
Eclipse Attacks on Overlay Networks:
Threats and Defenses

Atul Singh∗, Tsuen-Wan “Johnny” Ngan∗, Peter Druschel†, and Dan S. Wallach∗
∗Department of Computer Science, Rice University

†Max Planck Institute for Software Systems

Abstract— Overlay networks are widely used to deploy func-
tionality at edge nodes without changing network routers. Each
node in an overlay network maintains connections with a number
of peers, forming a graph upon which a distributed application or
service is implemented. In an “Eclipse” attack, a set of malicious,
colluding overlay nodes arranges for a correct node to peer
only with members of the coalition. If successful, the attacker
can mediate most or all communication to and from the victim.
Furthermore, by supplying biased neighbor information during
normal overlay maintenance, a modest number of malicious
nodes can eclipse a large number of correct victim nodes.

This paper studies the impact of Eclipse attacks on structured
overlays and shows the limitations of known defenses. We
then present the design, implementation, and evaluation of a
new defense, in which nodes anonymously audit each other’s
connectivity. The key observation is that a node that mounts an
Eclipse attack must have a higher than average node degree.
We show that enforcing a node degree limit by auditing is an
effective defense against Eclipse attacks. Furthermore, unlike
most existing defenses, our defense leaves flexibility in the
selection of neighboring nodes, thus permitting important overlay
optimizations like proximity neighbor selection (PNS).

I. INTRODUCTION

Overlay networks facilitate the deployment of distributed
application functionality at edge nodes without the need to
modify existing network infrastructure. Overlays serve as a
platform for many popular applications, including content
distribution networks like BitTorrent, CoDeeN, and Coral [10],
[16], [40], file-sharing systems like Gnutella, KaZaA, and
Overnet/eDonkey [18], [23], [30] and end-system multicast
systems like ESM, Overcast, NICE, and CoolStreaming [1],
[8], [22], [42]. Moreover, a large number of research projects
explore the use of overlays to provide decentralized network
services [25], [31], [33], [38], [43].

Robust overlays must tolerate participating nodes that devi-
ate from the protocol. One reason is that the overlay member-
ship is often open or only loosely controlled. Even with tightly
controlled membership, some nodes may be compromised due
to vulnerabilities in operating systems or other node soft-
ware [44]. To deal with these threats, overlay applications can
rely on replication, self-authenticating content [26], Byzantine
quorums [24], or Byzantine state machines [7] to mask the
failure or corruption of some overlay nodes.

In an overlay network, each node maintains links to a
relatively small set of peers called neighbors. All commu-
nication within the overlay, be it related to maintaining the
overlay or to application processing, occurs on these links.

The overlay’s integrity depends on the ability of correct nodes
to communicate with each other over a sequence of overlay
links. In an Eclipse attack [5], [37], a modest number of
malicious nodes conspire to fool correct nodes into adopting
the malicious nodes as their peers, with the goal of dominating
the neighbor sets of all correct nodes. If successful, an Eclipse
attack enables the attacker to mediate most overlay traffic and
effectively “eclipse” correct nodes from each others’ view. In
the extreme, an Eclipse attack allows the attacker to control
all overlay traffic, enabling arbitrary denial of service or
censorship attacks.

The Eclipse attack is closely related to the Sybil attack [14],
where a single malicious node assumes a large number of
different identities in the overlay. Clearly, a successful Sybil
attack can be used to induce an Eclipse attack. However,
Eclipse attacks are possible even in the presence of an effective
defense against Sybil attacks, such as certified node identi-
ties [5]. In a decentralized overlay, nodes periodically discover
new neighbors by consulting the neighbor sets of existing
neighbors. Malicious nodes can exploit this by advertising
neighbor sets that consist of only other malicious nodes. Thus,
a small number of malicious nodes with legitimate identities
is sufficient to carry out an Eclipse attack.

Castro et al. identify the Eclipse attack as a threat in
structured overlay networks [5]. To defend against this attack,
they propose the use of Constrained Routing Tables (CRT),
which imposes strong structural constraints on neighbor sets.
In this defense, nodes have certified, random identifiers and
a node’s neighbor set contains nodes with identifiers closest
to well-defined points in the identifier space. The certified
identifiers prevent Sybil attacks, and the CRTs thwart Eclipse
attacks. However, this defense leaves no flexibility in neighbor
selection and therefore prevents optimizations like proximity
neighbor selection (PNS) [6], [20], an important and widely
used technique to improve overlay efficiency.

This paper presents a defense against Eclipse attacks based
on anonymous auditing of nodes’ neighbor sets [35]. If a node
has significantly more links than the average, it might be
mounting an Eclipse attack. When all nodes in the network
perform this auditing routinely, attackers are discovered and
can be removed from the neighbor sets of correct nodes.
The defense is applicable to homogeneous structured overlays;
experimental results indicate that it is highly effective and
efficient for overlays with low to moderate membership churn,
i.e., with session times on the order of hours.

The rest of this paper is organized as follows. In the next
section, we provide some background on overlay networks and
their vulnerability to the Eclipse attack and present existing de-
fense mechanisms. Section III describes our proposed defense.
In Section IV, we discuss the auditing technique necessary
to implement our defense. Section V presents experimental
results on the impact of Eclipse attacks, the limitations of ex-
isting defenses, and the effectiveness of our auditing technique.
Section VI discusses the results, Section VII covers related
work and Section VIII concludes.

II. BACKGROUND

In this section, we provide some background on overlay
networks, and we discuss prior work in making overlays robust
to Eclipse attacks.

Overlay networks consist of a set of nodes connected by a
physical network like the Internet. Each node in an overlay
maintains a neighbor set, consisting of a set of peer nodes
with which the nodes maintains connections. The union of
all participating nodes and their neighbor relations form an
overlay graph.

In decentralized overlays, nodes receive membership in-
formation from their peers. If a malicious node advertises a
neighbor set that consists only of other malicious nodes, it
may bias the node selection of correct nodes. Correct nodes
will in turn pass along this biased membership information
to their peers. Over time, the malicious nodes attract a lot of
correct neighbors, unless an appropriate defense is in place.

Eclipse attacks could easily be prevented by using a
trusted, centralized membership service (e.g., the tracker in
BitTorrent [10]). Such a service keeps track of the overlay
membership and offers unbiased referrals among nodes that
wish to acquire overlay neighbors. However, such a service is
undesirable in many environments, since it requires dedicated
resources and raises concerns about scalability, reliability and
availability.

A. Unstructured Overlays

Unstructured overlays (e.g., [10], [18], [23]) impose no
constraints on neighbor selection. Typically, a joining node
starts from a bootstrap node and discovers additional neighbors
by performing random walks in the overlay. Malicious nodes
can trivially bias the neighbor selection of a correct nodes
by steering random walks towards other malicious nodes. As
such, unstructured overlays are vulnerable to Eclipse attacks.

