
Distributed MQTT Brokers Infrastructure with
Network Transparent Hardware Broker

Tokimasa Toyohara
Graduate School of Science and Technology,

Keio University
3-14-1 Hiyoshi, Kohoku, Yokohama,

Kanagawa 223-8522, Japan
toyohara@west.sd.keio.ac.jp

Hiroaki Nishi
Department of System Design,

Faculty of Science and Technology,
Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama,
Kanagawa 223-8522, Japan

west@sd.keio.ac.jp

Abstract—In recent years, the number of IoT devices has
been rapidly increasing. Therefore, MQ Telemetry Transport
(MQTT) has attracted attention as a lightweight protocol for
IoT devices. MQTT employs a publish/subscribe model of
communication via a broker, and since the performance of the
MQTT broker directly affects the quality of service, various
studies have been conducted to improve its performance.
Among them, the hardware implementation of MQTT broker
has higher performance than software implementations in terms
of publish throughput and processing delay. However, there are
some problems such as inflexibility and resource limitations.
Therefore, we propose a distributed MQTT brokers
infrastructure using the hardware broker. In this architecture,
the software broker on the cloud and the hardware broker at
the edge region work in cooperation to achieve low latency
processing at the edge region and software flexibility. The
hardware broker operates network transparently, so that end
devices communicate with the software broker in the cloud and
do not need to be aware of the presence of the hardware broker
at the edge region. This enables resource and processing load
distribution without affecting end devices. We implemented the
network transparent hardware broker in a field-programmable
gate array (FPGA) and evaluated it.

Keywords—MQTT, FPGA, edge computing, network
transparency

I. INTRODUCTION

In recent years, the number of Internet of Things (IoT)
devices has increased rapidly. In IoT devices, which generally
require limited resources and low power consumption, the
lightweight MQ Telemetry Transport (MQTT) [1] is widely
used as a communication protocol. This study focuses on
MQTT. MQTT uses a publish-subscribe communication
method via a broker, which offloads functions such as setting
the destination of data and sending data to multiple
destinations to reduce the number of communications. In
addition, the simple packet structure reduces power
consumption during communication.

In MQTT, all communication is concentrated in the broker.
Inadequate performance of the MQTT broker in terms of
delivery capacity or communication throughput can lead to
increased processing times and reduced availability. This is
especially a serious problem in applications with limited
tolerable latency, such as machine control, and power system
stability. Therefore, MQTT broker acceleration has been
studied. Software brokers have been studied, including
muMQ [2] accelerated by multi-core processing, load
balancing with multiple brokers [3]-[11], and PAMS [12] to
deploy brokers on network switches,. For hardware brokers,
the hardware implementation of MQTT broker using the field
programmable gate array (FPGA) has been studied [13].

In particular, the hardware broker has a publish throughput
of 100 Mmps (messages per second) [13]. The maximum
PUBLISH throughput of muMQ, a software broker, is
930,275 mps [2]. Therefore, the hardware implementation is
shown to provide 107 times the publish throughput. In
addition, the processing delay of the hardware implementation
is 799.2 ns. If a mechanism can be built to enable larger
networks to take advantage of these benefits, services that
have been difficult to provide due to latency and scale will be
possible.

The disadvantages of the hardware broker are that the
number of clients that can be registered is limited by on-chip
memory resources, and it is less flexible than a software-based
broker as they do not support common MQTT options such as
Will and Retain. One possible solution to the resource
limitation is to use external memory instead of Block RAM
(BRAM), which is on-chip memory. However, the cycles
required for memory access become a bottleneck, and the
benefits of hardware implementation cannot be fully realized
due to lower overall throughput and increased processing
delays. Another solution is to install multiple hardware
brokers, but this would require management of IP addresses
for the number of brokers on the end device side, and the
benefits of MQTT could not be fully utilized. It is also difficult
from a resource perspective to implement options such as Will
and Retain in a hardware broker because the messages
corresponding to the topics must be stored in the broker.

To solve these issues and enable larger networks to benefit
from the hardware broker, this paper proposes a new
distributed MQTT broker infrastructure using a network
transparent hardware broker. The contributions of this paper
can be summarized as follows:

 This paper proposes a new distributed MQTT broker
infrastructure in which the Host Broker, a software
broker running in the cloud, and the Transparent
Broker, a hardware broker running on the
communication path at the edge region, cooperates to
perform processing. Therefore, the infrastructure
achieves both low latency processing at the edge
region and software flexibility.

