
A Case of Collusion: A Study of the Interface between Ad
Libraries and their Apps

Theodore Book
Rice University

tbook@rice.edu

Dan S. Wallach
Rice University

dwallach@cs.rice.edu

ABSTRACT
A growing concern with advertisement libraries on Android is their
ability to exfiltrate personal information from their host applica-
tions. While previous work has looked at the libraries’ abilities
to extract private information from the system, advertising libraries
also include APIs through which a host application can deliberately
leak private information about the user. This study, considering a
corpus of 114,000 apps, is the first to focus on those APIs. We re-
construct the APIs for 103 ad libraries used in the corpus, and study
how the privacy leaking APIs from the top 20 ad libraries are used
by the 64,000 applications in which they are included. Notably, we
have found that app popularity correlates with privacy leakage; the
marginal increase in advertising revenue, multiplied over a larger
user base, seems to incentivize these app vendors to violate their
users’ privacy.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy; D.4.6 [Security and Pro-
tection]: Information flow controls; C.5.3 [Microcomputers]: Portable
devices

Keywords
Android; Advertising Libraries; Privacy

1. INTRODUCTION
The Android operating system is one of the primary mobile de-

vice platforms worldwide, accounting for 70% of smartphone ship-
ments [16]. It also supports a vibrant advertising industry, with
dozens of advertising agencies providing ad libraries installed in
hundreds of thousands of free applications. Indeed, for every paid
app downloaded on Google Play, users download 82 free apps,
mostly ad supported [14]. While similar privacy concerns exist
in the web domain [7], the structure of mobile applications, where
ad libraries consist of binary code incorporated into an application,
make them significantly different from web applications, and an
important subject for privacy research. Privacy threats on Android
are similar to those on iOS, where apps exhibit similar privacy leak-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPSM’13, November 8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2491-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2516760.2516762 .

5K
 or less

10K

50K

100K

500K

1M 5M 10M

50M

100M

1

10

100

1,000

10,000

100,000

Number of Installs per Application

N
u

m
b

e
r

o
f A

p
p

lic
a

tio
n

s

Figure 1: Sample broken down by install count

ages [10]. The diversity of these libraries and the possibility of
studying their deployment in real world applications makes An-
droid an ideal platform to study the impact of advertising libraries
on user privacy and mobile device security.

A great deal of recent research has focused on the relationship
between advertising libraries and the Android operating system,
with a particular focus on the use of Android API calls protected
by permissions [1, 15, 5]. However, very little attention has been
paid to the other interface of ad libraries: the API that they use to
interact with their host application. This interface represents a sig-
nificant privacy concern, because host applications have access to
confidential user data that extends beyond the information that they
request from the operating system. Indeed, applications may have
access to a great deal of confidential data, obtained through system
calls, direct user input, and social network APIs, as well as data
shared by other applications, on the device or in the cloud.

Generally speaking, the application developer’s consent is nec-
essary for an ad library to access this trove of information. Barring
creative run-time inspection by the library of the host application’s
data structures, it is up to the developer to pass data to the ad li-
brary through the ad library API. However, developers have every
incentive to hand personal data to advertising agencies, as it has the
potential to increase advertising revenue for their applications. In
this study, we set out to understand these interfaces, and the extent
to which developers make use of them.

2. METHODOLOGY
We began with a collection of 114,000 apps downloaded from

Google Play in early 2013, the same that was used in our earlier
work on ad library permission usage [1]. This collection consists
exclusively of free applications, with a focus on the most popular

79

applications on Google Play. Figure 1 shows the distribution of the
sample according to the number of installs per application. Because
the sample focuses on the most popular applications, we believe
that it includes a large portion of the applications likely to be found
on an average end-user’s device. We reconstructed the APIs for
these libraries, identified privacy-related API calls for the top 20,
and studied how those calls were used in applications.

2.1 API Extraction
Within this collection, we manually identified the package names

for 103 individual ad and analytics libraries. We then disassembled
all of our applications using Gabor Paller’s Dedexer.1 Using the
package names, we parsed through our applications to identify all
API calls made from any application to one of its ad libraries.

