
Towards third generation HOTT
Part 1: Basic syntax

Michael Shulman

University of San Diego

joint work with Thorsten Altenkirch and Ambrus Kaposi

CMU HoTT Seminar
April 28, 2022



Outline

1 Background

2 Identity types

3 Function extensionality

4 Univalence

5 From univalence to homotopy theory



First generation: Book HoTT

Cf. Awodey–Warren, Voevodsky, The HoTT Book

1 Based on Intensional Martin-Löf Type Theory

2 Identity types characterized by path induction

3 Univalence is an axiom

Advantages:

• Easy to do in Coq/Agda: assume univalence and away you go.

• Has models in all higher toposes.

Disadvantages:

• Not computational (UA axiom is stuck)

• Many laws are not definitional:

IdA×B((a, b), (a′, b′)) 6≡ IdA(a, a′)× IdB(b, b′)

apf ◦g (p) 6≡ apf (apg (p))
−→
tr x 7→A(x)×B(x)(p, (a, b)) 6≡ (

−→
tr A(p, a),

−→
tr B(p, b))



Second generation: Cubical type theories

Cf. Bezem-Coquand-Huber, Cohen-Coquand-Huber-Mörtberg,
Angiuli-Brunerie-Coquand-Favonia-Harper-Licata

1 Paths defined as maps out of an interval “exo-type” I
2 Cubical Kan operations asserted explicitly in syntax

3 Univalence proved from “glue types”

Advantages:

• Satisfies canonicity and normalization

• Many equalities become definitional

• Implemented in Cubical Agda, cooltt, . . .

Disadvantages:

• Not yet known to have models in higher toposes. . .
. . . but it probably does (cf. ACCRS, cubical model for spaces).

• . . . ?



What’s not to like about cubical type theories?

Martin-Löf J-elim is conceptually fundamental to “equality”. In
Book HoTT, this simple rule automatically yields higher structure.

Slogan for Book HoTT

Homotopy is implicitly present in the foundations of mathematics.

• A nice story to tell philosophers.

• Accessible to students.

In cubical type theory, identity is defined using a homotopy-theoretic
idea (paths), and higher structure is “put in by hand” (Kan ops).

• Fine if you already know you want to do homotopy theory.

• Doesn’t have the same philosophical import.

• Not as accessible to students.



That interval

The interval I is not an ordinary type, but appears in contexts.

• Complicates the meta-theory

• Harder to explain
• Harder to implement

• Termination-checking of boundaries
• Display of boundaries to the user
• Higher-order unification

We’re still learning how to implement cubical type theories.
But it’s also worth exploring different approaches.



A problem shared by Book HoTT and CTT

Chapter 2 of the Book characterizes lots of identity types:

IdA×B((a, b), (a′, b′)) ≈ IdA(a, a′)× IdB(b, b′)

IdA→B(f , g) ≈
∏

(x :A)IdB(f (x), g(x)) IdU(A,B) ≈ Equiv(A,B)

• In Book HoTT, these are all only equivalences.

• In cubical type theory, most of them are isomorphisms. . .
. . . except for IdU, which is still only an equivalence!

This limits the everyday usability of univalence. Given an
equivalence f : A � B : g , if we pass it through univalence we can’t
recover f or g definitionally, only up to homotopy.



Towards H.O.T.T.

I will describe work in progress towards a theory called

Higher Observational Type Theory

with the following properties:

• It admits models in all higher toposes, including spaces.

• Univalence “by definition” (+ other Id characterizations).

• Homotopy theory is emergent rather than explicit;
all rules have a convincing philosophical justification.

• Computation is a reasonable hope (no obvious stuck terms).

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 Semantics of univalent universes



Outline

1 Background

2 Identity types

3 Function extensionality

4 Univalence

5 From univalence to homotopy theory



Bishop’s conception of set

Errett Bishop wrote that

A set is defined by describing exactly what must be done
in order to construct an element of the set and what must
be done in order to show that two elements are equal.

