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Review

• Last week I described the “Book” version of H.O.T.T., starting
with simple ideas, and introducing complexity only as necessary.

• By way of review, let’s reformulate the resulting theory more
concisely and cleanly.

In particular, we eventually ended up with n-variable ap (and Id)
that bind a finite list of variables:

Γ, x1 : A1, . . . , xn : An ` t : B · · ·
Γ ` apx1....xn.t(p1, . . . , pn) : IdB(· · · )

Such a “context suffix” is also called a telescope.
We now reify these into a “telescope calculus”.



Telescopes

Telescopes are defined inductively as finite lists of types:

Γ ` ε tel

Γ ` ∆ tel Γ,∆ ` A : U

Γ ` (∆, x : A) tel

The “elements” of a telescope are substitutions:

() : ε

δ : ∆ ∆ ` A : U a : A[δ]

(δ, a) : (∆, x : A)

These are defined mutually with their action on terms (and types):

∆ ` a : A δ : ∆

a[δ] : A[δ]



Dependent Id and ap with telescopes

Now we can define identity telescopes from identity types:

∆ tel δ : ∆ δ′ : ∆

Id∆(δ, δ′) tel
Idε((), ()) ≡ ε

Id(∆,x :A)((δ, a), (δ′, a′)) ≡
(
% : Id∆(δ, δ′), α : Id%∆.A(a, a′)

)
These are defined mutually with n-ary Id, which depends on them:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ] a′ : A[δ′]

Id%∆.A(a, a′) : U

We write IdA(a, a′) ≡ Id()

ε.A(a, a′) in the non-dependent case.

(Last time I defined dependent Id in terms of ap; here we postulate it
separately and then make them coincide later.)



Computing Id

As we saw last time, Id computes on all type formers:

Id%∆.A×B(s, t) ≡ Id%∆.A(π1s, π1t)× Id%∆.B(π2s, π2t)

Id%∆.∑(x :A)B
(s, t) ≡

∑
(q:Id%

∆.A(π1s,π1t))Id%,q(∆,x :A).B(π2s, π2t)

Id%A→B(f , g) ≡
∏

(u:A)

∏
(v :A)

∏
(q:Id%

∆.A(u,v))Id%∆.B(f u, gv)

Id%∏
(x :A)B

(f , g) ≡
∏

(u:A)

∏
(v :A)

∏
(q:Id%

∆.A(u,v))Id%,q(∆,x :A).B(f u, gv)



Id is a 1-1 correspondence

All identity types are 1-1 correspondences:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ]
−−→corr%∆.A(a) : isContr

(∑
(a′:A[δ′])Id%∆.A(a, a′)

)
% : Id∆(δ, δ′) ∆ ` A : U a′ : A[δ′]
←−−corr%∆.A(a′) : isContr

(∑
(a:A[δ])Id%∆.A(a, a′)

)
The centers of contraction constitute transport:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ]
−→
tr %∆.A(a) : A[δ′]

−→
lift%∆.A(a) : Id%∆.A(a,

−→
tr %∆.A(a))

These witnesses compute on type formers: −−→corr%∆.A×B(a) ≡ · · · ,

hence also
−→
tr %∆.A×B(a) ≡ · · · , etc.



Computing ap

A term can be applied to Id of any telescope it depends on:

% : Id∆(δ, δ′) ∆ ` t : B

ap∆.t(%) : Id%∆.B(t[δ], t[δ′])

This higher-dimensional explicit substitution computes on all∗ terms:

ap∆.(s,t)(%) ≡ (ap∆.s(%), ap∆.t(%)

ap∆.π1s(%) ≡ π1 ap∆.s(%) ap∆.π2s(%) ≡ π2 ap∆.s(%)

ap∆.f b(%) ≡ ap∆.f (p)
(
b[a/x ], b[a′/x ], ap∆.b(%)

)
.

ap∆.(λy .t)(%) ≡ λu.λv .λq.ap∆.y .t(%, q).

We define reflexivity as the 0-ary ap: refla ≡ apε.a() .



Univalence

IdU(A,B) contains as a retract the type of 1-1 correspondences:

1-1-Corr(A,B) :≡
∑

(R:A→B→U)

(∏
(a:A)isContr(

∑
(b:B)R(a, b))

)
×
(∏

(b:B)isContr(
∑

(a:A)R(a, b))
)
.

