
Clash Attacks and the STAR-Vote System

Olivier Pereira1,2(B) and Dan S. Wallach2

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be
2 Rice University, Houston, USA

dwallach@cs.rice.edu

Abstract. STAR-Vote is an end-to-end cryptographic voting system
that produces both plaintext paper ballots and encrypted electronic
records of each ballot. We describe how clash attacks against STAR-Vote
could weaken its security guarantees: corrupt voting terminals could iden-
tify voters with identical ballot preferences and print identical receipts
for them, while generating electronic ballot ciphertexts for other candi-
dates. Each voter would then be able to “verify” their ballot on the public
bulletin board, but the electronic tally would include alternative cipher-
texts corresponding to the duplicate voters. We describe how this threat
can be exploited and mitigated with existing STAR-Vote mechanisms,
including STAR-Vote’s use of Benaloh challenges and a cryptographic
hash chain. We also describe how this threat can be mitigated through
statistical sampling of the printed paper ballots as an extension to the
risk-limiting audits that STAR-Vote already requires.

1 Introduction

Clash attacks, a term coined by Küsters, Truderung and Vogt [12], are a fam-
ily of attacks on verifiable voting systems in which corrupted voting machines
manage to provide the same vote receipt to multiple voters, so that the veri-
fication procedure succeeds for each voter individually, while corrupted voting
machines are able to cast whatever vote they like for each of the voters who were
given a duplicate receipt. Examples of clash attacks have been proposed against
ThreeBallot [15], Wombat [3], and a variant of the Helios voting system [1].

Clash attacks happen when voting machines can prepare ballots in such a
way that a voter cannot verify that they contain an element that is unique to
them. This is the case for STAR-Vote [2], since a voter will not have seen any
other ballots, and thus won’t know that ballot ID numbers are reused.

How would a clash attack on STAR-Vote appear in practice? Under the
assumption that the software running inside one or more STAR-Vote voting sta-
tions was corrupt, the voting station could detect when a voter casts an identical
ballot to a previous voter. At this point, the voting station would print a paper
ballot corresponding to the previous voter while potentially having the freedom
to generate a ciphertext ballot completely unrelated to the voter’s intent.

Each of these voters now has a receipt that includes the hash of a completely
valid vote for exactly each voter’s intent. Unfortunately, the two receipts are
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 228–247, 2017.
DOI: 10.1007/978-3-319-68687-5 14



Clash Attacks and the STAR-Vote System 229

pointing to same exact ballot, which neither voter would necessarily discover,
while meanwhile a fraudulent ballot would be counted as part of the electronic
tally. STAR-Vote provides evidence to auditors both while the election is ongoing
and after it has completed that could potentially detect clash attacks like this,
but suitable procedures were not part of the original STAR-Vote design. In this
paper, we describe several variants on clash attacks and present a number of
countermeasures to discover or rule out the presence of clash attacks.

2 STAR-Vote

We describe the key elements of STAR-Vote, omitting in various places details
that are not relevant for our analysis in this paper.

Entities. Running a STAR-Vote election requires the participation of four
groups of persons: (1) Voters, who submit votes and are invited to participate
in various optional auditing operations as part of the end-to-end (E2E) verifi-
able component of STAR-Vote; (2) Internal auditors, who run the risk limiting
audit (RLA) part of STAR-Vote; (3) Trustees, who are responsible of holding
and using the decryption keys responsible for the confidentiality of the votes;
and (4) Election managers, who are responsible of setting-up and supervise the
election operations.

As part of their role, the election managers need to setup in each voting
station a locally networked set of devices: (1) Voting stations, to be used by
the voters to produce ballots, under electronic and paper format; (2) Ballot
boxes that receive the paper ballots; (3) a Ballot control station (BCS) that
orchestrates the various devices in a voting precinct.

Setup. Before an election starts, the trustees jointly produce an election public
key kT for a threshold commitment consistent encryption scheme [9], and two
unique hash chain seeds are chosen: zp0 and zi0, one for the public audit chain,
and one for the internal audit chain. The internal audit chain logs, and replicates
on all machines connected to the local network, all the events happening in each
voting station, ballot box and on the BCS, with a fine-grained modularity, with
the intent of collecting as much evidence as possible in case of a disaster (while
making sure to encrypt all potentially sensitive data). The public audit chain
logs all the elements that are needed in order to run the end-to-end verification of
the election, and is designed so that it can be used and verified while only using
data that hide the content of the ballots in an information theoretic sense (in
particular, this hash chain does not include any encrypted vote). Every time a
ballot is printed, the current state of the public chain is printed on the take-home
receipt prepared for the voter.

The BCS also selects a public key kC for an internal use and, through the
BCS, all voting stations and ballot boxes are initialized with kT , kC , zp0, zi0.
The final step of the setup is to initialize both chains with a unique identifier of
the precinct in which the machines are located.



230 O. Pereira and D.S. Wallach

Casting a Ballot. When signing-in, a voter receives a unique token t associated
to his ballot style bst . When entering the booth, the voter enters his token and
the voting station displays an empty ballot of style bst , so that the voter can
make his selection v.

The voting station processes these choices as follows, based on the current
values zii−1 and zpi−1 of the hash chains:

1. It broadcasts the information that the token t introduced by the user is con-
sumed.

2. It computes the number of pages that the printed ballot will take and, for
each page, selects an unpredictable ballot page identifier bpid . This identifier
is not intended to become public or listed anywhere in digital form, for vote
privacy reasons that will be explained later, and is used as part of the RLA.

3. It computes an encryption of the vote cv = EnckT
(v‖zii−1) and a vector cbpid

of ciphertexts that encrypt H(bpid‖ri) with kT for each race ri printed on
page bpid of the ballot.

4. It selects a unique ballot casting identifier bcid and computes cC
bcid =

EnckC
(bcid), which will be used by the BCS to detect when a paper ballot

corresponding to a given electronic record is cast in a ballot box.
5. It broadcasts a message containing the time t, bst , cC

bcid , cbpid , cv and com-
putes a hash zii := H(zii−1‖t‖bst‖cC

bcid‖cbpid‖cv) for inclusion in the internal
audit trail.