By assembling the set of all observed API calls, we were able
to reconstruct the API for each ad library, generating a complete
record of all API calls that were actually used within our dataset.
We were also able to track the frequency with which each API call
is used. In extracting data from the apps, we were able to retrieve
not only method names, but also parameter and return types, giving
us a profile of the interface between the application and its libraries.
We did not consider different versions of the libraries, choosing to
differentiate libraries at the level of package name. This means
that if a certain API call was only included in some versions of a
library, we still included it in our API reference. When we measure
frequency of use, we measure it across all versions of a library, even
if a given call might not be included in some versions.

In theory, there are other ways that an app can communicate with
its ad library aside from API calls—direct manipulation of class
variables, shared memory, calls to the app from the library, etc.—
but the need to interact with a variety of developers effectively pro-
hibits the use of more indirect techniques. Nonetheless, our detec-
tion of interactions based on API calls does not capture any such
interactions, and thus may only study a subset of the information
flowing from applications to their ad libraries.

On the Android platform there is one additional significant inter-
face between the application and the ad library—the Android XML
layout files included in the application. These layout files allow de-
velopers to instruct the library to display an ad, and to pass various
parameters. However, because the parameters are static and fixed
at build time, their ability to pass significant personal information
is limited. Nonetheless, to the extent that app developers are able
to predict the demographic of their users, the XML layout file does
present a potential point of information leakage. Indeed, it seems
that some ad library designers have sought to exploit this interface:
at least one ad library, Jumptap, allows developers to embed demo-
graphic information, including age, gender, household income, and
postal code, in the static XML files for the application [6].
Obfuscation. One advertising library, AirPush, recently adopted a
scheme to obfuscate package names. Each developer receives a bi-
nary with a unique package name when they download the library.
However, as the library code remains the same, we were able to
determine some characteristic features that allowed us to recognize
instances of the AirPush library despite the obfuscated name.

The use of obfuscation by application developers was more dif-
ficult to process. In some cases, ad libraries were re-written by ob-
fuscation and optimization software, changing the method names.
In these cases, we were unable to detect privacy-related API calls.
An analysis of calls to AdMob indicated that approximately 5%
of API calls were obfuscated in this way. Given this, our find-

1http://dedexer.sourceforge.net

Classification API Call
Keywords void setKeywords(String)
Keywords void setSearchString(String)
Gender void setGender(GenderType)
Location void setCurrentLocation(Location)
Age void setAge(int)
Multiple Factors void setRequestParams(Map)
Postal Code void setPostalCode(String)
Enable Location void setLocationInquiryAllowed(boolean)
Income void setIncome(int)
Interests void setInterests(String)
Area Code void setAreaCode(String)
Education void setEducation(EducationType)
Ethnicity void setEthnicity(EthnicityType)

Table 1: Privacy-related API calls found in the InMobi API

ings represent a lower bound on the number of applications leaking
privacy-related information through ad library API calls.

2.2 API Analysis
Once we had reconstructed the API for each ad library, we set

out to identify privacy-related API calls. We did this by a manual
inspection of each API call, using the method name and parameters
to form an initial evaluation of whether the API call constituted
a privacy risk. In cases of uncertainty, we turned to official API
references and sample code available on the Internet in order to
form a better assessment. An example of privacy-related API calls
found in a library is shown in Table 1. While it would be trivial
for a devious library developer to choose method names that would
confound this sort of analysis, of necessity the API is designed to
be accessible to application developers, and so such a choice would
make it difficult for developers to use the API, causing it to fail in
its primary purpose. Anecdotally, looking at the API calls that we
identified, there was no indication that library designers sought to
present method names that hid their true function.

We conducted this analysis on the top 20 libraries, which to-
gether account for 84% of all installs. 64,000 apps within our
corpus contained at least one of these libraries. By excluding the
smaller libraries, we necessarily failed to detect some API calls that
present the potential for privacy leaks, as well as some of the appli-
cations that made use of those APIs.