 The Transparent Broker operates transparently over
the network, so that end devices communicate with the
Host Broker in the cloud and do not need to be aware
of the hardware broker on the edge. In other words, in
the distributed MQTT broker infrastructure, end
devices can benefit from high-performance processing
without prior knowledge of the Transparent Broker. It
also enables resource and processing load balancing

182

2023 Eleventh International Symposium on Computing and Networking (CANDAR)

2379-1896/23/$31.00 ©2023 IEEE
DOI 10.1109/CANDAR60563.2023.00032

among Transparent Brokers and between Transparent
Broker and Host Broker without affecting end devices.

 To realize the proposed infrastructure, we implement
the Transparent Broker, a network-transparent
hardware broker, which has network-transparent
processing, and resource and processing load-
balancing functions through memory operations.
Although the proposed mechanism can be adapted to
conventional TCP-based MQTT, we assume MQTT
For Sensor Networks (MQTT-SN) [14] and implement
MQTT broker using UDP. The implementation is an
extension of the hardware implementation of the
MQTT broker [13], and is evaluated in terms of
throughput, latency, time synchronization accuracy,
and resource utilization based on similar target
performance. In addition, to verify whether low
latency and low jitter applications can be implemented
using MQTT, time synchronization is performed over
MQTT as one of the evaluation applications, and its
accuracy is evaluated.

The rest of this paper is organized as follows. Section II
introduces related studies on MQTT broker acceleration and
network transparency. Section III explains distributed MQTT
infrastructure, and Section IV describes network transparent
hardware broker in detail. We present evaluation in Section V,
and finally conclude this paper in Section VI.

II. RELATED WORK

A. Software MQTT broker acceleration
There are existing studies to improve the performance of

software MQTT brokers.

muMQ [2], a lightweight and scalable MQTT broker, was
proposed. It used a highly scalable user-level TCP stack for
multicore systems (mTCP) [15] and Data Plane Development
Kit (DPDK) [16] to accelerate processing. Publish throughput
is up to 930,275 mps, which is 5.38 times of Mosquitto [17].
However, the publish throughput is inferior to that of the
hardware broker.

Cooperation of multiple MQTT brokers for load balancing
has also been studied: ILDM [3], MQTT-ST [4], D-MQTT [5],
a scalable MQTT system based on the Chord mechanism [6],
DMLT [7], and SoD-MQTT [8] all involve multi-hop
transfers between brokers and can cause high latency.
Although Detti et al. [9] reduced inter-broker communication,
additional functionality is needed for end devices to manage
sessions with multiple brokers. EdgePub [10] reduced latency
by deploying a broker on the end devices. However, the end-
device needs to be modified. TD-MQTT [11] is a transparent
distributed MQTT broker, and subscribers can access the
broker transparently through the redirection process, but it is
not transparent to publishers. Our proposal does not introduce
latency due to multi-hop forwarding because the broker is
distributed over the communication path. Moreover, since it is
network transparent, no modification to the end device is
required.

PAMS [12] was proposed to accelerate MQTT-SN
networks by implementing some of the broker functions in
network switches. It uses in-network acceleration to reduce
communication latency. Although similar to the proposed
method in that part of the broker function is performed in the
network, its implementation in software switches is inferior to
the hardware broker in terms of performance.

Several of the methods presented in this section can be
adapted to the software broker in the infrastructure proposed
in this paper.

B. FPGA application
Field-programmable gate arrays (FPGAs) feature lower

power consumption, lower latency, and higher throughput
than conventional processors in certain applications. FPGAs
have become popular in network applications because their
pipelined architecture is efficient for processing network
streams. Therefore, FPGA implementations for data centers
and edge computing environments have been proposed
[18][19]. In addition, FPGA migration methods [20] have
been proposed to provide more flexibility for FPGA
applications. This is accomplished by replicating the circuit
through dynamic reconfiguration and reading and writing the
internal state of the Flip-Flops (FFs) by scan-chain [21].

Our proposed method writes Block RAM (BRAM) values,
which is an on-chip memory.

C. Hardware implementation of MQTT broker
The hardware implementation of MQTT broker has been

proposed [13]. In subscriber lookup, two hash tables
implemented in BRAM on FPGA are used to enable
destination lookup that can be performed in a certain time. It
is implemented on FPGA, with QoS set to 0, and supports only
UDP. Targets were set based on recent network infrastructure
and application requirements, achieving line-rate processing
of 10 Gbps and processing latency of less than 300 s by a
latency of 799.2 ns. Publish throughput was 100 Mmps which
is 107 times higher than muMQ [2]. In addition, to verify
whether low latency and low jitter applications can be
implemented using MQTT, time synchronization was
performed over MQTT as one of the evaluation applications,
and its accuracy was evaluated. Assuming time
synchronization between phasor measurement units (PMUs),
time synchronization accuracy within 52 s was achieved
among 100 PMUs. These evaluations showed that this
hardware broker has high throughput, low latency, and low
jitter.