6. It prints each page of the ballot, the last page being made of two pieces that
can be easily taken apart. The first part contains a human readable summary
of v and a machine readable version of bpid , bcid and the ballot style bst . The
second part is a take home receipt that contains a human readable version of
the election description, the time t and zpi := H(zpi−1‖bst‖t‖CExt(cv)). The
CExt() function extracts, from a ciphertext, a component that is a perfectly
hiding commitment on the encrypted plaintext. This commitment is expected
to include ZK proofs of knowledge on an opening to a valid vote.

When receiving this, the controller decrypts cC
bcid and appends the pair (bcid , zpi)

into a local table, until a ballot with that bcid is scanned by a ballot box.

Challenging a Voting Station. When a voter, or a local auditor, wants to
challenge the voting station, she brings the printed ballot to a pollworker. The
pollworker: (1) stamps the ballot to mark it as spoiled; (2) scans the bcid so that
the ballot is recorded in the internal and external hash chains to be treated as
part of the spoiled ballot box.

Later, at tallying time, the spoiled ballots are all decrypted (or their random-
ness is disclosed by the voting station that produced them) and they are posted
on the election bulletin board for public verification (including by the voter).

Casting a Ballot. If the voter is happy with the ballot printed by the voting
station, it brings it to a ballot box. There, the two pieces of the last ballot page
are split, the take-home receipt is kept by the voter, and all the pages are put



Clash Attacks and the STAR-Vote System 231

into the ballot box, which scans the bcid printed on each page, and both hash
chains are then appended with the information that these pages have been cast
and that the corresponding encrypted votes need to be included in the tally. If
the scanned bcid is unknown to the BCS, the ballot is rejected by the ballot box
and an error signal is triggered.

Electronic Tallying. At the end of the day, all the encrypted votes cv’s that
have been marked as to be included for the tally are checked for validity and
aggregated into an encryption cv of the tally. This tally is then jointly decrypted
by the trustees and published. (This is done as needed for the different races,
ballot styles, . . . )

Then, CExt() is applied to all the cv’s, the result is published with all the
information needed to check the zp hash chain, and the trustees publish a proof
that the tally is consistent with zp. Eventually, the trustees jointly and verifiably
decrypt and publish the content of the spoiled ballots.

Audit of the Electronic Process. Anyone can perform a number of verifi-
cations from the published information: (1) check the validity of the published
CExt(cv)’s; (2) check that the tally is consistent with the published CExt(cv)’s;
(3) check the validity of the zp hash chain; (4) check the number of ballots
against the number of voters if the information is public; (5) check that the
scanned spoiled ballots were correctly built.

Furthermore, voters are invited to check whether the zpi value printed on
their receipt appears in the list of ballots included in the tally and, if they spoiled
a ballot, to check that their spoiled ballot really appears in the list of spoiled
ballots. If any of these verification steps fails, complaints should be filed.

Audit of the Paper Ballots. After having checked the validity of all the
encrypted votes, the trustees supervise (or perform), contest by contest, a shuffle
of all (cbpid , cv) pairs corresponding to valid ballots (after splitting the cv’s into
race components), yielding a list of (c′

bpid , c′
v) pairs. This shuffle needs to be

made verifiable, at least with respect to the privacy properties that it offers,
either by using a fully verifiable mix-net [11,17], or possibly by using a lighter
solution like a marked mix-net [13].

After completion of this shuffle, the trustees decrypt all c′
v and c′

bpid tuples.
This decryption yields, for each race ri, a list that contains H(bpid‖ri) and the
cleartext choices that should be those on the ballot page bpid for race ri. This
table is made available to all the people who are taking part to the risk-limiting
audit. The use of the hash function and high entropy bpid ’s guarantees that
noone is able to decide which race results belong to the same ballot page, which
helps defeating pattern voting attacks.

From this table, a ballot-comparison risk limiting audit (RLA) can take place.
The gist of the process is to start by verifying that all the hashes in the above-
computed table are unique, that the number of such hashes is consistent with the



232 O. Pereira and D.S. Wallach

number of ballots and their ballot styles as reported for the ballot boxes, then
repeat, a number of times that is a function of the election margins computed
from the results of the electronic tally, a process that consists in: (1) selecting a
random ballot page (2) read its bpid and search for H(bpid‖ri) values in the table
for all races ri present on the ballot; (3) compare the corresponding plaintexts
to the paper ballot.

3 Clash Attacks on STAR-Vote

We now present a threat model for how a clash attacker might be able to operate
and discuss how clash attacks might be detected.

3.1 Threat Model

Clash attacks require a fairly sophisticated attacker, capable of running malicious
code on every computer in a given STAR-Vote precinct: the controller, every ballot
terminal, and the ballot box as well. Under normal circumstances, we might hope
that this is not feasible, but certainly many commercial voting systems have suf-
fered from vulnerabilities that allowed for the viral spread of malware (see, e.g., the
results of California’s “Top to Bottom Review” [7] and Ohio’s “EVEREST” [14]
studies in 2007). Consequently, under such an attack, many of STAR-Vote’s secu-
rity protections become weaker, but others remain strong.

– STAR-Vote specifies human-readable paper ballots, printed by its voting sta-
tions, and deposited in a ballot box. It remains possible to ignore the elec-
tronic results entirely and tally the paper ballots independently, whether by
hand or by scanning into another computer.

– STAR-Vote specifies the use of Benaloh challenges [5,6] to catch a voting
machine in the act if it tries to substitute a ciphertext that doesn’t correspond
to the voter’s intent, as printed on the plaintext ballot. Our attacker will try
to tamper with unchallenged ballots, and will try to take advantage of the
end-of-day distribution of STAR-Vote’s encrypted ballot records.

– STAR-Vote specifies a SOBA risk-limiting audit [4], which selects electronic
ballots at random and requires the audit to identify the corresponding paper
ballots. If this audit selects a printed ballot for which there is no corresponding
electronic record, then the audit will discover this absence.

– STAR-Vote encrypted ballots are constructed from homomorphically
encrypted counters which include non-interactive zero knowledge (NIZK)
proofs that they are well-formed (e.g., no counter indicates anything other
than one or zero votes for a given candidate). Our attacker does not have the
power to forge these proofs.

