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Abstract In this paper, we describe
a hierarchical face clustering al-
gorithm for triangle meshes based
on fitting primitives belonging to
an arbitrary set. The method pro-
posed is completely automatic, and
generates a binary tree of clusters,
each of which is fitted by one of the
primitives employed. Initially, each
triangle represents a single cluster; at
every iteration, all the pairs of adja-
cent clusters are considered, and the
one that can be better approximated
by one of the primitives forms a new
single cluster. The approximation
error is evaluated using the same
metric for all the primitives, so that
it makes sense to choose which
is the most suitable primitive to
approximate the set of triangles in
a cluster.

Based on this approach, we have
implemented a prototype that uses
planes, spheres and cylinders, and
have experimented that for meshes
made of 100 K faces, the whole
binary tree of clusters can be built in
about 8 s on a standard PC.
The framework described here has
natural application in reverse engin-
eering processes, but it has also been
tested for surface denoising, feature
recovery and character skinning.

Keywords Clustering · Denoising ·
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1 Introduction

Modern industry is spending more and more effort in
the exploitation of 3D acquisition devices for diverse
applications, including reverse engineering and medical
imaging, while producers of precise acquisition tools,
such as recent laser scanners, are focusing on improving
the quality and flexibility of their products. As a conse-
quence, we can now deal with huge volumes of rather
precise data representing 3D shapes. In many contexts,
however, it is important to understand the data acquired
in order to fully exploit its potential. Unfortunately, in
most cases the process of associating high level infor-
mation to raw 3D data is hard to automate, and time-

consuming manual annotation work is required. In a re-
verse engineering scenario, for example, the user is typ-
ically required to track lines on the surface to subdi-
vide it into simple regions that will eventually be ap-
proximated by fitting primitives. Sometimes such features
can be detected automatically or semi-automatically [21,
26], but in most cases the user is required to manu-
ally post-process the results to fill gaps or track features
missed by the algorithm [29]. In the case of free-form
3D models, the approximating primitives are typically
NURBs whose parameters are determined through an au-
tomatic fitting procedure. When the model is built by
a given set of primitives, these primitives are typically fit-
ted to the data. Models belonging to this latter class are
also referred to as regular models [28] and include CSG
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generated shapes, assemblies of physical primitive ob-
jects, and so on.

While a person looking at a rendered 3D model can
easily perceive a decomposition of the surface into inter-
esting sub-parts, such as primitive shapes, it turns out to
be a rather hard task for a computer and this forms the
basis of several recent research works categorized under
the term surface segmentation. This field of investigation
is becoming more and more important as a support to
methods for shape reasoning and understanding [2, 4], in
which the identification of a high-level structure, or sig-
nature, is often required to perform the difficult task of
abstracting a class of similar shapes.

Broadly speaking, segmentation algorithms attempt to
exploit geometric information to infer a decomposition of
the surface that corresponds to the one that experts would
produce manually. The concept of good segmentation,
however, strongly depends on the context in which it will
be used. In the broadest scenario of supporting the process
of shape understanding, methods based on intrinsic char-
acteristics of the shape, such as curvature and topology,
tend to group together parts of the model having a kind of
coherence and/or uniformity. In [2] and [4], for example,
Morse theory is used to partition a two-manifold in regions
having a prescibed topology; once such a partitioning has
been determined, regions are connected together to form
an extended Reeb graph structure representing the signa-
ture of the shape. The identification of regions of constant
curvature has been addressed in [16], where a multi-scale
method to evaluate the surface curvature has been intro-
duced. Being a multi-scale approach, the algorithm pro-
duces several segmentations (one for each scale), so that
a more complete interpretation of the shape is supported.

In some particular contexts, such as the one addressed
in this article, more specific and effective methods may be
used that exploit an a-priori knowledge of the shape. We
tackle the problem of decomposing a triangulated surface
into areas with prescribed characteristics. Specifically, we
present a framework to compute a hierarchical segmenta-
tion of a given shape into connected regions approximated
by primitives belonging to a given set. The set of prim-
itives to be used is arbitrary and does not influence the
validity of the framework. The remainder of the paper is
organized as follows. In Sect. 2, previous work on mesh
segmentation is classified and discussed. In Sect. 3, the
hierarchical face clustering method, which is the basis of
our work, is described. Section 4 provides an overview of
our framework, while in Sect. 5 the computation of the pa-
rameters of some fitting primitives is explained. Besides
the mathematical foundations described in Sect. 5, we pro-
vide some suggestions for an efficient implementation in
Sect. 6. Finally, Sect. 7 reviews some application contexts
in which our framework is particularly useful, and we
conclude the paper in Sect. 8 by discussing potential im-
provements of the method, extensions and future research
directions.

