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Abstract—In recent years, the number of IoT devices has 
been rapidly increasing. Therefore, MQ Telemetry Transport 
(MQTT) has attracted attention as a lightweight protocol for 
IoT devices. MQTT employs a publish/subscribe model of 
communication via a broker, and since the performance of the 
MQTT broker directly affects the quality of service, various 
studies have been conducted to improve its performance. 
Among them, the hardware implementation of MQTT broker 
has higher performance than software implementations in terms 
of publish throughput and processing delay. However, there are 
some problems such as inflexibility and resource limitations. 
Therefore, we propose a distributed MQTT brokers 
infrastructure using the hardware broker. In this architecture, 
the software broker on the cloud and the hardware broker at 
the edge region work in cooperation to achieve low latency 
processing at the edge region and software flexibility. The 
hardware broker operates network transparently, so that end 
devices communicate with the software broker in the cloud and 
do not need to be aware of the presence of the hardware broker 
at the edge region. This enables resource and processing load 
distribution without affecting end devices. We implemented the 
network transparent hardware broker in a field-programmable 
gate array (FPGA) and evaluated it. 

Keywords—MQTT, FPGA, edge computing, network 
transparency 

I. INTRODUCTION 

In recent years, the number of Internet of Things (IoT) 
devices has increased rapidly. In IoT devices, which generally 
require limited resources and low power consumption, the 
lightweight MQ Telemetry Transport (MQTT) [1] is widely 
used as a communication protocol. This study focuses on 
MQTT. MQTT uses a publish-subscribe communication 
method via a broker, which offloads functions such as setting 
the destination of data and sending data to multiple 
destinations to reduce the number of communications. In 
addition, the simple packet structure reduces power 
consumption during communication. 

In MQTT, all communication is concentrated in the broker. 
Inadequate performance of the MQTT broker in terms of 
delivery capacity or communication throughput can lead to 
increased processing times and reduced availability. This is 
especially a serious problem in applications with limited 
tolerable latency, such as machine control, and power system 
stability. Therefore, MQTT broker acceleration has been 
studied. Software brokers have been studied, including 
muMQ [2] accelerated by multi-core processing, load 
balancing with multiple brokers [3]-[11], and PAMS [12] to 
deploy brokers on network switches,. For hardware brokers, 
the hardware implementation of MQTT broker using the field 
programmable gate array (FPGA) has been studied [13]. 

In particular, the hardware broker has a publish throughput 
of 100 Mmps (messages per second) [13]. The maximum 
PUBLISH throughput of muMQ, a software broker, is 
930,275 mps [2]. Therefore, the hardware implementation is 
shown to provide 107 times the publish throughput. In 
addition, the processing delay of the hardware implementation 
is 799.2 ns. If a mechanism can be built to enable larger 
networks to take advantage of these benefits, services that 
have been difficult to provide due to latency and scale will be 
possible. 

The disadvantages of the hardware broker are that the 
number of clients that can be registered is limited by on-chip 
memory resources, and it is less flexible than a software-based 
broker as they do not support common MQTT options such as 
Will and Retain. One possible solution to the resource 
limitation is to use external memory instead of Block RAM 
(BRAM), which is on-chip memory. However, the cycles 
required for memory access become a bottleneck, and the 
benefits of hardware implementation cannot be fully realized 
due to lower overall throughput and increased processing 
delays. Another solution is to install multiple hardware 
brokers, but this would require management of IP addresses 
for the number of brokers on the end device side, and the 
benefits of MQTT could not be fully utilized. It is also difficult 
from a resource perspective to implement options such as Will 
and Retain in a hardware broker because the messages 
corresponding to the topics must be stored in the broker. 

To solve these issues and enable larger networks to benefit 
from the hardware broker, this paper proposes a new 
distributed MQTT broker infrastructure using a network 
transparent hardware broker. The contributions of this paper 
can be summarized as follows: 

 This paper proposes a new distributed MQTT broker 
infrastructure in which the Host Broker, a software 
broker running in the cloud, and the Transparent 
Broker, a hardware broker running on the 
communication path at the edge region, cooperates to 
perform processing. Therefore, the infrastructure 
achieves both low latency processing at the edge 
region and software flexibility. 