1-1-Corr(A,B)
↑−→ IdU(A,B)

↓−→ 1-1-Corr(A,B) p↑↓ ≡ p

We identify dependent Id with ap into the universe:

Id%∆.B(b, b′) ≡ π1(ap∆.B(%)↓)(b, b′)
−−→corr%∆.B(b, b′) ≡ π1π2(ap∆.B(%)↓)(b, b′)
←−−corr%∆.B(b, b′) ≡ π2π2(ap∆.B(%)↓)(b, b′)

(Last time, we defined the LHS as the RHS. Separating them is more
natural for Tarski universes, and permits types not lying in any universe.)



That asterisk: Neutral reflexivities

I claimed that ap is never a normal form, but there’s one exception:

When y is a variable, refly is neutral (hence normal).

Since refl is nullary ap, the rule that would apply is

apx1.···xn.y (p1, . . . , pn) ≡ refly (if y is a variable /∈ {x1, . . . , xn})

where n = 0, but this just reduces refly ≡ ap().y () to itself!

This includes other terms that obviously must also be neutral:

• apx .f (x)(p) ≡ reflf (a0, a1, p) for a variable f : A→ B.

• IdA(a0, a1) ≡ (π1 reflA)(a0, a1) for a variable A : U.

Similarly, reflreflx , reflreflreflx
, etc., are also neutral.
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Squares and cubes

H.O.T.T. is not a “cubical type theory”: there are no explicit cubes
in the syntax. But like any other type theory with dependent identity
types (including Book HoTT!), it has an emergent notion of cube:

a02 : IdA(a00, a01) a12 : IdA(a10, a11) a20 : IdA(a00, a10)

a21 : IdA(a01, a11) a22 : Ida02,a12

x .y .IdA(x ,y)(a20, a21)

a10 a11

a00 a01

a12

a22

a02

a20 a21

Similarly, IdIdIdA
is a type of 3-dimensional cubes, etc.

Very important point

The roles of a02, a12 and a20, a21 are asymmetrical!



Cubical horn-fillers

Given a02, a12, a20, we have fillers of left-to-right cubical horns:

−→
tr a02,a12

x .y .IdA(x ,y)(a20) : IdA(a01, a11)

−→
lifta02,a12

x .y .IdA(x ,y)(a20) : Ida02,a12

x .y .IdA(x ,y)(a20,
−→
tr a02,a12

x .y .IdA(x ,y)(a20))

a10 a11

a00 a01

a12

−→
lift

a02,a12
x.y.IdA(x,y)

(a20)

a02

a20
−→
tr

a02,a12
x.y.IdA(x,y)

(a20)

Similarly,
←−
tr and

←−
lift fill right-to-left cubical horns.

And
−→
tr IdIdA

, etc. fill higher-dimensional left-right horns.

Problem #1

We don’t seem to have top-to-bottom or bottom-to-top fillers.



Degenerate cubes

Given a2 : IdA(a0, a1), there are two degenerate squares:

refla2 : IdIdA(a0,a1)(a2, a2) ≡ Id
refla0 ,refla1

x .y .IdA(x ,y)(a2, a2)

apx .reflx
(a2) : Ida2

x .IdA(x ,x)(refla0 , refla1) ≡ Ida2,a2

x .y .IdA(x ,y)(refla0 , refla1)

a1 a1

a0 a0

refla1

refla2

refla0

a2 a2

a0 a1

a0 a1

a2

apx.reflx
(a2)

a2

refla0 refla1

Problem #2

For a : A, the two doubly-degenerate squares

a a

a a

refla

reflrefla

refla

refla refla

a a

a a

refla

apx.reflx
(refla)

refla

refla refla

seem to be definitionally unrelated.
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Stuck degeneracies break canonicity

Problem #3

Our rules so far compute refla2 based on the structure of a2, but
apx .reflx

(a2) is stuck, even if a2 is very concrete.

• reflx doesn’t reduce when x is a variable.

• ap doesn’t inspect its identification argument.

A bit nonobviously, this also breaks canonicity for N.

Intuitive homotopy-theoretic reason

For a type A : U, the square apx .reflx
(reflA) in U is essentially a

self-homotopy of the identity equivalence of A, i.e.
∏

(a:A)IdA(a, a).

