CMPE 58N - Lecture 1. Monte Carlo methods

Introduction to Monte Carlo method, Motivating Examples, Law of

Large Numbers, Central Limit Theorem

Department of Computer Engineering,

Boğaziçi University, Istanbul, Turkey

Instructor: A. Taylan Cemgil

Outline

- Introduction to Monte Carlo method,
- \blacktriangleright Motivating Examples,
- \blacktriangleright Law of Large Numbers,
- \blacktriangleright Central Limit Theorem
- \blacktriangleright Example

Monte Carlo Methods

- \triangleright Represent the solution of a problem as a parameter of a hypothetical population,
- \triangleright use a pseudo-random sequence of numbers to construct a sample of a population, from which statistical estimates of the parameter can be obtained
- \triangleright Stochastic Simulation or Sampling methods

History of Monte Carlo methods

- 1733 Buffon's needle problem.
- 1812 Laplace suggests using Buffon's needle experiment to estimate π .
- 1946 ENIAC (Electronic Numerical Integrator And Computer) built.
- 1947 John von Neuman and Stanislaw Ulam propose a computer simulation to solve the problem of neutron diffusion in fissionable material.
- 1949 Metropolis and Ulam publish their results in the Journal of the American Statistical Association.
- 1984 Geman & Geman publish their paper on the Gibbs sampler . . . continuously growing interest with increases in computational power

- \blacktriangleright d : Distance from the middle of the needle to the nearest line
- \blacktriangleright θ : Acute angle between the parallel lines and the needle
- \triangleright A needle touches a line iff

$$
\frac{d}{\sin \theta} < \frac{1}{2}
$$

I

 \blacktriangleright The area of the rectangle is

$$
S=\frac{1}{2}\frac{\pi}{2}
$$

 \blacktriangleright The area under the *sin* is

$$
\int_0^{\pi/2} \sin(\theta)/2 = \frac{1}{2}
$$

$$
Pr{d < \sin(\theta)/2} = \frac{1/2}{\pi/4} = \frac{2}{\pi}
$$

 $\pi \approx 3.2787$

 $\pi \approx 3.1949$

 $\pi \approx 3.1596$

Indicator function

$$
\mathbb{I}{x} = \begin{cases} 1 & x \text{ is true} \\ 0 & \text{otherwise} \end{cases}
$$

Alternative notation: Iverson convention

$$
[x] = \begin{cases} 1 & x \text{ is true} \\ 0 & \text{otherwise} \end{cases}
$$

 \blacktriangleright Draw $(d^{(n)}, \theta^{(n)}) \sim U_S$ and estimate π via

$$
\pi = \frac{2}{\Pr\{d < \sin(\theta)/2\}} \approx \frac{2\text{# of all dots}}{\text{# of red dots}}
$$
\n
$$
= \frac{2N}{\sum_{n=1}^{N} \mathbb{I}\{d^{(n)} < \sin(\theta^{(n)})/2\}}
$$

Speed of convergence

- ► Monte Carlo integration: error behaves as $n^{-1/2}$.
- \triangleright Numerical integration of a one-dimensional function by Riemann sums: error behaves as n^{-1} .
- \triangleright For one-dimensional problems Riemann is better; however deteriorates with increasing dimension: curse of dimensionality.
- \triangleright Order of convergence of Monte Carlo integration is **independent of the dimension of the problem**. \rightsquigarrow Monte Carlo methods can be a good choice for high-dimensional integrals.

Convergence of random variables

(Liu, Appendix A.1.4.)

$$
y_n \sim p_n(y_n)
$$
 $F_n(y_n) = \int_{-\infty}^{y_n} p_n(\tau) d\tau$

1 Convergence in distribution

$$
\lim_{n\to\infty}F_n(y_n)=F(y)
$$

2 Convergence in probability

$$
\lim_{n\to\infty}\Pr(|y_n-y|>\epsilon)=0
$$

3 Convergence almost surely

 \blacktriangleright 3 \Rightarrow 2 \Rightarrow 1

$$
\Pr(\lim_{n\to\infty}|y_n - y| = 0) = 1
$$

Convergence of Random variables

- \triangleright Convergence of random variables is a delicate subject
- \blacktriangleright Important to get a deeper understanding
- \triangleright Not get intimidated while reading the literature; remember the definitions and different modes of convergence
- \triangleright See, e.g., Grimmet and Stirzaker, Ch. 7

Law of Large Numbers

 X_1, \ldots, X_n, \ldots are i.i.d.

