Towards third generation HOTT

Part 2: Symmetries and semicartesian cubes

Michael Shulman
University of San Diego

joint work with Thorsten Altenkirch and Ambrus Kaposi

CMU HoTT Seminar
May 5, 2022

Plan for the three talks:
@ Basic syntax of H.O.T.T.
® Symmetries and semicartesian cubes

© Semantics of univalent universes

@ A calculus of telescopes

Review

® | ast week | described the “Book” version of H.O.T.T., starting
with simple ideas, and introducing complexity only as necessary.

® By way of review, let's reformulate the resulting theory more
concisely and cleanly.

In particular, we eventually ended up with n-variable ap (and Id)
that bind a finite list of variables:

Mxy A, ..., xp: ApFt: B
M= apxl..,.x,,,t(ph . -apn) : IdB(:)

Such a “context suffix” is also called a telescope.
We now reify these into a “telescope calculus”.

Telescopes

Telescopes are defined inductively as finite lists of types:

FAtl T,AFA:U
[F e tel [(A x: A) tel

The “elements” of a telescope are substitutions:

0: A AFA:U a: Al
(:e (6,a) : (A, x : A)

These are defined mutually with their action on terms (and types):

AFa:A 0: A
ald] : A[d]

Dependent Id and ap with telescopes

Now we can define identity telescopes from identity types:

A tel 0: A oA
Ida(6,6") tel

Id.(0,0) =€

Id(A,x:A)((57 a)a (5,a a/)) = (Q : IdA(da 5I)7 a IdQA.A(aa a/))
These are defined mutually with n-ary Id, which depends on them:

0:1da(6,8") AFA:U a: Ald] a Al
I 4(a,a’) : U

We write Ida(a, a’) = 1d” ,(a, &) in the non-dependent case.

(Last time | defined dependent Id in terms of ap; here we postulate it
separately and then make them coincide later.)

Computing Id

As we saw last time, Id computes on all type formers:

IdQA.AXB(S’ t) = |dQA’A(7T15, 7T1t) X |dQA’B(7T25, 7T2t)
IdgA-Z(x;A)B(S’ t) = Z(qﬂdi,A(WlSmt))Idf,Aq,x:A).B("Qs’ Tat)
Id%%B(ﬂ g) = H(u:A)H(v:A)H(q:le'A(u,v)) IdQA.B(fu7 gv)

Idlg‘[(X:A)B(f’g) = H(u:A)H(V:A)H(q:ldg.A(u,v))Ide,X;A)_B(fU7gv)

Id is a 1-1 correspondence

All identity types are 1-1 correspondences:

0:1da(4,4") AFA:U a:Ald]
cortd 4(a) : isContr (3= . a7y A a(a, @)

0:1da(6,4") AFA:U a : Al']
corrg 4(a) : isContr (3, apsp) A a(a: @)

The centers of contraction constitute transport:

o0:1da(8,8") AFA:U a: Ald]

— = =
tra a(a) - A[0'] liftaA a(a) : 1dA (2, tra A(2))

. _ 5 -
These witnesses compute on type formers: corfy 4 p(a) =---

e —
hence also try 4 .g(a) =--- , etc.

Computing ap

A term can be applied to Id of any telescope it depends on:

o0 :1da(d,4") AFt:B
apa ¢(0) : I3 g(t[d], t[5'])

This higher-dimensional explicit substitution computes on all* terms:

apa.(s,1)(0) = (apa s(0); apa.+(0)
apa.,s(0) = mapa.s(0) apa.r,s(0) = m2apa s(0)
apa.r5(0) = apa.r(p) (b[a/x]7 b[a'/x], aPA.b(Q))~

apa.(ry.1) (@) = AuAv.Ag.apy (0, G)-

We define reflexivity as the 0-ary ap: 'refl, = ap, ,() .

Univalence

Idy(A, B) contains as a retract the type of 1-1 correspondences:

1-1-Corr(A, B) := Z(R:A%B_)U)<H(a:A)isContr(z(b:B)R(a, b)))
% (T(s.gyisContr(X . R(2. b))).