– STAR-Vote specifies the use of a cryptographic hash chain to preserve the
integrity of the encrypted ballots. Every voter is also given a printed receipt
containing the hash of the record of their vote, which in turn includes the hash
of the previous record. While we cannot guarantee that voters will verify every



Clash Attacks and the STAR-Vote System 233

single receipt, any voter receipt protects the integrity of every vote cast before
it in the same precinct. Our attacker does not have the power to find hash
collisions and thus cannot create alternative histories consistent with each
voter’s hash.

Consequently, it’s within the scope of our threat model for a STAR-Vote
voting terminal, when given a voter who expresses selections identical with a
previous voter, to print a duplicate copy of the prior voter’s ballot and receipt,
while publishing an encrypted vote for other candidates STAR-Vote’s hash chain.
This paper analyzes the ways in which such a powerful adversary might attempt
to operate and how it might later be discovered.

Our threat model does not empower an attacker to tamper with every com-
puter in the world, merely every computer in the control of a given local elec-
tion authority. External computers might still be considered trustworthy. As an
example, a smartphone app that scans ballot receipts and posts them to an inde-
pendent cloud service for analysis could be considered beyond the reach of our
attacker.

3.2 How Could This Work on STAR-Vote?

A clash attack on STAR-Vote could happen in different ways, based on the
following approach:

1. Alice comes and expresses a vote v, encrypted as cA
v , and included in the hash

chain, leading to a public hash zpA, which is printed on the ballot with v,
bpid and bcid . The paper ballot is split and cast.

2. Bob comes and happens to express the same vote v, something that is noticed
by the malicious voting station. The voting station then produces a ciphertext
cB
v , encrypting a different vote v∗ (of the same style), and encrypts bcid∗’s

and bpid∗.
3. When printing Bob’s paper ballot, the voting station prints a ballot with v

written on it, the hash zpA that was printed for Alice, and bcid∗’s and bpid∗.

The expectation is that, when Alice and Bob read their paper ballot, they
see their vote intent correctly reflected and, at the end of the day, they will both
find a ballot containing the expected hash in the public hash chain: they will
both look at the same place. However, the cheating machines manage to replace
Bob’s vote v with a different vote, while not modifying the total number of votes.

Several variants of this attack can be considered, depending on whether
bcid = bcid∗ and bpid = bpid∗. Various strategies can also be adopted when
voting stations want to scale the attack: they can create many pairs of clashing
ballots, each pair having a distinct hash, or create one large clash, in which many
ballots would have the same hash, or adopt any strategy in between.

3.3 Can We Detect It?

The high-level description of STAR-Vote, as reflected above and in the STAR-
Vote documentation [2,16], does not seem to provide obvious ways of spotting



234 O. Pereira and D.S. Wallach

the attack that we just described. We split our analysis according to the two parts
of the verification of a STAR-Vote election: the end-to-end electronic verification
part, and the RLA part.

End-to-end Verification. On the side of the electronic process, all the manda-
tory verification steps succeed: the trustees tally the expected number of ballots
with the expected races, the hash chains looks legitimate, and the voters find
their zpi on the election bulletin board. However, if the verification is pushed
further and ballots are challenged, then discrepancies can be detected.

If Bob decides to challenge its voting station, the voting station can offer a
decryption of cA

v , which will be consistent with the printed voter intent and be
included in the hash chains. Inspections can also be made regarding the bcid
and bpid (though they do not seem to be explicitly prescribed in the original
documentation).

The internal hash chain contains an encryption cC
bcid of the ballot casting

identifier bcid that is printed on the ballot. Here, the attacker has two options:

1. It can generate a fresh bcid for Bob’s ballot. In this case, the printed ballots
will have distinct bcid ’s, as expected, and a possibly honest ballot box or BCS
has no way of detecting a potential duplicate. But, if Bob’s ballot is spoiled,
there will be a discrepancy between the bcid printed on the ballot, and the
one pointed by the hash printed on the receipt, which will be Alice’s bcid . So,
if the voting station bets that Bob’s ballot will not be spoiled, no evidence is
left (at the bcid level, at least).

2. It can resuse Alice’s bcid on Bob’s ballot. In this case, the decryption of the
encrypted bcid pointed by the hash printed on the receipt will be consistent
with the bcid printed on the paper ballot. But the ballot box will contain
two ballots with identical bcid ’s. So, by adopting this strategy, the voting
station can pass an inspection of the bcid at spoiling time, but it will leave
(potentially hard to find) evidences in the ballot box. Also, if the BCS happens
to be honest, it may happen that it notices the same bcid coming twice.

With the current description of STAR-Vote, and given the above threat model,
the second strategy seems likely to be a successful one, at the electronic level at
least.

A deeper inspection of the hash chains will show other discrepancies, though:
every time a ballot is cast or spoiled, this event must be recorded in both
hash chains. There are again two attack strategies that can be followed here,
as depicted in Figs. 1 and 2.

1. As depicted in Fig. 1, the BCS may mark Alice’s ballot as cast in both chains
as soon as it is notified of Alice’s dropping of her ballot in the ballot box. If
Bob cast’s his ballot, then the BCS marks the malicious ciphertexts prepared
on Bob’s behave as cast too, and nothing is visible. However, if Bob decides to
spoil his ballot, then the machines are facing a difficulty: the public hash chain
should have Alice’s ballot marked as spoiled, but this creates an inconsistency



Clash Attacks and the STAR-Vote System 235

in the chain since this ballot has already been marked as cast. So, a public
evidence is left, and this one is easy to notice.

2. As depicted in Fig. 2, the BCS can record that Alice cast her ballot, but not
append that information in the hash chains, and wait to see what Bob will
do with his ballot. Now, if Bob casts or spoils his ballot, the BCS can simply
append that instruction in the chain (and always mark Bob’s ciphertext as
cast, in order to preserve a consitency in the number of ballots cast and
spoiled). However, if Bob spoils his ballot, Alice’s ballot will be shown as
spoiled on the bulletin board, and Alice may file on complaint on the ground
that she cast her ballot.