MLTT follows this principle if “equal” refers to definitional equality,
giving introduction and η rules:

a : A b : B

(a, b) : A× B

π1s ≡ π1t : A π2s ≡ π2t : B

s ≡ t : A× B

The elimination and β rules are determined by “harmony” with the
introduction rules.



Lower Observational Type Theory

(Lower) Observational Type Theory (Altenkirch-McBride) applies
the same principle to propositional equality types Eq.

a : A b : B

(a, b) : A× B

p : EqA(π1s, π1t) q : EqB(π2s, π2t)

(p =, q) : EqA×B(s, t)

But this theory is non-univalent by construction, with primitive UIP:

p : EqA(x , y) q : EqA(x , y)

irr(p, q) : EqEqA(x ,y)(p, q)
.

Can we formulate a univalent version?



Notation and terminology

In a univalent context, we refer to identity types, with formation rule

A : U a : A b : A

IdA(a, b) : U

The elements of an identity type are identifications.

Green highlights indicate rules of H.O.T.T.

We omit unchanging ambient contexts “Γ `”.



Computing identity types

The OTT rule

p : EqA(π1s, π1t) q : EqB(π2s, π2t)

(p =, q) : EqA×B(s, t)

says that EqA×B behaves like EqA × EqB . In a higher context, this
would require infinitely many such rules for IdIdA×B

, etc. Instead, we
make it a computation rule:

IdA×B(s, t) ≡ IdA(π1s, π1t)× IdB(π2s, π2t).

Then we can just apply the same rule multiple times:

IdIdA×B(s,t)(p, q) ≡ IdIdA(π1s,π1t)×IdB(π2s,π2t)(p, q)

≡ IdIdA(π1s,π1t)(π1p, π1q)× IdIdB(π2s,π2t)(π2p, π2q)



Respect for equality

Here’s Bishop again (paraphrased):

An operation f from A into B is called a function if we
have f (a) = f (a′) whenever a, a′ ∈ A and a = a′.

For definitional equality, MLTT has congruence rules for each
primitive term former:

s ≡ t : A× B

π1s ≡ π1t : A π2s ≡ π2t : B

Lower OTT similarly asserts congruence terms:

p : EqA×B(s, t)

π=
1p : EqA(π1s, π1t) π=

2p : EqB(π2s, π2t)

By structural induction, all terms respect both equalities.



Respect for higher equality

We instead assert a general congruence term:

x : A ` f : B p : IdA(a, a′)

apx .f (p) : IdB(f [a/x ], f [a′/x ]).

In apx .f (p), the variable x is bound in the term f .
(For now, B doesn’t depend on A; we’ll come back to that later.)

We give it computation rules on standard term-formers:

apx .(a,b)(p) ≡ (apx .a(p), apx .b(p))

apx .π1s(p) ≡ π1 apx .s(p) apx .π2s(p) ≡ π2 apx .s(p)

These are well-typed by the previous rule IdA×B ≡ IdA × IdB .
And for higher equalities, we can apply them multiple times.



Reflexivity

Everything is the same as itself, definitionally and observationally:

a : A

a ≡ a : A

a : A

a : EqA(a, a)

Similarly, we assert reflexivity terms:

a : A

refla : IdA(a, a)

with computation rules on standard term-formers:

refl(a,b) ≡ (refla, reflb) reflπ1s ≡ π1refls reflπ2s ≡ π2refls

Again, these rules are well-typed because IdA×B ≡ IdA × IdB .



ap on neutrals and redexes

Note that apx .f (p) computes on all terms that f could be, even
those not headed by a constructor. The rules are consistent with
computations occurring inside f ; for instance,

apx .π1(a,b)(p) ≡ π1 apx .(a,b)(p) ≡ π1 (apx .a(p), apx .b(p)) ≡ apx .a(p)

can also be obtained by reducing π1(a, b) ≡ a in the bound term.