B. Structured Overlays

Structured overlay networks (e.g., [25], [31], [33], [38],
[43]) maintain a specific graph structure that enables reliable
object location within a bounded number of routing hops.
Generally, each node is assigned a unique, pseudo-random
identifier from a large numeric space, e.g., the set of positive
160-bit integers. A node selects its neighbors from the set of
nodes whose identifiers satisfy certain constraints relative to its
own identifier. The constraints differ for different neighbor set
slots and some are more restrictive than others. For example,

the neighbor sets in Tapestry and Pastry form a matrix, where
the ith row refers to nodes whose ids share the a prefix of i
digits, and the jth column contains nodes whose (i+1)th digit
in their ids is j. Thus, the identifier of a node determines its
eligibility as a neighbor for any given other node. Obviously,
nodes are more flexible in choosing neighbors for the low
numbered rows since they require shorter prefix matches. It is
this flexibility in the choice of neighbors that malicious nodes
can exploit to mount an Eclipse attack on structured overlays.

C. Existing Defenses

Decentralized defenses against the Eclipse attack have been
proposed that require additional constraints on neighbor selec-
tion. They fall into two categories: structural constraints and
proximity constraints.

1) Stronger structural constraints: Overlays like CAN [31],
the original Chord [38], and Pastry with a constrained routing
table (CRT) [5] impose strong structural constraints on the
neighbor sets. Each neighbor set member is defined to be the
overlay node with identifier closest to a particular point in the
identifier space. This constraint defeats Eclipse attacks under
two conditions:

First, each node has exactly one unique, unforgeable iden-
tifier. This can be accomplished, for instance, by a trusted,
off-line authority that issues cryptographically signed identi-
fiers [5], thereby preventing Sybil attacks. Second, the overlay
has a mechanism to locate the live node whose id is closest
to a desired point in the id space. This mechanism ensures
that a query for a randomly chosen id has about the same
chance of yielding a malicious node as the probability that
a randomly selected node is malicious. Castro et al. [5]
described a routing primitive that accomplishes this through
a combination of trusted id certification, id density tests, and
redundant routing probes using the constrained routing tables.
The main drawback of using strong structural constraints to
defend against Eclipse attacks is that it removes flexibility in
neighbor selection, preventing important overlay optimizations
like PNS. Moreover, the secure routing primitive has signifi-
cant overhead.

2) Proximity constraints: Hildrum and Kubiatowicz [21]
describe a different defense against the Eclipse attack based
on proximity neighbor selection. Each node selects as its
neighbors the nodes with minimal network delay, among all
the nodes that satisfy the structural constraints for a given
neighbor set member. Since a small number of malicious nodes
cannot be within a low network delay of all correct nodes, it
is therefore difficult for them to mount an Eclipse attack.

This defense assumes that the delay measurements cannot
be manipulated by the attacker. Also, it is effective only if
pairs of nodes are sufficiently separated in the delay space.
For instance, if the resolution of delay measurements is 1ms
and a large fraction of overlay nodes are within 1ms of
each other, then the defense is not effective. Indeed, it was
observed that from the perspective of a typical Internet host, a
large number of other nodes appear within a narrow band of
delay [20]. Moreover, our experimental results in Section V-B

show that with realistic delay values measured in the Internet,
the effectiveness of the PNS-based defense diminishes with
increasing overlay size.

In summary, we observe that maintaining strict structural
constraints provides an effective defense against Eclipse at-
tacks, but it introduces additional overhead and prevents
important performance optimizations like PNS. Network prox-
imity based defenses, on the other hand, depend on accurate,
high-resolution delay measurements and they may be effective
only for small overlays.

III. ENFORCING DEGREE BOUNDS

In this section, we describe a new defense against Eclipse
attacks based on enforcing node degree bound. Our technique
requires that each participating node carries a certificate,
binding its node identifier to a public key. It is further assumed
that the overlay supports a secure routing primitive using a
constrained routing table (CRT), as described in the previous
section.

A. Overview

The defense is based on a very simple observation: During
an Eclipse attack, the in-degree of attacker nodes in the overlay
graph must be much higher than the average in-degree of
correct nodes in the overlay. Thus, one way to prevent an
Eclipse attack is for correct nodes to choose neighbors whose
in-degree is not significantly above average, among the set of
nodes that satisfy any structural constraints imposed by the
overlay protocol.

In the general case of an overlay where the neighbor relation
is not reflexive, it is not sufficient to bound node in-degrees.
Malicious nodes could try to consume all the in-degrees of
correct nodes, thereby preventing correct nodes from choosing
other correct nodes as their neighbors. Consequently, it is also
necessary to bound the out-degree of nodes. Correct nodes
choose neighbors whose in-degree and out-degree are below
a certain threshold.

Next, we show that if each overlay node has the same
degree, then the expected fraction of malicious nodes in the
neighbor set of correct nodes can be bounded by f/(1− f),
where f is the fraction of malicious nodes in the overlay.

Let the expected out-degree of correct nodes be Oexp, the
size of the neighbor set required by the overlay protocol. With
N(1− f) correct nodes, their total out-degree is N(1− f)Oexp.
We further assume that we can successfully bound the in-
degree of any given node, malicious or correct, to Imax = tOexp,
for some constant t ≥ 1. There are N f malicious nodes, and so
the total in-degree of malicious nodes is at most N f Imax. The
Eclipse attack is most effective when most of the out-degree of
correct nodes are consumed by malicious nodes. Let f ′ be the
fraction of out-degree of correct nodes consumed by malicious
nodes. Then f ′N(1− f)Oexp ≤ N f Imax, and f ′ ≤ f t/(1− f).
If we bound the out-degree and in-degree of every node to
the expected size of the neighbor set (i.e., t = 1), thus forcing
every node to have the same degree, then the expected number

of malicious entries in the neighbor sets of correct nodes is
bounded by f/(1− f).

B. Mechanisms to Enforce Degree Bound

The next important question is how to enforce the degree
bound. The obvious solution of a centralized service that keeps
track of each overlay member’s degree suffers from the same
problem as the centralized membership service discussed in
Section II. A practical alternative is a distributed mechanism,
where participating nodes are responsible for monitoring each
other’s degree.

We enforce the degree bound through distributed auditing.
Each node in the system periodically audits neighboring nodes
to ensure compliance with the degree bound. For this purpose,
each node x in the overlay is required to maintain a set of all
the nodes that have x in their neighbor set. We refer to this
list as the backpointer set of x.