 The Transparent Broker operates transparently over 
the network, so that end devices communicate with the 
Host Broker in the cloud and do not need to be aware 
of the hardware broker on the edge. In other words, in 
the distributed MQTT broker infrastructure, end 
devices can benefit from high-performance processing 
without prior knowledge of the Transparent Broker. It 
also enables resource and processing load balancing 
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among Transparent Brokers and between Transparent 
Broker and Host Broker without affecting end devices. 

 To realize the proposed infrastructure, we implement 
the Transparent Broker, a network-transparent 
hardware broker, which has network-transparent 
processing, and resource and processing load-
balancing functions through memory operations. 
Although the proposed mechanism can be adapted to 
conventional TCP-based MQTT, we assume MQTT 
For Sensor Networks (MQTT-SN) [14] and implement 
MQTT broker using UDP. The implementation is an 
extension of the hardware implementation of the 
MQTT broker [13], and is evaluated in terms of 
throughput, latency, time synchronization accuracy, 
and resource utilization based on similar target 
performance. In addition, to verify whether low 
latency and low jitter applications can be implemented 
using MQTT, time synchronization is performed over 
MQTT as one of the evaluation applications, and its 
accuracy is evaluated. 

The rest of this paper is organized as follows. Section II 
introduces related studies on MQTT broker acceleration and 
network transparency. Section III explains distributed MQTT 
infrastructure, and Section IV describes network transparent 
hardware broker in detail. We present evaluation in Section V, 
and finally conclude this paper in Section VI. 

II. RELATED WORK 

A. Software MQTT broker acceleration 
There are existing studies to improve the performance of 

software MQTT brokers. 

muMQ [2], a lightweight and scalable MQTT broker, was 
proposed. It used a highly scalable user-level TCP stack for 
multicore systems (mTCP) [15] and Data Plane Development 
Kit (DPDK) [16] to accelerate processing. Publish throughput 
is up to 930,275 mps, which is 5.38 times of Mosquitto [17]. 
However, the publish throughput is inferior to that of the 
hardware broker. 

Cooperation of multiple MQTT brokers for load balancing 
has also been studied: ILDM [3], MQTT-ST [4], D-MQTT [5], 
a scalable MQTT system based on the Chord mechanism [6], 
DMLT [7], and SoD-MQTT [8] all involve multi-hop 
transfers between brokers and can cause high latency.
Although Detti et al. [9] reduced inter-broker communication, 
additional functionality is needed for end devices to manage 
sessions with multiple brokers. EdgePub [10] reduced latency 
by deploying a broker on the end devices. However, the end-
device needs to be modified. TD-MQTT [11] is a transparent 
distributed MQTT broker, and subscribers can access the 
broker transparently through the redirection process, but it is 
not transparent to publishers. Our proposal does not introduce 
latency due to multi-hop forwarding because the broker is 
distributed over the communication path. Moreover, since it is 
network transparent, no modification to the end device is 
required. 

PAMS [12] was proposed to accelerate MQTT-SN 
networks by implementing some of the broker functions in 
network switches. It uses in-network acceleration to reduce 
communication latency. Although similar to the proposed 
method in that part of the broker function is performed in the 
network, its implementation in software switches is inferior to 
the hardware broker in terms of performance. 

Several of the methods presented in this section can be 
adapted to the software broker in the infrastructure proposed 
in this paper. 

B. FPGA application 
Field-programmable gate arrays (FPGAs) feature lower 

power consumption, lower latency, and higher throughput 
than conventional processors in certain applications. FPGAs 
have become popular in network applications because their 
pipelined architecture is efficient for processing network 
streams. Therefore, FPGA implementations for data centers 
and edge computing environments have been proposed 
[18][19]. In addition, FPGA migration methods [20] have 
been proposed to provide more flexibility for FPGA 
applications. This is accomplished by replicating the circuit 
through dynamic reconfiguration and reading and writing the 
internal state of the Flip-Flops (FFs) by scan-chain [21].  