We complete the picture with rules for variables:

apx .x(p) ≡ p apx .y (p) ≡ refly (if y is a variable 6= x)

Then an ap term is never∗ a normal form: it can always reduce.
Think of it as a higher-dimensional explicit substitution “f Jp�xK”.

∗ modulo some detail we’ll come back to later. . .



Functorial laws for ap

Since ap always reduces, we can deduce by induction on terms the
following “admissible” equalities:

apx .f (refla) ≡ reflf [a/x] apy .g (apx .f (p)) ≡ apx .g [f /y ](p)

apx .t(p) ≡ reflt (if x does not appear in t)



Outline

1 Background

2 Identity types

3 Function extensionality

4 Univalence

5 From univalence to homotopy theory



Towards identity of functions

The obvious rule for equality of functions is function extensionality:

¿ IdB→C (f , g) ≡
∏

(y :B)IdC (f (y), g(y)) ?

But this is trouble for ap on application. Given x : A ` f : B → C
and x : A ` b : B while p : IdA(a, a′), we want to compute

apx .f b(p) : IdC ((f b)[a/x ], (f b)[a′/x ])

≡ IdC (f [a/x ](b[a/x ]), f [a′/x ](b[a′/x ]))

to something involving

apx .f (p) : IdB→C (f [a/x ], g [a′/x ])

¿ ≡
∏

(y :B)IdC (f [a/x ](y), f [a′/x ](y)) ?

and apx .b(p) : IdB(b[a/x ], b[a′/x ]).

We need an equality in C between f [a/x ] and f [a′/x ] applied to
different inputs b[a/x ] and b[a′/x ], but this apx .f (p) can’t give that.



Identity of functions

A better rule is (still ignoring dependence of B on A)

IdB→C (f , g) ≡
∏

(u:B)

∏
(v :B)

∏
(q:IdB(u,v))IdC (f (u), g(v)).

Once we have singleton contractibility, this will be equivalent to the
näıve version. But it also gives us

apx .f (p) :
∏

(u:B)

∏
(v :B)

∏
(q:IdB(u,v))IdC (f [a/x ](u), f [a′/x ](v))

apx .b(p) : IdB(b[a/x ], b[a′/x ]).

so we can compute

apx .f b(p) : IdC (f [a/x ](b[a/x ]), f [a′/x ](b[a′/x ]))

apx .f b(p) ≡ apx .f (p)
(
b[a/x ], b[a′/x ], apx .b(p)

)
.



Identity of abstractions

Let x : A, y : B ` t : C , hence x : A ` λy .t : B → C . Given
p : IdA(a0, a1), we can form apx .(λy .t)(p), which has type

IdB→C ((λy .t)[a0/x ], (λy .t)[a1/x ])

≡
∏

(u:B)

∏
(v :B)

∏
(q:IdB(u,v))IdC (t[a0/x , u/y ], t[a1/x , v/y ])

How do we compute this?

We want to “ap” the term t on both p
and q simultaneously. So we introduce a multi-variable ap:

x1 : A1, . . . , xn : An ` t : C
p1 : IdA1(a1, b1) · · · pn : IdAn(an, bn)

apx1.···xn.t(p1, . . . , pn) : IdC (t[~a ], t[~b ])

apx .(λy .t)(p) ≡ λu.λv .λq.apx .y .t(p, q).

(Still ignoring dependence in A1, . . . ,An,C .)



Identity of abstractions

Let x : A, y : B ` t : C , hence x : A ` λy .t : B → C . Given
p : IdA(a0, a1), we can form apx .(λy .t)(p), which has type

IdB→C ((λy .t)[a0/x ], (λy .t)[a1/x ])

≡
∏

(u:B)

∏
(v :B)

∏
(q:IdB(u,v))IdC (t[a0/x , u/y ], t[a1/x , v/y ])

How do we compute this? We want to “ap” the term t on both p
and q simultaneously. So we introduce a multi-variable ap:

x1 : A1, . . . , xn : An ` t : C
p1 : IdA1(a1, b1) · · · pn : IdAn(an, bn)

apx1.···xn.t(p1, . . . , pn) : IdC (t[~a ], t[~b ])

apx .(λy .t)(p) ≡ λu.λv .λq.apx .y .t(p, q).

