
Towards third generation HOTT
Part 2: Symmetries and semicartesian cubes

Michael Shulman

University of San Diego

joint work with Thorsten Altenkirch and Ambrus Kaposi

CMU HoTT Seminar
May 5, 2022

Up today

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 Semantics of univalent universes

Outline

1 A calculus of telescopes

2 Some problems revealed by cubes

3 Symmetry solves all problems

4 Semicartesian cubes

5 Semantic identity types

Review

• Last week I described the “Book” version of H.O.T.T., starting
with simple ideas, and introducing complexity only as necessary.

• By way of review, let’s reformulate the resulting theory more
concisely and cleanly.

In particular, we eventually ended up with n-variable ap (and Id)
that bind a finite list of variables:

Γ, x1 : A1, . . . , xn : An ` t : B · · ·
Γ ` apx1....xn.t(p1, . . . , pn) : IdB(· · ·)

Such a “context suffix” is also called a telescope.
We now reify these into a “telescope calculus”.

Telescopes

Telescopes are defined inductively as finite lists of types:

Γ ` ε tel

Γ ` ∆ tel Γ,∆ ` A : U

Γ ` (∆, x : A) tel

The “elements” of a telescope are substitutions:

() : ε

δ : ∆ ∆ ` A : U a : A[δ]

(δ, a) : (∆, x : A)

These are defined mutually with their action on terms (and types):

∆ ` a : A δ : ∆

a[δ] : A[δ]

Dependent Id and ap with telescopes

Now we can define identity telescopes from identity types:

∆ tel δ : ∆ δ′ : ∆

Id∆(δ, δ′) tel
Idε((), ()) ≡ ε

Id(∆,x :A)((δ, a), (δ′, a′)) ≡
(
% : Id∆(δ, δ′), α : Id%∆.A(a, a′)

)
These are defined mutually with n-ary Id, which depends on them:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ] a′ : A[δ′]

Id%∆.A(a, a′) : U

We write IdA(a, a′) ≡ Id()

ε.A(a, a′) in the non-dependent case.

(Last time I defined dependent Id in terms of ap; here we postulate it
separately and then make them coincide later.)

Computing Id

As we saw last time, Id computes on all type formers:

Id%∆.A×B(s, t) ≡ Id%∆.A(π1s, π1t)× Id%∆.B(π2s, π2t)

Id%∆.∑(x :A)B
(s, t) ≡

∑
(q:Id%

∆.A(π1s,π1t))Id%,q(∆,x :A).B(π2s, π2t)

Id%A→B(f , g) ≡
∏

(u:A)

∏
(v :A)

∏
(q:Id%

∆.A(u,v))Id%∆.B(f u, gv)

Id%∏
(x :A)B

(f , g) ≡
∏

(u:A)

∏
(v :A)

∏
(q:Id%

∆.A(u,v))Id%,q(∆,x :A).B(f u, gv)

Id is a 1-1 correspondence

All identity types are 1-1 correspondences:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ]
−−→corr%∆.A(a) : isContr

(∑
(a′:A[δ′])Id%∆.A(a, a′)

)
% : Id∆(δ, δ′) ∆ ` A : U a′ : A[δ′]
←−−corr%∆.A(a′) : isContr

(∑
(a:A[δ])Id%∆.A(a, a′)

)
The centers of contraction constitute transport:

% : Id∆(δ, δ′) ∆ ` A : U a : A[δ]
−→
tr %∆.A(a) : A[δ′]

−→
lift%∆.A(a) : Id%∆.A(a,

−→
tr %∆.A(a))

These witnesses compute on type formers: −−→corr%∆.A×B(a) ≡ · · · ,

hence also
−→
tr %∆.A×B(a) ≡ · · · , etc.

Computing ap

A term can be applied to Id of any telescope it depends on:

% : Id∆(δ, δ′) ∆ ` t : B

ap∆.t(%) : Id%∆.B(t[δ], t[δ′])

This higher-dimensional explicit substitution computes on all∗ terms:

ap∆.(s,t)(%) ≡ (ap∆.s(%), ap∆.t(%)

ap∆.π1s(%) ≡ π1 ap∆.s(%) ap∆.π2s(%) ≡ π2 ap∆.s(%)

ap∆.f b(%) ≡ ap∆.f (p)
(
b[a/x], b[a′/x], ap∆.b(%)

)
.

ap∆.(λy .t)(%) ≡ λu.λv .λq.ap∆.y .t(%, q).