Still, this last strategy seems to be the “safest” for malicious machines: a dis-
crepancy will only become visible if Bob challenges his ballot and if Alice checks
her ballot on the election board, notices the problem, and files a complaint.

To conclude, it appears that all clash attack variants can be detected by the
audit trail left by the end-to-end verifiable part of STAR-Vote. Our analysis sheds
a new light on the importance of the “cast” and “spoil” marks that are included
in the hash chains, and stresses that the system should provide easy mechanisms
to detect that no single ballot appears as cast or spoiled in the bulletin board. (If
the cast and spoiled ballots appear separately, as it is done in many end-to-end
verifiable voting system prototypes, this may be easily overlooked.)

Taking a look back, a countermeasure against clash attacks proposed by
Küsters et al. [12] consists in asking voters to type a random number and to
print that number on the receipt, for verification. This would be feasible with
STAR-Vote and would render duplicate ballots very difficult to produce, as dupli-
cates could only happen between voters with identical vote intents and picking
choosing the same random number. However, we would prefer to avoid extra
interaction with the user. As a variant, we imagine that receipts could add a
sequence number, synchronized across every voting station, printed in large type
so it’s visible to poll workers and watchers. Any repeats of recent numbers or
incidences of numbers wildly out of sequence would be suspicious.

zp Machines Voters

v
cAv

zpA

cast
cast cAv

v
c∗
v

zpA

spoil
spoil cAv ?

A

B

ti
m

e

Fig. 1. Clash attack with immediate
recording of ballot casting.

zp Machines Voters

v
cAv

zpA

cast
v

c∗
v

zpA

cast/spoil
cast/spoil cAv

A

B

Fig. 2. Clash attack with recording of
cast ballots delayed.



236 O. Pereira and D.S. Wallach

Risk Limiting Audit. The risk limiting audit component of STAR-Vote is
expected to offer confidence in the election results, independently of the effec-
tiveness of the end-to-end verifiable component. The inputs of the RLA are:

1. Ballot manifests, that list all ballot boxes, as well as the number of ballots
contained in each box, and the style of these ballots.

2. An electronic vote record, that contains, race by race, a list of hashes of the
form H(bpid‖ri), and associated to each of these hashes, the choices made
for race ri that must be printed on the ballot page bpid .

3. Paper ballots in boxes, as per the ballot manifests.

For the sake of our discussion, we assume that the manifests are correct, and
that the election outcome resulting from the electronic record is consistent with
the one announced from the end-to-end verifiable tally.

The bcid ’s are not part of the electronic records, and are therefore not used
in the RLA. The bpid ’s, though, offer the crucial link that is expected to define
the bijection between paper ballots and electronic records. Again, there are two
possible strategies for malicious machines running a clash attack:

1. A malicious voting station can print different bpid ’s on the ballots with clash-
ing receipts. In this case, if Bob’s ballot is selected as part of the RLA, the
bpid printed there won’t point to the electronic record of Alice’s ballot, which
is precisely the kind of discrepancy that the RLA is designed to efficiently
detect.

2. A malicious voting station can print identical bpid ’s on Alice’s and Bob’s
ballots. Assuming that both ballots are cast, the boxes now contains two
ballots with the same bpid . And, even if one of the two ballots is picked as
part of the RLA, no discrepancy will appear: Alice’s electronic record will be
picked in both cases, and will match the paper ballot content.

This second strategy seems to be a successful one: the RLA assumes that
there is a bijection between the paper and electronic ballots, and does not
attempt at verifying that there is a bijection indeed. In order to solve this issue,
we investigate the possibility of a bijection audit.

4 Bijection Audit

We want to determine whether there is a bijection (i.e., a one-to-one correspon-
dence) from the paper ballots to the electronic ballots. Paper ballots that do
not have a match in the electronic records are easy to detect. However, bijection
failures resulting from clashing ballots can only be detected if we pick duplicate
paper ballots. Of course, as described earlier, two voters might well have iden-
tical voting selections, but every ballot page is supposed to have a unique bpid ,
which is a randomly selected 128-bit number, and thus highly unlikely to repeat
(from the birthday paradox, this will only become likeley after casting around
264 ballots in the same box). The discovery of two identical bpid numbers on two
separate pages would imply election fraud. For the remainder of this section, we
will assume that we want an auditing procedure that’s completely independent



Clash Attacks and the STAR-Vote System 237

of the end-to-end verifiable side of STAR-Vote. We don’t want to rely on the
hash chains, the cryptographic receipts, or the Benaloh challenges. We wish to
design a process for validating the bijection by considering the paper ballots
and the cleartext electronic vote records, alone. We assume that the shuffle and
audit data are kept at the precinct level, so that inter-precinct clashes would be
equivalent to missing ballots.

4.1 Why Not Sort?

A seemingly attractive solution is to sort the ballots by bpid , after which detect-
ing duplicates would be a simple linear scan. The problem is that we’re dealing
with as many as N = 1000 paper ballots in a given precinct. We need a com-
pletely manual process that a small set of poll workers can accomplish quickly.
Manual sorting doesn’t scale well.

A merge sort, wherein the pile of ballots is partitioned into smaller piles, each
of which is sorted, and then the sorted piles are merged, might seem attractive.
The initial partition happens quickly, giving a hypothetical sixteen poll workers
1/16 of the ballots. If our workers sorted their initial piles using an insertion
sort, taking 10 s per ballot, then the initial phase would only take ten minutes.
The merging phase, however, would be more cumbersome. If we followed a tree-
like binary merging process, each merge phase must consider twice as many
ballots and would use half as many poll workers. Again, assuming ten seconds
per ballot, the first phase would reduce 16 to 8 piles in 21 min. The second phase
would reduce 8 to 4 piles in 42 min, then 4 to 2 piles in 84 min, with the final
merge taking 168 min. The whole process totals up to almost 5.5 h. Even if our
poll workers can insert a ballot every 5 s instead of 10 s, this process might still
take 3 h.