1-1-Corr(A, B) & Idy(A, B) % 1-1-Corr(A, B) ptl=p
We identify dependent Id with ap into the universe:

Id3 (b, b') = m1(apa g(0)L)(b, b')
corfa g(b, b') = mima(apa g(0)L)(b, b)
&or p(b, b') = mama(apa.s(0)L)(b,)

(Last time, we defined the LHS as the RHS. Separating them is more
natural for Tarski universes, and permits types not lying in any universe.)

That asterisk: Neutral reflexivities

| claimed that ap is never a normal form, but there's one exception:
When y is a variable, refl, is neutral (hence normal).

Since refl is nullary ap, the rule that would apply is
APxy.xy.y (PLy - - - > Pn) = refly (if y is a variable ¢ {x1,...,x,})
where n = 0, but this just reduces refl, = ap, () to itself!

This includes other terms that obviously must also be neutral:
® ap, f(x)(p) = refl¢(ao, a1, p) for a variable f : A — B.
® |da(ap, a1) = (w1 refla)(ao, a1) for a variable A : U.

Similarly, reflie,, reflie etc., are also neutral.

refly !

@ Some problems revealed by cubes

Squares and cubes

H.O.T.T. is not a “cubical type theory”: there are no explicit cubes
in the syntax. But like any other type theory with dependent identity
types (including Book HoTT!), it has an emergent notion of cube:

ag2 : Ida(aoo, ao1) a1z : lda(aio, a11) a : lda(ago, a10)
az1 : 1da(ao1, a11) ax |di?f,"féi(x7y)(320, az1)

ar2
alp ——~ a11

aon dano TBZI

400 —3,, 7 901
Similarly, Idyq,,, is a type of 3-dimensional cubes, etc.

Very important point

The roles of agy, a2 and axg, a1 are asymmetrical!

Cubical horn-fillers

Given agp, a12, azg, we have fillers of left-to-right cubical horns:

T7a02,312)
trxy lda(x,y)(820) + 1da(a01, a11)
ag2,a12 02212 T7a02,a12
"ftxyld () (320) 1200) (3200 7000 (v, 1) (320))
aie N
a10 ? a1l
(771025312 o2
320]\ Inctx.y.ldA(x,y)(aQO) xo)% Id A (x,y) 320)
400 202 ”

Similarly, $ and iift fill right-to-left cubical horns.
And t_r>|d|dA, etc. fill higher-dimensional left-right horns.

Problem #1

We don’t seem to have top-to-bottom or bottom-to-top fillers.

Degenerate cubes

Given aj : Ida(ao, a1), there are two degenerate squares:

refl ag Jrefl 2

refla, : 1did,(a0,a1) (825 32) = Idxhy‘IdA(XJ)(aQ,aQ)
APy refl, (a2) IdffldA(X’X)(reflao, refl,,) = Idf;fdA(Xﬂy)(reflao, refl,,)
refla; a»
a, —— ax apg — a1
azT refla2 Taz reflaOT apx.reflx(aZ) Treflal
apg ——— 4o ao T) ai

refl ag

Degenerate cubes

Given ay : lda(ao, a1), there are two degenerate squares:

refl

a1 az
a —— a ao —— a1
azT refls, Taz reflaoT APy refly (32) Trefla1
a —— a apg ——— a
0 reflag 0 0 az 1

Problem #2

For a: A, the two doubly-degenerate squares

refl, refl,

a—— a a——— a
reflaT reflie, Trefla reflaT APy refly (refla) Treﬂa
a—— a a——— a

refl, refl,

seem to be definitionally unrelated.

Stuck degeneracies break canonicity

Problem #3

Our rules so far compute refl,, based on the structure of ap, but
apy refl, (@2) is stuck, even if a; is very concrete.
® refl, doesn't reduce when x is a variable.

® ap doesn't inspect its identification argument.

Stuck degeneracies break canonicity

Problem #3

Our rules so far compute refl,, based on the structure of ap, but
apy refl, (@2) is stuck, even if a; is very concrete.