Our proposed method writes Block RAM (BRAM) values, 
which is an on-chip memory. 

C. Hardware implementation of MQTT broker 
The hardware implementation of MQTT broker has been 

proposed [13]. In subscriber lookup, two hash tables 
implemented in BRAM on FPGA are used to enable 
destination lookup that can be performed in a certain time. It 
is implemented on FPGA, with QoS set to 0, and supports only 
UDP. Targets were set based on recent network infrastructure 
and application requirements, achieving line-rate processing 
of 10 Gbps and processing latency of less than 300 s by a 
latency of 799.2 ns. Publish throughput was 100 Mmps which 
is 107 times higher than muMQ [2]. In addition, to verify 
whether low latency and low jitter applications can be 
implemented using MQTT, time synchronization was 
performed over MQTT as one of the evaluation applications, 
and its accuracy was evaluated. Assuming time 
synchronization between phasor measurement units (PMUs), 
time synchronization accuracy within 52 s was achieved 
among 100 PMUs. These evaluations showed that this 
hardware broker has high throughput, low latency, and low 
jitter.  

Although the implementation was UDP, TCP support was 
also mentioned. From a resource perspective, it was found that 
a TCP/IP stack [18] supporting a line rate of 10 Gbps could be 
implemented. In addition, the processing delay of this TCP/IP 
stack was found to be 5 s [18]. Therefore, when added to 
536.8 ns, which excludes the processing delay of the UDP/IP 
stack in the implementation, the processing delay time target 
is found to be reached. 

We extend this hardware implementation to implement a 
network transparent hardware broker. It thereby solves the 
issues of flexibility and resource constraints while maintaining 
the performance described above. 

D. Network transparency 
Network transparency is a style of service delivery that 

provides edge services cooperating with the cloud at 
intermediate locations on the Internet without affecting the 
end devices [22]. End devices do not need to be aware of the 
existence of services deployed on the edge; they can benefit 
from the services simply by communicating toward the cloud. 
This characteristic allows for flexible service provisioning, 
such as moving the service locations or load balancing, 
without changing the end-device network settings. 
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Authorized stream content analysis (ASCA) [23][24] is a 
technology for analyzing packet streams at intermediate 
points on the Internet to provide network transparent services, 
while considering privacy. It enables flexible service 
provision by analyzing layer seven information. To ensure 
privacy, only streams authorized by the Opt-In method are 
analyzed as pre-authentication. Even encrypted streams can be 
analyzed by receiving a common key from the cloud [25]. 

In our proposal, the hardware broker has network 
transparency and performs the processing without any 
modification to the end devices. 

III. PROPOSED INFRASTRUCTURE 

In this paper, we propose a distributed MQTT broker 
infrastructure. It consists of a software broker running in the 
cloud and a hardware broker running on the communication 
path at the edge region, which cooperates to perform 
processing. Fig. 1 shows an image of the proposed 
infrastructure. The Host Broker, a software broker, is located 
at the top, and the Transparent Broker, a hardware broker, is 
distributed in the middle region. End devices send packets to 
the Host Broker, and the Transparent Broker captures and 
processes the packets along the communication path. The 
proposed mechanism enables the following. 

First, a hardware broker installed at the edge can distribute 
messages with high throughput, low latency, and low jitter. As 
mentioned in Section 2, hardware brokers have high 
performance and can be installed at the edge region to reduce 
communication latency. This allows MQTT to be adapted to 
applications with limited tolerable latency, such as machine 
control and power system stability. 

Second, the use of a software broker provides flexibility 
that cannot be obtained with a hardware broker The MQTT 
options Will and Retain require the broker to store the topic 
and corresponding message, which is difficult to achieve with 
a hardware broker from a memory resource perspective. 
Therefore, these options are handled by the software broker. 
Other extensions can be handled in the same way. 