(Still ignoring dependence in A1, . . . ,An,C .)



Computing with multi-variable ap

Multi-variable ap computes with all the same rules we had before.
The variable rules are

apx1.···xn.xi (p1, . . . , pn) ≡ pi

apx1.···xn.y (p1, . . . , pn) ≡ refly (if y is a variable /∈ {x1, . . . , xn})

In addition, we can identify reflexivity with the 0-ary ap
(no bound variables in the subscript):

refla ≡ ap().a().

Then all the computation rules for refl become special cases of
those for n-ary ap.



Outline

1 Background

2 Identity types

3 Function extensionality

4 Univalence

5 From univalence to homotopy theory



Towards definitional univalence

We want univalence to hold “by definition”, meaning IdU(A,B)
consists of equivalences. But what is an equivalence?

Chapter 4 of the Book discusses several possibilites:

1 Maps with contractible fibers (Voevodsky equivalences)

2 Half-adjoint equivalences

3 Bi-invertible maps

But philosophically, these all have problems:

• None feels “canonical”: why choose one over another?

• None is (definitionally) symmetrical in A and B.

• Some are hard to motivate without homotopy theory a priori.



What is definitional univalence?

The HoTT Book gave three properties of a type Equiv(A,B) to be
a “good notion of equivalence”:

1 There is an embedding Equiv(A,B) ↪→ (A→ B).

2 QInv(A,B)→ Equiv(A,B) over A→ B.

3 Equiv(A,B)→ QInv(A,B) over A→ B.

Here QInv(A,B) is the näıve type of “quasi-invertible maps”:

QInv(A,B) ≡
∑

(f :A→B)

∑
(g :B→A) Id(g ◦ f , 1A)× Id(f ◦ g , 1B).

Univalence (“idtoeqv : IdU(A,B)→ Equiv(A,B) is an equivalence”)
can be stated equivalently using any such Equiv (but not QInv).

But as soon as univalence holds, IdU also satisfies these properties!

Can univalence ever hold non-definitionally?



What is definitional univalence?

The HoTT Book gave three properties of a type Equiv(A,B) to be
a “good notion of equivalence”:

1 There is an embedding Equiv(A,B) ↪→ (A→ B).

2 QInv(A,B)→ Equiv(A,B) over A→ B.

3 Equiv(A,B)→ QInv(A,B) over A→ B.

Here QInv(A,B) is the näıve type of “quasi-invertible maps”:

QInv(A,B) ≡
∑

(f :A→B)

∑
(g :B→A) Id(g ◦ f , 1A)× Id(f ◦ g , 1B).

Univalence (“idtoeqv : IdU(A,B)→ Equiv(A,B) is an equivalence”)
can be stated equivalently using any such Equiv (but not QInv).

But as soon as univalence holds, IdU also satisfies these properties!

Can univalence ever hold non-definitionally?



What is definitional univalence, really?

Concrete definitions of Equiv(A,B) include maps f : A→ B and
g : B → A as data. It’s useful to remember exactly what these are,
definitionally, to compute with them.

Definition

Univalence holds definitionally (at level 1) if, for some definition

Equiv(A,B) :≡
∑

(f :A→B)

∑
(g :B→A) we have

Equiv(A,B)
↑−→ IdU(A,B)

↓−→ Equiv(A,B)

such that (f , g , 1)↑↓ ≡ (f , g , 2). (Perhaps 1 6≡ 2.)

Can also consider higher levels, extracting homotopies as well.