Although the implementation was UDP, TCP support was
also mentioned. From a resource perspective, it was found that
a TCP/IP stack [18] supporting a line rate of 10 Gbps could be
implemented. In addition, the processing delay of this TCP/IP
stack was found to be 5 s [18]. Therefore, when added to
536.8 ns, which excludes the processing delay of the UDP/IP
stack in the implementation, the processing delay time target
is found to be reached.

We extend this hardware implementation to implement a
network transparent hardware broker. It thereby solves the
issues of flexibility and resource constraints while maintaining
the performance described above.

D. Network transparency
Network transparency is a style of service delivery that

provides edge services cooperating with the cloud at
intermediate locations on the Internet without affecting the
end devices [22]. End devices do not need to be aware of the
existence of services deployed on the edge; they can benefit
from the services simply by communicating toward the cloud.
This characteristic allows for flexible service provisioning,
such as moving the service locations or load balancing,
without changing the end-device network settings.

183

Authorized stream content analysis (ASCA) [23][24] is a
technology for analyzing packet streams at intermediate
points on the Internet to provide network transparent services,
while considering privacy. It enables flexible service
provision by analyzing layer seven information. To ensure
privacy, only streams authorized by the Opt-In method are
analyzed as pre-authentication. Even encrypted streams can be
analyzed by receiving a common key from the cloud [25].

In our proposal, the hardware broker has network
transparency and performs the processing without any
modification to the end devices.

III. PROPOSED INFRASTRUCTURE

In this paper, we propose a distributed MQTT broker
infrastructure. It consists of a software broker running in the
cloud and a hardware broker running on the communication
path at the edge region, which cooperates to perform
processing. Fig. 1 shows an image of the proposed
infrastructure. The Host Broker, a software broker, is located
at the top, and the Transparent Broker, a hardware broker, is
distributed in the middle region. End devices send packets to
the Host Broker, and the Transparent Broker captures and
processes the packets along the communication path. The
proposed mechanism enables the following.

First, a hardware broker installed at the edge can distribute
messages with high throughput, low latency, and low jitter. As
mentioned in Section 2, hardware brokers have high
performance and can be installed at the edge region to reduce
communication latency. This allows MQTT to be adapted to
applications with limited tolerable latency, such as machine
control and power system stability.

Second, the use of a software broker provides flexibility
that cannot be obtained with a hardware broker The MQTT
options Will and Retain require the broker to store the topic
and corresponding message, which is difficult to achieve with
a hardware broker from a memory resource perspective.
Therefore, these options are handled by the software broker.
Other extensions can be handled in the same way.

Finally, the network-transparent distributed infrastructure
eliminates the need for any modifications to the end device.
The hardware broker in this architecture is network
transparent, processing packets destined for the software
broker along the communication path. End devices

communicate with the software broker in the cloud and do not
need to be aware of the hardware broker at the edge region.
Therefore, end devices can benefit from high-performance
processing without prior knowledge of the hardware broker.
Similarly, it is possible to transparently load-balance
resources and processing. In particular, since the hardware
broker has limited memory resources, it is possible to save
resources by distributing processing to other hardware brokers
or software broker when memory is tight. In addition,
processing can be executed by a specific broker depending on
the requested delay for each application.

A. Two types of MQTT brokers
Two types of MQTT brokers are used in this

infrastructure: the Host Broker and the Transparent Broker.
There is also an FPGA Controller as a controller that controls
the Transparent Broker.

The Host Broker is a software broker. It is the only one
located upstream of the network, such as in the cloud, and has
its own IP address. Although the software broker has lower
processing performance than the hardware broker, it can use
ample resources such as memory and storage. Since the Host
Broker receives all MQTT packets, it knows the
correspondence between all topics and messages. It also keeps
track of the availability of all Transparent Brokers.