2 Prior art on mesh segmentation

In the more specific context of retrieving the underlying
structure of regular models, which is the field of investiga-
tion of this paper, we can identify segmentation algorithms
in two main classes:

• Feature-based detection – Methods belonging to this
class try to follow the same path of the human expert,
and thus attempt to determine surface regions indi-
rectly first by computing a set of feature lines and then
by splitting the surface through a network of such fea-
tures.

• Direct region detection – Methods of this type group
faces and vertices into regions through an estimation
of approximating primitives. Some approaches grow
the regions starting from seed faces, while some others
follow a top-down paradigm and split big regions into
smaller ones that can be better approximated by the
primitives employed.

Both algorithm classes have their advantages and draw-
backs, but neither is sufficiently accurate in general and it
is often necessary to refine the automatic process by a hu-
man intervention to clean the results.

2.1 Feature-based segmentation

The main difficulty in this class of algorithms is the
automatic detection of feature lines. When the model
is a height-field, for example, lines of discontinuity are
used to define the so-called surface primal sketch [18].
In the more general case of triangulated surfaces, typical
methods are based on fold detection, that is, regions of the
surface having a high principal curvature are used to ex-
tract feature lines. If, for example, the maximum of the
two principal curvatures exceeds a prescribed threshold,
the vertex is probably part of a fold [32]. In [22] morpho-
logical operators adapted to triangle meshes are used to
detect the presence of folds, while in the different setting
described in [30], curvature extrema are computed to iden-
tify perceptually salient surface regions which are then
turned into feature lines through a skeletonization proced-
ure. When feature lines are not actually present in the
model because they have been chamfered by the sam-
pling process, they can be reconstructed starting from the
neighboring smooth regions and tagged for further pro-
cessing [3]. In a different setting, the features may be not
completely sharp, and surface primitives may be separated
by blended edges. In these cases, a feature sensitive metric
may be used as described in [19].

For the purpose of segmentation, however, none of the
above-mentioned methods are generally sufficient, as they
typically produce gaps in the boundaries of the regions,
and such a sparsity causes serious difficulties when deter-
mining fairly bounded regions.
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Fig. 1. a Depiction of a triangle mesh and the corresponding dual graph. b An arc of the dual graph has been contracted, and the two
triangles corresponding to the dual arc’s end-points have been marked as belonging to the same single cluster. c Another arc has been
contracted producing a resulting cluster made of three triangles

2.2 Direct segmentation

Instead of deriving the regions starting from their bound-
ary, direct methods go straight to the identification of the
regions as sets of adjacent faces or neighboring points.
In this context, several approaches are based on region
growing; starting from a few seed points, either randomly
selected or determined starting from some geometrical
criteria, each region is constructed by expanding the cor-
responding initial seed [7, 23, 24]. When simple primitives
such as planes are required to approximate the regions,
the method proposed in [7] provides an extremely efficient
segmentation using Lloyd’s partitioning approach [13].

After a first coarse segmentation based on a feature-
based approach, Várady et al. [28] classify each region as
simple or multiple, depending on whether or not the region
can be effectively approximated by one of the primitives
employed. In the latter case, each multiple region is ana-
lyzed and partitioned through dimensionality filtering on
the Gaussian sphere.

The main difficulty in region growing approaches is the
choice of the seed points and, in particular, of their num-
ber. Even if one assumes that the number of regions is
known, however, region growing approaches may be eas-
ily trapped in local minima, and heuristic techniques are
required to escape from such situations [7].

The hierarchical segmentation introduced in this pa-
per does not require any seed element to start from, it is
extremely efficient and produces a hierarchy of clusters
without requiring any parameter to be set by the user.

3 Hierarchical face clustering

The algorithm proposed in this paper is a variation of
the hierarchical face clustering (HFC) method described
in [8]. The basic idea in the HFC approach is to merge
neighboring triangles into representative clusters. Here,
a cluster is a connected set of triangles, not necessarily

simply connected, which can be approximated by a simple
primitive. In [8], for example, clusters are approximated
by fitting planes computed through principal component
analysis [11], and the cost of merging a set of triangles
into a single representative cluster is the integral L2 dis-
tance of its vertices from the fitting plane. The method
produces a hierarchy that can be represented by a binary
tree of clusters.