Periodically, x anonymously challenges each member of its
neighbor set by asking it for its backpointer set. If the number
of entries in that backpointer set is greater than the in-degree
bound, or x does not appear in the backpointer list, then the
auditee has failed the test, and x removes that member from
its neighbor set. To prevent an attacker from consuming the
in-degree of correct nodes, a similar auditing procedure is
performed to ensure that the members of a node’s backpointer
set maintain a neighbor set of the appropriate size. When an
auditing node finds one of its neighbors not in compliance
with the degree limit, it immediately drops the connection to
that neighbor. Therefore, the degree of such nodes naturally
tends towards the allowed bound.

To ensure that replies to an audit challenge are fresh and
authentic, x includes a random nonce in the challenge. The
auditee includes the nonce in its reply, and digitally signs the
response. When x receives the reply, it checks the signature
and the nonce before accepting the reply. Asserting freshness
and authenticity ensures that a correct node cannot be framed
by a malicious node that fabricates or replays audit responses.

Moreover, it is essential that the identity of the auditor
remains hidden from the auditee. Otherwise, a malicious
auditee could easily produce a fake response of the allowed
size that includes the auditor. Ensuring auditor anonymity is
the subject of the next section.

IV. ANONYMOUS AUDITING

In this section, we describe a mechanism to preserve the
anonymity of the auditor — a necessary building block for
our distributed auditing mechanism to enforce degree bounds.
We also analyze the effectiveness of our anonymous auditing
technique.

A. Design

To enable anonymous auditing, we need a communication
channel that hides the auditor’s identity. Although there are
many general-purpose anonymous channel mechanisms for
overlay networks [13], [17], [27], [32], [45], the anonymity
requirements of our auditing mechanism are weaker than those

provided by the above mentioned mechanisms. A node is
audited regularly only by each member of its neighbor and
backpointer set. Therefore, it is sufficient to ensure that any
challenge is equally likely to come from any member of these
sets. Furthermore, it is sufficient to ensure that the identity of
the challenger is hidden only most of the time. An occasional
failure of sender anonymity can only moderately increase the
time to detect a node with excessive degree.

We designed an anonymous channel that exploits these
weaker requirements to reduce overhead. To obscure the
sender’s identity, each challenge is relayed through an interme-
diate node. The mechanism used to choose such an anonymizer
node is described in Section IV-C.

In the following, we consider a worst-case adversarial
model, where all the malicious nodes are colluding to defeat
auditing. We describe the design using an example. Suppose
a correct node x wants to audit a node z in its routing table.
Node x picks a random node y, called an anonymizer, to relay
a challenge to node z. There are four cases to consider:

• Case 1: z is malicious, y is correct: z does not know the
auditor’s identity, so z can either guess or not respond at
all.

• Case 2: z is malicious, y is malicious: In this case, y
colludes with z, allowing z to craft a custom response for
x. x will not detect that z is not in compliance.

• Case 3: z is correct, y is correct: z is in compliance
and the audit always succeeds. From x’s perspective, this
case is indistinguishable from case 2.

• Case 4: z is correct, y is malicious: y can drop the
challenge or response, causing x to falsely suspect z.

Consider a simple test where x marks node z suspicious
if either (a) it did not receive any response after a sufficient
timeout or (b) the returned set does not contain x or, finally,
(c) the returned set size is greater than the degree bound.
Intuitively, cases 1 and 2 suggest that auditing z only once
is not sufficient since y could be malicious and colluding with
z, or z guesses correctly, or the challenge or response was
dropped by the network. Additionally, case 4 suggests that if
z is correct and y is malicious, then x would falsely suspect z.
Therefore, x needs to perform several audits through different
anonymizers at random times before z can be considered to
be in compliance or violation of the degree bound.

To prevent a malicious node from correlating different
challenges from the same auditor, auditors randomize the
interval between subsequent challenges. Likewise, an auditor
waits for a random delay between discovering the anonymizer
node and using the discovered anonymizer in relaying the
challenges. This is to prevent a malicious node from inferring
the source of an audit challenge by correlating the discovery
traffic with the challenge traffic.

B. Analysis

Next, we determine the probability that a malicious node is
detected and that a correct node is falsely blamed, respectively.
This guides the choice of the various parameters. We assume
that the adversary seeks to maximize the in-degree of its nodes.

We further assume that the intermediate nodes used by an
auditor to relay challenges are malicious with probability f .

Consider a strategy where a node is considered malicious
if it answers less than k out of n challenges correctly. Since
audits are independent of each other, the audits can be viewed
as Bernoulli trials [12, Appendix C.4]. A correct node can fail
an audit only if the intermediate node is malicious. Thus, the
probability that a correct node is considered malicious in an
individual audit, consisting of n challenges, is

k−1

∑
i=0

(

n
i

)

f n−i(1− f)i . (1)

Given an upper bound on f , we can fix n and pick k such that
this probability is very small. For instance, by setting n = 24
and k = 12, and assuming f ≤ 0.2, this probability is less than
0.02%.

Consider the possible adversarial strategies when a mali-
cious node is audited via a correct anonymizer node. The
malicious node can respond with a random subset of the
maximal allowed size from its true set. Let r be the overload
ratio, the ratio of the size of its true set versus the maximal
allowed size. Then the probability that the randomly selected
subset passes the audit is 1/r, assuming that auditing is done
completely anonymously. We further assume that when the
malicious node is audited through a correct anonymizer node,
the malicious node answers the challenge with a probability
of c, and does not respond with a probability of 1− c.

For each challenge, there are four possible cases:
1) With probability f , the anonymizer is colluding and the

malicious node can pass the challenge.
2) With probability (1− f)c/r, the malicious node’s ran-

dom response includes the auditor and passes the chal-
lenge.

3) With probability (1− f)c(1−1/r), the malicious node’s
random response does not include the auditor and fails
the challenge.

4) With probability (1− f)(1−c), the malicious node does
not respond.

For a malicious node to pass an audit consisting of n
challenges, there must be at least k instances of case 1 or
2 and not a single instance of case 3 (i.e., all remaining cases
are of type 4). Thus, the probability that a malicious node
passes the audit undetected is

n

∑
i=k

(

n
i

)

[f +(1− f)c/r]i[(1− f)(1− c)]n−i . (2)

Fig. 1 and Fig. 2 show the probability that a malicious node
is detected for different settings of n, k, and f , assuming
that malicious nodes have an overload ratio r = 1.2. The
overload ratio r is the ratio of the true size of the target’s
set to the maximum allowed size. Note that the larger the
overload ratio, the less likely a randomly selected subset would
contain the auditor, thus the easier a malicious node would get
detected. All results reflect a setting that is, from the attacker’s
perspective, optimal, i.e., with the least probability that the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Pr
ob

ab
ili

ty
 o

f
su

sp
ic

io
n

Fraction of malicious nodes

Malicious, n = 24
Malicious, n = 16

Malicious, n = 8
Correct, n = 24
Correct, n = 16
Correct, n = 8

Fig. 1. Probability of marking a malicious/correct node suspicious vs.
fraction of malicious nodes, k = n/2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24

Pr
ob

ab
ili

ty
 o

f
de

te
ct

io
n

Number of challenges per audit

k = 3n/4
k = n/2
k = n/4

Fig. 2. Probability of detecting a malicious node with different numbers
of challenges per audit, f = 0.2.

malicious node would be detected. This optimal setting was
determined empirically for each data point, by finding the k
and c that minimized the probability of detection.

