
New Strategies for Revocation
in Ad-Hoc Networks

Tyler Moore, Jolyon Clulow, Shishir Nagaraja, and Ross Anderson

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

firstname.lastname@cl.cam.ac.uk

Abstract. Responding to misbehavior in ad-hoc and sensor networks is
difficult. We propose new techniques for deciding when to remove nodes
in a decentralized manner. Rather than blackballing nodes that misbe-
have, a more efficient approach turns out to be reelection – requiring
nodes to secure a majority or plurality of approval from their neighbors
at regular intervals. This can be implemented in a standard model of
voting in which the nodes form a club, or in a lightweight scheme where
each node periodically broadcasts a ‘buddy list’ of neighbors it trusts.
This allows much greater flexibility of trust strategies than a predeter-
mined voting mechanism. We then consider an even more radical strategy
still – suicide attacks – in which a node on perceiving another node to
be misbehaving simply declares both of them to be dead. Other nodes
thereafter ignore them both. Suicide attacks, found in a number of con-
texts in nature from bees to helper T-cells, turn out to be more efficient
still for an interesting range of system parameters.

Keywords: credential revocation, sensor networks, key management.

1 Introduction

The last ten years have seen the invention and deployment of a range of sys-
tems which organize themselves out of a collection of nodes in order to perform
some task. Peer-to-peer systems emerged in the late 1990s, first as a means of
resisting censorship on the Internet [1] and then as a mechanism for file-sharing.
Communications technologies such as WiFi, Bluetooth and Homeplug support
short-range networking of disparate devices in home and office environments,
and may allow larger networks to be assembled opportunistically. Sensor net-
works then came along – networks assembled from large numbers of low-cost
nodes that could be scattered into an area of interest to perform some task such
as surveillance or environmental monitoring. We describe such communications
strategies generically as ‘ad-hoc networking’.

One consequence for these new technologies is that management by central
authority is being discarded in favor of decentralized mechanisms to improve
efficiency and robustness. Here, tasks are distributed amongst member nodes
which cooperate to provide services and reach decisions. Another key feature

F. Stajano et al. (Eds.): ESAS 2007, LNCS 4572, pp. 232–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

New Strategies for Revocation in Ad-Hoc Networks 233

of wireless ad-hoc networks is their support for mobile devices. Devices move
while remaining connected to the network, breaking links with old neighbors
and establishing fresh links with new devices. Finally, resource constraints limit
the tools available to the protocol designer: at most a minority of nodes have the
capability to create digital signatures or store large amounts of data; symmetric
cryptography is preferred for establishing and maintaining key material.

There are various threats to ad-hoc networks, of which the most interesting
and important is probably node subversion. A node in a military sensor network
may be reverse-engineered by the enemy, and replaced by a malicious node that
knows its key material and can thus impersonate it. A participant in a peer-to-
peer network may be forced to hand over his keys to an enforcement agency.
Subverted nodes can perform a number of attacks on the network, for exam-
ple, decrypting messages, injecting false data and manipulating decentralized
operations such as voting. Thus they must be identified and removed quickly.

In this paper, we seek to address this revocation problem. We are primarily
concerned with ad-hoc networks where a minority of nodes can be subverted,
and with mechanisms whereby a subverted node can be efficiently removed.
Existing strategies using certificate revocation lists and certification authorities
are inappropriate for the requirements of these new systems. Instead, we propose
lightweight revocation mechanisms suited to decentralized and mobile networks.

In Section 2, we review existing work. We then propose new distributed mech-
anisms for deciding when to remove bad nodes: reelection in Section 3 where
nodes cast positive votes rather than negative ones, and suicide attacks in Sec-
tion 4 where a node unilaterally decides to remove a bad node at the expense of
its own participation on the network. In Section 5, we compare the performance
and security of each scheme before concluding in Section 6.