To describe the main points of HFC it is convenient to
set some notation rules.

Let M = (V, E, T) be a manifold triangle mesh, pos-
sibly with a boundary. The dual graph D = (C, A) of M is
defined as follows: each node of C corresponds to a trian-
gle of T , and there is an arc (dual edge) in A connecting
two nodes in C if the corresponding triangles in M share
an edge. Now, if one considers each node of such a dual
graph to represent a cluster (initially made of a single tri-
angle), merging two triangles into a single representative
cluster corresponds to contracting a dual edge into a single
node, that is, the two nodes of the arc are identified and the
adjacency relations are updated accordingly (see Fig. 1).
In the HFC approach, a priority queue is created in which
all the dual edges are sorted based on the cost of their con-
traction. At each step, the dual edge with lowest cost is
popped from the queue, it is contracted, and all the edges
incident to the new representative node are updated, that
is, their cost is re-computed and their position in the queue
is updated according to the new cost. Using the cost evalu-
ation described in [8] produces a hierarchy of clusters that
can be efficiently approximated by planes.

4 Overview of the segmentation framework

Our segmentation algorithm is based on a variation of the
HFC approach. In our framework, the type of primitive
to be fitted to the triangles of a cluster is picked from
a given finite set. Specifically, for each primitive type the
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Fig. 2. Example of clustering of two models in regions fitted by planes, spheres and cylinders. The models shown on the left and on the
right have been segmented using 21 and 45 clusters, respectively

corresponding fitting parameters are computed and the ap-
proximation error is evaluated. The cost of merging a set
of triangles into a single representative cluster is the min-
imum of the approximation errors computed against the
primitives. If, for example, the algorithm is required to fit
planes and spheres, for each potential contraction it is ne-
cessary to compute 1) the coefficients of the best fitting
plane and 2) the coefficients of the best fitting sphere; then,
the approximation error is evaluated against both the plane
and the sphere, and the minimum one is considered for
re-ordering the queue. In Fig. 2 two examples of cluster-
ing are shown in which planes, spheres and cylinders have
been used.

Summarizing, the structure of the algorithm is the
same as in the HFC approach, that is, at each step a dual
edge is popped from the priority queue, it is contracted,
and the queue is updated consequently. What changes is
the cost assigned to each dual edge, which is computed
by simulating the contraction and by computing the error
against each of the fitting primitives employed to approxi-
mate the resulting cluster.

The evaluation of the approximation error is a delicate
issue, and somehow it depends on which assumptions are
made about the triangle mesh being analyzed. If the mesh
has been directly obtained through interpolation of a set of
scattered points, for example, one can reasonably assume
that the only reliable information is the position of the ver-
tices. In such a case, an L2 error may be simply computed
as the sum of the squared distances of the vertices from the
fitting primitives [8]. If, on the other hand, the mesh is the
result of a simplification process, the triangles of the mesh
may incorporate part of the geometric information of the
removed vertices. In this latter case, it might be more ap-
propriate to integrate the squared distances over the whole
surface [7].

In the framework described in this paper, however,
deriving closed-form expressions for integral squared dis-
tances might not be easy for certain kinds of primitives,
and relying on numerical integration becomes prohibitive
in terms of computational costs. Thus, if one wants to take

into account the geometric information carried by trian-
gles, the algorithm provides the possibility to weight the
distances computed at vertices. Specifically, for each ver-
tex v a restricted Voronoi area a(v) is computed, which
corresponds to a third of the total area of the triangles
incident at v [15] and belonging to the cluster under con-
sideration. The integral L2 error is then approximated by
the weighted sum of the squared distances of the vertices
from the fitting primitive. Notice that such an approxima-
tion is nothing but a numerical integration in which the
domain is discretized at vertices.

5 Fitting primitives

In this section, we describe how to compute the param-
eters of a small family of primitives (planes, spheres and
cylinders) that we used to implement and test our segmen-
tation framework.