Taking A = S1 we get a stuck loop in IdS1(base, base), hence in Z.

(There’s also an explicit argument using two universes instead of S1.)
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Symmetry

To solve these problems, we introduce a symmetry operation that
transposes squares:

a10 a11

a00 a01

a12

a22

a02

a20 a21 7→
a01 a11

a00 a10

a21

symA(a22)

a20

a02 a12

a22 : Ida02,a12

x .y .IdA(x ,y)(a20, a21)

symA(a22) : Ida20,a21

x .y .IdA(x ,y)(a02, a12)



The other Kan operations

Now we can fill other cubical horns, solving problem #1:

a10 a11

a00 a01

a20

a02

a21  

a01 a11

a00 a10

a21

a02

a20

a01 a11

a00 a10

a21

−→
lift

a20,a21
x.y.IdA(x,y)

(a02)

a20

a02
−→
tr

a20,a21
x.y.IdA(x,y)

(a02)

a10 a11

a00 a01

−→
tr

a20,a21
x.y.IdA(x,y)

(a02)

symA(
−→
lift

a20,a21
x.y.IdA(x,y)

(a02))

a02

a20 a21



Computing symmetry

To solve problem #3, we define

apx .reflx
(a2) ≡ symA(refla2).

This computes based on a2. . . if sym also computes!

For the most part, computing symmetry is straightforward, e.g.:

Ids02,s12

u.v .IdA×B(u,v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)×IdB(π2u,π2v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)(π1s20, π1s21)× Ids02,s12

u.v .IdB(π2u,π2v)(π2s20, π2s21)

≡ Idπ1s02,π1s12

x .w .IdA(x ,w)(π1s20, π1s21)× Idπ2s02,π2s12

y .z.IdB(y ,z)(π2s20, π2s21).

So we can define

symA×B((p, q)) ≡ (symA(p), symB(q))
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Dependent symmetry

To generalize this to Σ-types, we need dependent symmetry over a
square in a telescope (don’t worry too much about the syntax):

δ22 : Idδ02,δ12

δ.δ′.Id∆(δ,δ′)(δ20, δ21) a22 : Idδ02,δ12,δ22,a02,a12

δ.δ′.%.u.v .Id%
∆.A(u,v)

(a20, a21)

symδ22
∆.A(a22) : Id

δ20,δ21,sym(δ22),a20,a21

δ.δ′.%.u.v .Id%
∆.A(u,v)

(a02, a12)

Then we can define

symδ22
∆.

∑
(x :A)B

((p, q)) ≡ (symδ22
∆.A(p), symδ22,p

(∆,x :A).B(q))



Symmetry for functions

Idf02,f12

f .g .IdA→B(f ,g)(f20, f21) ≡ Idf02,f12

f .g .
∏

(x0:A)
∏

(x1:A)
∏

(x2:IdA(x0,x1))IdB(fx0,gx1)(f20, f21)

≡
∏

(x00:A)

∏
(x01:A)

∏
(x02:IdA(x00,x01))∏

(x10:A)

∏
(x11:A)

∏
(x12:IdA(x10,x11))∏

(x20:IdA(x00,x10))

∏
(x21:IdA(x01,x11))

∏
(x22:Id

x02,x12
x.y.IdA(x,y)

(x20,x21))

Idf02x02,f12x12

u.v .IdB(u,v)(f20x20, f21x21)

So f22 : Idf02,f12

f .g .IdA→B(f ,g)(f20, f21) is a function from squares in A, with
arbitrary boundary, to squares in B with specified boundary.
Thus we define symA→B by transposing both input and output:

symA→B(f22)(x00, x10, x20, x01, x11, x21, x02, x12, x22)

≡ sym(f22(x00, x01, x02, x10, x11, x12, x20, x21, sym(x22)))

Symmetry for Π-types is similar, using dependent symmetry.



Rules for symmetry

Some obvious rules for symmetry are that it should be an involution:

symA(symA(a22)) ≡ a22

and it should commute with iterated ap on squares:

symB(apapf
(a22)) ≡ apapf

(symA(a22))

The nullary case of the latter is sym(reflrefla) ≡ reflrefla .
This solves problem #2:

apx .reflx
(refla) ≡ sym(reflrefla) ≡ reflrefla



Higher-dimensional symmetry

For n-dimensional cubes (i.e. n-fold iterated Id-types):

• We would expect symmetries to permute all n dimensions.
The symmetric group Sn should act on n-cubes.