2 Background

2.1 System Model

There are four basic events in the life cycle of an ad-hoc network: pre-deployment,
initialization, operation and revocation. In pre-deployment, the network owner
(if one exists) programs nodes with key material. For instance, symmetric keys
are often pre-loaded onto sensor nodes [2,3,4,5]. Nodes are then deployed and
initialized; during this phase they establish keys with their neighbors. When
nodes are mobile, this is a continuing process rather than one-off. At any stage,
one or more nodes may find another misbehaving, and this may prompt a decision
to remove the bad node from the system.

Good nodes adhere to their programmed strategy including algorithms for
routing and revocation. The attacker can compromise a small minority of nodes.
A bad node can communicate with any other node, good or bad. Bad nodes
may have access to the keys of all other bad nodes, whom they can therefore
impersonate if they wish. They do not execute the authorized software and thus
do not necessarily follow protocols to identify misbehavior, revoke other bad
nodes, vote honestly or delete keys shared with revoked nodes.

234 T. Moore et al.

We consider the two main threat models in the literature. Under the conser-
vative model, a global, active adversary is present from the start of deployment;
networks thus require a pre-deployment phase where nodes are assigned keys.
Under the relaxed threat model, the opponent can monitor at most a small mi-
nority of communications during the initialization phase [6,7]. This means that
no, or fewer, keys need to be pre-loaded; instead, nodes set up link keys with
neighbors immediately after deployment. In each case, however, the focus is on
the ease and cost of security maintenance after deployment.

Another important threat is the Sybil attack [8,9], in which an opponent
denies service by causing large numbers of malicious nodes to join the network.
A Sybil variant is node replication [10], where many copies of a subverted node
are introduced. These stratagems have been used to attack peer-to-peer systems.
We focus on networks in which the Sybil attack can be contained, perhaps by
having a cost of entry, or perhaps by using initially trustworthy nodes whose
subversion requires a finite effort of reverse engineering.

2.2 Dealing with Bad Nodes

Three stages are required to revoke a bad node: detecting misbehavior, deciding
whether to revoke, and implementing punishment. While each stage is important,
in this paper we focus on the decision whether to revoke an accused node.

Deciding when to remove a node is complicated by two factors. First, de-
tection mechanisms rarely produce evidence that is universally non-repudiable.
When such mechanisms do exist (e.g., geographic packet leashes [11] for detecting
wormholes and node replication detection in sensor networks [9]), they require
extensive use of costly signed messages. Furthermore, situations where a bad
node is forced into self-incrimination are limited. It can be hard to get hanging
evidence against a node that drops occasional messages because messages vanish
for many reasons unconnected with malice. More typically, evidence is gathered
which is non-repudiable to a single party. For example, a message authentication
code (MAC) generated with a key shared between two nodes guarantees authen-
ticity to the other node. Detection mechanisms of this type include temporal
packet leashes [11], Sybil attack [8] detection by querying for possessed keys [9]
and distance-bounding protocols [12,13,14]. Still other mechanisms rely on ev-
idence that is entirely repudiable (e.g., the wireless monitoring scheme Watch-
dog [15] where nodes promiscuously listen to their neighbors’ routing actions).
Repudiable evidence enables bad nodes to falsely accuse good nodes. Hence, it
would be foolish to design a simple decision mechanism that revokes any node
accused of misbehavior following a single unsubstantiated claim of impropriety.

The second factor hindering the design of decision mechanisms is that un-
trusted nodes, not central authorities, are often in the best position to detect
misbehavior. If node A accuses node B of making inconsistent statements about
its location and B denies making them, a trusted base station can only determine
one of them is misbehaving. Hence a distributed decision mechanism is required,
and existing proposals for collective decision-making have been voting-based.
Threshold voting is a natural choice to implement revocation as it conceptually