 \blacktriangleright Weak Law: $\langle X_i \rangle = \mu$

$$
\frac{X_1 + \dots + X_n}{n} \to \mu \quad \text{in probability}
$$

Strong Law: $\langle X_i \rangle = \mu$ and X_i with finite variance

$$
\frac{X_1+\cdots+X_n}{n}\to \mu \quad \text{a. s.}
$$

Central Limit Theorem

I

 X_i are i.i.d. with mean μ and variance σ^2

$$
\bar{X}_n = \frac{X_1 + \cdots + X_n}{n}
$$

$$
\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\to \mathcal{N}(0,1)
$$

 \blacktriangleright We have approximately

$$
\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)
$$

- \triangleright The famous letters between Pascal and Fermat (start of probability) mention a request for help from a French nobleman and gambler, Chevalier de Méré.
- \blacktriangleright Méré bets for:

in four rolls of a die, at least one six would turn up

 \blacktriangleright Later he bets for:

in 24 rolls of two dice, a pair of sixes would turn up. but he was not happy with the latter schema

\triangleright Setup a computer simulation for a single die

 $K = 4$; % Number of dice throws $N = 1000$; % Number of games for trial=1:10, $D = \text{ceil}(\text{rand}(N,K) * 6)$: disp(sum(sum(D==6, 2) > 0)/N) end

\blacktriangleright Per game, Méré won

0.4950, 0.4950, 0.5090, 0.5210, 0.5460 0.5420, 0.5360, 0.5160, 0.5210, 0.5010

The analytical solution

$$
Pr{Méré wins} = 1 - Pr{Méré loses} = 1 - (5/6)4 = 0.5177
$$

\triangleright Setup a computer simulation for a pair of dice

```
K = 24; % Number of dice throws
N = 1000; % Number of games
for trial=1:10,
    D = \text{ceil}(\text{rand}(N,K,2)*6);sum(sum(D(:,:, 1)==6 & D(:,:, 2)==6, 2) > 0)/N
end
```
 \blacktriangleright Per game, Mere wins

0.502, 0.486, 0.497, 0.533, 0.521 0.474, 0.451, 0.508, 0.470, 0.481 ...

 \triangleright Accurate results by simulation require a large number of experiments

The analytical solution

Pr{Méré wins} = $1 - (35/36)^{24} = 0.4914$

Therefore, 24 times is not a good bet. But with 25 (Pascal)

Pr{Méré wins} = $1 - (35/36)^{25} = 0.5055$

- I What is the distribution of the estimate for *N* games ?
- \blacktriangleright *V_n* the outcome that Méré wins the *n*'th game

$$
V_n \sim \mathcal{BE}(V_n; p)
$$

$$
S_n = \frac{V_1 + \cdots + V_n}{n}
$$

Evoke the law of large numbers $\langle V_n \rangle = p$

$$
S_n \rightarrow p \qquad n \rightarrow \infty
$$

 \triangleright Accuracy is given by the Central Limit Theorem

$$
\langle V_n \rangle = p
$$

\n
$$
Var{V_n} = p(1-p)
$$

\n
$$
\sqrt{\frac{n}{p(1-p)}}(S_n-p) \rightarrow \mathcal{N}(0,1)
$$

 \blacktriangleright Approximately

$$
S_n \sim \mathcal{N}(p, p(1-p)/n)
$$

Chevalier de Méré (cont.)

 \blacktriangleright We need around 30000 games to say with about $\%99$ confidence that the game with 24 throws is truly unfavorable.

Summary

- \blacktriangleright Law of large numbers: Consistency.
- \triangleright CLT: Provides information about the rate of convergence
- If we can draw N independent and identically distributed samples from a distribution $p(x)$, we can estimate expectations $E_p\left(\varphi(x)\right)$ with an error $O(N^{1/2})$, independent of the dimensionality of *x*.