® refl, doesn't reduce when x is a variable.

® ap doesn't inspect its identification argument.
A bit nonobviously, this also breaks canonicity for N.

Intuitive homotopy-theoretic reason

For a type A : U, the square ap, ., (refla) in U is essentially a
self-homotopy of the identity equivalence of A, i.e. [, 4)lda(a, a).

Taking A = S we get a stuck loop in Idg:(base, base), hence in Z.

(There's also an explicit argument using two universes instead of S1.)

© Symmetry solves all problems

Symme

To solve these problems, we introduce a symmetry operation that
transposes squares:

ain azi
ajo — a1l ao1 — d11
aon ax Ta21 = 302T syma(a22) Talz
400 —5,, 7 901 d00 —3,,* 910
. 1 4902;312
a22 . Idx.y.IdA(x,y)(azo’ 321)

az0,a21

X-y-ldA(x,y)(a”’ 212)

symu(aze) : I1d

The other Kan operations

Now we can fill other cubical horns, solving problem #1:

a1
aio ail o1 —7 411
azo]\ Tam - aOZT
900 ~5p, » 901 300 3 7 410
5 a1 s 3
01 7 el
._>3207321 —>an(,a:
202 620 (e (302) B liaGe.y) (202)
400 aso 7 410
173205921
trx.yAIdA(XaY)(aO2)
alo ail

320, a
axo SymA(l'?th,|d2j(X,y)(302)) azi

ao0 ao1

402

Computing symmetry

To solve problem #3, we define

apx.reﬂx(a2) = symA(reﬂaz)'

This computes based on as. .. if sym also computes!

Computing symmetry

To solve problem #3, we define

APy refl, (32) = symA(reﬂaz)'

This computes based on as. .. if sym also computes!

For the most part, computing symmetry is straightforward, e.g.:

502,512
Idu.v.ldAX B(u7v)(520’ 521)

— 502,512
=1, i (ra,mv) g (maw,mv) (5205 921)

= |d502’512

502,512
u.v.lda(miu,mv) (7T1520’ 7T1521) X Idu.v.|d3(7r2u,7r2v) (7T2520’ 7T2521)

= |02 71512

T2502,72512
s tn (e w) (71520, T1821) X Id 2550 00) (2520, T2521).-

So we can define

syma. 5((p, q)) = (syma(p),symg(q))

Dependent symmetry

To generalize this to ¥ -types, we need dependent symmetry over a
square in a telescope (don't worry too much about the syntax):

. 14%02,012 . 14902,012,022,302,a12
022 : |d5.5'.|dA(5,6/)(520’521) 2 Idé.é’.g.u.v.ldi.A(u,v)(320’821)

20,021,5ym(022),a20,
8.8'.0.u.v.ld} ,(u,v)

sym%?A(agg) :ld (a0, a12)

Then we can define

022 022

SYMA’s- ., 8((P: @) = (symgZa(p); sym‘fﬁjﬁ;A),B(q))

Symmetry for functions

fo2,f12 — 1 fo2,fi2
Idf.g‘IdA%B(ﬂg)(fZ(), f21) - Idf'g'n(XO:A)H(ﬁ:A)H(XQ:IdA(xovq))IdB(f)(Oygxl)(fzo’ f21)

= H(XOO:A) H(X()l :A) H(xoz:ldA(xoo,xm))
H(xlo :A) H(x11 :A) H(xlg:ldA()qo,xu)
H(X205|dA(X007X10)) H(le :Ada(x01,x11)) H(X22 1d70292 (x00,%01))

x.y-ldg(x,y)

fo2x02,f12x
| ¢f02x02:112X12

u.v.|dB(u,v)(f20X20, H1x21)

. 14 fo2,f12
So fro : Idf.g,ldA_)B(f,g)(fm’ f1) is a function from squares in A, with

arbitrary boundary, to squares in B with specified boundary.
Thus we define sym,_, g by transposing both input and output:

SymA—)B(f22)(X007 X105, X20, X01, X11, X21, X02, X12, X22)
= sym(f2(Xo0, X01, X02, X10, X11, X12, X20, X21, Sym(x22)))

Symmetry for N-types is similar, using dependent symmetry.