Of course, there are many variations, but they all suffer from expensive
phases. A bucket sort, for example, requires a linear scan to begin, partitioning
the ballots based on their prefixes, but it makes the merging process trivial, since
the sorted buckets can simply be stacked rather than painstakingly merged.

If we lived in the 1960’s, we might suggest the use of a sorting machine,
such as were used with punchcard decks [8]. Alas, such devices now only exist in
museums, with any modern need to sort pieces of paper being handled digitally
after the use of a high-speed scanner. We need a procedure that can be accom-
plished without the use of computers, and this procedure must only take a few
minutes, not hours. In return, we’re willing to trade off a guarantee of finding a
duplicate for a chosen probability of that detection.

4.2 Audit Methodology

The SOBA risk limiting audit [4] is designed to provide a required degree of
confidence in its outcome, regardless of the number of ballots. We will now specify
a simple sampling procedure that can audit a pile of ballots for uniqueness of
the bpid numbers, assuming that the bpid ’s are actually random and that at
most one duplicate is made of any given bpid . (We will relax this assumption in
Sect. 4.3.).



238 O. Pereira and D.S. Wallach

Variable Definition Example value

m margin of victory (fraction) 0.05

d duplicated ballots (fraction) 0.03

n number of ballots sampled 100

N total number of ballots in the box 1000

Pd probability of discovering duplicates 0.95

T number of trials (e.g., precincts sampled) 5

Subsampling the Ballots. We will start with N ballots (perhaps as many as
1000 in a box) and need an efficient procedure for subsampling a more reasonable
number n (perhaps 50, perhaps 100), with the added concern that our adversary
will be aware of our subsampling methodology. We imagine that our poll workers
can roll dice to select specific digits for use in a search. (Since digits are printed
in hexadecimal, a 16-sided dice would be most convenient.) We have a variety
of options for how to proceed. For example, to sample 1

16 · 1
16 = 1

256 , we can roll
dice to select specific values for the first and second digit of the bpid . To sample
1

128 of the ballots, we could pick two possible values for one of the digits (i.e.,
1
16 · 2

16 = 1
128 ).

In this fashion, we can design samples to get close to any ratio that we might
want. For example, if we truly want to sample exactly 10% of the ballots, we
might select three possible values for the first digit and nine possible values for
the second digit, yielding roughly 3

16 · 9
16 = 0.1055. So long as the resulting

fraction is slightly larger than the target ratio of n
N , we will have the number

of samples that we want. It doesn’t matter if the adversary knows the digit
locations we will consider (e.g., most-significant vs. least-significant). If there
exists duplicate bpid numbers anywhere in the pile, then they have a chance
of being selected by the sample (i.e., we are not making n random draws from
the pile of ballots; we are making queries against bpid digits). Conversely, and
anticipating on our further discussion, it’s important that we roll dice for the
specific values of the digits. Otherwise, the adversary could guarantee that the
bpid values on duplicate ballots were never selected for an audit.

Discovering Duplicates. Once we have our sample of ballots, we then must
discover duplicates in the sample. If the sample is small enough, sorting is going
to be much more feasible. For example, ballots could be split into piles based on
the most-significant-digit of bpid and then each pile could be sorted by hand.
This process would take minutes, not hours. But what are the odds of discovering
a duplicate? We can solve for the probability of discovery and then rearrange
the equation to solve for the fraction f of the bpid ’s to be sampled. The first
line below expresses that the probability of detection Pd equals one minus the
probability that all Nd bpid ’s which are duplicates are not picked, which will
happen with probability 1 − f every time.



Clash Attacks and the STAR-Vote System 239

Pd = 1 − (1 − f)Nd

f = 1 − (1 − Pd)1/Nd

Of these, it’s helpful to use the equation for f and plug in values we might
expect for d, Pd and N . For example, if d = 0.03, N = 1000, and we want
Pd = 0.95, then n = 95. With a sample of 95 ballots, we can thus have a 95%
chance of discovering a duplicate. Here are some other solutions:

d Pd f n

0.010 0.95 0.259 259

0.030 0.95 0.095 95

0.050 0.95 0.058 58

0.100 0.95 0.03 30

If the duplication rate d is high, we can detect it with a fairly small number
of samples n and a very high probability of success Pd. However, we can see that
we need more than 250 samples when d is only 1%. So when might poll workers
be required to conduct such a large sample? Consider that every process like
this occurs after the election is complete, which means that we know the margin
of victory m. We can simply specify that d = m, i.e., we’re looking for enough
ballot duplication to change the election outcome. Consequently, as the margin
of victory shrinks, only then do we need to sample a large number of ballots.

Repeated Trials. Consider what might happen if we repeated the above
process across multiple precincts, selected at random. It’s entirely possible, from
the attacker’s perspective, that they could just as well attack one precinct or
attack every precinct, so as an auditor, we should look at more precincts. Or,
if we simply want to avoid the non-linear costs of manually sorting large num-
bers of paper ballots, we could conduct multiple trials in the same precinct. The
resulting AggregatePd = 1 − (1 − Pd)T , simply multiplying together the odds
that the attacker gets away with it in each trial.

d Pd n T AggregatePd

0.010 0.60 88 1 0.60

0.005 0.40 97 1 0.40

0.010 0.60 88 5 0.99

0.010 0.50 67 5 0.97

0.005 0.40 97 5 0.92

Now, even with very small duplicate rates like d = 0.01, we can conduct five
trials, perhaps across five precincts or perhaps within the same precinct, of only



240 O. Pereira and D.S. Wallach

67 ballots per trial. While each trial has only a 50% chance of discovering a
duplicate, all five together have a 97% chance. (Sorting 67 ballots, five times, is
significantly easier than sorting 259 ballots, even once.).

4.3 Non-random Duplicates

Next, we will consider the possibility that an attacker arranges for every dupli-
cate ballot in the box to share the same bpid . In this case, the odds of detection
are only the odds that the dice match the attacker’s bpid . If we match, then we
get every duplicate. If we fail to match, then we get no duplicates.