The Transparent Broker is a hardware broker. It is
distributed over midstream communication paths in the
network, such as in the edge region, and performs processing
with network transparency. Network transparency is a style of
service delivery that provides edge services cooperating with
the cloud at intermediate locations on the Internet without
affecting the end devices. The Transparent Broker analyzes
packets that pass through it and captures MQTT packets
destined for the Host Broker. For non-target packets, it works
completely as a wire. Although the hardware broker has
limited resources compared to the software broker, it can
provide high throughput, low latency, and low jitter.
Deploying a hardware broker in the edge region enables
message distribution with minimal network latency and
processing delay. The Transparent Broker is assumed to be
deployed on FPGAs on CPU-FPGA co-system on chips
(SoCs) such as Xilinx's ZYNQ series.

The CPU on the SoC executes the FPGA Controller. It
controls the writing of BRAM contents and the associated
packet buffering for the Transparent Broker on the same SoC.
The FPGA Controller has its own IP address and
communicates with the Host Broker, notifying the Host
Broker of the operating status of the Transparent Broker and
controlling the Transparent Broker in response to commands
from the Host Broker.

Fig. 1. Proposed infrastructure

Fig. 2. Assumed environment

184

B. Publish and subscribe processing
The following describes the processing procedures in

publish and subscribe. Assume the environment shown in Fig.
2. One Host Broker is installed in the cloud, which is upstream
of the network, and Transparent Brokers are distributed over
the communication path in the edge region, which is
midstream of the network. In Addition, end devices such as
sensor nodes and mobile terminals are connected to the
network. The flow of each process is shown in Fig. 3.

First is the subscribe process. When an end device sends a
SUBSCRIBE packet to a Host Broker, all Transparent
Brokers on the communication path forward the packet
without any processing. When the Host Broker receives a
Subscribe packet, the Host Broker decides which Broker to
process it. At this time, either one of the Transparent Broker
on the communication path or the Host Broker can be selected.
If the Transparent Broker is selected, the Host Broker issues a
subscribe instruction to the FPGA Controller of the
Transparent Broker. The instruction is communicated via an
HTTP or similar and contains information about the
subscriber. The FPGA Controller writes the Transparent
Broker's BRAM based on the received information in order to
add subscriber entries. At this time, if writing to an address
affects existing processing, the MQTT packets is temporarily
buffered to maintain processing consistency. When the
writing is completed, the FPGA Controller returns a
completion notification to the Host Broker. If packet buffering
has been performed, the buffer is released. Upon receiving the
completion notification, the Host Broker returns a SUBACK
packet to the end device. If the Host Broker is selected, it adds
a subscriber entry for itself and returns a SUBACK packet.

The selection of brokers is judged comprehensively based
on the operating status and memory usage of each Transparent
Broker, the positional relationship between publisher and
subscriber, the acceptable delay of applications using MQTT,
and other factors. The acceptable delay of the application can
be specified from the end device by using User Properties in
MQTT version 5.

Next is the publish process. When an end device sends a
PUBLISH packet to the Host Broker, the Transparent Broker
on the communication path searches for the subscriber
corresponding to the topic in its own entry. If they are found,
the Transparent Broker sends a PUBLISH packet to the

subscriber. At this time, the Transparent Broker behaves as if
a PUBLISH packet has been sent from the Host Broker. This
means that the end device does not need to be aware of the
existence of the Transparent Broker. At the same time as the
subscribers are searched, the received PUBLISH packet is
forwarded to the Host Broker. All Transparent Brokers on the
communication path perform the same process. The Host
Broker similarly checks its own entry and performs the
publish process.

This architecture enables the distribution of messages with
minimal network and processing delays, as long as the
Transparent Broker's resources permit. When the Transparent
Broker is not activated, the end devices communicate with the
Host Broker as in conventional MQTT communication. The
Host Broker receives all PUBLISH and SUBSCRIBE packets
and knows the overall relationship among topics, messages,
publishers, and subscribers. It also knows the entry
information of the Transparent Broker and is therefore
responsible for overall control. The MQTT options Will and
Retain are also handled by the Host Broker.

C. Resource and processing load balancing
It is sometimes desirable to change the broker that

performs the processing in response to changes in resource
utilization, changes in the acceptable delay of the application,
or the concentration of processing on a particular broker. For
this purpose, we propose a load-balancing technique by
manipulating the memory contents of the hardware broker. In
this load-balancing method, the Host Broker also assumes the
role of orchestrator for overall control. The specific
procedures are the same as those described for subscribe
process in Section 3-B. When the Host Broker issues a
memory write instruction, the FPGA Controller executes the
operation on the Transparent Broker. The Transparent Broker
has network transparency and can load-balance without any
modification to the end devices.