In order to understand how these API calls are used by applica-
tions, we then counted the privacy-related ad library API calls made
by each app, recording the number of apps making use of each type
of call. This enabled us to determine the percentage of apps pass-
ing personal information directly to ad libraries, and so to quantify
the scale of the privacy concern represented by these libraries. Our
analysis has its limits of course:
Key/value maps. Some ad libraries allow passing general key/value
pairings (e.g., Java “map” objects), allowing a variety of different
privacy-relevant items to be passed at once. We did not implement
the static analysis over Dalvik bytecode that would be necessary to
track these values. All we see is that the general-purpose call is
made, not what keys are included. In our results, we report use of
these APIs in a separate category.
Ad mediation libraries.In order to display the ad from the agency
with the highest advertising rates, developers frequently incorpo-
rate ad mediation libraries in their apps. These libraries are incor-
porated in the app together with a collection of ad network libraries.
At run time, the mediation library selects which ad network to use
based on factors, such as advertising rates, selected by the devel-
oper. Thus, an app that uses a mediation library will typically have

80

88 Others

MoPub

SendDroid

Cauly

Daum

MobFox

ChartBoost

AppBrain

TapJoy

MobClix

AdWhirl

InMobi

Airpush

Flurry

AdMob

0 10,000 20,000 30,000 40,000 50,000 60,000

1 2 3 4 5 6 7 8

Number of Applications (gray bars)

Number of Installs (in billions – black bars)

Figure 2: Ad Libraries by Number of Apps

multiple ad libraries installed. Only the mediation library is called
directly by the application, which then invokes one of the other
libraries. Some libraries, such as AdMob, serve ads from one net-
work while also serving as a mediation library for other networks.

This presents some complications for our analysis. Since we’re
interested in leaks from applications to ad networks, we excluded
calls from one ad library to another. This enabled us to avoid count-
ing instances where ad mediation libraries are capable of passing
personal information to client ad libraries, but never receive that
information from the host application. Note that this methodology
also excludes paths where the mediation library retrieves informa-
tion from the underlying Android system (for example, by querying
the device’s location) and then passes it to another ad library.

3. RESULTS
For developers, the multiplicity of ad libraries on the Android

platform provides options, allowing them to select libraries based
on privacy concerns as well as functionality and revenue poten-
tial. However, for users, who do not choose the ad libraries in their
apps, this represents expanded vulnerability, as the presence of any
library that exfiltrates personal data means that the data is poten-
tially compromised. We show that many libraries have the potential
to do exactly that.

3.1 Library market share
In order to determine which of our 103 libraries to focus on for

our analysis, we needed to understand the relative market share of
each library. We did this by simply enumerating the number of in-
stalls for each library and comparing it to the total number of apps
in our dataset. Results are displayed in Figure 2. Both package
names for AdMob (com.google.ads and com.admob) are combined
into the AdMob listing. Numbers for AirPush include both obfus-
cated and non-obfuscated package names. As can be seen, Ad-
Mob has a commanding market share, but other libraries represent
around 65% of installs. It is likely that we failed to identify some
advertising libraries, but it seems probable that any such libraries
are not among the most common. Nonetheless, if they were in-
cluded, the “Other” category would probably larger than indicated
in Figure 2.

It is difficult to estimate the number of libraries that are likely
to be found on a “typical” device. Our survey of 114,000 apps

Classification Percent of Apps Percent of Installs
Arbitrary Data 3.06% 9.13%
Keywords 2.50% 5.87%
Gender 2.03% 3.06%
Location 1.64% 3.38%
Age 1.50% 2.66%
Multiple Factors 0.50% 1.99%
Postal Code 0.42% 0.49%
Enable Location 0.34% 0.32%
Income 0.12% 0.07%
Interests 0.01% 0.01%
Area Code 0.01% 0.01%
Country 0.01% 0.12%
Education 0.01% 0.01%
Ethnicity 0.00% 0.00%
Name 0.00% 0.00%
E-Mail 0.00% 0.00%

Table 2: Percentage of apps making a call to a top 20 library

identified 119,000 ad library instances, or an average of about one
per app. However, some apps contain many libraries, and some
contain none. The number of libraries on a user’s device is probably
highly dependent not only on how many apps he chooses to install,
but also on which apps he selects. Anecdotally, certain families of
apps, such as live wallpapers and pornographic applications, seem
to tend to contain large numbers of ad libraries. Others, such as
applications designed to interact with a business with which the
device user has an existing relationship, such as banking or airline
applications, tend to contain no ad libraries at all.

