ADVANCED ANIMATION
AND RENDERING
TECHNIQUES

Theory and Practice

Alan Watt

University of Sheffield 5 ¥
o By

Mark Watt

Xaos, San Francisco

ACM Press
New York, New York

Addison-Wesley
Harlow, England - Reading, Massachuselts - Menlo Park, California

New York - Don Mills, Ontario - Amsterdam - Bonn - Sydney - Singapore
Tokyo - Madrid - SanJuan - Milan - Mexico City - Seoul - Taipei

o

356

These complications arise because the motion specifi-
cation is not properly divorced from the path specifica-
tion. Moreover, as we have seen, driving the motion via
u directly has a disadvantage in that it is impossible to get
an object moving with constant speed along the path.
Only the rigorous approach of arclength reparametriza-
tion, which treats the specification of path and motion
completely separately, can provide this.

15.3.8 Parametrization of orientation

This section deals with the problems that are encountered
when parametrizing the space of all possible orientations
of an object, where all orientations, or rotations, take
place about a point fixed in space with respect to that
object. We begin by looking at a common, but as we
shall see somewhat inadequate, method for animating
rotation — Euler angles.

Euler angles

Historically, the most popular parametrization of orien-
tation space, well established through appearing in stan-
dard maths and physics textbooks, has been in terms of
FEuler angles, where a general rotation is described as a
sequence of rotations about three mutually orthogonal
coordinate axes fixed in space. (Note that the rotations
are applied to the space and not to the axes.) This has led
to animators setting up general orientation as a com-
posite of these axis rotations which we will call ‘rolls:
x-roll for rotation about the x-axis, y-roll for rotation
about the y-axis and z-roll for rotation about the z-axis.
These rolls, in homogeneous matrix notation, give rise to
the principal rotation matrices shown in Figure 15.15.

The precise order in which these rolls are applied lead
to different definitions of the parametrization of orienta-
tion in terms of Euler angles. These considerations donot
concern us here. In general, an angular displacement has
three degrees of freedom, and since each principle rota-
tion matrix has but one degree of freedom, a minimum
of three principle rotations must be combined to repre-
sent a general angular displacement. Let us choose an
x-roll, followed by a y-roll, followed by a z-roll. Our
parametrization of orientation space is thus a general
rotation matrix R(@,, 6y, 8,) in terms of the Euler
angles O, 6,, 6, given by:

Overview and low-level motion specification

€G3 Gy 83)
51 8€C3 — C183
€157€3 1 5153 Cp8y85 — 8163 €1C

0
$15283F €16 516 0
0
0 0 0o 1

where:

5;=sin 6; and ¢; = cos 6;

in general there are 12 possible ways in which to define
a rotation in terms of Euler angles, each one resulting in
a different form for the above rotation matrix.
Because of its historical popularity, computer anima-
tion systems were quick to use Euler angles as parameters
for animating orientation. There are two major draw-
backs to this approach, however. The first is a practical

"

1 0 0 0
wroll () = il cos bl sin “| 0

U —sinf, cosfl 0

0 0 0 1

cos 0 (1} —sinth 0

& yeroll () = 0 | 0 {1
sin th 0 costh 0

0 0 0 |
8 cosfy sinth 0 0
sroll (B3) = | —siny coséy O 0
0 0 1 0

0 0 0 I

X

Figure 15.15 The principal rotation matrices.

Motion contral 3457

probiem often encountered by animators frying to set up
an arbitrary orientation using Fuler angles, and the
second is a mathematically deep objection (o their use
when interpolating orientation. Both of these problems
occur because Euler angles ignore the interaction of the
rolls about the separate axes. As we shall see these rolis
are not independent of each other.

Euler angles and Gimbal lock

‘Gimbal lock’ is a term derived from a mechanical pro-
blem that arises in the gimbal mechanism used to support
a compass or gyroscope. These generally consist of three
concentric frames or rings and under certain rotations a
degree of freedom is lost - the mechanism exhibits gim-
bal lock.