IV. IMPLEMENTATION

In this paper, we implemented the Transparent Broker and
FPGA Controller, which are hardware brokers. Although the
proposed mechanism can be adapted to conventional TCP-
based MQTT, we assume MQTT-SN and implement MQTT
broker using UDP. The Host Broker, which is a software
broker, can be implemented by extending the software
implementation of the existing MQTT Broker.

A. Implementation Environment
M-KUBOS [26], an FPGA computing platform developed

by PALTEK Corporation, was selected as the hardware-based
computing node. It is equipped with a Zynq UltraScale+
MPSoC, XCZU19EG2FFVC1760, and has an ARM Cortex-
A53 64-bit quad-core processor and Cortex-R5 quad-core

Fig. 4. M-KUBOS and QSFP extension board

Fig. 3. The flow of publish and subscribe process

185

processor as core processors. The architecture uses the PYNQ
[27] Python framework to manipulate programmable logic
(PL) components from processing system (PS) components.
In this study, the Transparent Broker was implemented in the
PL component and the FPGA Controller in the PS component,
and PYNQ was used to control GPIO and DMA transfer for
buffering control and memory operations. Fig. 4 shows the M-
KUBOS board. In this implementation, a QSFP GTY
transceiver extension board that to the mainboard using a
FireFly cable was designed and used to support 10 Gbps
networks. The development environment was Vivado 2019.1,
and the development language was Verilog HDL.

B. Hardware Design
We implemented the Transparent Broker as an extension

of the hardware implementation of the MQTT broker
proposed in the previous study [13]. For options, as in the
previous study, QoS was set to 0, and the Will and Retain
mechanisms were not supported by the Transparent Broker,
since they are handled by the Host Broker. In addition, UDP
packets were targeted.

Fig. 5 shows the hardware design. The AXI4-Stream
protocol was used to connect the modules. We developed an
original network interface card (NIC) model based on the
reference NIC model [28] of NetFPGA [29]. Two 10Gbps

ports are provided for uplink and downlink to support network
transparent processing. The input arbiter module places bits
on TUSER bus of the AXI stream according to the input port,
and the output queue module determines the output port based
on the bits on the TUSER bus. This allows packets to flow
from uplink to downlink and downlink to uplink, acting as
wires. The broker architecture is implemented between the
input arbiter and the output queue module.

The packet filter module determines whether the input
packet is an MQTT packet addressed to the Host Broker by IP
address and port number. In addition, it also checks if the
packet is a PUBLISH packet. If not, the packet is bypassed to
the switch module. If so, the packet is duplicated and
forwarded to both the broker logic and the switch module.
Then, the UDP/IP stack removes the preamble, SFD, and FCS,
and performs IP and UDP checksum verification. Since this
design is not a stand-alone server and processing is performed
network transparently, only the necessary functions were
carved out from the open-source UDP/IP stack [30]. If a
buffering instruction is issued by the FPGA Controller,
packets are buffered into the buffer inside the buffering
manager. The MQTT parser extracts the message type and
topic from the incoming packet, and the lookup engine
searches for the destination based on the topic. The message
queue holds messages during processing by the lookup engine.
The MQTT packet generator generates MQTT packets based
on the destination information output from the lookup engine
and messages retrieved from the message queue. The MQTT
packet generator generates MQTT packets based on the
destination information output from the lookup engine and
messages retrieved from the message queue. The generated
MQTT packets are sent through the UDP/IP stack and the
switch module. The switch module sends packets sequentially
in a round-robin manner. No major modifications have been
made to the MQTT parser, the message queue, and the MQTT
packet generator from previous study [13]. The functions of
the other modules are described below.

C. Buffering manager
The buffering manager and buffer are controlled by GPIOs

from the FPGA Controller. When a buffering instruction is
issued, input packets are stored in the buffer, and when an un-
buffering instruction is issued, packets are sequentially
removed from the buffer.

D. Lookup engine
The lookup engine consists of two hash tables, the Topic

Table and the Subscriber Table, as shown in Fig. 6. The Topic
Table takes a hash value of a topic name as a key and returns
the number of subscribers to that topic as a value. The
Subscriber Table takes a topic name and id as keys and returns
the subscriber's destination information as a value. The id is a

Fig. 5. Hardware design

Fig. 6. Lookup Engine

186

number in the range from 1 to the number of subscribers. By
repeatedly accessing the subscriber table while increasing the
number of ids, the destination information of all subscribers
can be retrieved. In this implementation, the Topic Table is
12-bits in width and 65,536 words in depth, while the
Subscriber Table is 48-bits in width and 65,536 words in depth.