3.2 Ad Library APIs
While many APIs have publicly available documentation, many

others restrict access to their API documentation to registered de-
velopers. Additionally, our method of extracting calls actually used
by applications allows us to understand the “working API”—those
calls, documented or not, that are actually used in applications, to-
gether with their popularity. While app developers’ use of obfusca-
tion software that modifies method names makes it somewhat diffi-
cult to count accurately the number of API calls in a given library,
it is worth noting that many have a very simple API, with 17 of 103
libraries having 10 or fewer API calls. Promotional literature for
ad libraries often stresses the ease of incorporating the library into
an application, which may account, in part, for the small APIs.

The most common API calls for nearly all libraries are, as might
be expected, calls related to laying out and requesting advertising
content. To take AdMob as an example, the constructor for the
AdRequest object is the most frequently called method. After this,
the loadAd method for an AdView follows closely, together with
the constructor for an AdView. These are followed by various lay-
out and lifecycle methods. Other libraries have a similar distribu-
tion of calls.

3.3 Privacy-related API calls
This study is not concerned with the most common calls, but

those that represent potential privacy leaks. Of the top 20 libraries,
11 include calls in their APIs that have the potential to leak user
data. The sort of data leaked included everything from location to
household income. For a list of all factors identified, see Table 2.

Most of these categories are self-explanatory, but a few deserve
additional detail. The category labeled “Arbitrary Data” refers to
calls that allow the developer to send arbitrary data to himself.
These calls are common in libraries with analytics functions, and

81

are presumably intended to be used to transfer information regard-
ing the usage and performance of the application. They could, how-
ever, transfer any sort of data, and so represent a potential privacy
leak. However, because a developer can send information to an
arbitrary server without the need for an advertising library, their
presence in advertising and analytics libraries does not represent
an additional threat.

The category “Age” encompasses both API calls that give the
user’s age in years and API calls that transmit the user’s exact
birth date. While both have similar value in targeting advertise-
ments, a user’s exact birth date provides a much greater risk of
de-anonymization.

The category labeled “Multiple Factors,” on the other hand, rep-
resents API calls that permit the sending of various pieces of de-
mographic data to the ad agency. These calls generally accept a
key/value store, such as a Java map, which can contain a variety
of factors, generally similar to the ones that can be passed through
individual calls. While we did not analyze which factors are passed
through these calls by which applications, the relative infrequency
of their use makes such counts unnecessary for understanding the
overall data flow through the ad library APIs.

The category “Enable Location” is also slightly different from
the other calls. Rather than passing information to the library, it
authorizes the library to make (or not make) system calls to collect
location data directly. Thus, the presence of this call controls a
location function that is present in the library.

As can be seen, the privacy-related data that is leaked through
ad library API calls is data that might be useful in targeting adver-
tising. A few categories, such as postal code and area code, seem
to be carry-overs from the world of print and phone marketing, and
perhaps point to an advertising model where information associated
with a user, outside of the phone through some other business rela-
tionship, is being send through the phone to the advertising agency.

Without access to internal data from the ad agencies, it is difficult
to know to what extent this information is used to uniquely identify
users or to link their identities with external databases. However,
previous research has shown that as of the year 2000, 63% of the
US population could be uniquely identified by gender, zip code,
and date of birth, without reference to other factors [3]. Given
that many of these libraries collect other identifying factors beyond
these basic demographic indicators, it would appear that some are
collecting a sufficient amount of data to de-anonymize users.

When one remembers that libraries can also collect information
directly from the underlying Android system, and that ad agencies
can use unique device identifiers to track users from one application
to another, it becomes clear that the amount of data collected on an
individual user could be significant. When combined, this could
again be used to de-anonymize users.

It is also worth noting that most of these calls transfer informa-
tion that the libraries could not themselves obtain via privileged
Android calls. Thus, they extend the dataset that an ad agency is
able to build around a user by bringing in information from other
sources. While this may be information directly entered by the
user into the application, it can also be information from social net-
working sites or other cloud data sources that the user authorizes
the application to access.