We define reflexivity as the 0-ary ap: refla ≡ apε.a() .

Univalence

IdU(A,B) contains as a retract the type of 1-1 correspondences:

1-1-Corr(A,B) :≡
∑

(R:A→B→U)

(∏
(a:A)isContr(

∑
(b:B)R(a, b))

)
×
(∏

(b:B)isContr(
∑

(a:A)R(a, b))
)
.

1-1-Corr(A,B)
↑−→ IdU(A,B)

↓−→ 1-1-Corr(A,B) p↑↓ ≡ p

We identify dependent Id with ap into the universe:

Id%∆.B(b, b′) ≡ π1(ap∆.B(%)↓)(b, b′)
−−→corr%∆.B(b, b′) ≡ π1π2(ap∆.B(%)↓)(b, b′)
←−−corr%∆.B(b, b′) ≡ π2π2(ap∆.B(%)↓)(b, b′)

(Last time, we defined the LHS as the RHS. Separating them is more
natural for Tarski universes, and permits types not lying in any universe.)

That asterisk: Neutral reflexivities

I claimed that ap is never a normal form, but there’s one exception:

When y is a variable, refly is neutral (hence normal).

Since refl is nullary ap, the rule that would apply is

apx1.···xn.y (p1, . . . , pn) ≡ refly (if y is a variable /∈ {x1, . . . , xn})

where n = 0, but this just reduces refly ≡ ap().y () to itself!

This includes other terms that obviously must also be neutral:

• apx .f (x)(p) ≡ reflf (a0, a1, p) for a variable f : A→ B.

• IdA(a0, a1) ≡ (π1 reflA)(a0, a1) for a variable A : U.

Similarly, reflreflx , reflreflreflx
, etc., are also neutral.

Outline

1 A calculus of telescopes

2 Some problems revealed by cubes

3 Symmetry solves all problems

4 Semicartesian cubes

5 Semantic identity types

Squares and cubes

H.O.T.T. is not a “cubical type theory”: there are no explicit cubes
in the syntax. But like any other type theory with dependent identity
types (including Book HoTT!), it has an emergent notion of cube:

a02 : IdA(a00, a01) a12 : IdA(a10, a11) a20 : IdA(a00, a10)

a21 : IdA(a01, a11) a22 : Ida02,a12

x .y .IdA(x ,y)(a20, a21)

a10 a11

a00 a01

a12

a22

a02

a20 a21

Similarly, IdIdIdA
is a type of 3-dimensional cubes, etc.

Very important point

The roles of a02, a12 and a20, a21 are asymmetrical!

Cubical horn-fillers

Given a02, a12, a20, we have fillers of left-to-right cubical horns:

−→
tr a02,a12

x .y .IdA(x ,y)(a20) : IdA(a01, a11)

−→
lifta02,a12

x .y .IdA(x ,y)(a20) : Ida02,a12

x .y .IdA(x ,y)(a20,
−→
tr a02,a12

x .y .IdA(x ,y)(a20))

a10 a11

a00 a01

a12

−→
lift

a02,a12
x.y.IdA(x,y)

(a20)

a02

a20
−→
tr

a02,a12
x.y.IdA(x,y)

(a20)

Similarly,
←−
tr and

←−
lift fill right-to-left cubical horns.

And
−→
tr IdIdA

, etc. fill higher-dimensional left-right horns.

Problem #1

We don’t seem to have top-to-bottom or bottom-to-top fillers.