Rules for symmetry

Some obvious rules for symmetry are that it should be an involution:
sym(syma(a22)) = a2
and it should commute with iterated ap on squares:

symp(apap, (322)) = apyp, (syma(az2))

The nullary case of the latter is sym(reflien,) = refles, .
This solves problem #2:

APy refl, (refla) = sym(reflen,) = reflieq,

Higher-dimensional symmetry

For n-dimensional cubes (i.e. n-fold iterated ld-types):

® We would expect symmetries to permute all n dimensions.
The symmetric group S, should act on n-cubes.

® \We have transpositions of adjacent dimensions, from our sym.
(E.g. symy, : gy, — Idiay, and apgym, : Idig,,, — IdldIdA')

Fortunately, S, is generated by adjacent transpositions!

oo =1
So=(01,...,0n_1 O0j0Kk = Ok0; (j—|-1<k)
OkOk+10k = Ok+10k0k+1

The first two relations follow from the equations on the last slide.
To obtain the third, we assert

symIdA(apsymA(symldA(a222))) = apsymA(SymIdA(apsymA(3222))) :

@ Semicartesian cubes

Towards computation by gluing

Symmetry computes the previously stuck term ap, ¢ (a2)-
But how do we know there aren’'t other stuck terms?

Obviously, by proving canonicity/normalization.

We haven't done this yet, but the first step (from a modern
perspective) is constructing a set-based semantic model to be the
codomain for Artin gluing.

|dentity contexts

Question

What categorical structure corresponds to our identity types?

® The objects of a category C correspond to syntactic contexts.

® The fundamental operation on contexts takes A to
IDa = (6:A,0: A, 0:1da(6,6,)).
which factors the diagonal (i.e. is a path object):
A DA = (5: A, A)= A XA,

® This operation is functorial (via ap).

~

® We have natural symmetries IDjp, = ID|p,, yielding an
Sp-action on n-fold identity contexts..

Cubical actions

Thus, an ID-structure on C is the same as
e A functorID:C — C
® Nat. trans. r: 1¢ = ID and s,t : ID = 1¢ with sr = tr =1y,
e Natural symmetries ID o ID =2 ID o ID satisfying S, relations.

Definition

Let [I°P be the monoidal category freely generated by an object I,
morphisms r : 1 — T and s,t : I — 1 with sr = tr = 11, where 1 is
the unit, and symmetries I ® [= 1 ® I satisfying S, relations.

Then an ID-structure on C is also equivalently
¢ A monoidal functor 0P — [C, (]

and therefore also equivalently
® A coherent action [1°P x C — C.

The semicartesian cube category

® []is a semicartesian monoidal category: symmetric monoidal
and its unit 1 is terminal. Projections, but no diagonals.

® |t is also the semicartesian monoidal category freely generated
by an object T and morphisms s, t: 1 — 1.

We call [J the semicartesian cube category.

This is the category used by:

® Bernardy—Coquand—Moulin, for internal parametricity
(actually they used a unary version, this would be the binary one)

® Bezem—Coquand—Huber, for the original cubical model

® Cavallo—Harper, for the parametricity direction of parametric
cubical type theory

The presheaf category [l = Set™" inherits a Day convolution
monoidal structure (also semicartesian):

Y.
X®Y)h= [XexYexDOnkaodo).
We write (1" for the representable [J(—,1%"). Note [1° is terminal.

Theorem

An action > : 0P x C — C is the same as an enrichment of C over
[that has powers by representables (write 0" h X = 1" > X).

Map(A, B), := C(A, 0" th B)
0(X, Map(A,0" d B)) = 0(X ® 0", Map(A, B))

[J-enriched categories are the natural home for H.O.T.T. semantics.

Cubical objects

Of course, [is enriched over itself.