New Strategies for Revocation in Ad-Hoc Networks 235

distributes the decision-making process while taking into account the observa-
tions of others. Once the number of votes cast exceeds the specified threshold,
then the target node is deemed to be malicious and revoked from the network.
Any such blackballing scheme must deal with a number of key issues: which nodes
are eligible to vote, how individual votes are verified, how votes are tallied and
how the outcome of a vote is verified. (In the absence of global non-repudiation,
the Byzantine generals problem means that, in general, we need a majority of
2
3 + ε rather than 1

2 + ε of good nodes; we are concerned in this paper with
applications in which the proportion of wrongdoers is much less than 1

3 .)
Once a decision is reached, the bad node is punished. Typically, bad nodes

are kept from interacting with good nodes by instructing every node to delete all
keys shared with the bad node [2,3,6]. Alternatively, nodes could be implicitly
removed by routing around the bad node [15] or by maintaining a blacklist.

2.3 Existing Decision Mechanisms

In [3], Chan, Perrig and Song propose a distributed revocation mechanism for
sensor networks using the random pairwise key-predistribution scheme, where
nodes sharing a pre-assigned pairwise key can vote to remove a node. Their
scheme is extended and generalized in [16]. Here, each node B that shares a pair-
wise key with A is assigned to the set of participants of A, VA. While the average
number of voting members v is significantly larger than the number of neighbors
in direct communication range, tying voting eligibility to key predistribution
avoids the difficulties in accurately determining neighbors post-deployment.

Every node A is assigned a unique revocation secret revA, which is divided
into secret shares and given to every B ∈ VA along with an authentication value
for the revocation secret, h2(revA). Nodes vote for another’s removal by revealing
their share. If enough shares are revealed, then revA can be reconstructed and
the hash h(revA) is broadcast throughout the network. Every node B ∈ VA

deletes its key shared with A upon verifying the broadcast. Only nodes eligible
to vote against a revoked node are loaded with the authentication value for the
revocation secret. Any path keys established between a non-voting node and
a revoked node are not removed since the non-voting node cannot verify the
revocation secret. Thus, authentication values for revocation secrets should be
loaded onto every node; [17] describes an efficient 1 + v log n solution.

One problem with voting by revealing secret shares is that cast votes are
permanent; a slow trickle of votes against a node over its lifetime is equivalent
to a burst in a short period. To avoid stale votes, Chan et al. create T revocation
sessions each with a unique revocation secret revA,i, i ∈ {1, . . . , T} and associated
shares revA,i,B; thus a revealed share only counts as a vote for a single period i.

To recap, each node A is loaded with information to do the following:

1. Vote against each node B ∈ VA: Secret share revB,i,A∀B ∈ VA, i ∈
{1, . . . , T}) (storage cost vT)

2. Prove to all B ∈ VA that vote is valid: log v path-authentication values
for each vote revB,i,A (storage cost vT log v)

236 T. Moore et al.

3. Verify votes from others: Merkle tree roots ∀B ∈ VA, i ∈ {1, . . . , T}
(storage cost vT)

4. Verify revocation secrets: Authentication values for each revocation se-
crets h2(revB,i)∀B ∈ N, i ∈ {i, . . . , T} (storage cost nT)

However, voting schemes are slow, expensive and prone to manipulation. They
are often susceptible to false accusations, collusive attackers and Sybil attacks;
they can result in a delayed attack response between a node starting to misbehave
and a revocation order being issued; they do not cope well with node mobility and
churn; they may require that at least some nodes can do public-key cryptography;
and they impose high storage and communications overhead.

In Sections 3 & 4, we propose new decision mechanisms with the aim of
improving security and performance. We use Chan et al.’s blackballing decision
mechanism as a basis for comparison.

3 Reelection

Existing proposals for decision and punishment require action by the honest
members of the network to remove misbehaving nodes. For example, all nodes
must follow the voting, blacklisting and key removal procedures to prevent a
malicious node from rejoining the network. This represents a significant com-
putational and communications burden shared by all honest nodes and shirked
by malicious ones. In contrast, we propose a mechanism that turns the compu-
tational liability on its head by requiring additional effort for honest nodes to
continue participating on the network but no effort to remove malicious devices.

