not effectively sanitize internal or
Java heap memory. This lack of sanitation can compro-
mise sensitive data and lead to unforeseen impacts and
consequences. We have taken a proactive approach to
this problem by measuring its existence and developing
several strategies to help mitigate the problem.

Problems with managed runtime environments like
Java and the JVM are well known, but they are not well
understood. Our research provides several fundamental
elements. We establish the heaps capacity to retain latent
secrets. Furthermore, we show that as heaps increase in
size the number of latent secrets also increases. Crypto-
graphic libraries should be protecting sensitive data such
as keys, but we find that Oracle’s JCE implementation of
TLS 1.2 does not attempt to eliminate key data.

Given the lack of sanitation in the Java heap, we
demonstrate several approaches that reduce the accumu-
lation of sensitive data. When we coordinate these tech-
niques, the number of TLS keys are reduced dramati-
cally. To accomplish this feat, we first modify the JVM
to zero unused heap space in the young generation. Sec-
ond, the tenured generation is also wiped when the dead
objects or live objects are encountered during the mark-
sweep-compact collection algorithm. We also zero un-
used heap space after the garbage collection in this space.
Finally, we show that four iterations of garbage collec-
tion with a time interval spacing of 30 milliseconds are
required to completely clear the Java heap, when all ac-
tivity ceases. These four iterations are necessary, because
the tenured space will not otherwise be collected.

We define how to improve performance of garbage
collection implementations while keeping data security
in mind. Our proposed design modifies the overall struc-
ture of the heap, carving out a segment specifically for
sensitive data. The design also exploits Java annotations,
which can be used to inform the runtime about how to
properly handle specific types of data. This design keeps
execution and runtime efficiency in mind while allowing
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for the timely and effective sanitation of data.
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