Even current cubical type theories (CCHM, ABCFHL, Cubical Agda)
do not satisfy this! Can’t even extract f definitionally.



One-to-one correspondences

The “best” Equiv is the type of one-to-one correspondences:

1-1-Corr(A,B) :≡
∑

(R:A→B→U)

(∏
(a:A)isContr(

∑
(b:B)R(a, b))

)
×
(∏

(b:B)isContr(
∑

(a:A)R(a, b))
)
.

Remark

An R : A→ B → U is a correspondence. It is one-to-one if each
element of A or B has exactly one correspondent in the other.

(Prefer not to call it a “relation” unless it’s proposition-valued.)

• Definitionally symmetric in A and B.

• A direct propositions-as-types version of classical “bijective
relation” (and reduces to it when A,B are sets), so it’s easy to
motivate without homotopy theory.

• In a larger universe than A,B. . . but so is IdU(A,B).

• Also works really well. . .



1-1 correspondences vs equivalences

If R : A→ B → U is 1-1, the centers of contraction yield
f : A→ B and g : B → A, which form an equivalence.

Conversely, if f : A→ B is an equivalence with inverse g : B → A,
we make a 1-1 correspondence by Rf (a, b) :≡ IdB(b, fa).

• ∑
(b:B)IdB(b, fa) is contractible with center (f a, reflfa).

• ∑
(a:A)IdB(b, fa) is contractible with center (gb, εb).

If we re-extract an equivalence, we get f and g definitionally.

With a fancier definition of Rf , we can even remember the
homotopies εb : IdB(b, fgb) and ηa : IdA(a, gfa).



Computing IdU

For (philosophical, syntactic, and semantic) reasons (later), instead
of IdU(A,B) ≡ 1-1-Corr(A,B), we make IdU primitive, with intro,
elim, and β but no η. (Like a coinductive type with one destructor.)

R : 1-1-Corr(A,B)

R↑ : IdU(A,B)

A2 : IdU(A0,A1)

A2↓ : 1-1-Corr(A0,A1)

p : 1-1-Corr(A,B)

p↑↓ ≡ p

This β rule is sufficient for definitional univalence.

Equiv(A,B)→ 1-1-Corr(A,B)
↑−→ IdU(A,B)

↓−→ 1-1-Corr(A,B)→ Equiv(A,B)



Outline

1 Background

2 Identity types

3 Function extensionality

4 Univalence

5 From univalence to homotopy theory



Towards ∞-groupoid structure

Now every A : U needs some reflA↓ : 1-1-Corr(A,A). The obvious
choice for its underlying correspondence is IdA : A→ A→ U:

π1(reflA↓) ≡ IdA

The other parts of reflA then give us singleton contractibility!

π1π2(reflA↓) :
∏

(a:A)isContr(
∑

(b:A)IdA(a, b))

π2π2(reflA↓) :
∏

(b:A)isContr(
∑

(a:A)IdA(a, b)).

In particular, this yields composition operations: given p : IdA(a, x)
and q : IdA(a, y), we have (x , p), (y , q) :

∑
(b:A)IdA(a, b). But∑

(b:A)IdA(a, b) is contractible, so we get (in particular)

p−1 � q : IdA(x , y).



Computing ∞-groupoid structure

Now refl is supposed to compute on all terms. And for U, the
“constructors” are type formers. So we must specify how to
compute, e.g., reflA×B using reflA and reflB .

In the first component, this is just the computation of identity types:

reflA×B↓ ≡ (π1reflA×B↓ , π2reflA×B↓)
≡ (IdA×B , . . . )

≡ (IdA × IdB , . . . )

≡ (π1reflA↓ × π1reflB↓, . . . ).

We give rules for the other components that compute the
∞-groupoid structure of each type former, e.g. in A× B

(p, q)−1 � (r , s) ≡ (p−1 � r , q−1 � s)



Dependent identity types

We can also apply non-nullary ap to terms in U.