Furthermore, in our threat model, the attacker can control the bpid number
distributions, making sure that any biases introduced through the duplicates
is evened out over the other ballots. For example, if the duplicates were more
likely to have a “3” in the first digit, the attacker could arrange for other ballots
to never start with a “3”, and could go further and arrange for “9” to occur
most often. Consequently, we cannot rely on relatively simple procedures, like
splitting on digits and counting each pile, as a statistic to detect duplicates.

Instead, we will propose a sampling methodology with a relatively low success
rate, in any given precinct, but which will gain its power in aggregate when
repeated across many precincts. We will only assume that we can make a random
draw of n ballots from any given ballot box. Rather than this process involving
dice, we instead imagine a process similar to “cutting” a deck of cards, whereby
each draw involves splitting a pile of ballots and selecting the next ballot from
the location of the cut.

Given this sample, we can then manually sort it and look for duplicates. If n
is, for example, 100 ballots, this process will only take a few minutes. The odds
of successfully detecting duplicates are a function of the size of the sample n and
of the fraction of duplicates d. We compute this by measuring the probability
of selecting only from the non-duplicates and the probability of selecting exactly
one of the duplicates: Pd = 1 − (1 − d)n − n · (1 − d)n−1 · d.

If d = 0.01 and n = 100, then Pd is approximately 26%1. If this is repeated
for T trials, we can compute AggregatePd in the same fashion. For example, with
T = 10 trials, we again can find a precinct with duplicates with a 95% proba-
bility. This represents significantly more work than we needed in the case with
randomly distributed duplicates, but it’s still feasible to conduct this without
requiring hours of effort.

(We note that sampling without replacement would be preferable, both
because it would slightly increase the odds of success, and because we wish
to physically demonstrate the existence two separate ballots with the same bpid .
The equation above, however, assumes sampling with replacement, which is only
an approximation that becomes less accurate when N gets smaller. An accurate
combinatorial expression of Pd is not particularly necessary for our discussion.).

1 If we select values for n and d where n · d = 1, then the expression for Pd tends to
1 − 2/e.



Clash Attacks and the STAR-Vote System 241

4.4 Non-random Precinct Corruption

We first considered uniformly distributed duplicates within a precinct. We next
considered how every duplicate in a precinct could share the same bpid , making
them harder to find via sampling. Here, We apply the same consideration to
the election as a whole. We now assume that our attacker wants to do all of the
corruption in a very small number of precincts rather than spreading it uniformly
out across every precinct.

Let’s revisit Pd and AggregatePd from above. In the limiting case where every
ballot in a precinct is a duplicate, then any audit that touches more than one
ballot will detect the duplication. This means that Pd is either trivially 1 or 0. A
similarly process we can conduct in every precinct might be to draw a handful
of ballots and eyeball them for duplicate bpid numbers. This would guarantee
the detection of a precinct with 100% duplicates.

4.5 Linear Auditing with Buckets

The subsampling methods described above all begin with a linear pass to select
ballots having IDs with a desired pattern. This section presents an alternative
method for detecting duplicates that requires only two linear passes over the
ballots.

This method requires some basic record-keeping that can be accomplished
with pencil and paper. In the first pass, we will be mapping from ballot IDs to
buckets. Let’s say we use the first two hex digits of the bpid , which we can map
to a 16× 16 grid, pre-printed on a single sheet of paper; a poll worker would then
write down the third (and maybe fourth) hex digit in the bucket. At the end of
the pass, the buckets are searched for duplicates. If the number of ballots and
buckets are well chosen, the number of ballots per bucket will be small, and this
search will be easy. If a collision is found, the bucket is marked as suspicious:
this may come from a collision on the first hex digits that will stop after a few
more digits, or be the result of a clash. The purpose of the second pass is to
inspect the suspicious buckets: during that pass, the ballots belonging to these
buckets are further inspected, in order to make sure that no clash happens.

An exact estimation of the expected number of ballots per buckets is chal-
lenging to express: these are non-trivial variations around the “birthday para-
dox” problem. However, fairly accurate approximations based on the Poisson
distribution can be obtained (see, e.g., DasGupta [10]).

Let us say that we want to estimate the probability P (b, n, k,m) that, in a
setting with b buckets and n ballots, there are k buckets containing m ballots.
We first compute the probability that m ballots with randomly selected bpid
would go into the same bucket: that probability is b1−m. Now, we consider the
process of selecting n ballots as actually picking

(
n
m

)
m-tuples of ballots. This

is of course an approximation, since the independence between these m-tuples
is not obtained when we just have a pile of n ballots, but it turns out that it is
accurate enough for our purpose (it over-estimates the number of collisions, while
being asymptotically exact). The last step consists in estimating the probability



242 O. Pereira and D.S. Wallach

Table 1. Estimation of bucket fillings. The last two columns indicate bounds on the
number of buckets containing at least “multiplicity” ballots, bounds that are satisfied
with probability 50% and 95% respectively.

Ballots Buckets Multiplicity 50% 95%

100 256 2 19 27

100 256 3 2 5

100 256 4 0 1

100 256 × 163 2 0 0

1000 1024 5 7 12

1000 1024 6 1 3

1000 1024 7 0 1

1000 1024 × 16 2 30 40

1000 1024 × 16 3 0 2

P (b, n, k,m) as the probability that an event happening with probability λ =(
n
m

)
/b1−m happens k times, as given by the Poisson probability mass function:

P (b, n, k,m) = e−λ λk

k! .
Let us consider two examples: one in which we apply this approach to around

100 ballots, as would occur in the non-random duplicate search mechanism of
Sect. 4.3 for instance, and one in which we apply this approach to a full box of
around 1000 ballots.

Linear Search of Duplicates Among 100 Ballots. Let us consider that
we have a 16× 16 grid on a single tabloid format page, providing 256 buckets,
and that each bucket is split into 3 blocks in which 3 hex characters can be
written (the page would be large enough to offer blocks of 8× 15 mm, which is
comfortable).

Based on the expression above, there is a probability 0.5 that at most 19
buckets will contain two (or more) ballots, and 0.95 that at most 27 buckets
contain two (or more) ballots (see Table 1). A small number (less than 5) buckets
will contain 3 ballots, and it is most likely (80% probability) that no bucket
would take 4 ballots. If this happens, then a separate note could be created at
the bottom of the page, in order to compensate for the lack of space. So, all the
ballots are expected to fit easily on the grid that we just described.