3.4 Number of applications making privacy-
related API calls

Table 2 shows the percentage of the total universe of apps that
make a call in a given category to one or more of the top 20 li-
braries. It can be seen that certain API calls are called much more
frequently than others. Aside from the “Arbitrary Data” category,

0 5 50 500

5K 50K

500K

5M 50M

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: Average number of privacy-related API calls per app
by number of installs

whose seriousness depends on the way that individual developers
choose to use it, the most common category is keywords, which
may relate to user activity inside an app, but is not fundamentally
different from the sort of personal data habitually collected in web
advertising. The next most common category is gender, which, to-
gether with age, provides demographic information without being,
by itself, personally identifying (It should be noted, however, that
the age category includes API calls that transmit birth dates, which
go a long way towards uniquely identifying an individual.) Loca-
tion information is also frequently passed to ad libraries, although
many libraries also collect this information directly from the An-
droid operating system [1].

The only other pieces of data that are collected with any fre-
quency are postal code and income. While the value of income for
ad targeting is obvious, it is interesting to speculate on the value
of post code information in situations where the user’s current lo-
cation is known. It undoubtedly allows the ad agency to link the
user to a great deal of post code specific demographic information,
but it also provides a significant vector which, when combined with
others, could be used to de-anonymize users.

There are several pieces of data which are almost never shared
with ad libraries, some of which, such as name and e-mail, are
nearly sufficient by themselves to de-anonymize users. The scarcity
of the use of these API calls may be attributed to their presence in
only one less-popular library, as well as the rarity of their invoca-
tion even in apps that include that library. Perhaps this represents a
sense of ethics on the part of library and app developers, or perhaps
it simply represents a pragmatic choice regarding the usefulness of
that information combined with the costs of collecting it.

3.5 Popularity of applications making privacy-
related API calls

An additional question that comes to mind when considering the
use of privacy-related API calls concerns the popularity of appli-
cations using these calls. Are these rarely-installed rogue applica-
tions, or do the represent the “mainstream” of Android apps—those
with a large number of installs?

Figure 3 shows the number of unique privacy-related calls per
app. The apps are divided into the usage categories given by Google
Play, with the lower bounds of the category given for each app.
Thus, we assume 5,000 installs for an app that Google lists as hav-
ing 5,000 to 10,000 installs. If a single app makes multiple calls of
the same type to the same library, each set of calls is only counted
once. However, calls sending different sorts of information to the
same library, or calls sending the same sort of information to dif-
ferent libraries are counted separately.

82

Library Permissions Number of API calls
AdMob 5 5
Flurry 5 4
Airpush 9 2
InMobi 7 12
AdWhirl 4 3
MobClix 15 0
TapJoy 5 0
AppBrain 2 0
ChartBoost 4 0
MobFox 6 0
Daum 11 3
Cauly 7 1
SendDroid 8 0
MoPub 5 3
Google Analytics 2 1
JumpTap 6 6
AppLovin 9 8
Mediba 4 0
Inneractive 6 0
GreyStripe 4 0

Table 3: Permission Usage and Privacy-Related API calls

As can be seen from Figure 3, there is a bimodal distribution,
where the least and most popular apps are leaking the most privacy-
relevant data to ad libraries. These leaks peak at nearly 0.5 calls per
app in apps with 5 million to 10 million installs. While our sample
contains only a small number of apps with fewer than 5,000 installs,
making the data for the lower end of the spectrum less accurate, it
contains most of the free applications with at least 10,000 installs,
providing very accurate data for those categories.

It is reasonable to assume that the applications with the largest
number of installs are also the applications which have received
the largest amount of development resources. They are also the ap-
plications whose developers have the most to gain from marginal
increases in ad revenue per user. Given these facts, it is perhaps
not surprising that these applications are the ones which are most
likely to contain privacy-related API calls. However, it also indi-
cates that the average app install is more likely to contain these
calls than might be otherwise expected, as the more popular apps
are proportionally more likely to be installed on any given device.