Degenerate cubes

Given a2 : IdA(a0, a1), there are two degenerate squares:

refla2 : IdIdA(a0,a1)(a2, a2) ≡ Id
refla0 ,refla1

x .y .IdA(x ,y)(a2, a2)

apx .reflx
(a2) : Ida2

x .IdA(x ,x)(refla0 , refla1) ≡ Ida2,a2

x .y .IdA(x ,y)(refla0 , refla1)

a1 a1

a0 a0

refla1

refla2

refla0

a2 a2

a0 a1

a0 a1

a2

apx.reflx
(a2)

a2

refla0 refla1

Problem #2

For a : A, the two doubly-degenerate squares

a a

a a

refla

reflrefla

refla

refla refla

a a

a a

refla

apx.reflx
(refla)

refla

refla refla

seem to be definitionally unrelated.

Degenerate cubes

Given a2 : IdA(a0, a1), there are two degenerate squares:

a1 a1

a0 a0

refla1

refla2

refla0

a2 a2

a0 a1

a0 a1

a2

apx.reflx
(a2)

a2

refla0 refla1

Problem #2

For a : A, the two doubly-degenerate squares

a a

a a

refla

reflrefla

refla

refla refla

a a

a a

refla

apx.reflx
(refla)

refla

refla refla

seem to be definitionally unrelated.

Stuck degeneracies break canonicity

Problem #3

Our rules so far compute refla2 based on the structure of a2, but
apx .reflx

(a2) is stuck, even if a2 is very concrete.

• reflx doesn’t reduce when x is a variable.

• ap doesn’t inspect its identification argument.

A bit nonobviously, this also breaks canonicity for N.

Intuitive homotopy-theoretic reason

For a type A : U, the square apx .reflx
(reflA) in U is essentially a

self-homotopy of the identity equivalence of A, i.e.
∏

(a:A)IdA(a, a).

Taking A = S1 we get a stuck loop in IdS1(base, base), hence in Z.

(There’s also an explicit argument using two universes instead of S1.)

Stuck degeneracies break canonicity

Problem #3

Our rules so far compute refla2 based on the structure of a2, but
apx .reflx

(a2) is stuck, even if a2 is very concrete.

• reflx doesn’t reduce when x is a variable.

• ap doesn’t inspect its identification argument.

A bit nonobviously, this also breaks canonicity for N.

Intuitive homotopy-theoretic reason

For a type A : U, the square apx .reflx
(reflA) in U is essentially a

self-homotopy of the identity equivalence of A, i.e.
∏

(a:A)IdA(a, a).

Taking A = S1 we get a stuck loop in IdS1(base, base), hence in Z.

(There’s also an explicit argument using two universes instead of S1.)

Outline

1 A calculus of telescopes

2 Some problems revealed by cubes

3 Symmetry solves all problems

4 Semicartesian cubes

5 Semantic identity types

Symmetry

To solve these problems, we introduce a symmetry operation that
transposes squares:

a10 a11

a00 a01

a12

a22

a02

a20 a21 7→
a01 a11

a00 a10

a21

symA(a22)

a20

a02 a12

a22 : Ida02,a12

x .y .IdA(x ,y)(a20, a21)

symA(a22) : Ida20,a21

x .y .IdA(x ,y)(a02, a12)

The other Kan operations

Now we can fill other cubical horns, solving problem #1:

a10 a11

a00 a01

a20

a02

a21

a01 a11

a00 a10

a21

a02

a20

a01 a11

a00 a10

a21

−→
lift

a20,a21
x.y.IdA(x,y)

(a02)

a20

a02
−→
tr

a20,a21
x.y.IdA(x,y)

(a02)

a10 a11

a00 a01

−→
tr

a20,a21
x.y.IdA(x,y)

(a02)

symA(
−→
lift

a20,a21
x.y.IdA(x,y)

(a02))

a02

a20 a21

Computing symmetry

To solve problem #3, we define

apx .reflx
(a2) ≡ symA(refla2).

This computes based on a2. . . if sym also computes!

For the most part, computing symmetry is straightforward, e.g.:

Ids02,s12

u.v .IdA×B(u,v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)×IdB(π2u,π2v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)(π1s20, π1s21)× Ids02,s12

u.v .IdB(π2u,π2v)(π2s20, π2s21)

≡ Idπ1s02,π1s12

x .w .IdA(x ,w)(π1s20, π1s21)× Idπ2s02,π2s12

y .z.IdB(y ,z)(π2s20, π2s21).