Suppose an animator uses the above parametrization
to set up an arbitrary orientation. First, the animator
applies an x-roll, then a y-roll and finally a z-roll in order
to move an object into a required orientation. Suppose
further that during this process the animator innocently
specifies a y-roll of x/2. In dismay he will discover that
the subsequent rotation about the z-axis has an effect
that is no different to rotating about the x-axis initially.
In order to understand this consider the effect a y-roll
has on the x-axis, about which we have already per-
formed a rotation of amount 9,. Although, as you will
remember, the rolls act on points in the space - we are
not rotating the coordinate axes which remain fixed - we
can still talk about the effect on the x-axis. This is because
the rolls are applied in a fixed order and subsequent rolls
have the effect of rotating in space the axes about which
the preceding rolls have been applied. We track the effect
a y-roll of x/2 has on the preceding x-roll by rotating the
x-axis asif it were embedded in the object. Thus the effect
of a y-roll of #/2 is to rotate the x-axis to x’
(Figure 15.16), which is in alignment with the z-axis.
Consequently any z-roll of 6, could have been achieved
by an x-roll of — 6. Effectively, now that we are in this
configuration with the x- and z-axes aligned, it is impossi-
ble to rotate the object about the x-axis.

This sudden loss of a degree of freedom is extremely
irritating to the animator. Mathematically, the animator
has unwittingly stumbled upon a singularity in the
parametrization, where @, and 6, become associated
with the same degree of freedom. To see the reason for
this mathematically, we set s, =1 and ¢; =0 into the
rotation matrix, reducing it to R(6,, ©/2, 6;) given by:

0 0 ~1 0
sin(Gl——GJ) cos(9,~93) 0 0
cos(@ -0,) —sin(6,~0,) 0 o

0 0 0 1

Using different formulations of Euler angles in the
general rotation matrix does not remove this singularity.
Euler angles and interpolation

We now consider the problem of interpolation when
Euler angles are used. Suppose the three Euler angles are

ﬂ v
! # x-roll),

A
w2
& E;‘ ¥
s-roll 0 followed by y-roll /2
> x axis effectively gets rotated
X [to.x’ axis
\ ¥
A
d>e
.—_...*_
r followed by z-roll 6,
| > z-roll iy same as v-roll - ¢,
¥
Y

Figure 16.16 lllustrating the loss of one degree of freedom - gimbal
lock.

B e P ——

358 Overview and low-level motion specification

R
¥ y ,}

B

Figure 15.17 The start and finish positions for the animation of the
block letter ‘R’.

used as key parameters in an interpolating system. Sup-
pose also that key orientation i is described by the triple
(6, By, 65} and interpolation is carried out by inter-
polating through the three Euler angles separately in a
manner identical to interpolating translation, that is, by
separately interpolating through the x, y and z com-
ponents of key positions (x;, ,, z;). This means that at a
certain frame ¢, the interpolated values (8,(r), 6,(1),
6,(1)) are combined to produce the rotation matrix
R(6,(1), 6,(r), 6:(n) which is applied to the object.
There is a problem with this approach, however. The
hidden assumption behind such a scheme is that rotations
act just like translations - but they do not. That this
is so should be apparent from the fact that rotation
involves multiplication, whereas translations only
involve addition. Moreover, as is well known, rotation
matrices do not commute in multiplication, whereas
translation matrices do under addition.

Consideration of a specific example will reveal the
inadequacy of the Euler angle parametrization more
cleellrly. Let our object be a block letter ‘R’ and let it be
initially offset from the origin along the y-axis by a

R
YA
x x
b4 —
x-roll &
2 Z
K
(a)

Figure 15.18 The two routes for the animation of the block letter ‘R’.

nonzero amount. The final orientation is the reflection
of the object in the x, z-plane as shown in Figure 15.17.
The animator’s task is to set up an animation that rotates
the letier from the start to the final orientation. There is
more than one way to achieve this movement. One way
would be a single rotation of x about the x-axis (Figure
15.18(a)}. An alternative is to first perform a y-roll of »
followed by a z-roll of « (Figure 15.18(b)). Both routes
reach the end position but get there in different ways.
Generating inbetweens via linear interpolation to give
rotation matrices for the intermediate frames gives us the
sequence of rotation matrices:

R(0,0,0),...,R(x,0,0),...,R(x,0,0) te[0,1]
for the first route, and:

R(0,0,0), ..., R(0, xt, wr),...,R(0,x)

for the second route. The effect of these two sequences
for our example is shown in Figures 15.19(a) and (b).
Clearly, the two moves are very different; the first pro-
duces a simple steady rotation, whereas the second both
rotates about the y-axis and simultaneously twists about
the z-axis. In general, specifying orientation moves in
this manner can easily produce such contorted move-
ments, as the object is only allowed to twist about
separate coordinate axes.