3.6 Correlation with permission usage
Ad libraries can obtain sensitive information from system calls

as well as from their own API calls. Our previous research doc-
umented the number of system permissions that ad libraries were
able to exploit [1]. We desired to know whether there was any cor-
relation between these two forms of intrusive behavior. Is it the
case that libraries that use large numbers of permissions also seek
to gather personal information through developer accessible API
calls, or does the use of one sort of information replace the need for
the other?

Table 3 compares the number of API calls and the maximal num-
ber of permissions used by any version of a given library. We
found that there was a very low correlation coefficient (0.14) be-
tween the two vectors. Some libraries made abundant use of both
interfaces, while others primarily made use of one or the other.
The decision to make use of one interface or the other appears
to have been based on independent decisions by the developers.

3.7 Library Comparison
Looking at our data in greater detail, we can examine the varying

behaviors of the different libraries. Table 4 shows the percentage
of apps using a given library that make use of the various API calls.

It can immediately be seen which libraries provide API calls al-
lowing developers to share privacy-related data. Some offer a much
broader interface than others. Of course, the cooperation of the de-
veloper is necessary for the ad agency to receive this information.
Our results show that most developers either do not have access to
this information or choose not to share it.

It is worth noting that nine out of the top twenty libraries—that
is to say, nearly half—do not appear to provide any API for devel-
opers to pass personal data to the library. While these libraries may
present other privacy or security related concerns, they present no
risks in this particular area.

We can see that privacy-related API calls are invoked more fre-
quently for some libraries. While we do not have any data that
would directly explain this phenomenon, some agencies may do
more to encourage developers to provide personal information. There
might also be some correlation between developers who use certain
libraries and those who desire to leak personal data.

It is important to note that we are only counting calls made di-
rectly from the application, and not calls that are made from one
library to another. This may account for the much higher rate that
these API calls are made to AdWhirl. AdWhirl is an ad mediation
library, which allows a developer to incorporate various ad libraries
in an application, and display ads from one of the networks based
on factors such as ad availability and value. In this way, informa-
tion passed to AdWhirl may be passed, in turn, to the other libraries
called by AdWhirl.

4. DISCUSSION
Although we have determined that the percentage of applications

which pass personal information to ad libraries is relatively low, the
impact of this interface may be greater than one might first think.
Once the information is transmitted to the ad agency, it does not
disappear, but is presumably logged in a database. Because ad li-
braries often transmit a unique device ID, this information can then
be correlated to information transmitted by other applications us-
ing the same ad library, and then be used in targeting ads to the
user. To the extent that the user’s identity may be revealed by
the ad libraries, this data can then be correlated to other demo-
graphic databases, not only allowing data from those databases to
be used for targeting ads on the mobile device, but also allowing
those databases to be updated with data obtained from the mobile
libraries (for example, the location information that may be ob-
tained through the library, the system, or the user’s IP address).

One factor that is not addressed in this study, and that must be
left to future work, is the question of the accuracy of the data pro-
vided by app developers to ad library vendors. They might infer
certain demographic characteristics of the user from the nature of
the application, itself—for example, a children’s game could have
a hard-coded age value that it provides to the advertising library.
There might also be instances where applications entirely falsify
keywords or demographic information in the hopes of obtaining
greater revenue from the ad agencies. We have not, however, inves-
tigated this possibility.

Much existing research into mitigating the privacy risk of An-
droid ad libraries has focused on restricting the ability of ad li-
braries to make use of application permissions [9, 13, 11]. It is
worth noting that these techniques do not address the privacy risks
posed by data passed through the library API. On the other hand,

83

A
dM

ob

Fl
ur

ry

A
ir

Pu
sh

In
M

ob
i

A
dW

hi
rl

M
ob

C
lix

T a
pJ

oy

A
pp

B
ra

in

C
ha

rt
B

oo
st

D
au

m

C
au

ly

Se
nd

D
ro

id

M
oP

ub

G
oo

gl
e

A
na

ly
tic

s

Se
nd

D
ro

id

Ju
m

pT
ap

A
pp

L
ov

in

M
ed

ib
a

In
ne

ra
ct

iv
e

G
re

yS
tr

ip
e

Name 0.1
Location 2.7 4.8 0.0 1.3 4.8 0.2
Gender 2.5 3.4 2.4 15.6 0.0 13.8 0.5
Age 1.5 3.4 1.8 13.7 0.1 13.8 0.5
Education 0.2
Ethnicity 0.1
Income 0.1 12.8
Postal Code 0.0a 0.4 9.1 9.9
Area Code 0.2
Country 0.6 0.3
Interests 0.3 0.1
E-Mail 0.1
Keywords 3.2 0.6 27.7 12.7 0.3
Arbitrary Datab 31.1 47.5
Multiple Factors 0.0 1.7 34.9
Enable Location 0.5 1.4 0.5 14.3