5.1 Fitting planes

To compute the best fitting plane to a set of triangles we
make use of a classical method based on principal com-
ponent analysis [7, 8]. Specifically, we compute the (pos-
sibly weighted) covariance matrix Covv of the vertices of
the cluster:

Covv =
∑

i

a(vi)(vi − v̄)(vi − v̄)T , v̄ =
∑

i
a(vi)vi

∑
i

a(vi)
,

where vi is a vertex and a(vi) is the restricted Voronoi area
of vi . If a non-integral error evaluation is required, a(vi)
can be set to 1 for all the vertices.

The best-fitting plane passes through v̄, and its nor-
mal n is the eigenvector corresponding to the minimum
eigenvalue of Covv. The L2 fitting error can be computed
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through:

L2 =
∑

i

a(vi)
(
n(vi − v̄)

)2
.

5.2 Fitting spheres

The determination of the parameters (center and radius) of
the least-squares best fitting sphere to a set of 3D points
can be formalized as follows.

Let P be a set of n points (xi, yi, zi), and let (x −
cx)

2 + (y − cy)
2 + (z − cz)

2 −r2 = 0 be the implicit equa-
tion of the sphere S of radius r centered at c = (cx, cy, cz).
The squared Euclidean distance of a point pi = (xi, yi, zi)
from that sphere is:

d2(pi, S) =
(√

(xi − cx)2 + (yi − cy)2 + (zi − cz)2 −r

)2

.

In the least-squares sense, computing the best fitting
sphere to the set of points P amounts to determining the
center (cx, cy, cz) and the radius r such that the sum of all
the squared distances is minimized, that is:

min

(
n∑

i=1

d2(pi, S)

)
.

The above problem is non-linear and may be solved using
the Gauss–Newton method [25]. In our framework, un-
fortunately, using such a technique to compute the exact
optimum becomes prohibitive in terms of computational
cost, so we simply strive to find a good fitting using the
concept of algebraic distance [20]. To do this, the implicit
equation of the sphere may be re-written as:

x2 + y2 + z2 + c2
x + c2

y + c2
z −2cxx −2cy y −2czz −r2 = 0,

which, in vector form, is equivalent to:

[
2x 2y 2z 1

]
⎡
⎢⎣

cx
cy
cz

r2 − c2
x − c2

y − c2
z

⎤
⎥⎦ = x2 + y2 + z2,

where the four unknowns cx , cy, cz and r have been iso-
lated in a single vector. Substituting x, y and z with the
coordinates of the points in P, we obtain the following
over-determined linear system:

Aw = b,

where

A =

⎡
⎢⎢⎢⎣

2x1 2y1 2z1 1
2x2 2y2 2z2 1

...

2xn 2yn 2zn 1

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

x2
1 + y2

1 + z2
1

x2
2 + y2

2 + z2
2

...

x2
n + y2

n + z2
n

⎤
⎥⎥⎥⎥⎦

and

w =
⎡
⎢⎣

cx
cy
cz

r2 − c2
x − c2

y − c2
z

⎤
⎥⎦ ,

which can be solved in the least-squares sense by comput-
ing w = (AT A)−1 AT b.

To accommodate this framework to the case of
weighted points, we simply multiply each equation of the
system by the corresponding weight.

Notice that if all of the points lie exactly on a sphere,
the solution of the above system represents exactly that
sphere. In the other cases where the residue is not null,
the sphere represented by w is sufficiently close to the
one computed through iterative approaches such as the
Gauss–Newton method or other sorts of non-linear re-
gression [10]. We have experienced that such a level of
precision is enough for the purpose of mesh segmenta-
tion, where the user is typically interested in a few clusters
made of numerous faces. In other application contexts,
however, it may be necessary to obtain a more precise fit-
ting; in such cases, the approximation described above can
be used to initiate a regression.

We have also tested the direct fitting method described
in [20], in which the sphere’s equation is re-written as:

A(x2 + y2 + z2)+ Bx +Cy + Dz + E = 0

and the minimizing vector (A, B, C, D, E) is found under
the constraint:

B2 +C2 + D2 −4AE = 1.

Such a method is significantly more precise when the
number of points is limited, while it is virtually equivalent
to the non-constrained version (with A = 1) when such
a number grows. On the other hand, this method requires
an additional equation representing the constraint and, by
using Lagrange multipliers, finding the minimum amounts
to solving a 5 ×5 eigensystem, which is slower than in-
verting a 4 ×4 matrix. In many application contexts, in-
cluding mesh segmentation, the user is typically interested
in the approximation of dense models with few primitives,
hence each primitive usually fits numerous points. In these
cases the results of the non-constrained method are pre-
cise enough and the increase of computing time due to the
solution of the eigensystem is not justified.
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Having established the parameters c and r of the
sphere, the L2 fitting error can be computed through:

L2 =
∑

i

a(vi) (‖vi − c‖2 −r)2.