So we can define

symA×B((p, q)) ≡ (symA(p), symB(q))

Computing symmetry

To solve problem #3, we define

apx .reflx
(a2) ≡ symA(refla2).

This computes based on a2. . . if sym also computes!

For the most part, computing symmetry is straightforward, e.g.:

Ids02,s12

u.v .IdA×B(u,v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)×IdB(π2u,π2v)(s20, s21)

≡ Ids02,s12

u.v .IdA(π1u,π1v)(π1s20, π1s21)× Ids02,s12

u.v .IdB(π2u,π2v)(π2s20, π2s21)

≡ Idπ1s02,π1s12

x .w .IdA(x ,w)(π1s20, π1s21)× Idπ2s02,π2s12

y .z.IdB(y ,z)(π2s20, π2s21).

So we can define

symA×B((p, q)) ≡ (symA(p), symB(q))

Dependent symmetry

To generalize this to Σ-types, we need dependent symmetry over a
square in a telescope (don’t worry too much about the syntax):

δ22 : Idδ02,δ12

δ.δ′.Id∆(δ,δ′)(δ20, δ21) a22 : Idδ02,δ12,δ22,a02,a12

δ.δ′.%.u.v .Id%
∆.A(u,v)

(a20, a21)

symδ22
∆.A(a22) : Id

δ20,δ21,sym(δ22),a20,a21

δ.δ′.%.u.v .Id%
∆.A(u,v)

(a02, a12)

Then we can define

symδ22
∆.

∑
(x :A)B

((p, q)) ≡ (symδ22
∆.A(p), symδ22,p

(∆,x :A).B(q))

Symmetry for functions

Idf02,f12

f .g .IdA→B(f ,g)(f20, f21) ≡ Idf02,f12

f .g .
∏

(x0:A)
∏

(x1:A)
∏

(x2:IdA(x0,x1))IdB(fx0,gx1)(f20, f21)

≡
∏

(x00:A)

∏
(x01:A)

∏
(x02:IdA(x00,x01))∏

(x10:A)

∏
(x11:A)

∏
(x12:IdA(x10,x11))∏

(x20:IdA(x00,x10))

∏
(x21:IdA(x01,x11))

∏
(x22:Id

x02,x12
x.y.IdA(x,y)

(x20,x21))

Idf02x02,f12x12

u.v .IdB(u,v)(f20x20, f21x21)

So f22 : Idf02,f12

f .g .IdA→B(f ,g)(f20, f21) is a function from squares in A, with
arbitrary boundary, to squares in B with specified boundary.
Thus we define symA→B by transposing both input and output:

symA→B(f22)(x00, x10, x20, x01, x11, x21, x02, x12, x22)

≡ sym(f22(x00, x01, x02, x10, x11, x12, x20, x21, sym(x22)))

Symmetry for Π-types is similar, using dependent symmetry.

Rules for symmetry

Some obvious rules for symmetry are that it should be an involution:

symA(symA(a22)) ≡ a22

and it should commute with iterated ap on squares:

symB(apapf
(a22)) ≡ apapf

(symA(a22))

The nullary case of the latter is sym(reflrefla) ≡ reflrefla .
This solves problem #2:

apx .reflx
(refla) ≡ sym(reflrefla) ≡ reflrefla

Higher-dimensional symmetry

For n-dimensional cubes (i.e. n-fold iterated Id-types):

• We would expect symmetries to permute all n dimensions.
The symmetric group Sn should act on n-cubes.

• We have transpositions of adjacent dimensions, from our sym.
(E.g. symIdA

: IdIdIdA
→ IdIdIdA

and apsymA
: IdIdIdA

→ IdIdIdA
.)

Fortunately, Sn is generated by adjacent transpositions!

Sn =

〈
σ1, . . . , σn−1

∣∣∣∣∣∣
σkσk = 1
σjσk = σkσj (j + 1 < k)
σkσk+1σk = σk+1σkσk+1

〉

The first two relations follow from the equations on the last slide.
To obtain the third, we assert

symIdA
(apsymA

(symIdA
(a222))) ≡ apsymA

(symIdA
(apsymA

(a222))) .