Finally, the network-transparent distributed infrastructure 
eliminates the need for any modifications to the end device. 
The hardware broker in this architecture is network 
transparent, processing packets destined for the software 
broker along the communication path. End devices 

communicate with the software broker in the cloud and do not 
need to be aware of the hardware broker at the edge region. 
Therefore, end devices can benefit from high-performance 
processing without prior knowledge of the hardware broker. 
Similarly, it is possible to transparently load-balance 
resources and processing. In particular, since the hardware 
broker has limited memory resources, it is possible to save 
resources by distributing processing to other hardware brokers 
or software broker when memory is tight. In addition, 
processing can be executed by a specific broker depending on 
the requested delay for each application. 

A. Two types of MQTT brokers 
Two types of MQTT brokers are used in this 

infrastructure: the Host Broker and the Transparent Broker. 
There is also an FPGA Controller as a controller that controls 
the Transparent Broker. 

The Host Broker is a software broker. It is the only one 
located upstream of the network, such as in the cloud, and has 
its own IP address. Although the software broker has lower 
processing performance than the hardware broker, it can use 
ample resources such as memory and storage. Since the Host 
Broker receives all MQTT packets, it knows the 
correspondence between all topics and messages. It also keeps 
track of the availability of all Transparent Brokers. 

The Transparent Broker is a hardware broker. It is 
distributed over midstream communication paths in the 
network, such as in the edge region, and performs processing 
with network transparency. Network transparency is a style of 
service delivery that provides edge services cooperating with 
the cloud at intermediate locations on the Internet without 
affecting the end devices. The Transparent Broker analyzes 
packets that pass through it and captures MQTT packets 
destined for the Host Broker. For non-target packets, it works 
completely as a wire. Although the hardware broker has 
limited resources compared to the software broker, it can 
provide high throughput, low latency, and low jitter. 
Deploying a hardware broker in the edge region enables 
message distribution with minimal network latency and 
processing delay. The Transparent Broker is assumed to be 
deployed on FPGAs on CPU-FPGA co-system on chips 
(SoCs) such as Xilinx's ZYNQ series. 

The CPU on the SoC executes the FPGA Controller. It 
controls the writing of BRAM contents and the associated 
packet buffering for the Transparent Broker on the same SoC. 
The FPGA Controller has its own IP address and 
communicates with the Host Broker, notifying the Host 
Broker of the operating status of the Transparent Broker and 
controlling the Transparent Broker in response to commands 
from the Host Broker. 

  
Fig. 1.  Proposed infrastructure 

 
 

Fig. 2.  Assumed environment 
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B. Publish and subscribe processing 
The following describes the processing procedures in 

publish and subscribe. Assume the environment shown in Fig. 
2. One Host Broker is installed in the cloud, which is upstream 
of the network, and Transparent Brokers are distributed over 
the communication path in the edge region, which is 
midstream of the network. In Addition, end devices such as 
sensor nodes and mobile terminals are connected to the 
network. The flow of each process is shown in Fig. 3. 

First is the subscribe process. When an end device sends a 
SUBSCRIBE packet to a Host Broker, all Transparent 
Brokers on the communication path forward the packet 
without any processing. When the Host Broker receives a 
Subscribe packet, the Host Broker decides which Broker to 
process it. At this time, either one of the Transparent Broker 
on the communication path or the Host Broker can be selected. 
If the Transparent Broker is selected, the Host Broker issues a 
subscribe instruction to the FPGA Controller of the 
Transparent Broker. The instruction is communicated via an 
HTTP or similar and contains information about the 
subscriber. The FPGA Controller writes the Transparent 
Broker's BRAM based on the received information in order to 
add subscriber entries. At this time, if writing to an address 
affects existing processing, the MQTT packets is temporarily 
buffered to maintain processing consistency. When the 
writing is completed, the FPGA Controller returns a 
completion notification to the Host Broker. If packet buffering 
has been performed, the buffer is released. Upon receiving the 
completion notification, the Host Broker returns a SUBACK 
packet to the end device. If the Host Broker is selected, it adds 
a subscriber entry for itself and returns a SUBACK packet. 

The selection of brokers is judged comprehensively based 
on the operating status and memory usage of each Transparent 
Broker, the positional relationship between publisher and 
subscriber, the acceptable delay of applications using MQTT, 
and other factors. The acceptable delay of the application can 
be specified from the end device by using User Properties in 
MQTT version 5. 