5.3 Fitting cylinders

We found it convenient to represent each approximating
cylinder through its radius, a unit vector parallel to its axis,
and a point belonging to the axis that we call the center of
the cylinder.

Given a connected set of triangles (from now on, the
cluster), the problem can be summarized as finding the
parameters of a cylinder that fairly approximates that set.
This problem can be tackled by first computing the direc-
tion of the cylinder axis starting from the triangle normals.
Roughly speaking, we note that the normal field of the
cluster is similar to the one of an ideal cylinder if the nor-
mal variation is roughly null in one direction, and maxi-
mal and roughly constant in all the orthogonal directions
computed at each point of the cluster. Since the cluster
is piecewise-linear, the only points at which the normals
change are points on edges, and the normal variation can
be integrated over the whole cluster and represented in
matrix form as:

Covc =
∑

i

|ei | β(ei)ēi ē
T
i ,

where ei is an internal edge of the cluster, |ei | is its length,
ēi is a unit vector parallel to ei , and β(ei) is the signed
angle between the normals of the two triangles sharing
ei (positive if convex, negative if concave). Notice that
when a cluster is obtained as the intersection of a trian-
gle mesh with a ball of radius B centered at a vertex v,
Covc can be divided by the area of the cluster and the re-

Fig. 3a,b. The nearly cylindrical patch shown on the left has been obtained by perturbing an ideal cylindrical patch with a small amount of
noise. The normals of the ideal patch have been mapped on the Gaussian sphere (a), and the best fitting plane passing through the center
o correctly identifies the axis of the cylinder. The perturbed patch has also been mapped b but, in this case, the normal of the best fitting
plane is nearly orthogonal to the cylinder’s axis

sult is the curvature tensor at v as defined in [1], as long
as the cluster is homeomorphic to a disk. The direction n
of minimal normal variation of the cluster is identified
by the eigenvector corresponding to the maximum eigen-
value of the symmetric and positive semi-definite ma-
trix Covc.

Having established the direction n of the fitting cylin-
der, the remaining parameters to be determined are its
radius and its center. We note that this operation can
be reduced to the bi-dimensional best-fitting circle prob-
lem by projecting the vertices on the plane having n as
the normal and passing through the center of mass of
the cluster. Specifically, letting cm be the center of mass,
we compute an orthonormal basis 〈n, ex, ey〉 (ex and ey
may be the remaining two eigenvectors of Covc or any
other pair of orthogonal vectors, which are also orthogonal
to n) and transform each vertex vi to ℘(vi) = 〈(vi −cm)ex,
(vi − cm)ey〉. The center (cx, cy) of the 2D best fitting cir-
cle to such a set of transformed points is then transformed
back to the original coordinate system, that is, c = cm +
excx + eycy.

The parameters of the 2D fitting circle can be calcu-
lated as described previously for fitting spheres by simply
reducing the dimensionality of the problem.

Having established the parameters n, c and r of the
cylinder, the L2 fitting error can be computed through:

L2 =
∑

i

a(vi) (‖(vi − c)×n‖2 −r)2,

where × denotes the cross product.
In the context of fitting cylinders to point clouds, sig-

nificant previous results have been obtained by Várady
et al. [28] and by Chaperon and Goulette [5]. Both these
works make use of the Gaussian image of estimated sur-
face normals. Specifically, they observe that the normals
of a cylinder generate a circle on the Gaussian sphere,
and thus look for such circles to estimate the axis of the
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fitting cylinder. The direction of such an axis is deter-
mined as the normal of a plane passing through the ori-
gin and such that the sum of squared distances to the
points in the Gaussian sphere is minimized. This ap-
proach works well in the context addressed in [28] and [5],
where surface normals are estimated using an arbitrar-
ily large support to cope with noise. This is made pos-
sible by the assumption that raw data have been roughly
segmented through a prior feature-based method. Within
a hierarchical approach such as ours, however, such an
assumption does not hold, and a relatively small amount
of noise may heavily spoil the results provided by the
method used in [28] and [5] (see Fig. 3). Conversely, the
method based on the analysis of the normal variation de-
scribed above has proven to be rather robust, even when
the amount of noise grows significantly. Furthermore, it
must be considered that in our context, the evaluation
of noise is more delicate due to the multi-resolution na-
ture of the clustering, that is, what is considered noise at
a given scale may be seen as a surface feature at finer reso-
lutions.