• We have transpositions of adjacent dimensions, from our sym.
(E.g. symIdA

: IdIdIdA
→ IdIdIdA

and apsymA
: IdIdIdA

→ IdIdIdA
.)

Fortunately, Sn is generated by adjacent transpositions!

Sn =

〈
σ1, . . . , σn−1

∣∣∣∣∣∣
σkσk = 1
σjσk = σkσj (j + 1 < k)
σkσk+1σk = σk+1σkσk+1

〉

The first two relations follow from the equations on the last slide.
To obtain the third, we assert

symIdA
(apsymA

(symIdA
(a222))) ≡ apsymA

(symIdA
(apsymA

(a222))) .
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Towards computation by gluing

Symmetry computes the previously stuck term apx .reflx
(a2).

But how do we know there aren’t other stuck terms?

Obviously, by proving canonicity/normalization.

We haven’t done this yet, but the first step (from a modern
perspective) is constructing a set-based semantic model to be the
codomain for Artin gluing.



Identity contexts

Question

What categorical structure corresponds to our identity types?

• The objects of a category C correspond to syntactic contexts.

• The fundamental operation on contexts takes ∆ to

ID∆ :≡
(
δ : ∆, δ′ : ∆, % : Id∆(δ, δ,′ )

)
.

which factors the diagonal (i.e. is a path object):

∆
refl−−→ ID∆ → (δ : ∆, δ′ : ∆) ∼= ∆×∆.

• This operation is functorial (via ap).

• We have natural symmetries IDID∆
∼= IDID∆

, yielding an
Sn-action on n-fold identity contexts..



Cubical actions

Thus, an ID-structure on C is the same as

• A functor ID : C → C
• Nat. trans. r : 1C → ID and s, t : ID⇒ 1C with sr = tr = 11C

• Natural symmetries ID ◦ ID ∼= ID ◦ ID satisfying Sn relations.

Definition

Let p�op be the monoidal category freely generated by an object I,
morphisms r : 1→ I and s, t : I→ 1 with sr = tr = 11, where 1 is
the unit, and symmetries I⊗ I ∼= I⊗ I satisfying Sn relations.

Then an ID-structure on C is also equivalently

• A monoidal functor p�op → [C, C]

and therefore also equivalently

• A coherent action p�op × C → C.



The semicartesian cube category

• p� is a semicartesian monoidal category: symmetric monoidal
and its unit 1 is terminal. Projections, but no diagonals.

• It is also the semicartesian monoidal category freely generated
by an object I and morphisms s, t : 1→ I.

We call p� the semicartesian cube category.

This is the category used by:

• Bernardy–Coquand–Moulin, for internal parametricity
(actually they used a unary version, this would be the binary one)

• Bezem–Coquand–Huber, for the original cubical model

• Cavallo–Harper, for the parametricity direction of parametric
cubical type theory



Enrichment

The presheaf category p̂� = Set
p�op

inherits a Day convolution
monoidal structure (also semicartesian):

(X ⊗ Y )n =

∫ k,`

Xk × Y` × p�(n, k ⊕ `).

We write �n for the representable p�(−, I⊗n). Note �0 is terminal.

Theorem

An action . : p�op × C → C is the same as an enrichment of C over
p̂� that has powers by representables (write �n t X ≡ I⊗n . X).

Map(A,B)n := C(A,�n t B)

p̂�(X ,Map(A,�n t B)) ∼= p̂�(X ⊗�n,Map(A,B))

p̂�-enriched categories are the natural home for H.O.T.T. semantics.



Cubical objects

Of course, p̂� is enriched over itself.

Similarly, any category E p�op
of cubical objects is p̂�-enriched, with

powers and copowers if E is complete and cocomplete:

(A� X )n =

∫ k,`

(Ak × p�(n, k ⊕ `)) · X`

(A t X )n =

∫
k,`

(Xk)A`× p�(k,n⊕`)

(�m t X )n = Xn⊕m

Map(X ,Y )n = E p�op
(X ,�n t Y )



More about the cube category

Up to equivalence:

• The objects of p� are finite sets.

• A morphism φ ∈ p�(m, n) is a function φ : n→ m t {−,+}
that is injective on the preimage of m.