Next is the publish process. When an end device sends a 
PUBLISH packet to the Host Broker, the Transparent Broker 
on the communication path searches for the subscriber 
corresponding to the topic in its own entry. If they are found, 
the Transparent Broker sends a PUBLISH packet to the 

subscriber. At this time, the Transparent Broker behaves as if 
a PUBLISH packet has been sent from the Host Broker. This 
means that the end device does not need to be aware of the 
existence of the Transparent Broker. At the same time as the 
subscribers are searched, the received PUBLISH packet is 
forwarded to the Host Broker. All Transparent Brokers on the 
communication path perform the same process. The Host 
Broker similarly checks its own entry and performs the 
publish process. 

This architecture enables the distribution of messages with 
minimal network and processing delays, as long as the 
Transparent Broker's resources permit. When the Transparent 
Broker is not activated, the end devices communicate with the 
Host Broker as in conventional MQTT communication. The 
Host Broker receives all PUBLISH and SUBSCRIBE packets 
and knows the overall relationship among topics, messages, 
publishers, and subscribers. It also knows the entry 
information of the Transparent Broker and is therefore 
responsible for overall control. The MQTT options Will and 
Retain are also handled by the Host Broker. 

C. Resource and processing load balancing 
It is sometimes desirable to change the broker that 

performs the processing in response to changes in resource 
utilization, changes in the acceptable delay of the application, 
or the concentration of processing on a particular broker. For 
this purpose, we propose a load-balancing technique by 
manipulating the memory contents of the hardware broker. In 
this load-balancing method, the Host Broker also assumes the 
role of orchestrator for overall control. The specific 
procedures are the same as those described for subscribe 
process in Section 3-B. When the Host Broker issues a 
memory write instruction, the FPGA Controller executes the 
operation on the Transparent Broker. The Transparent Broker 
has network transparency and can load-balance without any 
modification to the end devices. 

IV. IMPLEMENTATION 

In this paper, we implemented the Transparent Broker and 
FPGA Controller, which are hardware brokers. Although the 
proposed mechanism can be adapted to conventional TCP-
based MQTT, we assume MQTT-SN and implement MQTT 
broker using UDP. The Host Broker, which is a software 
broker, can be implemented by extending the software 
implementation of the existing MQTT Broker. 

A. Implementation Environment 
M-KUBOS [26], an FPGA computing platform developed 

by PALTEK Corporation, was selected as the hardware-based 
computing node. It is equipped with a Zynq UltraScale+ 
MPSoC, XCZU19EG2FFVC1760, and has an ARM Cortex-
A53 64-bit quad-core processor and Cortex-R5 quad-core 

 
Fig. 4. M-KUBOS and QSFP extension board 

  
Fig. 3. The flow of publish and subscribe process 
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processor as core processors. The architecture uses the PYNQ 
[27] Python framework to manipulate programmable logic 
(PL) components from processing system (PS) components. 
In this study, the Transparent Broker was implemented in the 
PL component and the FPGA Controller in the PS component, 
and PYNQ was used to control GPIO and DMA transfer for 
buffering control and memory operations. Fig. 4 shows the M-
KUBOS board. In this implementation, a QSFP GTY 
transceiver extension board that to the mainboard using a 
FireFly cable was designed and used to support 10 Gbps 
networks. The development environment was Vivado 2019.1, 
and the development language was Verilog HDL. 

B. Hardware Design 
We implemented the Transparent Broker as an extension 

of the hardware implementation of the MQTT broker 
proposed in the previous study [13]. For options, as in the 
previous study, QoS was set to 0, and the Will and Retain 
mechanisms were not supported by the Transparent Broker, 
since they are handled by the Host Broker. In addition, UDP 
packets were targeted. 

Fig. 5 shows the hardware design. The AXI4-Stream 
protocol was used to connect the modules. We developed an 
original network interface card (NIC) model based on the 
reference NIC model [28] of NetFPGA [29]. Two 10Gbps 

ports are provided for uplink and downlink to support network 
transparent processing. The input arbiter module places bits 
on TUSER bus of the AXI stream according to the input port, 
and the output queue module determines the output port based 
on the bits on the TUSER bus. This allows packets to flow 
from uplink to downlink and downlink to uplink, acting as 
wires. The broker architecture is implemented between the 
input arbiter and the output queue module. 