If z : A ` B : U and p : IdA(x , y), we have

apz.B(p) : IdU(B(x),B(y))

π1(apz.B(p)↓) : B(x)→ B(y)→ U

This is how we define the dependent/heterogeneous identity type:

Idp
z.B(u, v) :≡ π1(apz.B(p)↓)(u, v)



Rules for dependent identity types

Since ap also computes on all terms, we give rules like

Idp
z.B×C (u, v) ≡ Idp

z.B(π1u, π1v)× Idp
z.C (π2u, π2v).

The rule ap(refl) ≡ refl implies that heterogeneous identity types
over refl reduce to homogeneous ones:

Idrefla
z.B (u, v) ≡ IdB[a/z](u, v).

Similarly, the rule apconstant(p) ≡ refl implies that dependent
identity types in constant families also reduce to homogeneous ones:

Idp
z.B(u, v) ≡ IdB(u, v) (if z doesn’t appear in B)

Finally, functoriality of ap gives

Id
apx.f (p)
z.C (u, v) ≡ Idp

x .C [f /z](u, v)



Transport

Still with z : A ` B : U and p : IdA(x , y), we also have
π2(apz.B(p)↓) proving Idp

B : B(x)→ B(y)→ U is one-to-one.

In particular, we have transport: each u : B(x) corresponds to some
−→
tr pz.B(u) : B(y), with

−→
liftpz.B(u) : Idpz.B(u,

−→
tr pz.B(u)).

We must give computation rules for π2 ap, specifying how transport
computes on type families:

−→
tr pz.B×C (u) ≡ (

−→
tr pz.B(π1u),

−→
tr pz.C (π2u))

−→
liftpz.B×C (u) ≡ (

−→
liftpz.B(π1u),

−→
liftpz.C (π2u))



Deriving path induction

As in cubical type theory, singleton contractibility and transport
together imply Martin-Löf identity elimination J.

1 Given C :
∏

(x ,y :A)IdA(x , y)→ U with u : C (a, a, refla) and
e : IdA(a, b), singleton contractibility yields:

q : Id∑
(y :A)IdA(a,y)((a, refla), (b, e))

2 Currying C to C̃a :
(∑

(y :A)IdA(a, y)
)
→ U, we can transport:

−→
tr q

C̃a
(u) : C̃a((b, e))

≡ C (a, b, e).

Again as in cubical type theory, the β rule for J holds only typally.



Σ and Π

With dependent Id, we can define IdΣ and IdΠ:

Id∑
(x :A)B(x)(s, t) ≡

∑
(p:IdA(π1s,π1t))Idp

B(π2s, π2t)

Id∏
(x :A)B(x)(f , g) ≡

∏
(x :A)

∏
(y :A)

∏
(p:IdA(x ,y))Idp

B(f (x), g(y))

with corresponding rules for ap on their term formers,
and generalizations to dependent IdΣ and IdΠ.



Dependent multi-variable ap and Id

Dependent Id also makes sense of dependencies in n-ary ap, using
the evident derived notion of n-ary Id.

Each identification is dependent on the preceding ones.

x1:A1, x2:A2(x1), . . . , xn:An(x1, . . . , xn−1) ` t : C (x1, . . . , xn)
p1 : IdA1 (a1, b1) p2 : Idp1

x1.A2
(a2, b2) · · · pn : Id

p1,...,pn−1

x1....xn−1.An
(an, bn)

apx1....xn.t(p1, . . . , pn) : Idp1,...,pn
x1....xn.C

(t[~a ], t[~b ])

Idp1,...,pn
x1....xn.C

(u, v) :≡ π1(apx1....xn.C (p1, . . . , pn)↓)(u, v).

When formalizing this, we may use a primitive notion of telescope
(a context dependent on the ambient context).



Up next

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 Semantics of univalent universes


	Background
	Identity types
	Function extensionality
	Univalence
	From univalence to homotopy theory