6 Implementation details

At each step of the algorithm a dual edge is collapsed into
a single representative node corresponding to a new clus-
ter that, in its turn, corresponds to a fitting primitive. The
costs of all the dual edges incident to the new node must
be updated. Thus, for each of them new fitting primitives
must be estimated that approximate the set of all the trian-
gles belonging to the two clusters, and the approximation
errors must be re-computed based on these new primi-
tives. Without particular attention the computational cost
of these operations can easily become prohibitive, so it is
important to incrementally compute most of the entities
(i.e. the matrices Covc, AT A, AT b, . . . ) and store par-
tial results within the data structure. Moreover, the tree of
clusters may become unnecessarily unbalanced and cause

Fig. 4. Example of interactive navigation of the cluster tree through the slider labeled “num. clusters”

a huge number of unused updates in the queue. For ex-
ample, in a mesh that is perfectly flat, the error is null (or
nearly null due to numerical imprecision) for each dual
contraction. In such a case, it may happen that a single
cluster grows unnecessarily and forms a dual node hav-
ing an extreme degree. In our implementation, we used
a threshold value1 below which the error is considered
numerical noise and thus is snapped to zero. During the re-
ordering of the queue, if two edges both have a null cost
then, instead of choosing one of them randomly, we give
priority to the one whose contraction generates the node
with the lowest degree.

On a P4 1.7 GHz machine equipped with 512 MB of
RAM and running Linux, our implementation is able to
build the complete binary tree of clusters of a triangle
mesh made of 100 K faces in about 8 s.

7 Applications

7.1 Reverse engineering

The most natural applications of our framework are to be
searched in reverse engineering [27]. When a product is
digitized to be re-used within a CAD environment, it is
often necessary to recover how the original model was de-
signed. In this context, most of the previously published
work makes extensive use of heuristics and/or requires the
manual selection of a number of parameters whose effect
is not always clear to the user. In contrast, our frame-
work is completely automatic and, at the same time, can be
customized. If the model is known to be made of a well-
defined set of primitives, as is typical, for example, for
mechanical objects, the algorithm may accept a plug-in
for each of them in which the computation of the fitting

1 We found that on the Linux-i686 system that we used for testing, a thresh-
old of 1.0×10−15 is a good choice when using integral L2 error metrics. It
must be considered, however, that a different system may have a different
robustness.
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parameters and the error are implemented. Moreover, be-
ing a greedy method, the level of accuracy is somehow
reflected by the cluster hierarchy which, once computed,
may be interactively navigated by the user through a slider
that sets the desired number of clusters or a threshold error
(see Fig. 4 and Fig. 11).

Note that, by definition, at the beginning each trian-
gle constitutes a single planar cluster, thus each cluster is
best fitted by a plane. Differently from other methods [9],
however, in our approach clusters of different type may
be straightforwardly aggregated to form a bigger cluster;
the type of such a new big cluster is independent of the
type of the constituting ones, while it is determined exclu-
sively based on which primitive best fits all its triangles.
This makes our method particularly robust in the case of
noisy input meshes, in which at early stages small clusters
may happen to be of the “wrong” type (see Fig. 4d) due to
the noise but, as the clustering proceeds, their type rapidly
converges to the expected one (Fig. 4c). Clearly, when
too few clusters remain, the corresponding fitting primi-
tives can no longer approximate the shape in a fair way
(Fig. 4a and b), and deciding how many clusters are neces-
sary for such a fair approximation is a matter of threshold
errors which, for now, must be defined by the user based
on his/her knowledge.

Although this procedure does not compute the cor-
rect segmentation automatically, the possibility to browse
the hierarchy at interactive speed is a powerful support
to the user that, based on the knowledge that the error
grows proportionally to the number of clusters, may eas-
ily locate the required level in the hierarchy as shown
in Fig. 4c.