• The monoidal structure m ⊕ n is disjoint union.

Sometimes use a skeletal version with objects n = {0, 1, . . . , n − 1},
but often the non-skeletal version with all finite sets is better.

• The coface δk,± ∈ p�(nr{k}, n) is the identity on nr{k} and
sends k to ±.

• The codegeneracy σk ∈ p�(n, nr{k}) is the inclusion.

• The endomorphism monoid p�(n, n) is the symmetric group Sn.



The magic of semicartesian cubes

The monoidal structure of p� is “almost” cartesian; only the
injectivity requirement spoils it. If it were cartesian we would have

¿ p�(n, k ⊕ `) ∼= p�(n, k)× p�(n, `). ?

Instead, we have

p�(n, k ⊕ `) ∼=
∑

φ: p�(n,k)

p�(nrφ(k), `).

Removing φ(k) from the second domain ensures the copaired
function k t `→ n t {−,+} is still injective on the preimage of n.

But in some ways this is even better!



Copowers by representables

For A ∈ p̂� and X ∈ E p�op
, we have

(A� X )n =

∫ k,`

(Ak × p�(n, k ⊕ `)) · X`

(�m � X )n =

∫ k,`

( p�(k,m)× p�(n, k ⊕ `)) · X`

=

∫ `

p�(n,m ⊕ `) · X`

=

∫ ` (∑
φ∈ p�(n,m)

p�(nrφ(m), `)
)
· X`

=
∑

φ∈ p�(n,m)

∫ `

p�(nrφ(m), `) · X`

=
∑

φ∈ p�(n,m)

Xnrφ(m).



Semicartesian cylinders

Taking m = 1, we get

(�1 � X )n =
∑

φ∈ p�(n,1)

Xnrφ(1).

A morphism φ ∈ p�(n, 1) is a function 1→ n t {−,+}, so either:

• some k ∈ n, in which case nrφ(1) = nr{k}, or

• + or −, in which case nrφ(1) = n. Thus:

(�1 � X )n = Xn + Xn +
∑
k∈n

Xnr{k}.

An n-cube in �1 � X is either an n-cube in the left-hand copy of X ,
an n-cube in the right-hand copy of X , or an (n − 1)-cube in X
stretched out in some dimension along the cylinder.

There is almost no other cube category for which this holds.
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Semantic identity types

In a p̂�-enriched category with representable powers, we also need:

1 Coherence theorems. ← next time

2 Transport and lifting (“fibrancy”). ← next time

3 Categorical computation rules for Id, up to isomorphism.

It’s tempting to think that, at least in p̂�, we can just define IdA×B ,
IdA→B , etc., to be whatever we want. But we can’t: IdX must be
defined as �1 t X . What we can define is the individual sets of
n-cubes in a particular X ∈ p̂�. But:

• It can be non-obvious how these lead to a categorical
characterization of the entire cubical set IdX .

• For type formers like A× B, A→ B, we don’t even have this
much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about E p�op
.



Semantic identity types

In a p̂�-enriched category with representable powers, we also need:

1 Coherence theorems. ← next time

2 Transport and lifting (“fibrancy”). ← next time

3 Categorical computation rules for Id, up to isomorphism.

It’s tempting to think that, at least in p̂�, we can just define IdA×B ,
IdA→B , etc., to be whatever we want. But we can’t: IdX must be
defined as �1 t X . What we can define is the individual sets of
n-cubes in a particular X ∈ p̂�. But:

• It can be non-obvious how these lead to a categorical
characterization of the entire cubical set IdX .

• For type formers like A× B, A→ B, we don’t even have this
much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about E p�op
.



Identity types of products

Note x : A, y : A ` IdA(x , y) : U is represented semantically by the
projection from the representable power �1 t A→ A× A.

Since (�1 t −) is a right adjoint, it preserves products:

�1 t (A× B) (�1 t A)× (�1 t B)

(A× B)× (A× B) (A× A)× (B × B)

∼=

∼=

Syntactically, this gives

IdA×B(u, v) ∼= IdA(π1u, π1v)× IdB(π2u, π2v).

Same idea works for Σ-types. A coherence theorem will improve ∼= to =.



Up next

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 Univalent universes


	A calculus of telescopes
	Some problems revealed by cubes
	Symmetry solves all problems
	Semicartesian cubes
	Semantic identity types