Table 4: Top 20 Libraries: Percentage of apps making privacy-related API calls
aThe older com.admob package included this feature. The newer com.google.ads does not.
bTo the app developer

approaches that use static analysis to identify privacy and security
concerns can easily detect this behavior, as do methods that look
for malicious behavior on the level of the application, without con-
sidering the distinction between application and library [12, 17].
These methods can be automated and applied on a large scale [2].
Future work. On the technical front, we expect more opportunities
to study app behavior in the wild, either through static analysis,
dynamic emulation, or on instrumented handsets. Likewise, our
work here has focused on apps from Google Play, which must pass
Google’s deliberately vague standards. Apps from other platforms
might behave worse. Also of interest are new technical means for
users to control the behavior of their apps, such as CyanogenMod’s
experimental new Privacy Guard Manager2, which allows users to
restrict apps access to location, contacts, and so forth, regardless of
those apps’ required permissions.

On the policy front, what level of privacy (required notifica-
tions, explicit consent) should users expect on their mobile devices?
What standards should govern ad agencies and application devel-
opers seeking to collect personal data and who should administer
them? Additionally, awareness of the risks of ad libraries should
not cause us to overlook their contribution to the Android ecosys-
tem [8]. Unfortunately, there is currently very little in the way of
norms or standards to protect this information. While the Google
Play Developer Distribution Agreement does allow Google to re-
move applications that are “deemed to be ... spyware,” the only
mentions of privacy regard Google’s ability to collect data on the
developers, not on the developers’ respect for user privacy [4]. It is
clear that standards regarding user privacy are needed, whether they
come from entities that manage application stores (such as Google)
or from some other source.

2https://plus.google.com/+CyanogenMod/posts/86LLXrDpVWY

5. CONCLUSION
API calls that allow the developer to expose personal information

are present in most of the top 20 ad libraries. They are generally
designed to allow application developers to transmit demographic
or targeting information that might be used to target ads at a given
user. While few libraries include API calls that would be sufficient,
by themselves, to de-anonymize application users, in several occa-
sions, the data provided by some combination of these calls could
be sufficient to correlate the user with a real world identity.

Most mobile applications do not make use of these privacy-related
API calls. However, the number which do choose to include these
calls is not negligible. As such calls are more common in more
popular applications, and as ad agencies have the ability to corre-
late data from multiple applications, a significant portion of users
have some personal data exposed through these API calls.

Unfortunately, users have no way to know of, approve, or block
any transfer of information from applications to ad libraries and
agencies. Because application developers have an incentive to max-
imize ad revenue, they have a corresponding incentive to leak pri-
vate user data, with few likely consequences. If users are to have
an expectation of privacy for data accessible from their mobile de-
vices, some mechanism to report and manage these data flows is
needed.

Acknowledgements
We thank the anonymous referees and Shriram Krishnamurthi for
their useful feedback. This work was supported, in part, by NSF
grants CNS-1117943 and CNS-0964566.

84

https://plus.google.com/+CyanogenMod/posts/86LLXrDpVWY

6. REFERENCES
[1] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal

analysis of Android ad library permissions. In Mobile
Security Technologies (MoST), San Francisco, CA, May
2013.

[2] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically detecting potential privacy
leaks in Android applications on a large scale. Trust and
Trustworthy Computing, 2012.

[3] P. Golle. Revisiting the uniqueness of simple demographics
in the US population. In 5th ACM Workshop on Privacy in
the Electronic Society (ACM WPES), pages 77–80,
Alexandria, VA, 2006.

[4] Google. Google Play Developer Distribution Agreement,
July 2013. https://play.google.com/about/developer-
distribution-agreement.html.