7.2 Mesh denoising and fairing

To improve the quality of a triangle mesh obtained through
non-contact acquisition devices such as laser scanners,
one has to deal with two main problems: 1) the noise
in the data and 2) the lack of information about sharp
features. If the model is known to be made of a well de-
fined set of primitives, each vertex of the mesh may be
snapped on the primitive fitting the corresponding clus-
ter; if the vertex belongs to the boundary of a cluster, then
it may be snapped once for each of the clusters incident
to the vertex. Such a procedure has the twofold effect of
distributing the error and of sharpening the chamfered fea-
tures (see Fig. 5).

To have a quantitative point of view, we have resam-
pled some original meshes by intersecting a uniform grid
with the surfaces. The resulting re-meshes have been per-
turbed with variable amounts of noise; finally, for each
of them, we have computed the L2 distortion against
the corresponding original meshes. We have observed
that using the denoising procedure described above re-
duces the L2 distortion up to one order of magnitude
(see Fig. 6).

Fig. 5. Example of a resampled model in which the sharp edges
have been chamfered (left). On the right, the same model is shown
after the denoising process based on a segmentation in 12 regions

7.3 Automatic segmentation and skinning for character
animation

Natural shapes, and in particular humans and animals,
form a class of 3D models whose shape can be effec-
tively abstracted through approximating cylinders. If only
this kind of primitive is used, the clustering algorithm
described so far represents an automatic way to derive
a hierarchical view of the shape (see Fig. 7) as described
by Marr in [14].

In this context, our framework becomes particularly
useful as a support for skinning purposes to eventually de-
form or animate such a class of triangle meshes in an intu-
itive and user-friendly manner. Once the cluster hierarchy
has been computed, in fact, it may be interactively navi-
gated by the user through a slider, which sets the desired
number of clusters. By rendering triangles using a unique
color for each cluster, the user has a visual feedback of
the current mesh partitioning. When settled, the user may
require the automatic creation of a deformation skeleton
made of bones and joints, and use it to interactively de-
form the segmented mesh (see Fig. 8).

We have implemented a minimal interactive GUI that
allows the user to perform such a kind of editing, and
briefly sketch here the foundations of the method.

Let D be the graph in which the clusters are nodes,
and arcs join adjacent clusters (i.e. the dual graph de-
fined in Sect. 3). The combinatorial structure of the initial
skeleton S = (J, B) is defined as the dual graph of D,
that is, each joint in J corresponds to an arc of D, and
each bone in B corresponds to a cluster of D. If a clus-
ter is adjacent to only one other cluster, we add a virtual
joint representing the other end-point of the bone. Clearly,
such a skeleton may be rather complex when the num-
ber of clusters is high, and many bones and joints do not
correspond to an intuitive notion of mesh part to be de-
formed. Hence it is convenient to tag skeleton elements
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Fig. 6. An example showing the decrease of distortion obtained through our denoising procedure. The error values reported in the box
have been computed through the publicly available Metro tool [6]

Fig. 7. Some models along with the corresponding abstractions represented by the fitting cylinders. For the horse model, two levels of
resolution are shown along with the corresponding face clustering

so that non-intuitive bones and joints are not shown. We
chose to classify joints into two categories: sensitive joints
and locked joints. Sensitive joints may be moved by the
user, and correspond to joints having at most two incident
bones; all other joints are locked, are rendered differently
and cannot be moved. Moreover, to simplify the inter-
active environment in which the user acts, we chose to

hide all the bones that cannot be moved, that is, the bones
connecting two locked joints. Finally, if all the bones in-
cident at a joint are hidden, then that joint is hidden as
well.

Once the skeleton is available, vertices can be attached
to influencing joints, and their position after a deformation
can be computed as described in [12].



190 M. Attene et al.

Fig. 8. The model of a horse has been segmented in 87 clusters out of which the deformation skeleton has been computed (top row). The
geometry of the model has been interactively modified by dragging the sensitive nodes

Fig. 9. Segmentation of a model with ex-
tremely non-uniform vertex distribution

8 Discussion

The hierarchical segmentation presented in this paper is
fast (see Table 1), robust to noise, and suitable for produc-
ing useful segmentations of irregularly sampled models
(Fig. 9). Due to its greedy nature, however, it is worth
discussing how it behaves when compared to variational
approaches.