Thus, given an upper bound for f , one can pick the values
for n and k to minimize the probability of falsely blaming
correct nodes, while effectively detecting malicious nodes. For
example, assume f ≤ 0.25. By setting n = 24 and k = 12, the
probability of falsely blaming a correct node is around 0.2%,
but malicious nodes with overload ratio r ≥ 1.2 are detected
with probability at least 95.9%. Therefore, we pick k = n/2,
requiring a node to answer at least half of the audits correctly.

C. Discovery of Anonymizer Nodes

A critical element of our distributed anonymous auditing
mechanism is the selection of anonymizer nodes. The selection
mechanism must ensure that the anonymizer node is malicious
with probability no more than f and that the identity of the
anonymizer node used by an auditor reveals nothing about the
identity of the auditor.

We consider three techniques to select the anonymizer
nodes:

Random node: A node is chosen randomly from the en-
tire population of the overlay before each audit, shown by
Fig. 3(a). This can be done by drawing a random number in
the id space and using secure routing to select the live overlay
node with id closest to that chosen number. The problem
with this approach is that a malicious node could potentially
overhear the routing request from the auditor. If the chosen

A

X

B

(a)

C

A

B

(b)

C

X

A

B

(c)

C

X

Fig. 3. Different ways to select anonymizer nodes. Nodes A, B, and C audit
node X . Dark nodes represent the anonymizer nodes.

node is subsequently used in an audit challenge, the attacker
can infer the source with high probability.

Node closest to H(x): When a node wishes to audit x, it
selects the node with id numerically closest to the hash H(x)
(e.g. SHA-1) as the anonymizer node, shown in Fig. 3(b). Once
the anonymizer node is found, it can be used continuously, as
long as it remains the node with id closest to H(x). Since all
auditors of a given node use the same anonymizer node and
have random challenge times, the challenges will be mixed
together. Malicious nodes that observe discovery routing traffic
will learn nothing about the source of a particular challenge.
However, if the chosen node happens to be malicious, then
every audit of node x is ineffective.

Random node among the ` closest to H(x): Here, auditors
use a random node among the ` nodes with ids closest to H(x)
(see Section II-C) as the anonymizer for a given challenge,
shown by Fig. 3(c). Per our assumption that nodeIds are
assigned randomly and cannot be forged, this anonymizer set
represents a random set of nodes in the overlay with only a
fraction f being malicious, exactly as if anonymizers were
chosen at random from the full overlay. However, because all
auditors use the same set of nodes to select anonymizers and
their challenges are interleaved, malicious nodes that observe
traffic will learn nothing useful about who is performing any
given audit.

Since the last technique is the most robust, we used it in
our auditing implementation. In order to maintain a sufficient
size of the anonymizer set under churn (i.e., the arrival and
departure of overlay nodes), all auditors periodically refresh
their list by determining the latest set of ` closest nodes
to H(x). Moreover, we set ` to be equal to the number of
challenges per audit, n.

How big must an anonymizer set be? For overlays with
a sufficiently large number of nodes, the distribution of
malicious nodes in a vicinity of a point in the identifier
space set can be approximated by a binomial distribution. The
probability that at least half of the nodes in an anonymizer set
of size n is malicious can be bounded above by

n

∑
i=dn/2e

(

n
i

)

f i(1− f)n−i .

For example, only 1% of all anonymizer sets of size 16 contain
at least one-half malicious nodes, while only 0.1% of size 24

contain at least one-half malicious nodes in the anonymizer
set. Also, the probability drops exponentially with increasing
anonymizer set size.

Therefore, we can dynamically set the size of anonymizer
sets to balance the probability of having an anonymizer set
with at least one-half malicious nodes and the overhead
of maintaining such an anonymizer set. To ensure that the
expected number of anonymizer sets with at least one-half
malicious nodes is less than one, in an overlay of size N, we
need to choose the size of the anonymizer set n to satisfy

N
n

∑
i=dn/2e

(

n
i

)

f i(1− f)n−i < 1 .

For instance, assume f = 0.2, for N = 100, 1000, and 10000,
we need to choose n to be 13, 21, and 29, respectively.

V. EVALUATION

In this section, we set out to answer the following questions
empirically:

• How serious are Eclipse attacks on structured overlays?
• How effective is the existing defense based on proximity

neighbor selection (PNS) against Eclipse attacks?
• Is degree bounding a more effective defense? What is the

impact of degree bounding on the performance of PNS?
• Is distributed auditing effective and efficient at bounding

node degrees?

A. Experimental Setup

We use MSPastry [28], which comes with a packet-level
discrete-event simulator. Two different physical network topol-
ogy models were used in the simulations: The GT-ITM transit-
stub network topology model, consisting of 5050 routers [41],
and a set of measured pair-wise latency values for up to
10,000 real Internet host, obtained with the King tool [19].
Unless stated differently, the GT-ITM model was used in the
simulations.

Pastry was configured with routing base b = 4 and leaf set
size ` = 16. Pastry implements proximity neighbor selection
(PNS) [6] and an optimized version of Castro et al.’s secure
routing primitive, described in [36]. The overlay membership
is static unless otherwise stated.

The fraction of malicious nodes is set to f = 0.2 unless
otherwise specified. Malicious nodes collude to maximize
the number of entries referring to malicious nodes in the
neighbor sets of correct nodes. In particular, malicious nodes
misroute join messages of correct nodes to each other and
supply references exclusively to other malicious nodes as
part of the overlay maintenance protocol. Malicious nodes
initialize their routing tables to refer to good nodes whenever
possible, in order to consume as much of the in-degree of good
nodes as possible. Malicious nodes maintain an out-degree
of 16 per routing table row, which is the optimal strategy
from the perspective of the attacker. Results of simulations
we performed show that any attempt of using a larger out-
degree leads to a quicker detection of the malicious nodes,
and diminishes the overall impact of the attack.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 15 10 5 0

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

10000 nodes
5000 nodes
2000 nodes

baseline

Fig. 4. Fraction of malicious nodes in routing tables of correct nodes, at
different network sizes for GT-ITM topology.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 15 10 5 0

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

10000 nodes
5000 nodes
1740 nodes

baseline

Fig. 5. Fraction of malicious nodes in routing tables of correct nodes, at
different network sizes with King latencies.