Now, we can estimate the probability that a collision happens inside a bucket,
that is, that two ballots share identical 5 first digits. Here, there is a 0.995
probability that no such collision would happen. In the unlikely case that one
happens, then a second linear search is performed in order to determine whether
a clash has been detected. As we can see, this procedure is extremely effective.

Linear Search of Duplicates Among 1000 Ballots. Let us now consider
that we have four tabloid format pages, each having a 16× 16 grid providing



Clash Attacks and the STAR-Vote System 243

256 buckets, and that each bucket is split into 6 blocks in which 1 hex character
can be written. Let us also consider that the first character of the bpid is chosen
among 4 values instead of 16 (this could be just by prefixing the bpid with an
extra random symbol).

Now, during the linear pass, four poll workers hold one page each. An other
audit officer (possibly under surveillance) makes a linear pass on the ballots,
reads the first digit of the bpid in order to point to one of the four poll workers
holding the grids, then reads the next two hex digit in order to point to one
bucket, and finally read the next hex digit to be written in that bucket.

Based on the Poisson estimate, it is fairly unlikely that a single bucket will
need to contain more than 6 ballots: this would happen with probability 0.16,
and just one or two buckets will contain exactly 6 ballots (again, see Table 1).
If we turn to the number of collisions that will be found on the single hex digit
written on the bucket, we can expect that around 30 buckets will contain a
single collision, and that it is quite unlikely to observe more than a 2-collision
in a single bucket.

In order to sort these collisions out, we make a second linear pass on all the
ballots, but only focusing on the collisions. The four officers take a fresh grid,
mark the colliding buckets and the prefixes that need to be examined, and now
write 3 more hex digits in the bucket when a suspected ballot is read (there
will be enough space, since we only write something down for the few colliding
ballots). Any collision repeating on these extra digits would be an overwhelming
indication of a clash.

4.6 Other Potential Uses of Bijection Audits

The assumption of a bijection is at the core of comparison audit processes like
SOBA. Our work raises the question of whether bijection audits would be useful
to detect clash attacks in other circumstances that could be completely inde-
pendent of STAR-Vote or even of end-to-end verifiable systems. For instance, in
locations where paper ballots have a serial number and paper ballots are scanned
in order to perform an electronic tally, ballots with clashing serial numbers could
be distributed to voters who are known to vote in the same way (e.g., straight
party), and a malicious scanner could replace the images of those paper ballots
with clashing serial numbers with fresh ballots of its choice. This would break
the bijection from the paper and electronic records, and potentially make a risk
limiting audit ineffective, unless a bijection audit is run first.

5 Recommendations and Conclusions

STAR-Vote has a variety of security mechanisms and we’ve described a number
of different auditing and testing procedures. This section considers how these
individual procedures and tests might best be combined to defeat clash attacks.



244 O. Pereira and D.S. Wallach

Real-Time Receipt Auditing. The bijection-audit procedures described in
the previous section are feasible, but are considerably more expensive than a
SOBA audit, so it would be helpful to have a cheaper alternative.

Recall that a clash attack would cause the receipts of a significant number
of voters to be exactly the same. As such, we propose that independent poll
watchers, or perhaps the official poll workers themselves, use an independent
electronic tool to sample these receipts as they go by. This could be implemented
with a smartphone app that scans a printed QRcode, provided that a comparison
between the result of the scan and the printed value is made. If the same value
is ever scanned twice, then either a ballot receipt was accidentally scanned twice
or a duplicate was produced.

One nice aspect of this procedure is that we can rely on independent com-
puters, outside the influence of our attacker, to simplify the process. The odds of
successfully detecting a duplicate are the same as with the audit procedure we
described in Sect. 4.3, only without the requirement for sorting the sampled bal-
lots. This makes the procedure easy to perform. And because the ballot receipts
are safe to share with the world, this procedure can be performed by anybody.
Of course, if a duplicate is ever discovered, suitable alarms should be raised and
a more invasive audit conducted.

We note that this process would be easy to perform across every precinct in an
election, making it particularly valuable for detecting focused attacks on a small
number of precincts as described in Sect. 4.4. Also, as described in Sect. 3.3,
Benaloh challenges may discover clash attacks in real-time, provided that the
public hash chain is inspected on the fly, and an attackers that aims for multiple
clashes on a single receipt will be more easily spotted than an adversary focusing
on mere duplicates, since a single challenged ballot among n+1 clashing receipts
will make it possible for n voters to see their ballot unduly marked as spoiled
on the bulletin board. We discuss how to resolve these issues below.

Post-election Ballot Auditing. In Sect. 4.2, we described a subsampling audit
process based on digits selected by rolling dice. This is a relatively efficient
procedure, but local poll workers might be unwilling to perform it, or might
introduce errors by performing it poorly. Also, it’s preferable to know the margin
of victory for the election, which can be used to select an appropriate number
of samples to achieve a desired level of confidence. This won’t be possible until
the election is complete, so it’s probably better to wait until all the ballots are
brought back from the local precincts to the election headquarters. The bijection
audit procedure could then be performed centrally, on a subset of precincts,
alongside the SOBA audits that STAR-Vote already requires.

SOBA risk-limiting audits will sample ballots from across an entire election,
while our bijection audits happen at the level of a local precinct. This sug-
gests that the two audits could be conducted concurrently, although it might
be procedurally simpler to first conduct the SOBA audit, since it’s fast. The
bijection audit will be slower, although it’s amenable to parallelization in that
each precinct can be audited independently.



Clash Attacks and the STAR-Vote System 245

If the bijection audit fails, this invalidates one of the assumptions behind
SOBA, which assumes there is a bijection. Similarly, if post-election verifica-
tion of the hash chains on the public bulletin board turn up discrepancies (see
Sect. 3.3), we must again resolve these discrepancies.