Although this example is somewhat contrived, it
should be clear that it represents a dilemma for the
animator. Depending on the choice of principal rotations
there is more than one way to get from one key orienta-

" tion to another. Compare this to interpolating transla-

tion between successive key positions in cartesian
coordinates. The movement is always the same. If linear
interpolation is employed, for example, the move is
always along a straight line from one key position to the
other. Using Euler angles for interpolation to get from

i

¥ YA

z-roll

T =z

5]

(b)

R LA LR

Mation control 359

one orientation to another is not unique. Why is there
this difference? The answer lies in the fact that the com-
ponents of cartesian coordinates are truly independent of
each other, whereas Euler angles are not. Interpolating
Euler angles treats them as if they were independent of
each other and completely ignores the effect they have on
each other. The animator is forced into specif ying orien-
tation as a composition of rotations about three separate
axes, the order of which must be strictly observed.
Moreover, different coordinate systems will produce dif-
ferent moves through identical key orientations. We con-
clude that Euler angle interpolation produces a motion
as inappropriate as that obtained by interpolating posi-
tion through key positions specified in spherical polar
coordinates as opposed to cartesian coordinates,
Euler’s theorem tells us that it is possible to get from
one orientation to any other by a simple steady rotation
about a single axis. Interpolation between two key orien-
tations should produce precisely this simple rotation.
Euler rotation is inadequate because, as we have seen,
given two successive rotations the notation does not pro-
vide close expressions to determine the angle and the axis
of the resultant rotation. What we seek is a parametriza-
tion of orientation that can accommodate the interaction
of rotations within its working, thereby enabling us to:

1. guarantee a simple steady rotation between any two
key orientations, which we know must exist, and

2. define moves that are independent of the choice of
the coordinate system.

Luckily such a parametrization exists, but in order to
discuss it we need to introduce a notation implied by
Euler’s theorem - angular displacement.

Angular displacement

We define orientation as an angular displacement given
by (6, n) of an amount about an axis n. Just as we did
for Euler angle notation, we shall derive the rotational
matrix in terms of this new notation, so instead of
R(6,, 6,, 8;) we write R (6, n). Consider the angular
displacement acting on a vector r taking it to position Rr
as shown in Figure 15.20.

The problem can be decomposed by resolving r into
components parallel to n, ry, which by definition
remains unchanged after rotation, and perpendicular to
n, r, in the plane passing through r and Rr.

ry=(nr)n
rli =r— (n-r)n

r, is rotated into position Rr, . We construct a vector
perpendicular to », and lying in the plane. In order to
evaluate this rotation, we write:

V=rxr, =nxr

So

Rr, = (cos 8)r, + (sin ©) ¥
hence

Rr=Rry+Rr,

=Rr + (cos 9):’l + (sin G)V

- (n-r)n+cos E(r— (n-r)rr) + (sin e)n Xr

= (cus G)r-i- (I - Cos B)M(n ‘ r) + (sin O)nxr (15.5)
And now, we beg the reader’s indulgence for an apparent
non sequitur, the relevance of which will be revealed at
the end of the digression,

. —

360 Overview and low level motion specification

Figure 15.20 Angular displacement (€,) of r.

Quaternions

The great mathematician Sir William Hamilton had been
interested in complex numbers since the early 1830s.
Complex numbers have the form:

a+ib
where ¢ and b are real and the multiplication rules are:
12=1 and %= —1

These complex numbers define a plane - the complex
plane - where one axis is real and the other imaginary.
For over 10 years Hamilton tried to extend this concept
in order to define a complex volume by searching for a
second imaginary axis, Just such a number would have
three components: one real and two imaginary. This,
however, he could not do. Then, on 16 October 1843,
when walking past Broome Bridge in Dublin towards the
Royal Irish Academy, where he was to preside over a
meeting, Hamilton, in a flash of inspiration, realized that
three rather than two imaginary units were needed, with
the following properties:

Pl g

ij=k and ji= —k

with the cyclic permutation i —j —k —i. Such was his
elation, Hamilton carved these formulae on the side of
the bridge and called the number:

g=a+bi+cj+dk

a ‘quaternion’.
For our purposes we shall use the condensed notation:

g= (5’ V)
where:
(s, v) =8+ vd+ v, j+ vk

s is thought of as the scalar part of the quaternion and
v the vector part with axes , f and k. Using the above
rules it is easy to derive the following properties. The
multiplication of two quaternions:

a4 = (-S'h "1) and 4= (Sz: "2)

is given by:
aqy= (55— v, v, Syt sy + v X 1,)

The multiplication of two quaternions is thus a quater-
nion. Mathematically, we have defined a group. Stated
somewhat simplistically, a group is just a set of elements
with a rule defining their multiplication such that the
result of this multiplication is itself an element of that
group. Groups can be constructed completely arbitrarily,
though a surprising number of groups are relevant to the
physical world. We shall see that a subgroup of the
quaternion group is closely related to the group of rota-
tions or, more precisely, the group of rotation matrices.

Note that except for the cross product term at the end
of the previous equation, it bears a strong similarity to
the law of complex multiplication:

(a+ib,) (ay+iby) = (aya,— byb,) + i(ab; +ay0,)
The cross product term has the effect of making quater-
nion multiplication noncommutative.

We define the conjugate of the quaternion:
q= (s. v) to be g = (s, wv)
The product of the quaternion with its conjugate defines
its magnitude:
ag=s’+|v|?=|q|?

Finally, as promised, we come to the point of all this,
which is contained in the following properties. Take a
pure quaternion (one that has no scalar part):

p=(0,r)
and a unit quaternion

q= (s, v) where gq = 1

and define

R (p) =apg!

Using our multiplication rule, and the fact that ¢ ' = G
for g of unit magnitude, this expands to:

Rq(p) = (0, (32-1'-1*)r+2v(v-r) +2svxr) (15.6)

This can be simplified further since g is of unit magnitude
and we can write:

q= (cos@,sin@n) |n] =1
Substituting into Equation (15.6) gives:

R,(p) = ((),(cc:)sz9—sin"'9)ir-§-25in2 nln-r)
+2cos Bsin O n x r)
= (0.(:052 Or+ (1 ~ cos2) n(n-r]
+sin20nxr) (15.7)

Now compare this with Equation (15.5). You will notice
that aside from a factor of 2 appearing in the angle they
are identical in form. What can we conclude from this?
The act of rotating a vector » by an angular displacement
(0, n)is the same as taking this angular displacement, if-
ting’ it into quaternion space, by representing it as the
unit quaternion (cos(8/2), sin(6/2) n) and performing
the operation ¢ () 7 on the quaternion (0,r). We could
therefore parametrize orientation in terms of the four
parameters:

cos (6/2), sin(6/2) n,, sin(0/2) n,, sin(0/2) n,

using quaternion algebra to manipulate the components.

In practice this would seem an extremely perverse way
of going about things were it not for one very important
advantage afforded by the quaternion parametrization.
Two quaternions multiplied together, each of unit
magnitude, will result in a single quaternion of unit
magnitude. If we use unit quaternions to represent rota-
tions then this translates to two successive rotations pro-
ducing a single rotation. Now a variation of Euler’s
theorem states that two successive rotations is equivalent
toonerotation. So we can see that inherent in the algebra
of the quaternion group is Euler’s theorem. The single
steady rotation between successive keyframes that we
seek is provided for us automatically by the rules par-
ticular to the parametrization and contained in the
statement:

Maotion control

361
Ry = R R, where ¢” = gg’

Let us now return to our example of Figure 15.17 to see
how this works in practice. The first single x-roll of is
represented by the quaternion:

(cos(/2), sin(xr2) (1,00)) = (0,(1,00))

Similarly, a y-roll of # and a z-roll of = are given by
(0,(0,1,0)) and (0,(0,0, 1)) respectively. Now the effect of
a y-roll of « followed by a z-roll of 7 can be represented
by the single quaternion formed by multiplying these two
quaternions together:

(0.(0,1,0)) (0.(0,0,1)) = {0,(0,1,0) x (0,0,1))
= (0,(1,0,0))

which is the single x-roll of 1. From this we can see that
the cross product term in (15.7) can be thought of as cor-
recting for the interdependence of the separate axes that
is ignored by Euler’s angle notation.

An additional advantage afforded by using quater-
nions is that the gimbal lock singularity, which is a conse-
quence of using three parameters to parametrize
orientation, disappears.