The packet filter module determines whether the input 
packet is an MQTT packet addressed to the Host Broker by IP 
address and port number. In addition, it also checks if the 
packet is a PUBLISH packet. If not, the packet is bypassed to 
the switch module. If so, the packet is duplicated and 
forwarded to both the broker logic and the switch module. 
Then, the UDP/IP stack removes the preamble, SFD, and FCS, 
and performs IP and UDP checksum verification. Since this 
design is not a stand-alone server and processing is performed 
network transparently, only the necessary functions were 
carved out from the open-source UDP/IP stack [30]. If a 
buffering instruction is issued by the FPGA Controller, 
packets are buffered into the buffer inside the buffering 
manager. The MQTT parser extracts the message type and 
topic from the incoming packet, and the lookup engine 
searches for the destination based on the topic. The message 
queue holds messages during processing by the lookup engine. 
The MQTT packet generator generates MQTT packets based 
on the destination information output from the lookup engine 
and messages retrieved from the message queue. The MQTT 
packet generator generates MQTT packets based on the 
destination information output from the lookup engine and 
messages retrieved from the message queue. The generated 
MQTT packets are sent through the UDP/IP stack and the 
switch module. The switch module sends packets sequentially 
in a round-robin manner. No major modifications have been 
made to the MQTT parser, the message queue, and the MQTT 
packet generator from previous study [13]. The functions of 
the other modules are described below. 

C. Buffering manager 
The buffering manager and buffer are controlled by GPIOs 

from the FPGA Controller. When a buffering instruction is 
issued, input packets are stored in the buffer, and when an un-
buffering instruction is issued, packets are sequentially 
removed from the buffer. 

D. Lookup engine 
The lookup engine consists of two hash tables, the Topic 

Table and the Subscriber Table, as shown in Fig. 6. The Topic 
Table takes a hash value of a topic name as a key and returns 
the number of subscribers to that topic as a value. The 
Subscriber Table takes a topic name and id as keys and returns 
the subscriber's destination information as a value. The id is a 

 
Fig. 5.  Hardware design 

  
Fig. 6. Lookup Engine 
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number in the range from 1 to the number of subscribers. By 
repeatedly accessing the subscriber table while increasing the 
number of ids, the destination information of all subscribers 
can be retrieved. In this implementation, the Topic Table is 
12-bits in width and 65,536 words in depth, while the 
Subscriber Table is 48-bits in width and 65,536 words in depth. 

In the previous study [13], the lookup engine consisted of 
two dual-port BRAMs and a three-stage pipeline to support 
both publish and subscribe processes. However, in this 
implementation, the pipeline was changed to a two-stage 
pipeline in order to use only the publish process. Instead, the 
free BRAM port was connected to the BRAM Manager. The 
BRAM Manager writes to each BRAM from the address and 
value received from the FPGA Controller via DMA transfer. 
The contents of the two hash tables are written directly from 
FPGA Controller, replacing the subscribe process. 

E. FPGA Controller 
Since M-KUBOS is equipped with a Zynq UltraScale+ 

MPSoC, the PL components can be controlled from the PS 
components. The PS components operates as an FPGA 
Controller and receives commands from the Host Controller 
to operate the PL components, the PS components operates as 
the FPGA Controller and receives commands from the Host 
Controller to operate the PL components. 

V. EVALUATION 

A. Throughput 
This implementation added functionality without 

modifying the pipeline of the prior study's architecture. 
Therefore, the delivery performance was maintained and a 
publish throughput of 100 Mmps was achieved. Similarly, an 
SFP+ line rate of 10 Gbps was achieved. Although this 
mechanism has two links, uplink and downlink, MQTT packet 
processing operates only on the input from the downlink, so 
10 Gbps performance is not a problem. 