Outline

1 A calculus of telescopes

2 Some problems revealed by cubes

3 Symmetry solves all problems

4 Semicartesian cubes

5 Semantic identity types

Towards computation by gluing

Symmetry computes the previously stuck term apx .reflx
(a2).

But how do we know there aren’t other stuck terms?

Obviously, by proving canonicity/normalization.

We haven’t done this yet, but the first step (from a modern
perspective) is constructing a set-based semantic model to be the
codomain for Artin gluing.

Identity contexts

Question

What categorical structure corresponds to our identity types?

• The objects of a category C correspond to syntactic contexts.

• The fundamental operation on contexts takes ∆ to

ID∆ :≡
(
δ : ∆, δ′ : ∆, % : Id∆(δ, δ,′)

)
.

which factors the diagonal (i.e. is a path object):

∆
refl−−→ ID∆ → (δ : ∆, δ′ : ∆) ∼= ∆×∆.

• This operation is functorial (via ap).

• We have natural symmetries IDID∆
∼= IDID∆

, yielding an
Sn-action on n-fold identity contexts..

Cubical actions

Thus, an ID-structure on C is the same as

• A functor ID : C → C
• Nat. trans. r : 1C → ID and s, t : ID⇒ 1C with sr = tr = 11C

• Natural symmetries ID ◦ ID ∼= ID ◦ ID satisfying Sn relations.

Definition

Let p�op be the monoidal category freely generated by an object I,
morphisms r : 1→ I and s, t : I→ 1 with sr = tr = 11, where 1 is
the unit, and symmetries I⊗ I ∼= I⊗ I satisfying Sn relations.

Then an ID-structure on C is also equivalently

• A monoidal functor p�op → [C, C]

and therefore also equivalently

• A coherent action p�op × C → C.

The semicartesian cube category

• p� is a semicartesian monoidal category: symmetric monoidal
and its unit 1 is terminal. Projections, but no diagonals.

• It is also the semicartesian monoidal category freely generated
by an object I and morphisms s, t : 1→ I.

We call p� the semicartesian cube category.

This is the category used by:

• Bernardy–Coquand–Moulin, for internal parametricity
(actually they used a unary version, this would be the binary one)

• Bezem–Coquand–Huber, for the original cubical model

• Cavallo–Harper, for the parametricity direction of parametric
cubical type theory

Enrichment

The presheaf category p̂� = Set
p�op

inherits a Day convolution
monoidal structure (also semicartesian):

(X ⊗ Y)n =

∫ k,`

Xk × Y` × p�(n, k ⊕ `).

We write �n for the representable p�(−, I⊗n). Note �0 is terminal.

Theorem

An action . : p�op × C → C is the same as an enrichment of C over
p̂� that has powers by representables (write �n t X ≡ I⊗n . X).

Map(A,B)n := C(A,�n t B)

p̂�(X ,Map(A,�n t B)) ∼= p̂�(X ⊗�n,Map(A,B))

p̂�-enriched categories are the natural home for H.O.T.T. semantics.

Cubical objects

Of course, p̂� is enriched over itself.

Similarly, any category E p�op
of cubical objects is p̂�-enriched, with

powers and copowers if E is complete and cocomplete:

(A� X)n =

∫ k,`

(Ak × p�(n, k ⊕ `)) · X`

(A t X)n =

∫
k,`

(Xk)A`× p�(k,n⊕`)

(�m t X)n = Xn⊕m

Map(X ,Y)n = E p�op
(X ,�n t Y)

More about the cube category

Up to equivalence:

• The objects of p� are finite sets.

• A morphism φ ∈ p�(m, n) is a function φ : n→ m t {−,+}
that is injective on the preimage of m.

• The monoidal structure m ⊕ n is disjoint union.

Sometimes use a skeletal version with objects n = {0, 1, . . . , n − 1},
but often the non-skeletal version with all finite sets is better.

• The coface δk,± ∈ p�(nr{k}, n) is the identity on nr{k} and
sends k to ±.

• The codegeneracy σk ∈ p�(n, nr{k}) is the inclusion.