We propose a system where a node, on joining the network and periodically
thereafter, must demonstrate that it is still authorized to be on the network. Re-
vocation becomes preventing a bad node from renewing its membership. Concep-
tually, this corresponds to a voting scheme with positive votes instead of negative
ones: good nodes reelect each other to the club once in each time period.

We first present a robust protocol for remaining on the network using threshold-
secret-sharing mechanisms. Since threshold schemes can be too expensive for
peanut processors, we then propose a lightweight reelection mechanism using
hash operations exclusively.

3.1 Reelection for Semi-capable Devices

We define a network access token accessA,i that allows node A onto the net-
work during time period i ∈ {1, . . . , T}. A must present the token accessA,i

to its neighbors to continue interacting with them. Tokens are created using
a hash chain where accessA,i−1 = h(accessA,i), for i = 1, . . . , T . The end-
of-chain authentication value accessA,0 is distributed to every voting member
B ∈ VA, which can authenticate accessA,i for time period i by verifying that
accessA,0 = h(i)(accessA,i).

Each token accessA,i is divided into v shares using a (k, v) threshold-secret-
sharing scheme. The shares are distributed to the voting members B ∈ VA. In

New Strategies for Revocation in Ad-Hoc Networks 237

particular, B is assigned shares accessA,i,B for each i = 1, . . . , T . Responsibility
for reconstructing tokens rests with A, which asks its voting members for their
shares. So B casting accessA,i,B is an affirmation of A’s honesty rather than a
claim of impropriety. Hence, the threshold of votes k may be larger than for black-
balling, as more positive votes are required than negative ones. Note that if the
voting members are those pre-assigned a pairwise key (as in Chan et al.’s black-
balling scheme),then nodes should delete any voting shares for non-neighbors
following neighbor discovery. Alternatively, we could reduce the average number
of voting members v by choosing the voting set upon deployment.

Nodes must store additional information to verify transmitted votes and to-
kens. To verify received votes, node A can store a hash of each share h(accessA,i,B)
for each B ∈ VA and i = 1, . . . , T . To authenticate reconstructed tokens, the
owner creates a hash tree where the leaf pre-images are the end-of-chain au-
thentication values accessA,0 for each A ∈ N . Each node A stores the tree’s
root-authentication value, its own end-of-chain authentication value accessA,0
and the log n path-authentication values required to authenticate accessA,0.

Here is the reelection protocol for a node during time period i:

1. A −→ ∗ : A, i

2. B −→ A : A, B, accessA,i,B

3. A −→ ∗ : A, i, accessA,i, accessA,0, path-authentication values

4. ∗ : verify h(i)(accessA,i) = accessA,0, verify accessA,0

A asks each neighbor B for its share accessA,i,B (step 1). If k voting neighbors
cooperate (step 2), then A can reconstruct accessA,i, which is then broadcast to
A’s neighbors (step 3). The neighbors verify h(i)(accessA,i) = accessA,0 (step 4).

If node B wishes to vote against A, then it simply deletes the stored shares
accessA,i,B, i = 1, . . . , T . Once all of the node’s neighbors minus k have done so,
A can no longer reconstruct tokens. Revocation is final and absolute: even if the
adversary subsequently compromises all neighbor nodes, it cannot reconstruct
the tokens. The basic method can be trivially modified to temporarily punish A
by deleting a subset of the tokens for a number of time periods.

Nodes must wait to delete a revealed neighbor’s share until the following
round; otherwise an attacker could ask for a neighbor’s share so that the intended
node does not observe the response. Also, note that step 1 is optional; any node
loaded with secret shares for a node A can reveal the share without being asked.
Dropping this broadcast step means that nodes must continuously listen for
neighbors revealing their shares.