Much of what now follows is based on the work of the
researcher who brought quaternions to the attention of
the computer graphics community. The interested reader
is referred to [SHOES85] and [SHOES7] for further
detail. The latter reference concerns itself more with the
practical details of an implementation.

Interpolating using quaternions

Given the superiority of quaternion parametrization over
Euler angle parametrization, this section covers the issue
of interpolating rotation in quaternion space. Consider
an animator sitting at a workstation and interactively set-
ting up a sequence of key orientations by whatever
method is appropriate. This is usuaily done with the prin-
cipal rotation operations, but now the restrictions that
were placed on the animator when using Euler angles,
namely using a fixed number of principal rotations in g
fixed order for each key, can be removed. In general,
each key will be represented as a single rotation matrix.
This sequence of matrices will then be converted into a
sequence of gquaternions. Interpolation between key
quaternions is performed and this produces a sequence
of inbetween quaternions, which are then converted back
into rotation matrices. The matrices are then applied to
the object. The fact that a quaternion interpolation is
being used is transparent to the animator.

i
i
1
f
i

362 Overview and low-level metion specification

Moving into and out of quaternion space

The implementation of such a scheme requires us to
move into and out of quaternion space, that is, to go
from a general rotation matrix to a quaternion and vice
versa. It can be shown that the effect of taking a unit
gquaternion:

g = (cos(0r2), sin(0/2) n)

and performing the operation g ()¢~ ! on a vector is the

same as applying the following rotation matrix to that
vector:

1—2y?—27 2XY-2WZ 2XZ +2WY 0
IXY +2WZ 1 —-2X2-27% 2YZ-2WX O
2XZ —2WY 2YZ42WX 1-2X2-2Y 0

0 0 0 1

where the quaternion (cos(©/2), sin(6/2) r) is written
as (W, (X,Y,Z)), the notation used in Listing 15.3. By
these means then, we can move from quaternion space
to rotation matrices. Listing 15.3 gives the conversion
from quaternion space to rotation matrix in the routine
quattomat(q, mat).

The inverse mapping from a rotation matrix to a
quaternion is only slightly more involved. All that is
required is to convert a general rotation matrix:

Moy Mgy Mg O
My My My 0
My My My, O
0 0 0o 1

into the matrix format directly above. The resulting
quaternion is trivially (W, (X, Y, Z)). Given a general
rotation matrix the first thing to do is to examine the sum
of its diagonal components M; where 0 <7< 3. This is
called the trace of the matrix. From the above format we
know:

trace=1—2¥2—22241-2X2-2Z22+1-2X*-2¥1+ 1
=4-4(X2+ Y2+ 22)

Since the matrix represents a rotation we know that the

corresponding quaternion must be of unit magnitude,

that is:

X+ Y e Z24+ wh=1

and so the trace reduces to 4W?* Thus for a 4 x4
homogencous matrix we have:

W= {trace)”
The remaining components of the quaternion (X, Y, Z)
which, as you will recall, is the axis of rotation scaled by
half the sine of the angle of rotation, are obtained by
combining diagonally opposite elements of the matrix
Mj; and Mj; where 0 < i,j <2. We have:

My — M, Moy — My Mg — My

4w AW aw

For zero W these equations are undefined and so other
combinations of the matrix components, along with the
fact that the quaternion is of unit magnitude, are used to
determine the axis of rotation. Listing 15.3 gives the code
in full for moving from rotation matrices to quaternions
in the routine mattoquat{mat,q).

Having outlined our scheme we now discuss how to
interpolate in quaternion space. Since a rotation maps
onto a quaternion of unit magnitude, the entire group of
rotations maps onto the surface of the four-dimensional
unit hypersphere in quaternion space. Curves inter-
polating through key orientations should therefore lie on
the surface of this sphere. Consider the simplest case of
interpolating between just two key quaternions. A naive,
straightforward, linear interpolation between the two
keys results in a motion that speeds up in the middle. This
is because we are not moving along the surface of the
hypersphere but cutting across it. In order to ensure a
steady rotation we must employ spherical linear inier-
polation, where we move along an arc of the geodesic
that passes through the two keys. (Figure 15.1 showing
the differences between interpolating position and inter-
polating rotation angle is entirely analogous to this situa-
tion.) Technically, the metric of the hypersphere’s
surface is said to be the same as the angular metric of the
rotation group.