Similarly, any category £P” of cubical objects is @—enriched, with
powers and copowers if £ is complete and cocomplete:

k¢
(A® X), :/ (Ac x O(n, k @ 0)) - X,

(A M X)n _ / (Xk)AgxID(k,nGBZ)
k¢

(O™ X)n = Xnom
Map(X, Y), = &5 (X, 0" M Y)

More about the cube category

Up to equivalence:
® The objects of [are finite sets.
® A morphism ¢ € [O(m, n) is a function ¢ : n — mU {—,+}
that is injective on the preimage of m.
® The monoidal structure m & n is disjoint union.

Sometimes use a skeletal version with objects n = {0,1,...,n— 1},
but often the non-skeletal version with all finite sets is better.

® The coface 6, + € O(n~{k}, n) is the identity on n~{k} and
sends k to =.

® The codegeneracy ok € O(n, n~{k}) is the inclusion.
® The endomorphism monoid [(n, n) is the symmetric group S,,.

The magic of semicartesian cubes

The monoidal structure of [is “almost” cartesian; only the
injectivity requirement spoils it. If it were cartesian we would have

i O(n k@) =0(n, k) xDO(n,0). ?

Instead, we have

Removing ¢(k) from the second domain ensures the copaired
function kU ¢ — nU {—, +} is still injective on the preimage of n.

But in some ways this is even better!

Copowers by representables

For A € O and X e EU we have
kb
(A X)), = (A xDO(n, k ® L)) - Xy
k¢
@ ©X)= [©km) x Oln. k@)X,
l
:/ O(n,me 0)- Xy

4
— [(Soctom Blrd(m).0) - X
l
= Y /D(n\qﬁ(m),é)-Xg

¢€M(n,m)

= Z Xn\¢(m)'

#€0(n,m)

Semicartesian cylinders

Taking m =1, we get

(@ 0X)n= > Xes):
$e0(n,1)
A morphism ¢ € [O(n, 1) is a function 1 — nU {—,+}, so either:
® some k € n, in which case n\¢(1) = n~{k}, or
® + or —, in which case n~\¢(1) =n. Thus:
(OO X)n=Xn+ Xo + > Xo (k-
ken

An n-cube in O ® X is either an n-cube in the left-hand copy of X,
an n-cube in the right-hand copy of X, or an (n — 1)-cube in X
stretched out in some dimension along the cylinder.

There is almost no other cube category for which this holds.

@ Semantic identity types

Semantic identity types

In a [-enriched category with representable powers, we also need:
® Coherence theorems. < next time
@® Transport and lifting (“fibrancy”). < next time

©® Categorical computation rules for Id, up to isomorphism.

Semantic identity types

In a [-enriched category with representable powers, we also need:
® Coherence theorems. < next time
@® Transport and lifting (“fibrancy”). < next time

© Categorical computation rules for Id, up to isomorphism.

It's tempting to think that, at least in @ we can just define ldax g,
Ida_,p, etc., to be whatever we want. But we can't: Idx must be
defined as 0! th X. What we can define is the individual sets of
n-cubes in a particular X € . But:

® |t can be non-obvious how these lead to a categorical
characterization of the entire cubical set Idx.

® For type formers like A x B, A — B, we don’t even have this
much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about 7.

|dentity types of products

Note x : A,y : AF Ida(x,y) : U is represented semantically by the
projection from the representable power (! h A — A x A.

Since (! th —) is a right adjoint, it preserves products:

O (Ax B) ——— (O h A) x (O h B)

l l

(Ax B)x (Ax B) —— (Ax A)x (B x B)
Syntactically, this gives

|dA><B(U, V) = |dA(7['1U,7T1V) X |dB(7T2u,7T2V).

Same idea works for ¥-types. A coherence theorem will improve = to =.

Plan for the three talks:
@ Basic syntax of H.O.T.T.
® Symmetries and semicartesian cubes

©® Univalent universes

	A calculus of telescopes
	Some problems revealed by cubes
	Symmetry solves all problems
	Semicartesian cubes
	Semantic identity types