[5] M. Grace, W. Zhou, X. Jiang, and A. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In Fifth
ACM Conference on Security and Privacy in Wireless and
Mobile Networks (ACM WiSec), Tucson, AZ, Apr. 2012.

[6] Jumptap. Jumptap Android SDK Integration, June 2013.
https://support.jumptap.com/index.php/Jumptap_Android_
SDK_Integration.

[7] B. Krishnamurthy and C. E. Wills. On the leakage of
personally identifiable information via online social
networks. In Proceedings of the 2nd ACM Workshop on
Online Social Networks (ACM WOSN), Barcelona, Aug.
2009.

[8] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads!: Balancing privacy in an ad-supported
mobile application market. In 12th ACM Workshop on
Mobile Computing Systems & Applications (ACM
HOTMOBILE), Phoenix, AZ, Mar. 2012.

[9] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege separation for applications and advertisers in

Android. In Seventh ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Seoul,
Korea, May 2012.

[10] F. Y. Rashid. iOS apps just as intrusive as Android apps.
Security Week, July 2013. http://www.securityweek.com/ios-
apps-just-intrusive-android-apps-research.

[11] F. Roesner and T. Kohno. Securing embedded user
interfaces: Android and beyond. Aug. 2013.

[12] S. Rosen, Z. Qian, and Z. M. Mao. AppProfiler: A flexible
method of exposing privacy-related behavior in Android
applications to end users. In Third ACM Conference on Data
and Application Security and Privacy (ACM CODASPY),
San Antonio, TX, Feb. 2013.

[13] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit: Separating
smartphone advertising from applications. In 21st USENIX
Security Symposium, Bellevue, WA, Aug. 2012.

[14] G. J. Spriensma. Do Free Apps Really Account For 89% Of
All Downloads? Distimo, Sept. 2012.
http://www.distimo.com/blog/2012_09_do-free-apps-
really-account-for-89-of-all-downloads/.

[15] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Investigating user privacy in Android ad libraries. In Mobile
Security Technologies (MoST), San Francisco, CA, May
2012.

[16] Strategy Analytics. Android & Apple iOS capture a record
92 percent share of global smartphone shipments in Q4
2012. 2013. http://blogs.strategyanalytics.com/WSS/post/
2013/01/28/Android-and-Apple-iOS-Capture-a-Record-
92-Percent-Share-of-Global-Smartphone-Shipments-in-
Q4-2012.aspx.

[17] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and
alternative Android markets. In 19th Annual Network and
Distributed System Security Symposium, San Diego, CA,
2012.

85

https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/about/developer-distribution-agreement.html
https://support.jumptap.com/index.php/Jumptap_Android_SDK_Integration
https://support.jumptap.com/index.php/Jumptap_Android_SDK_Integration
http://www.securityweek.com/ios-apps-just-intrusive-android-apps-research
http://www.securityweek.com/ios-apps-just-intrusive-android-apps-research
http://www.distimo.com/blog/2012_09_do-free-apps-really-account-for-89-of-all-downloads/
http://www.distimo.com/blog/2012_09_do-free-apps-really-account-for-89-of-all-downloads/
http://blogs.strategyanalytics.com/WSS/post/2013/01/28/Android-and-Apple-iOS-Capture-a-Record-92-Percent-Share-of-Global-Smartphone-Shipments-in-Q4-2012.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/01/28/Android-and-Apple-iOS-Capture-a-Record-92-Percent-Share-of-Global-Smartphone-Shipments-in-Q4-2012.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/01/28/Android-and-Apple-iOS-Capture-a-Record-92-Percent-Share-of-Global-Smartphone-Shipments-in-Q4-2012.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/01/28/Android-and-Apple-iOS-Capture-a-Record-92-Percent-Share-of-Global-Smartphone-Shipments-in-Q4-2012.aspx

	Introduction
	Methodology
	API Extraction
	API Analysis

	Results
	Library market share
	Ad Library APIs
	Privacy-related API calls
	Number of applications making privacy-related API calls
	Popularity of applications making privacy-related API calls
	Correlation with permission usage
	Library Comparison

	Discussion
	Conclusion
	References