The formula for spherical linear interpolation is easy
to derive geometrically. Consider the two-dimensional
case of two vectors A and B separated by angle 2and
vector P which makes an angle © with 4 as shown in
Figure 15.21. P is derived from spherical interpolation
between 4 and B and we write:

P=aAd + (B

Trivially, we can solve for a and 8 given:

1P| =1
A-B=cos?
A-P=cos O

to give:

sin(2— 8) sin@
SN b g

sin 2 sin 2

Listing 15.3 quailit.c

3
=
g
5 3 -t
]
wM'—‘:

#idefine EPSILON 0.00001
#define HAI FP] 1.570796326794895

int nxt(3] = {Y2ZX}:
void quaitomat(g,mat)
float g[4];
float mat[4][4];
{

double s,xs,ys,zs,wx,wy,wz,xx,xy,xz,yy,yz,zz;

S = 2.0/alX1*q[X] + alYI*q[Y] + q(Z]*q[Z] + alW1*q[Wiy

Xs = q[X]*s; ys = q[Y]*s; zs = qlZ]*s;
WX = g{Wi*xs; wy = alWi*ys; wz = q[W*zs;
xx = q[X]*xs; xy = alX]*ys; xz = q[X]*zs;
YY = alYI*ys; yz = qY]¥zs; zz = q[Z)zs;
mat[0][0] = 1.0 - (yy + z2);
mat[0][1] = xy + waz; e
mat[0][2] = xz — wy; ;
mat[1]{0] = xy — waz; 2:
mat[1][1] = 1.0 - (xx + zz);
mat[1]{2] = yz + wx;
matf2][0] = xz + wy; ;‘
mat[2][1] = yz — wx;
mat[2][2] = 1.0 - (xx + yy); ¢
malOli3] = 0; mai[1)(3] = 0 ma(2][3] = 0; maq3|3] = 1; i
mat[3][0] = 0.; mai[3][1] = 0. mat[3][2] = 0.

H

void mattoquat(mat,q)

float mat[4][4]; &

float q[4];
{

double tr,s; *
imt i,jk; %
tr = mat[0][0] + mat[1][1] + mat[2][2]:
if (ir > 0.0) {

s = sqrt(tr + 1.0);

q[W] = s*0.5;

s = (.5/s;

afX] = ma[1][2] — mat[2][1])*s;

alY] = mat[2][0] — mat[0][2])*s:

alZ]l = (mat[0][1] — mat[1][0])*s;

"l

{ Listing 15.3 (cont.)

| ‘ else {
| %
1 if (uatY1[Y] > mafXi[XD i = Y5
if (mat[Z)1Z] > mat[iliD 1 = 7
| i = nxfi] ; k = oxthl
i s = sqri((matfillil] — (mat[j}[j]+mat[k}[k])) + 1.0)%;
| glil = s*0.5;
s = 0.5/s;
gq[W] = (mat[il[k] — mat[k][i1)*s;
qljl = (mat[i}[j] + mat[j][i])*s;
qlkl = (mat[i]fk] + mat[k][iD)*s;
H

}
void slerp(p,a,t.at)
float pl4l.ql4];

; float t;
i i fleat qt[4l;
’, {
double omega,cosom,sinorn,sclp,sc]q;
E ‘ int i:
i i
|
b - cosom = p[X]*q[X] + plYI*qlY] + plZ1*qlZ] + p[W1*q[W1;

if (1.0 + cosom) > EPSILON) {
if ((1.0 — cosom) > EPSILON) {

omega = acos(cosom);
sinom = sin(omega);
sclp = gin((1.0 — t)*omega)/sinom;
sclg = sin(t*omega)fsinom;
}
else {
sclp = 1.0 = §
sclg = 1

}
for (i=Osi<d;i++) qtlil = sclp*pfi] + sclg*qlils

}
else {

: —plY); q¥] = plXl
1 5 qt[Z] = -plW} qtfW] = plZk
: sclp = sin((1.0 — 0)*HALEPD;

sclg = sin(t*HALFPD);
for (i = 0; i< 3 i++) qtlil = sclp*pli] + sclg™*atlils

aqt[X]

no

Motion control 365

Spherical linear interpolation between two unit quater-
nions ¢, and g,, where:

gy gy =cos 2

is obtained by generalizing the above to four dimensions
and replacing @ by 4 where 4 e [0,1]. We write:

sin(1-u) 0
sin 2

sin 2u

slerp(qy, 3, u) =g, +a

sin 2

Listing 15.3 gives a code fragment for this.
slerp (p,q,t,qt) returns the interpolated quaternion ql,
for t between p and ¢. The routine caters for the special
cases where the keys are very close together, in which case
we approximate using the more economical linear inter-
polation and avoid divisions by very small numbers since

sin 20 as -0

The case where p and ¢ are diametrically opposite, or
nearly so, also requires special attention.