In the previous study [13], the lookup engine consisted of
two dual-port BRAMs and a three-stage pipeline to support
both publish and subscribe processes. However, in this
implementation, the pipeline was changed to a two-stage
pipeline in order to use only the publish process. Instead, the
free BRAM port was connected to the BRAM Manager. The
BRAM Manager writes to each BRAM from the address and
value received from the FPGA Controller via DMA transfer.
The contents of the two hash tables are written directly from
FPGA Controller, replacing the subscribe process.

E. FPGA Controller
Since M-KUBOS is equipped with a Zynq UltraScale+

MPSoC, the PL components can be controlled from the PS
components. The PS components operates as an FPGA
Controller and receives commands from the Host Controller
to operate the PL components, the PS components operates as
the FPGA Controller and receives commands from the Host
Controller to operate the PL components.

V. EVALUATION

A. Throughput
This implementation added functionality without

modifying the pipeline of the prior study's architecture.
Therefore, the delivery performance was maintained and a
publish throughput of 100 Mmps was achieved. Similarly, an
SFP+ line rate of 10 Gbps was achieved. Although this
mechanism has two links, uplink and downlink, MQTT packet
processing operates only on the input from the downlink, so
10 Gbps performance is not a problem.

B. Latency
Latency was measured by using Integrated Logic Analyzer

[31]. It captures actual internal waveforms of packet
processing. The overall latency of this implementation was
806.4 ns with the MQTT broker, and 377.6 ns without the
MQTT broker. The latency of the MQTT broker logic is not
identical to previous study [13] due to the insertion of the
Buffering Manager and modification of the Lookup Engine
pipeline. The other latency is the latency of the NIC-related
logic. This resulted in a processing latency of less than 300 s.

C. Time synchronization accuracy
In terms of time synchronization accuracy, previous study

[13] has shown that the measurement time was affected by
delays and jitter caused by the GPIO operation of the
Raspberry Pi, the device drivers and network stack of the
network interface, and the network switches. Therefore, the
effect of jitter caused by the MQTT broker is not considered
in this implementation. Due to the round-robin output of the
switch module, time synchronization accuracy takes twice as
long in this implementation. However, previous study has
achieved time synchronization accuracy of up to 600
subscribers, we believe that a time synchronization system of
up to 300 subscribers can be achieved in this implementation.
Therefore, a time synchronization system with 100
subscribers was achieved.

D. Resource utilization
The FPGA resource allocation is shown in Fig. 7, and the

resource utilization is shown in Table I. The total usage rate
was approximately 2-3 times higher for FF, LUT, and BRAM,
respectively, compared to the previous study [13]. This was
due to the addition of CPU connection logic and NIC-related
logic, as well as the addition of FIFOs with these logics.
Nevertheless, there was still room for additional applications
to be implemented on the M-KUBOS board.

In this implementation, the topic table and the subscriber
table were implemented with the same size with previous
study in order to compare resources. The maximum depth of
these tables that could be implemented on the M-KUBOS
board was investigated. The maximum depth was 524,288
words, at which BRAM utilization was 60.06%.

E. Memory writing time
Writing to two BRAMs by the BRAM Manager completes

in one clock cycle. The MQTT logic runs at 100 MHz, so a
write to one address completes in 10 ns. The MQTT logic runs
at 100 MHz, so a write to one address completes in 10 ns, and
a write to n addresses completes in 10n ns.

Service downtime occurs when packet buffering is
performed during BRAM writing. Service downtime during
migration must be 1 ms or less, excluding network delays for
supporting latency-sensitive services, such as ancillary
services [32]. Therefore, this architecture allows up to 100,000
addresses to be written sequentially at the same time.

VI. CONCLUSION

In this study, we proposed a distributed MQTT broker
infrastructure with a network transparent hardware broker.
The Host Broker, a software broker in the cloud, and the
Transparent Broker, a hardware broker at the edge region,
work in concert to achieve low-latency processing at the edge
region and software flexibility. The Transparent Broker
operates network transparently, so end devices communicate
with the Host Broker and do not need to be aware of the
Transparent Broker's presence at the edge region. This enables
resource and processing load distribution without affecting the
end devices. We implemented and evaluated the network-
transparent hardware Broker on M-KUBOS. We assume
MQTT-SN and implement MQTT broker using UDP. As a
result, 10Gbps line-rate processing, processing delay of less
than 300 s, and time synchronization accuracy within 52 s
was achieved among subscribers were achieved while

Fig. 7. Overview of the resource placement

Table I. Resource utilization

Resource Utilization Available Utilization (%)

LUT 40,360 522,720 7.72

FF 51,695 1,045,440 4.94

BRAM 261 984 26.52

187

acquiring network transparent processing and memory write
function by on-chip CPU.