What if a Duplicate Is Found? If a precinct fails its bijection audit or if
independent auditors discover duplicate receipts, we now have compelling evi-
dence that a clash attack has occurred. Now, the local election official will be
under pressure from all sides. Lawsuits will be filed. Reporters will be asking
hard questions. It’s essential to have clear procedures to resolve the conflict.
Under our definition of a clash attack, duplicates appear in the paper ballots,
but the paper ballots still reflect the intent of the voters, while the ciphertexts
are more likely than not fraudulent.

Consequently, faced with this attack, we might discard the encrypted ballots
in their entirety and do a manual tally from the paper ballot boxes. This would be
slow and would also face the risk that our attacker introduced a small clash attack
for precisely the purpose of triggering the fallback to paper ballots, which might
as well have been tampered in a coordinated effort. Consequently, we believe an
appropriate procedure is to render a judgment on a precinct-by-precinct basis
as to whether the paper ballots or electronic ballots are more trustworthy. This
judgment would be informed by:

– Conducting a bijection audit and SOBA audit on every precinct.
– Considering the available physical evidence (e.g., tamper-evident seals on

voting terminals and ballot boxes).
– Auditing the voting terminals for software and/or hardware tampering.
– Auditing the hash chain copies, which should be copied identically across all

voting terminals in a precinct.
– Considering other factors outside of the voting system itself (e.g., correlations

between different delivery trucks and the confirmed incidences of clash attacks
or other election attacks).

STAR-Vote provides multiple forms of evidence of the voters’ intent. It’s entirely
possible, for example, that only a fraction of the voting terminals in a given
precinct were tampered, and their hash chains may store a different version
of the history of the election. That version of history, for the non-tampered
terminals, may be judged worthwhile for the votes cast on those terminals, and
then the electronic records might only need to be discarded for the tampered
voting terminals. Ultimately, the power of STAR-Vote’s design is that it provides
election officials with redundant evidence of what happened during the election.
We might never anticipate every possible attack, but with STAR-Vote’s evidence,
we can support a variety of auditing and resolution procedures, enabling the
detective work necessary to identify and, if possible, remediate issues.

Concluding Thoughts. Clash attacks present a tricky challenge for an election
auditor, faced with the possibility of systematic computer tampering. We have



246 O. Pereira and D.S. Wallach

shown a number of auditing techniques that can be conducted by poll workers,
in a post-election setting, in a tolerable amount of time, mitigating the risk of
clash attacks.

Acknowledgements. This work is supported in part by NSF grants CNS-1409401
and CNS-1314492 and by the F.R.S.-FNRS project SeVote. Part of this work was
performed when the first author was a Fulbright Scholar at Rice University.

References

1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university pres-
ident using open-audit voting: analysis of real-world use of Helios. In: EVT/WOTE
2009, Montreal, August 2009

2. Bell, S., Benaloh, J., Byrne, M., DeBeauvoir, D., Eakin, B., Fischer, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P., Wallach, D.,
Winn, M.: STAR-Vote: a secure, transparent, auditable, and reliable voting system.
USENIX JETS 1, 18–37 (2013)

3. Ben-Nun, J., Farhi, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström,
D.: A new implementation of a dual (paper and cryptographic) voting system. In:
EVOTE 2012, July 2012

4. Benaloh, J., Jones, D., Lazarus, E., Lindeman, M., Stark, P.: SOBA: secrecy-
preserving observable ballot-level audits. In: EVT/WOTE 2011. USENIX (2011)

5. Benaloh, J.: Simple verifiable elections. In: EVT 2006, Vancouver, B.C., June 2006
6. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:

EVT 2007, Boston, MA, August 2007
7. Bishop, M.: UC Red Team Report of California Secretary of State Top-to-Bottom

Voting Systems Review, July 2007
8. da Cruz, F.: IBM card sorters. Columbia University Computing History. http://

www.columbia.edu/cu/computinghistory/sorter.html
9. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do

we need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40203-6 27

10. DasGupta, A.: The matching, birthday and the strong birthday problem: a con-
temporary review. J. Stat. Infer. Plann. 130, 377–389 (2004)

11. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: 11th USENIX Security Symposium (2002)

12. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting
systems. In: IEEE Symposium on Security and Privacy (2012)

13. Pereira, O., Rivest, R.: Marked mix-nets. In: Workshop on Advances in Secure
Electronic Voting - Voting 2017 (2017)

14. Project EVEREST (Evaluation, Validation of Election-Related Equipment, Stan-
dards, Testing): Risk Assessment Study of Ohio Voting Systems. http://www.sos.
state.oh.us/sos/info/everest.aspx

15. Rivest, R.L., Smith, W.D.: Three voting protocols: ThreeBallot, VAV, and Twin.
In: EVT 2007, Boston, MA, August 2007

http://www.columbia.edu/cu/computinghistory/sorter.html
http://www.columbia.edu/cu/computinghistory/sorter.html
http://dx.doi.org/10.1007/978-3-642-40203-6_27
http://dx.doi.org/10.1007/978-3-642-40203-6_27
http://www.sos.state.oh.us/sos/info/everest.aspx
http://www.sos.state.oh.us/sos/info/everest.aspx


Clash Attacks and the STAR-Vote System 247

16. Travis County Purchasing Office: STAR-Vote: Request for Information for
a New Voting System. http://traviscountyclerk.org/eclerk/content/images/pdf
STARVote 2015.06.03 RFI.pdf

17. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02620-1 28

http://traviscountyclerk.org/eclerk/content/images/pdf_STARVote_2015.06.03_RFI.pdf
http://traviscountyclerk.org/eclerk/content/images/pdf_STARVote_2015.06.03_RFI.pdf
http://dx.doi.org/10.1007/978-3-642-02620-1_28

	Clash Attacks and the STAR-Vote System
	1 Introduction
	2 STAR-Vote
	3 Clash Attacks on STAR-Vote
	3.1 Threat Model
	3.2 How Could This Work on STAR-Vote?
	3.3 Can We Detect It?

	4 Bijection Audit
	4.1 Why Not Sort?
	4.2 Audit Methodology
	4.3 Non-random Duplicates
	4.4 Non-random Precinct Corruption
	4.5 Linear Auditing with Buckets
	4.6 Other Potential Uses of Bijection Audits

	5 Recommendations and Conclusions
	References