Now, given any two key quaternions, p and g, there
exist two possible arcs along which one can move, cor-
responding to alternative starting directions on the
geodesic that connects them. One of them goes around
the long way and this is the one that we wish to avoid,
Naively, one might assume that this reduces to either
spherically interpolating between pand q by the angle @,
where:

P qg=cos]

or interpolating in the opposite direction by the angle
2% — {2. This, however, will not produce the desired
effect. The reason is that the topology of the hypersphere
of orientation is not just a straightforward extension of
the three-dimensional Euclidean sphere. To appreciate
this, it is sufficient to consider the fact that every rotation
has two representations in quaternion space, namely g
and — g, that is, the effect of g and —gq is the same. That
this is so is because algebraically the operator g()g™!
has exactly the same effect as (—=9) () (~¢)~". Thus,
points diametrically opposed represent the same rota-
tion. Because of this topological oddity care must be
taken when determining the shorter arc. A strategy that
works is to choose interpolating between either the
quaternion pairs p and g or p and —q. Given two key
orientations p and ¢ find the magnitude of their dif-
ference, that is (p — q) * (p — q), and compare this to the
magnitude of the difference when the second key is
negated, that is (p + g) - (p + ¢). If the former is smaller
then we are already moving along the smaller arc and

0
S

Figure 15.21 Spherical linear interpolation.

nothing needs to be done. If, however, the second is
smaller, then we replace ¢ by —g and proceed. These
considerations are shown schematically in Figure 15.22.

So far we have described the spherical equivalent of
linear interpolation between two key orientations, and,
just as was the case for linear interpolation, spherical
linear interpolation between more than two key orienta-
tions will produce jerky, sharply changing motion across
the keys. What is required for higher order continuity is
the spherical equivalent of the cubic spline. Unfor-
tunately, because we are now working on the surface of
a four-dimensional hypersphere, the problem is far more
complex than constructing splines in three-dimensional
Euclidean space. [DUFF86] and [SHOES87] have tackled
this problem. We shall describe the approach made in
[SHOES7] since it pays greatest lip service to implemen-
tation points.

The following construction enables us to think of a
cubic spline as a series of three linear interpolations. By
extension [SHOES87] takes three spherical linear inter-
polations and defines a cubic spline on the surface of a
sphere. Consider four points (S0, 81, S5, S3) at the cor-
ners of the rectangle shown in Figure 15.23. We linearly
interpolate by an amount ¥ e [0,1], along the horizontal
edges to get the intermediate points §,, S, where:

P

Incorrect Correct

Figure 15.22 Shortest arc determination on quaternion hypersphere.

e e

366 Overview and low-level motion spesification
5, T & l.s;; 5
i
|
]‘ i H
So 5y S R

i

Figure 15.23 The quadrangle consiruciion for a parabola.

S, =8(1-u) + Sy
S =8, (b u) + 8u

Now we perform a vertical linear interpolation by an
amount

U= 2u{l - u)
to get the point

p=5(1-v)+8;v .

As u varies from 0 to 1, the locus of p will trace out a
parabola. This process of bilinear interpolation, where
the second interpolation is thus resiricted, is called
‘parabolic blending’. Béhm [BOHMS2] shows how,
given a Bézier curve segment (by, by, by, by) one can
derive the quadrangle points (By, S, S, by) of the above
construction. This has the geometric significance of
enabling us to visualize the cubic as 2 parabola whose
quadrangle points are not necessarily parallel or
coplanar. The cubic can be thought of as a warped
parabola as shown in Figure 15.24.

The mathematical significance of this consiruction is
that it shows how to construct a cubic as a series of
three linear interpolations of the quadrangle points.
[SHOES87] takes this construction onto the surface of
the four-dimensional hypersphere by constructing a
spherical curve, using three spherical linear interpola-

A

by

Figure 15.24 A warped parabola is a cubic.