We have tested a variational version of the method
that, starting from a given clustering resolution, attempts
to improve the quality of the segmentation using Lloyd’s
partitioning approach [13], as previously done for fitting

planes in [7]. We have concluded, however, that in prac-
tical cases, the level of improvement is far too limited to
justify such an expensive post-processing. In our experi-
ments, in fact, the variational approach required nearly 20
times longer than the corresponding greedy version with
comparable results. A method using such a variational ap-
proach is described in a very recent work by Wu and
Kobbelt [31], where the authors report nearly three min-
utes to process models up to 100k faces.

There are cases, however, in which the globally best fit-
ting n primitives need to be found for an object; in these
cases, a greedy hierarchical approach such as ours is not
appropriate, and well-designed variational methods pro-
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Model name Number of Triangles Computing Seconds

Fandisk (Fig. 2, left) 12 946 0.64
Casting (Fig. 2, right) 10 224 0.66
Drill (Fig. 4) 14 090 1.29
Mechanical Part (Fig. 11) 24 822 1.88
Bunny (Fig. 10) 69 449 7.01
Fandisk remeshed 1 101 207 8.51
Fandisk remeshed 2 207 136 22.15

Table 1. Time required to compute the whole hierarchy
for some of the models presented in this paper. Time
is relative to our prototype running on a P4 1.7 GHz,
512 MB RAM and running Linux

Fig. 10. Top row: the same 2D shape segmented using two fitting rectangles by
a variational approach (left) and by a greedy hierarchical method such as ours
(right). The dashed yellow line indicates where the red cluster would need to be
cut to obtain a segmentation in three clusters. Bottom row: the bunny model was
clustered (left) using 31 fitting primitives; each vertex was then snapped to the
closest point (right) of the corresponding primitive

Fig. 11. Four segmentation levels of the same model extracted from the binary tree of clusters. Each level was obtained by specifying the
desired number of clusters through an interactive slider
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vide better results (see Fig. 10, top row). To show a qual-
itative comparison of our greedy method with the varia-
tional version of [31], we extracted 31 clusters out of the
hierarchy computed for the bunny model (Fig. 10, bottom
row) and applied the same vertex to proxy projection de-
scribed by Wu and Kobbelt to generate the stylized bunny
depicted on the right.

9 Conclusions and future research

The segmentation framework described in this paper rep-
resents a flexible and completely automatic way to parti-
tion the surface in a hierarchical manner. Being a greedy
approach, there is no issue related to the choice of seed
points, and the number of regions can be interactively se-
lected by the user once the hierarchy is computed. No
network of features is required for the segmentation, thus
all of the problems related to discontinuous feature lines
are avoided. Although it has been described for planes,
spheres and cylinders, the framework is well-suited for
including the definition of several other primitives to be
fitted such as tori, cones, or geons, to cite a few. Various
fitting primitives have been well-discussed in the litera-
ture [17, 28], and we believe that adapting these methods
to our hierarchical setting is a rather easy task. Moreover,
it is also easy to adapt them to handle different error met-
rics, such as, for example, L∞.

All of these aspects form the basis for our future re-
search plans, which also include the study of the error
evolution along the hierarchy. With respect to this last as-
pect, we have observed that for regular objects there are
some jumps in the graph representing the error at vari-
ous clustering resolutions, and we plan to analyze such

discontinuities to automatically detect the most significant
resolutions (i.e. the number of regions) for a given shape.

It seems also promising to study how such a cluster-
ing can be applied in a geometry compression environ-
ment. The error-reduction due to the snapping of vertices
onto fitting primitives, in fact, is expected to allow coarser
quantizations of the geometric information. The larger
error introduced may be then reduced to acceptable values
through denoising and feature recovering as described in
Sect. 7. Eventually, if necessary, such an approximated
geometry may be refined in a lossless fashion by encoding
small corrective vectors represented through local coordi-
nate frames relative to the approximating primitives. The
compressed representation, however, must necessarily en-
code the parameters of each primitive, thus keeping the
number of primitives low is also important, and finding
the best trade-off between this number and the size of
the compressed parameterized vertices may be hard, but
would promise very interesting compression rates for the
class of models addressed.

Finally, although our method is an extension of [8], it
is important to note that the two works have applications
in different areas. Thus, if one looks for a clustering algo-
rithm to implement efficient collision detection or multi-
resolution radiosity, the original method described in [8] is
sufficient, while the extensions introduced in this paper are
necessary to tackle problems such as the ones discussed in
Sect. 7.
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