B. Eclipse Attacks

First, we evaluate the impact of an Eclipse attack on a
Pastry overlay when PNS is turned off, i.e., when nodes pick
neighbors regardless of the delay in the physical network. In
this case, an Eclipse attack is extremely effective, as expected.
When the overlay network stabilizes, the fraction of malicious
neighbor set entries is over 70% for a 1000-node overlay and
more than 80% for overlays with 5000 nodes. In the top row
of the routing table, where the constraints on a neighbor’s
identifier are weakest, the fraction is over 90% for a 1000-
node overlay and approaches 100% for overlays of 10,000
nodes or more.

Next, we evaluate the effectiveness of Eclipse attacks on
a Pastry overlay with PNS. Fig. 4 shows the fraction of
malicious nodes at different overlay sizes vs. the simulation
time. Observe that with time, the average fraction of malicious
nodes over the full routing table drops to less than 30% within
10 hours of simulation for all system sizes. The fraction for the
top row drops from 78% to 41% for a 10,000 node network
within 10 hours. These results suggest that PNS, by itself,
reduces the impact of an Eclipse attack, particularly in small
overlays.

This experimental setup, however, benefits from a good
separation of nodes in the delay space of the GT-ITM topology
model. To see if the result holds up when real delays measured
in the Internet are used, we repeated the experiment with the
King delay sets. Fig. 5 shows that the effectiveness of PNS
in defending against Eclipse attacks is significantly reduced.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 15 10 5 0

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

10000 nodes
5000 nodes
2000 nodes

baseline

Fig. 6. Fraction of malicious nodes in top row of routing table of correct
nodes, at different network sizes for GT-ITM topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 15 10 5 0

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

10000 nodes
5000 nodes
1740 nodes

baseline

Fig. 7. Fraction of malicious nodes in top row of routing table of correct
nodes, at different network sizes with King latencies.

As the overlay size increases, PNS becomes less effective.
In the actual Internet, a large fraction of nodes lie within a
small delay band, making PNS less effective as a defense
mechanism.

It is easiest for the malicious nodes to supply suitable entries
for routing table rows with weak constraints on the identifier,
which explains the high fraction of entries to malicious nodes
in the results for row zero, as shown in Fig. 6 and 7.
Unfortunately, the entries in row zero are used most often
in routing a node’s own messages, because they are typically
used for the first hop. Thus, an Eclipse attack can be highly
effective at intercepting overlay traffic.

We conclude that a PNS-based defense against Eclipse
attacks alone will not be effective in the real Internet, requiring
better mechanisms to defeat such attacks.

C. Effectiveness of Degree Bounding

To measure the effectiveness of degree bounding, we first
perform an idealized experiment where the degree bounds are
perfectly maintained. We use an oracle to determine if a node
has exceeded its degree bounds; no anonymous auditing is
performed. This allows an evaluation of an “ideal” degree
bounding defense, independent of any particular implemen-
tation of bounds enforcement.

Malicious nodes attempt to maximize their in-degree, but
correct nodes will check a node’s in-degree before adding it
to the routing table during a routing update. Correct nodes,
then, will refuse to increase the in-degree of a node that is

TABLE I
FRACTION OF MALICIOUS NODES IN CORRECT NODES’ ROUTING

TABLES WITH DIFFERENT DEGREE BOUNDS PER ROW.

Number of nodes
Bound 1,000 5,000 10,000 20,000

16 0.24 0.24 0.24 0.24
32 0.24 0.29 0.31 0.37
48 0.24 0.31 0.35 0.45
64 0.24 0.33 0.38 0.48

unlimited 0.24 0.35 0.42 0.50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4

D
el

ay
 s

tr
et

ch

Ratio of in-degree and out-degree bound

CRT
PNS with degree bound

PNS without degree bound

Fig. 8. Delay stretch versus the ratio of in-degree and out-degree bound for
a network with 20,000 nodes.

already over the limit. Experimentally, we varied the in-degree
limit from 16 through 64 entries per routing table row. Table I
presents the average fraction of malicious routing table entries
in the entire routing table. The fraction of malicious routing
table entries for each row was very similar.

The results show that in-degree bounding is effective at
maintaining a low fraction of malicious routing table entries.
As expected, this fraction is approximately f t/(1− f) = 0.25
for t = 1, i.e., when the bound is set to the expected average
degree. The effectiveness of our defense decreases when the
overlay is large and the in-degree bound t is loose, since
malicious nodes are able to exploit the loose in-degree bounds
to consume a higher fraction of the out-degree of correct
nodes.

We also evaluated the impact of in-degree bounding on
routing delays under PNS. We measure the delay stretch,
which is the ratio of overlay routing delay versus the direct
IP delay. Since degree bounding puts extra constraints on the
choice of neighbors, it can increase routing delays even in the
absence of attacks. We observed a delay stretch increase of
approximately 25% in an overlay with 20,000 nodes with no
malicious nodes and an in-degree bound of 16 per row. The
penalty decreases to about 8% for a bound of 32, as shown in
Fig. 8. We conclude that in-degree bounding is highly effective
against Eclipse attacks so long as a tight in-degree bound is
enforced, and that the resulting increase in delay stretch is
tolerable.

D. Effectiveness of Auditing

Next we evaluate the effectiveness of auditing in defending
against the Eclipse attacks. In this experiment, we simulate a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

C
um

ul
at

iv
e

fr
ac

tio
n

In-degree

Correct nodes
Malicious nodes

Fig. 9. In-degree distribution before auditing starts.

network with 2000 nodes. We set n = 24 to ensure that the
expected number of anonymizer sets with at least one-half
malicious nodes is less than 1, as described in Section IV-
C. Therefore, out of the 24 challenges, the number of correct
responses has to be at least 12 to pass an audit iteration. A new
iteration is then started immediately. Correct nodes require an
in-degree bound of 16 per routing table row and backpointer
set row, respectively, while malicious nodes do not impose any
limit.

We assume malicious nodes employ the optimal strategy
to maintain high in-degree without getting caught, i.e., they
respond to audits coming through correct anonymizer node
with the optimal probability, as described in Section IV-B.
About once every two minutes, a node audits each of its
overlay neighbors, with each being audited at a random instant
in the 2 minute interval.

To evaluate the effectiveness of auditing, we simulated both
static membership and churn scenarios. We simulated 0%,
5%, 10%, and 15% churn every hour. The average lifetime
of a node in our simulation is indefinite, 20, 10, and 7 hours,
respectively, for the above churn rates. These churn rates are
higher than those reported by Bolosky et al. [3] for a corporate
environment, where the average session time was reported as
37.7 hours, but much lower than the session times reported
for some file-sharing networks [2]. Since the auditing rate
is once every 2 minutes in our simulations and it takes 24
challenges to decide whether a node is suspicious, a node
needs to be alive for an hour for meaningful audit data to
be collected. As we will show, higher churn would require
a higher auditing rate and proportionally higher overhead.
Therefore, the target environment for our defense is an overlay
with low to moderately high churn.