In the future, we plan to implement the Host Broker and
verify processing in cooperation with the Transparent Broker.
In addition, although this implementation was done using
UDP for MQTT-SN, we are planning to extend it to TCP. For
TCP support, the Transparent Broker needs to detect the
session between the end device and the Host Broker and send
packets from the Transparent Broker so that the TCP session
matches up from the end device's perspective. These functions
have already been studied in software [22][23]. By extending
these functions to hardware, the proposed method can be
extended to TCP and support MQTT.

ACKNOWLEDGMENT

This paper is based on the results obtained from the JST
CREST Grant Number JPMJCR19K1.

REFERENCES

[1] MQTT, https://mqtt.org/ (accessed Aug. 8, 2023).

[2] W. Pipatsakulroj, V. Visoottiviseth and R. Takano, "muMQ: A
lightweight and scalable MQTT broker," 2017 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN),
Osaka, Japan, 2017, pp. 1-6, doi: 10.1109/LANMAN.2017.7972165.

[3] Ryohei BANNO, Jingyu SUN, Susumu TAKEUCHI, Kazuyuki
SHUDO, "Interworking Layer of Distributed MQTT Brokers, IEICE
Transactions on Information and Systems, " 2019, Volume E102.D,
Issue 12, Pages 2281-2294, Released on J-STAGE December 01, 2019,
Online ISSN 1745-1361, Print ISSN 0916-8532,
https://doi.org/10.1587/transinf.2019PAK0001.

[4] R. Banno and K. Osawa, "Acceleration of MQTT-SN protocol using
P4," 2022 IEEE 11th International Conference on Cloud Networking
(CloudNet), Paris, France, 2022, pp. 16-21, doi:
10.1109/CloudNet55617.2022.9978851.

[5] L. Staglianò, E. Longo and A. E. C. Redondi, "D-MQTT: design and
implementation of a pub/sub broker for distributed environments,"
2021 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS), Barcelona, Spain, 2021, pp. 1-6, doi:
10.1109/COINS51742.2021.9524110.

[6] C. Ruenpitak, A. Phonphoem, A. Jansang, W. Tangtrongpairoj and C.
Jaikaeo, "Scalable Distributed Broker System for Very Large MQTT
Networks," 2022 19th International Joint Conference on Computer
Science and Software Engineering (JCSSE), Bangkok, Thailand, 2022,
pp. 1-6, doi: 10.1109/JCSSE54890.2022.9836246.

[7] Y. Noda, K. Ishibashi and T. Yokotani, "A proposal on the control
mechanism among distributed MQTT brokers over wide area
networks," 2022 IEEE International Conference on Internet of Things
and Intelligence Systems (IoTaIS), BALI, Indonesia, 2022, pp. 70-75,
doi: 10.1109/IoTaIS56727.2022.9976024.

[8] T. Sylla, R. Singh, L. Mendiboure, M. S. Berger, M. Berbineau and L.
Dittmann, "SoD-MQTT: A SDN-Based Real-Time Distributed MQTT
Broker," 2023 19th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), Montreal,
QC, Canada, 2023, pp. 92-97, doi:
10.1109/WiMob58348.2023.10187779.

[9] A. Detti, L. Funari and N. Blefari-Melazzi, "Sub-Linear Scalability of
MQTT Clusters in Topic-Based Publish-Subscribe Applications," in
IEEE Transactions on Network and Service Management, vol. 17, no.
3, pp. 1954-1968, Sept. 2020, doi: 10.1109/TNSM.2020.3003535.

[10] C. Bouallegue and J. Gascon-Samson, "EdgePub: A Self-Adaptable
Distributed MQTT Broker Overlay for the Far-Edge," 2022 Seventh
International Conference on Fog and Mobile Edge Computing (FMEC),
Paris, France, 2022, pp. 1-8, doi:
10.1109/FMEC57183.2022.10062858.

[11] F. Hmissi and S. Ouni, "TD-MQTT: Transparent Distributed MQTT
Brokers for Horizontal IoT Applications," 2022 IEEE 9th International
Conference on Sciences of Electronics, Technologies of Information
and Telecommunications (SETIT), Hammamet, Tunisia, 2022, pp.
479-486, doi: 10.1109/SETIT54465.2022.9875881.

[12] R. Banno and K. Osawa, "Acceleration of MQTT-SN protocol using
P4," 2022 IEEE 11th International Conference on Cloud Networking
(CloudNet), Paris, France, 2022, pp. 16-21, doi:
10.1109/CloudNet55617.2022.9978851.

