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Outline

I Introduction to Monte Carlo method,
I Motivating Examples,
I Law of Large Numbers,
I Central Limit Theorem
I Example
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Monte Carlo Methods

I Represent the solution of a problem as a parameter of a
hypothetical population,

I use a pseudo-random sequence of numbers to construct a
sample of a population, from which statistical estimates of
the parameter can be obtained

I Stochastic Simulation or Sampling methods
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History of Monte Carlo methods

1733 Buffon’s needle problem.
1812 Laplace suggests using Buffon’s needle experiment to

estimate π.
1946 ENIAC (Electronic Numerical Integrator And Computer)

built.
1947 John von Neuman and Stanislaw Ulam propose a

computer simulation to solve the problem of neutron
diffusion in fissionable material.

1949 Metropolis and Ulam publish their results in the Journal of
the American Statistical Association.

1984 Geman & Geman publish their paper on the Gibbs sampler
. . . continuously growing interest with increases in
computational power



Cemgil CMPE 58N Monte Carlo Methods. Lecture 1. Fall 2009, Boğaziçi University, Istanbul

Buffon’s needle
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Buffon’s needle

I d : Distance from the middle of the needle to the nearest
line

I θ : Acute angle between the parallel lines and the needle
I A needle touches a line iff

d
sin θ

<
1
2
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Buffon’s needle

I The area of the rectangle is

S =
1
2

π

2

I The area under the sin is
∫ π/2

0
sin(θ)/2 =

1
2

I

Pr{d < sin(θ)/2} =
1/2
π/4

=
2
π
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Buffon’s needle

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

θ

d

π ≈ 3.2787



Cemgil CMPE 58N Monte Carlo Methods. Lecture 1. Fall 2009, Boğaziçi University, Istanbul

Buffon’s needle
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Buffon’s needle
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Indicator function

I{x} =

{
1 x is true
0 otherwise

Alternative notation: Iverson convention

[x] =

{
1 x is true
0 otherwise
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Buffon’s needle

I Draw (d(n), θ(n)) ∼ US and estimate π via

π =
2

Pr{d < sin(θ)/2} ≈
2# of all dots
# of red dots

=
2N∑N

n=1 I{d(n) < sin(θ(n))/2}
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Speed of convergence

I Monte Carlo integration: error behaves as n−1/2.
I Numerical integration of a one-dimensional function by

Riemann sums: error behaves as n−1.
I For one-dimensional problems Riemann is better; however

deteriorates with increasing dimension: curse of
dimensionality.

I Order of convergence of Monte Carlo integration is
independent of the dimension of the problem.
Ã Monte Carlo methods can be a good choice for
high-dimensional integrals.
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Convergence of random variables
(Liu, Appendix A.1.4.)

yn ∼ pn(yn) Fn(yn) =
∫ yn

−∞
pn(τ)dτ

1 Convergence in distribution

lim
n→∞Fn(yn) = F(y)

2 Convergence in probability

lim
n→∞Pr(|yn − y| > ε) = 0

3 Convergence almost surely

Pr( lim
n→∞ |yn − y| = 0) = 1

I 3 ⇒ 2 ⇒ 1
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Convergence of Random variables

I Convergence of random variables is a delicate subject
I Important to get a deeper understanding
I Not get intimidated while reading the literature; remember

the definitions and different modes of convergence
I See, e.g., Grimmet and Stirzaker, Ch. 7
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Law of Large Numbers

X1, . . . , Xn, . . . are i.i.d.

I Weak Law: 〈Xi〉 = µ

X1 + · · ·+ Xn

n
→ µ in probability

I Strong Law: 〈Xi〉 = µ and Xi with finite variance

X1 + · · ·+ Xn

n
→ µ a. s.
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Central Limit Theorem

Xi are i.i.d. with mean µ and variance σ2

I

X̄n =
X1 + · · ·+ Xn

n

√
n(X̄n − µ)

σ
→ N (0, 1)

I We have approximately

X̄n ∼ N (µ, σ2/n)



Cemgil CMPE 58N Monte Carlo Methods. Lecture 1. Fall 2009, Boğaziçi University, Istanbul

Chevalier de Méré

I The famous letters between Pascal and Fermat (start of
probability) mention a request for help from a French
nobleman and gambler, Chevalier de Méré.

I Méré bets for:

in four rolls of a die, at least one six would turn up
I Later he bets for:

in 24 rolls of two dice, a pair of sixes would turn up.

but he was not happy with the latter schema
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Chevalier de Méré

I Setup a computer simulation for a single die

K = 4; % Number of dice throws
N = 1000; % Number of games
for trial=1:10,

D = ceil(rand(N,K)*6);
disp(sum(sum(D==6, 2) > 0)/N)

end

I Per game, Méré won

0.4950, 0.4950, 0.5090, 0.5210, 0.5460
0.5420, 0.5360, 0.5160, 0.5210, 0.5010
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Chevalier de Méré

The analytical solution

Pr{Méré wins} = 1− Pr{Méré loses}
= 1− (5/6)4 = 0.5177
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Chevalier de Méré

I Setup a computer simulation for a pair of dice
K = 24; % Number of dice throws
N = 1000; % Number of games
for trial=1:10,

D = ceil(rand(N,K,2)*6);
sum(sum(D(:,:,1)==6 & D(:,:,2)==6,2) > 0)/N

end

I Per game, Mere wins

0.502, 0.486, 0.497, 0.533, 0.521
0.474, 0.451, 0.508, 0.470, 0.481 ...

I Accurate results by simulation require a large number of
experiments
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Chevalier de Méré

The analytical solution

Pr{Méré wins} = 1− (35/36)24 = 0.4914

Therefore, 24 times is not a good bet. But with 25 (Pascal)

Pr{Méré wins} = 1− (35/36)25 = 0.5055
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Chevalier de Méré

I What is the distribution of the estimate for N games ?
I Vn the outcome that Méré wins the n’th game

Vn ∼ BE(Vn; p)

Sn =
V1 + · · ·+ Vn

n

I Evoke the law of large numbers 〈Vn〉 = p

Sn → p n →∞
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Chevalier de Méré

I Accuracy is given by the Central Limit Theorem

〈Vn〉 = p

Var{Vn} = p(1− p)√
n

p(1− p)
(Sn − p) → N (0, 1)

I Approximately

Sn ∼ N (p, p(1− p)/n)
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Chevalier de Méré
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Chevalier de Méré (cont.)
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Chevalier de Méré
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I We need around 30000 games to say with about %99
confidence that the game with 24 throws is truly
unfavorable.
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Summary

I Law of large numbers: Consistency.
I CLT: Provides information about the rate of convergence
I If we can draw N independent and identically distributed

samples from a distribution p(x), we can estimate
expectations Ep (ϕ(x)) with an error O(N1/2), independent
of the dimensionality of x.