One concern is that a malicious node could leave the overlay
just before auditing finishes, to avoid being detected once
an audit completes. However, such a node would loose all
its overlay connections, which would defeat the goal of an
Eclipse attack. Alternatively, the node could try to reestablish
the connections to its previous neighbors; however, in this
case, the neighbors would continue their audits where they
left off. Caching audit state for a few days is sufficient for
this purpose.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

15%
10%
5%

No churn

Fig. 10. Fraction of malicious nodes over the full routing table of correct
nodes.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr
ac

tio
n

m
al

ic
io

us

Time (Hours)

15%
10%
5%

No churn

Fig. 11. Fraction of malicious nodes in the top row of the routing table
of correct nodes.

1) In-degree distribution: Fig. 9 shows a cumulative distri-
bution of in-degree for both correct and malicious nodes during
an Eclipse attack, but before auditing has started. Clearly,
malicious nodes have been able to get in-degrees far larger
than 16. Assuming static membership (i.e., no churn), we
simulated approximately 10 hours of operation with auditing
enabled. After this, every node in the system, correct or
malicious, has in-degree equal or below the allowed bound
of 16. This shows that our auditing scheme has successfully
caught each and every case of a malicious node with excessive
in-degree.

2) Detecting malicious nodes: Fig. 10 and Fig. 11 show
the fraction of malicious neighbors over time in the entire
routing table and in just the top row, respectively. To show
the impact of auditing more clearly, auditing starts after 1.5
hours of simulated time, whereas the malicious nodes begin
an Eclipse attack immediately. Before auditing has begun,
the routing tables start with around 40% of the entries of
correct nodes referring to malicious nodes (versus 20% of the
nodes being malicious). Note that correct nodes enforce an in-
degree bound of 16 per row from the start of simulation while
malicious nodes do not. Under churn, the newer correct nodes
point to malicious nodes rather than correct nodes, causing the
fraction to increase with time for different churn settings until
auditing is started.

Within 2 simulated hours after auditing has begun, the
fraction of malicious nodes drops to below 30% and 25% for
the top row and overall, respectively, with static membership
as well as with a churn of 5% and 10% per hour. However, the

 0

 1

 2

 3

 4

 5

 6

 7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
ve

rh
ea

d
(m

es
sa

ge
/n

od
e/

se
c)

Time (Hours)

Overall
Auditing overhead

Secure routing overhead

Fig. 12. Total cost of maintaining the overlay.

fraction of malicious nodes in the top row for 15% churn is
above 30%. To explain why the fraction does not drop further,
we considered the in-degree distribution of malicious nodes
relative to the lifetime of these nodes. As expected, nodes
with higher in-degree are nodes that are relatively new and
thus have not yet been sufficiently audited.

We then doubled the auditing rate to once every minute.
We observe that the fraction of malicious nodes in the top
row stabilized around 27%, an improvement of 3%. Auditing
at a rate of once every minute under a 15% churn rate has the
same effect as auditing once every 2 minutes at a churn of 10%
per hour. This shows the fundamental tradeoff between churn
rate and auditing rate. Higher churn requires more auditing.

3) Communication overhead: Fig. 12 shows the total over-
head for maintaining the overlay. This includes the basic cost
for maintaining the Pastry overlay with PNS, the additional
cost of maintaining the constrained routing table (CRT), and
the cost of auditing. Recall that the CRT is necessary to
implement secure routing, which is in turn needed to securely
find anonymizer sets.

The auditing cost, shown separately, is proportional to the
auditing rate, which is set to one audit every 2 minutes in
our simulation. A lower auditing rate would reduce the cost,
but would also require a longer time to detect malicious
nodes and would likewise be less effective under churn. As
before, we first allow the system to run for 1.5 hours and
then enable auditing. The spike in secure routing overhead
at this time is the result of every node searching for the
anonymizer nodes it will subsequently use. The figure shows
that the absolute auditing cost (2 msg/node/sec), the cost of
secure routing (0.2 msg/node/sec), and the total maintenance
cost (4.2 msg/node/sec) are very low.

We therefore conclude that auditing is effective, with a small
increase in overhead.

4) False positives: One concern for our auditing scheme is
false positives. After 10 hours of simulation, we observed that
approximately 100 connections between correct nodes were
incorrectly marked as suspicious and removed from neighbor
sets. This is out of the roughly 96,000 total connections. Thus,
our auditing scheme has only a 10−3 false positive rate after
10 hours of auditing. To ensure that the false positives do not
become a concern in a long running system, suspicious marks

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

O
ve

rh
ea

d
(m

sg
/n

od
e/

se
c)

Application data rate (msg/node/min)

4.75

Total overhead (w/o degree bouding)
Application overhead (w/o degree bouding)

Total overhead (degree bounding)
Application overhead (degree bounding)

Fig. 13. The cost of delivering application messages at different rates
with and without degree bounding.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

C
um

ul
at

iv
e

fr
ac

tio
n

of
 m

es
sa

ge
s

Delay (seconds)

With degree bounding
Without degree bounding

Fig. 14. Cumulative distribution of delays observed with and without
degree bounding.

are discarded at a rate similar to the false positive rate, i.e. we
unmark 1 suspicious node every week in a 2000 node network.
This introduces a small background churn in the system since
these unmarked nodes are treated as new nodes and are freshly
re-audited. The false positive rate could be reduced further by
increasing the value of n (i.e., performing more audits before
reaching a conclusion).

E. Comparison with Previous Technique

The rest of this section compares degree bounding with the
previously proposed defense by Castro et al. [5] based on a
constrained routing table. We compare both network overhead
and communication delay. In this experiment, the auditing rate
is once every 2 minutes and the churn rate is set to 5% per
hour. In both techniques, an application message is first routed
through the normal PNS-based routing table, which is either
degree-bounded or not. If it fails, the message is then re-sent
using secure routing using the CRT.

1) Network overhead: The goal of this experiment is to
compare the total cost of delivering a given application mes-
sage to the correct destination, including the maintenance
overhead of the overlay. We simulate an application that sends
traffic at a constant rate. We then measure the total number of
message exchanged, which includes the maintenance cost and
the secure routing cost for the two techniques. Without degree
bounding, the maintenance cost of the overlay is the cost of
maintaining two routing tables: one PNS and one CRT. With
degree bounding, there is an additional cost of anonymous
auditing.