[13] Yamamoto, K., Fukuhara, A. and Nishi, H. (2022), Hardware
Implementation of MQTT Broker and Precise Time Synchronization
Using IoT Devices. IEEJ Trans Elec Electron Eng, 17: 209-217.
https://doi.org/10.1002/tee.23511

[14] A. Stanford-Clark and H. L. Truong, MQTT For Sensor Networks
(MQTT-SN) Protocol Specification Version 1.2, IBM Corporation,
2013.

[15] mtcp-stack/mtcp, GitHub, https://github.com/mtcp-stack/mtcp
(accessed Aug. 8, 2023).

[16] Data Plane Development Kit, DPDK, https://www.dpdk.org/ (accessed
Aug. 8, 2023).

[17] Light RA. Mosquitto: Server and client implementation of the MQTT
protocol. Journal of Open Source Software 2017; 2(13):265.
https://doi.org/10.21105/joss.00265.

[18] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers and R. Carley,
"Scalable 10Gbps TCP/IP Stack Architecture for Reconfigurable
Hardware," 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, Vancouver, BC,
Canada, 2015, pp. 36-43, doi: 10.1109/FCCM.2015.12.

[19] A. Fukuhara, T. Iwai, Y. Sakuma and H. Nishi, "Implementation of
Content-Based Anonymization Edge Router on NetFPGA," 2019 IEEE
13th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), Singapore, 2019, pp. 123-128, doi:
10.1109/MCSoC.2019.00025.

[20] A. Fukuhara, S. Shohata and H. Nishi, "FPGA Context-based Live
Migration Maintaining Network Consistency," 2020 Eighth
International Symposium on Computing and Networking Workshops
(CANDARW), Naha, Japan, 2020, pp. 81-86, doi:
10.1109/CANDARW51189.2020.00027.

[21] I. Kim and H. B. Min, "Operation about multiple scan chains based on
system-on-chip," 2008 International SoC Design Conference, Busan,
Korea (South), 2008, pp. II-191-II-194, doi:
10.1109/SOCDC.2008.4815716.

[22] R. Morishima and H. Nishi, "Network Transparent Fog-based IoT
Platform for Industrial IoT," 2019 IEEE 17th International Conference
on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp. 920-
925, doi: 10.1109/INDIN41052.2019.8972178.

[23] W. A. S. P. Abeysiriwardhana, J. Wijekoon, R. L. Tennekoon, and H.
Nishi, “Software-accelerated Service-oriented Router for Edge and Fog
Service Enhancement Using Advanced Stream Content Analysis,”
IEEJ Transactions on Electronics, Information and Systems, vol. 139,
no. 8, pp. 891–899, 2019.

[24] T. Miura, J. L. Wijekoon, S. Prageeth and H. Nishi, "Novel
infrastructure with common API using docker for scaling the degree of
platforms for smart community services," 2017 IEEE 15th
International Conference on Industrial Informatics (INDIN), 2017, pp.
474-479 .

[25] H. Hiraga and H. Nishi, "Network Transparent Decrypting of
Cryptographic Stream Considering Service Provision at the Edge,"
2021 IEEE 19th International Conference on Industrial Informatics
(INDIN), Palma de Mallorca, Spain, 2021, pp. 1-6, doi:
10.1109/INDIN45523.2021.9557366.

[26] FPGA computing platform M-KUBOS PALTEK corporation,
PALTEK corporation. https://www.paltek.co.jp/design/original/m-
kubos/index.html (accessed Aug. 8, 2023).

[27] PYNQ: PYTHON PRODUCTIVITY, http://www.pynq.io/ (accessed
Aug. 8, 2023).

[28] The NetFPGA Project. http://netfpga.org/ (accessed Aug. 8, 2023).

[29] NetFPGA SUME Reference NIC,
https://github.com/NetFPGA/NetFPGA-SUME-
public/wiki/NetFPGA-SUME-Reference-NIC (accessed Aug. 8, 2023).

[30] alexforencich/verilog-axis: Verilog AXI stream components for FPGA
implementation, https://github.com/alexforencich/verilog-axis
(accessed Aug. 8, 2023).

[31] Xilinx. Integrated Logic Analyzer v6.2 Product Guide (PG172). 2016.

[32] Nishi H. Infrastructure and services for smart community. The Journal
of the Institute of Electronics, Information and Communication
Engineers 2015; 98(2):112–117.

188