B. Latency 
Latency was measured by using Integrated Logic Analyzer 

[31]. It captures actual internal waveforms of packet 
processing. The overall latency of this implementation was 
806.4 ns with the MQTT broker, and 377.6 ns without the 
MQTT broker. The latency of the MQTT broker logic is not 
identical to previous study [13] due to the insertion of the 
Buffering Manager and modification of the Lookup Engine 
pipeline. The other latency is the latency of the NIC-related 
logic. This resulted in a processing latency of less than 300 s. 

C. Time synchronization accuracy 
In terms of time synchronization accuracy, previous study 

[13] has shown that the measurement time was affected by 
delays and jitter caused by the GPIO operation of the 
Raspberry Pi, the device drivers and network stack of the 
network interface, and the network switches. Therefore, the 
effect of jitter caused by the MQTT broker is not considered 
in this implementation. Due to the round-robin output of the 
switch module, time synchronization accuracy takes twice as 
long in this implementation. However, previous study has 
achieved time synchronization accuracy of up to 600 
subscribers, we believe that a time synchronization system of 
up to 300 subscribers can be achieved in this implementation. 
Therefore, a time synchronization system with 100 
subscribers was achieved. 

D. Resource utilization 
The FPGA resource allocation is shown in Fig. 7, and the 

resource utilization is shown in Table I. The total usage rate 
was approximately 2-3 times higher for FF, LUT, and BRAM, 
respectively, compared to the previous study [13]. This was 
due to the addition of CPU connection logic and NIC-related 
logic, as well as the addition of FIFOs with these logics. 
Nevertheless, there was still room for additional applications 
to be implemented on the M-KUBOS board. 

In this implementation, the topic table and the subscriber 
table were implemented with the same size with previous 
study in order to compare resources. The maximum depth of 
these tables that could be implemented on the M-KUBOS 
board was investigated. The maximum depth was 524,288 
words, at which BRAM utilization was 60.06%. 

E. Memory writing time 
Writing to two BRAMs by the BRAM Manager completes 

in one clock cycle. The MQTT logic runs at 100 MHz, so a 
write to one address completes in 10 ns. The MQTT logic runs 
at 100 MHz, so a write to one address completes in 10 ns, and 
a write to n addresses completes in 10n ns. 

Service downtime occurs when packet buffering is 
performed during BRAM writing. Service downtime during 
migration must be 1 ms or less, excluding network delays for 
supporting latency-sensitive services, such as ancillary 
services [32]. Therefore, this architecture allows up to 100,000 
addresses to be written sequentially at the same time. 

VI. CONCLUSION 

In this study, we proposed a distributed MQTT broker 
infrastructure with a network transparent hardware broker. 
The Host Broker, a software broker in the cloud, and the 
Transparent Broker, a hardware broker at the edge region, 
work in concert to achieve low-latency processing at the edge 
region and software flexibility. The Transparent Broker 
operates network transparently, so end devices communicate 
with the Host Broker and do not need to be aware of the 
Transparent Broker's presence at the edge region. This enables 
resource and processing load distribution without affecting the 
end devices. We implemented and evaluated the network-
transparent hardware Broker on M-KUBOS. We assume 
MQTT-SN and implement MQTT broker using UDP. As a 
result, 10Gbps line-rate processing, processing delay of less 
than 300 s, and time synchronization accuracy within 52 s 
was achieved among subscribers were achieved while 

 
Fig. 7.  Overview of the resource placement 

 
Table I.  Resource utilization 

Resource Utilization Available Utilization (%) 

LUT 40,360 522,720 7.72 

FF 51,695 1,045,440 4.94 

BRAM 261 984 26.52 
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acquiring network transparent processing and memory write 
function by on-chip CPU. 

In the future, we plan to implement the Host Broker and 
verify processing in cooperation with the Transparent Broker. 
In addition, although this implementation was done using 
UDP for MQTT-SN, we are planning to extend it to TCP. For 
TCP support, the Transparent Broker needs to detect the 
session between the end device and the Host Broker and send 
packets from the Transparent Broker so that the TCP session 
matches up from the end device's perspective. These functions 
have already been studied in software [22][23]. By extending 
these functions to hardware, the proposed method can be 
extended to TCP and support MQTT. 
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