Fig. 13 compares the total cost in messages per node
per second of routing the application messages. The figure
shows that the total overhead with auditing is lower, unless an
application rarely sends messages, with an average of less than
4.75 msg/node/min. Also observe that the auditing technique
reduces the reliance on (and thus the overhead of) the secure
routing mechanism by more than half in most cases. In other
words, the cost of auditing pays off, unless the application
message rate is very low.

2) Communication delay: Another metric we used to com-
pare the two schemes is the delay observed by the application
to obtain the correct destination for a given key. Fig. 14
presents the cumulative distribution of delays observed for
the two techniques. The knees in the curves are due to
the fact that in our implementation, secure routing is done
in discrete iterations [36]. The average delay with degree
bounding is 3.05 seconds, while it is 5.4 seconds without
degree bounding. Moreover, more than 90% of messages were
correctly delivered within 5.8 seconds with degree bounding,
while delivering the same fraction without degree bounding
took 16 seconds.

VI. DISCUSSION

A. Limitations of auditing

With the proposed defense, each node independently dis-
covers malicious nodes. An attacker node can remain in the
system after attacking a subset of nodes while appearing to
behave correctly to others. If a correct node, after detecting a
malicious node, could present a verifiable proof of misbehavior
to other correct nodes, then it would be possible to remove
the malicious node from the system as soon as it is detected.
However, generating such proofs could require complex cryp-
tographic operations or Byzantine agreement between correct
nodes, and could also cause problems when the auditing
system has false positives. Our technique, on the other hand,
does not rely on any cryptographic functionality other than
authenticated audit messages and certified node identifiers, and
is robust against auditing errors.

B. Adversary response strategy

In our experiments, a malicious node responds to an anony-
mous challenge with a probability of less than one; if it
responds, it presents a subset of its true neighbor / backpointer
set. An alternative strategy would be to always return a fixed
subset of the maximal allowed size. Unlike the random subset
strategy, such a malicious node’s degree never drops below the
bound, since the nodes included in the fixed subset will never
suspect the malicious node. As a result, malicious nodes can
in some cases achieve a total degree that is 1–2% higher than
with the random strategy. Neither strategy, however, allows
malicious nodes to maintain a degree that is significantly above
the average degree in the overlay.

C. Eclipse attacks on hierarchical overlay systems

Our technique uses deviations in the degree of a given
node as an indication of a possible Eclipse attack. Therefore,

the defense is not directly applicable to systems that use
asymmetry deliberately for performance reasons. For exam-
ple, superpeers in KaZaA aggregate index information and
maintain connections to a large number of ordinary nodes.
Unless such superpeers can be authenticated and implicitly
trusted, they pose a security threat since they are in a position
to eclipse the entire overlay. Securing such heterogeneous p2p
overlays is an interesting research problem and may require a
different set of solutions.

D. Auditing in unstructured overlays

In this paper, we have limited ourselves to defending against
Eclipse attacks in structured overlays. For auditing to work
in unstructured overlays, there needs to be a mechanism
to securely select auditor sets. A straightforward solution is
to maintain an additional structured overlay alongside the
unstructured overlay, solely for the discovery of anonymizer
nodes. The cost of maintaining such a structured overlay
can be made very low, as shown by Castro et al. [4]. As a
related example, modern BitTorrent clients optionally use a
Kademlia [25] structured overlay to maintain a “distributed
tracker”, which locates peers for the otherwise unstructured
exchange of data [39].

E. Localized attacks

Instead of trying to attack all correct nodes in the overlay
simultaneously, an adversary could attempt to mount a local-
ized Eclipse attack. In this attack, malicious nodes attempt to
occupy row zero of the routing tables of only a small set of
victim nodes. Such an attack may not be detected by degree
bounding, because it does not require malicious node to have
a significantly higher-than-average node degree.

However, the colluding nodes have to have low network
latency to the victim nodes. (Recall that row zero is the most
flexible row, and to be included in that row the malicious
nodes have to have sufficiently low delay to the target nodes
under PNS). So, this type of attack is possible only if the
victim nodes are locally surrounded by malicious nodes in
the physical network. Effective defenses against such localized
attacks in an overlay are an open research problem.

VII. RELATED WORK

Sit and Morris [37] consider routing under attack in peer-
to-peer systems. They propose iterative routing, where the
source node repeatedly ask for the next hop of a message,
and contacts the nodes in the path successively. Castro et
al. [5] propose the use of a routing failure test and redundant
routing to improve the chance of successful routing. They also
put strong structural constraints on the neighbor set to thwart
Eclipse attacks.

Despite the structural constraints enforced by the overlay
membership protocol (e.g. prefix match), Castro et al. [6] and
Gummadi et al. [20] show that proximity neighbor selection
can provide good network locality properties in structured
peer-to-peer overlay. However, the strong constraints on the
neighbor sets required to defend against Eclipse attacks leave

no flexibility in neighbor selection and therefore prevent such
optimizations.

Hildrum and Kubiatowicz [21] propose the use of wide
paths, where they add redundancy to the routing tables and use
two nodes for each hop. They show that this provides better
fault-tolerance per redundant overlay node than multiple paths,
while still allowing flexibility in neighbor selection. However,
as noted by Chun et al. [9], the performance improvement
from exploiting network proximity or node capacity comes at
the price of increased vulnerability against targeted attacks.

Recently, Condie et al. [11] proposed a novel defense
against Eclipse attacks based on induced churn. The idea is
to periodically reset the PNS routing table to a constrained
routing table (CRT), rate limit the updates of routing tables,
and periodically change node identifiers to mitigate the effect
of malicious nodes infiltrating the routing tables of correct
nodes. Unlike our design, this approach requires that node
identifiers be changed periodically, which limits its applica-
bility to systems that can deal with the resulting churn.

Other works achieve fault-tolerance through specially de-
signed overlay structures. Saia et al. [34] and Naor and
Wieder [29] also use ideas related to wide paths and recursive
routing. Fiat and Saia [15] consider a butterfly network of
virtual nodes, where fault-tolerance is achieved by having
more than one starting point for each message.

VIII. CONCLUSIONS

This paper has shown that Eclipse attacks on overlays are
a real threat: attackers can disrupt overlay communication by
controlling a large fraction of the neighbors of correct nodes
even when they control only a small fraction of overlay nodes.
Therefore, it is important to defend against Eclipse attacks. We
have proposed a novel defense that prevents Eclipse attacks
using anonymous auditing to bound the degree of overlay
nodes. This defense can be used in homogeneous structured
overlays with moderate churn and, unlike previous defenses
based on a constrained routing table, it permits important
optimizations like proximity neighbor selection. Experimental
results show that the defense can prevent attacks effectively in
a structured overlay. Moreover, for typical systems and for all
but very low application traffic, our defense is more efficient
than previously proposed techniques.