• The endomorphism monoid p�(n, n) is the symmetric group Sn.

The magic of semicartesian cubes

The monoidal structure of p� is “almost” cartesian; only the
injectivity requirement spoils it. If it were cartesian we would have

¿ p�(n, k ⊕ `) ∼= p�(n, k)× p�(n, `). ?

Instead, we have

p�(n, k ⊕ `) ∼=
∑

φ: p�(n,k)

p�(nrφ(k), `).

Removing φ(k) from the second domain ensures the copaired
function k t `→ n t {−,+} is still injective on the preimage of n.

But in some ways this is even better!

Copowers by representables

For A ∈ p̂� and X ∈ E p�op
, we have

(A� X)n =

∫ k,`

(Ak × p�(n, k ⊕ `)) · X`

(�m � X)n =

∫ k,`

(p�(k,m)× p�(n, k ⊕ `)) · X`

=

∫ `

p�(n,m ⊕ `) · X`

=

∫ ` (∑
φ∈ p�(n,m)

p�(nrφ(m), `)
)
· X`

=
∑

φ∈ p�(n,m)

∫ `

p�(nrφ(m), `) · X`

=
∑

φ∈ p�(n,m)

Xnrφ(m).

Semicartesian cylinders

Taking m = 1, we get

(�1 � X)n =
∑

φ∈ p�(n,1)

Xnrφ(1).

A morphism φ ∈ p�(n, 1) is a function 1→ n t {−,+}, so either:

• some k ∈ n, in which case nrφ(1) = nr{k}, or

• + or −, in which case nrφ(1) = n. Thus:

(�1 � X)n = Xn + Xn +
∑
k∈n

Xnr{k}.

An n-cube in �1 � X is either an n-cube in the left-hand copy of X ,
an n-cube in the right-hand copy of X , or an (n − 1)-cube in X
stretched out in some dimension along the cylinder.

There is almost no other cube category for which this holds.

Outline

1 A calculus of telescopes

2 Some problems revealed by cubes

3 Symmetry solves all problems

4 Semicartesian cubes

5 Semantic identity types

Semantic identity types

In a p̂�-enriched category with representable powers, we also need:

1 Coherence theorems. ← next time

2 Transport and lifting (“fibrancy”). ← next time

3 Categorical computation rules for Id, up to isomorphism.

It’s tempting to think that, at least in p̂�, we can just define IdA×B ,
IdA→B , etc., to be whatever we want. But we can’t: IdX must be
defined as �1 t X . What we can define is the individual sets of
n-cubes in a particular X ∈ p̂�. But:

• It can be non-obvious how these lead to a categorical
characterization of the entire cubical set IdX .

• For type formers like A× B, A→ B, we don’t even have this
much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about E p�op
.

Semantic identity types

In a p̂�-enriched category with representable powers, we also need:

1 Coherence theorems. ← next time

2 Transport and lifting (“fibrancy”). ← next time

3 Categorical computation rules for Id, up to isomorphism.

It’s tempting to think that, at least in p̂�, we can just define IdA×B ,
IdA→B , etc., to be whatever we want. But we can’t: IdX must be
defined as �1 t X . What we can define is the individual sets of
n-cubes in a particular X ∈ p̂�. But:

• It can be non-obvious how these lead to a categorical
characterization of the entire cubical set IdX .

• For type formers like A× B, A→ B, we don’t even have this
much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about E p�op
.

Identity types of products

Note x : A, y : A ` IdA(x , y) : U is represented semantically by the
projection from the representable power �1 t A→ A× A.

Since (�1 t −) is a right adjoint, it preserves products:

�1 t (A× B) (�1 t A)× (�1 t B)

(A× B)× (A× B) (A× A)× (B × B)

∼=

∼=

Syntactically, this gives

IdA×B(u, v) ∼= IdA(π1u, π1v)× IdB(π2u, π2v).

Same idea works for Σ-types. A coherence theorem will improve ∼= to =.

Up next

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 Univalent universes

	A calculus of telescopes
	Some problems revealed by cubes
	Symmetry solves all problems
	Semicartesian cubes
	Semantic identity types