S 8 5a

tions of a quadrangle of unit quaternions. This he defines
as squad(), where:

squad (b, S;, S,, by, ut) = sterp (slerp (b, by, ut),
slerp(S, Sy, ut), Zu(l ~u}))

Given a series of quaternion keys one can construct a
cubic segment across keys ¢, and q; . by constructing a
quadrangle of quaternions (g,, @, by, q; 4) where a,
b; ., have to be determined, These inner quadrangle
points are chosen in such a way to ensure that continuity
of tangents across adjacent cubic segments is guaranieed,
The derivation for the inner quadrangle points is dif-
ficult, involving as it does the calculus and exponentia-
tion of quaternions and we will just quote the results,
referring the interested reader to [SHOES7]:

In(g7'q;,) + in (g7 'q; 1))

4

a; = b; = giexp (--

where, for the unit quaternion:

q= (cos e, sin @ v)
Ivi =1
In{g) = (0, ov)

and, inversely for the pure quaternion (zero scalar part):

g= (0, &v)
exp(q) = (ms O, sin QP)

Finally, in order to illustrate the principles underiying
this discussion on the parametrization of orientation, we
return to our block letter ‘R’ and apply the various inter-
polation techniques that we have discussed. Because all
orientations take place about a fixed point, R effectively
moves over the surface of a sphere (Figure 15.25).

Using the principal rotations of an x-roll followed by
a y-roll followed by a z-roll, the animator sets up an
orientation key represented by the rotation matrix
R(0y;, By, 0y,). This rotation matrix is then lifted into
quaternion space to give the quaternion key g;. The
animator specifies three such keys. As we have discussed,
interpolation to generate the inbetweens can be carried
out by:

L : Lot s A SR e e R
Figure 15.25 Shows how R moves through the three keys. In all cases the white line tracks the motion of R when the interpolation

>

is carried out
in quaternion space; the black line tracks the motion of R when Euler angles are interpolated. In cach row the left illustration compares linear inter-
polation of Euler angles with spherical linear interpolation of quaternions. In each row the right illustration compares a cubic spline interpolation of
Euler angles to the spherical cubic spling interpolation of quaternions {using squad| J).

Sp——

S ————

D

368 Overview and low-level motion specification

1. Using the Euler angle keys (0;, Oy, 05;),1=0,1,2,
to produce an interpolated Euler angle (O,(1),
0,(1), 6,(2)) at time ¢ which is used to generate the
rotation matrix R(6,(¢), 6,(f), 6,(s)) for that
frame.

2. Moving into quaternion space and using the quater-
nion keys ¢;, i =0,1,2, to produce an interpolated
quaternion key g(r) at time ¢, which is then con-
verted to a rotation matrix R (f) for that frame.

In all cases periodic interpolation modulo 3 is
employed to give a closed loop. Figure 15.25 shows how
R moves through the three keys. In all cases the white line
tracks the motion of R when the interpolation is carried
out in quaternion space; the black line tracks the motion
of R when Euler angles are interpolated. In each row the
left illustration compares linear interpolation of Euler
angles with spherical linear interpolation of quaternions.
In each row the right illustration compares a cubic spline
interpolation of Euler angles to the spherical cubic spline
interpolation of quaternions (using squad()). In both

columns quaternions come out better than Euler angies,
the motions being far more direct and less convoluted.
Note that if we change the coordinate axes and regenerate
the image, the black lines will change shape whereas the
white lines will stay constant. Going down the rows, the
initial set of key orientations is varied in each case.

Finally, we mention a potential difficulty when apply-
ing guaternions. Quaternion interpolation is indiscri-
minate in that it does not prefer any one direction to any
other. Interpolating between two keys produces a move
that depends on the orientations of the keys and nothing
else. This is inconvenient when choreographing the vir-
tual camera. Normally when moving a camera the film
plane is always required to be upright - this is usually
specified by an ‘up’ vector. By its very nature, the notion
of a preferred direction cannot easily be built into
the quaternion representation. Thus the advantages
afforded by quaternions as applied to objects cannot be
exploited when setting up camera moves. In fact,
specification of an up vector is problematic whatever way
we choose to parametrize orientation.