IX. ACKNOWLEDGEMENTS

This work originated during an internship of the first author
at Microsoft Research, Cambridge. We wish to thank Miguel
Castro and Antony Rowstron for their ideas, advice, and
support. This research was supported by Texas ATP (003604-
0079-2001), by NSF (CNS-0509297 and ANI-0225660), and
by Microsoft Research. We thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient
multicast using overlays. In Proceedings of ACM SIGMETRICS, San
Diego, CA, June 2003.

[2] R. Bhagwan, S. Savage, and G. Voelker. Understanding Availability.
In Proceedings of 2th International Workshop on Peer-to-Peer Systems
(IPTPS), Feb. 2003.

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a
serverless distributed file system deployed on an existing set of desktop
PCs. In Proceedings of ACM SIGMETRICS, June 2000.

[4] M. Castro, M. Costa, and A. Rowstron. Performance and dependability
of structured peer-to-peer overlays. In Proceedings of International Con-
ference on Dependable Systems and Networks (DSN 2004), Florence,
Italy, June 2004.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Secure routing for structured peer-to-peer overlay networks. In Proceed-
ings of USENIX Operating System Design and Implementation(OSDI),
Boston, MA, Dec. 2002.

[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor
selection in tree-based structured peer-to-peer overlays. Technical Report
MSR-TR-2003-52, Microsoft Research, June 2003.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceed-
ings of USENIX Operating System Design and Implementation(OSDI),
New Orleans, Louisiana, Feb. 1999.

[8] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang. Early experience with an Internet broadcast system based
on overlay multicast. In Proceedings of USENIX Annual Technical
Conference, Boston, MA, June 2004.

[9] B.-G. Chun, B. Y. Zhao, and J. D. Kubiatowicz. Impact of neighbor
selection on performance and resilience of structured p2p networks.
In Proceedings of 4th International Workshop on Peer-to-Peer Systems
(IPTPS), Ithaca, NY, Feb. 2005.

[10] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, June
2003.

[11] T. Condie, V. Kacholia, S. Sankararaman, J. Hellerstein, and P. Maniatis.
Induced Churn as Shelter from Routing-Table Poisoning. In Proceedings
of Network and Distributed System Security Symposium, San Diego, CA,
Feb. 2006.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. McGraw Hill, 2nd edition edition, 2001.

[13] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of 13th USENIX Security
Symposium, San Diego, CA, Aug. 2004.

[14] J. R. Douceur. The Sybil Attack. In Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, Mar. 2002.

[15] A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable
networks. In Proceedings of Symposium on Discrete Algorithms, San
Francisco, CA, Jan. 2002.

[16] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing
content publication with Coral. In Proceedings of Networked System
Design and Implementation (NSDI), San Francisco, CA, Mar. 2004.

[17] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Tarzan: A peer-to-
peer anonymizing network layer. In Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, Mar. 2002.

[18] The Gnutella protocol specification. http://dss.clip2.com/
GnutellaProtocol04.pdf.

[19] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating Latency
between Arbitrary Internet End Hosts. In Proceedings of ACM Internet
Measurement Workshop, Marseille, France, Nov. 2002.

[20] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of DHT routing geometry on resilience and
proximity. In Proceedings of ACM SIGCOMM, Karlsruhe, Germany,
Aug. 2003.

[21] K. Hildrum and J. Kubiatowicz. Asymptotically efficient approaches
to fault-tolerance in peer-to-peer networks. In Proceedings of 17th
International Symposium on Distributed Computing, Sorrento, Italy, Oct.
2003.

[22] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole. Overcast: Reliable multicasting with an overlay network. In
Proceedings of USENIX Operating System Design and Implementation
(OSDI), San Diego, CA, 2000.

[23] KaZaA. http://www.kazaa.com/.
[24] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings

of Annual ACM Symposium on Theory of Computing (STOC), El Paso,
TX, May 1997.

[25] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. In Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, Mar. 2002.

[26] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating
key management from file system security. In Proceedings of Symposium
on Operating System Principles (SOSP), Charleston, SC, Dec. 1999.

[27] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach.
AP3: Anonymization of group communication. In Proceedings of ACM
SIGOPS European Workshop, Leuven, Belgium, Sept. 2004.

[28] MSPastry. http://research.microsoft.com/˜antr/
Pastry/.

[29] M. Naor and U. Wieder. A simple fault tolerant distributed hash table.
In Proceedings of 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, CA, Feb. 2003.

[30] OverNet. http://www.overnet.com/.
[31] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-

able content-addressable network. In Proceedings of ACM SIGCOMM,
San Diego, CA, Aug. 2001.

[32] M. K. Reiter and A. D. Rubin. Anonymous Web transactions with
Crowds. Communications of the ACM, 42(2):32–48, Feb. 1999.

[33] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of IFIP/ACM Middleware, Heidelberg, Germany, Nov. 2001.

[34] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically
fault-tolerant content addressable networks. In Proceedings of 1st
International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge,
MA, Mar. 2002.

[35] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending
against Eclipse attacks in overlay networks. In Proceedings of SIGOPS
European Workshop, Leuven, Belgium, Sept. 2004.

[36] A. Singh, T.-W. J. Ngan, P. Druschel, and D. S. Wallach. Implementation
and evaluation of secure routing primitives. Technical Report TR05-459,
Rice University, Jan. 2006.

[37] E. Sit and R. Morris. Security considerations for peer-to-peer distributed
hash tables. In Proceedings of 1st International Workshop on Peer-to-
Peer Systems (IPTPS), Cambridge, Massachusetts, Mar. 2002.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proceedings of ACM SIGCOMM, San Diego, CA, Aug. 2001.

[39] Trackerless in BitTorrent. http://www.bittorrent.com/
trackerless.html.

[40] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and
security in the CoDeeN content distribution network. In Proceedings of
USENIX Annual Technical Conference, Boston, MA, June 2004.

[41] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In Proceedings of IEEE INFOCOM, San Francisco, CA,
Mar. 1996.

[42] X. Zhang, J. Liu, B. Li, and P. Yum. DONet: A data-driven overlay
network for efficient live media streaming. In Proceedings of IEEE
INFOCOM, Miami, FL, Mar. 2005.

[43] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing. Technical
Report UCB-CSD-01-1141, U. C. Berkeley, Apr. 2001.

[44] L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa, and S. Chien.
A first look at peer-to-peer worms: Threats and defenses. In Proceedings
of 4th International Workshop on Peer-to-Peer Systems (IPTPS), Cornell,
NY, Feb. 2005.

[45] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cashmere: Resilient
anonymous routing. In Proceedings of Networked System Design and
Implementation (NSDI), Boston, MA, May 2005.