To recap, each a node A is loaded with information to do the following:

1. Token share for each node B ∈ VA: Secret share accessB,i,A∀B ∈ VA,
i ∈ {1, . . . , T} (storage cost vT)

2. No need to prove token shares to B ∈ VA: (storage cost 0)
3. Verify received shares: Hash values of all token shares for A (storage cost

vT)
4. Prove to all that token is valid: Root-authentication value and path-

authentication values (storage cost 1 + log n)

238 T. Moore et al.

3.2 Lightweight Reelection with Buddy Lists

Reconstructing secret shares can be too demanding for devices with peanut pro-
cessors. In addition, the effort involved in pre-assigning, swapping and storing
vT shares per node may be unattractive in some applications. Also, in some ap-
plications we might want to use diverse strategies: risk-averse nodes might shun
a neighbor as soon as one of its other neighbors had done so, while more relaxed
nodes might continue to do business with any node that was still supported by
two of its neighbors. In some applications, one might want a diverse population
of risk-averse and risk-loving nodes, so that the network performed well in nor-
mal times but still performed acceptably under serious attack. It therefore makes
sense to disentangle the voting mechanism as far as possible from the strategy.

We therefore consider a lightweight reelection mechanism that is general
enough to support diverse strategies. The central idea is that nodes periodically
transmit a buddy list of approved neighbors across their local neighborhoods.
Since many node neighbors overlap, they can cross-reference received lists to
determine whether enough nodes have also approved their buddies. If so, they
continue to interact with the nodes during the next time period. The definition
of ‘enough’ is made independently of the protocol mechanism described here.

Approved buddy lists are authenticated using Guy
Fawkes-style [18] hash chains: upon deployment, node A distributes a key au-
thentication value KA,0 = h(T)(seed, A) to its neighbors. Buddy lists are signed
with a session authentication key KA,i = h(T−i)(seed, A) during time period i,
and KA,i is not revealed until the start of period i + 1. Here is the protocol:

1. A −→ ∗ : ki−1, accessA,i(buddies) = 〈A, i, buddies, HMACKi(A, i, buddies)〉
2. ∗ : Verify accessA,i−1(buddies), delete offending neighbor’s keys

Each node A broadcasts a list of approved neighbors accessA,i(buddies), where
buddies is a set of approved node identifiers. Notably, no pre-assigned storage or
topological information is required, yet buddy lists work even under the conser-
vative threat model. They also support extremely general strategies for main-
taining a network’s trusted membership. Nodes’ risk aversion could change over
time, according to news from other nodes, or as part of an evolutionary game;
one could even implement dynamic games similar to Conway’s game of ‘Life’.
Separating trust strategies from the underlying protocol, and implementing it
using lightweight and purely local mechanisms, is the strength of this option.

4 Suicide Attacks

Doing revocation by blackballing has turned out to be complex and costly. Mat-
ters were improved by a move to reelection, whereby each node had to persuade
a quorum of its neighbors to support its continued membership at regular inter-
vals, and still further by the buddy-list mechanism. Here we introduce a radical,
even simpler and in some ways even cheaper method: suicide.

Decisions are much simpler if a single node can decide. Should a node believe
another has misbehaved, then it can carry out punishment. The trouble with

New Strategies for Revocation in Ad-Hoc Networks 239

this approach is that a malicious node can falsely accuse legitimate ones; the
solution is to make punishment costly. If a node determines another node has
cheated, there is no more convincing way to let its neighbors know than to
be prepared to die to certify the fact. (The many echoes in pre-modern human
societies range from ancient feuds, through medieval trial by combat, to the duels
of eighteenth-century Europe.) We discussed suicide as a strategy in [19]; here
we describe implementations and ways to mitigate abuse. We present three cases
in order of increasing complexity: where a central trusted authority is available;
using limited asymmetric cryptography without access to a trusted authority;
and using only conventional cryptography without access to a trusted authority.

4.1 Suicide Using a Central Authority

The simplest way to implement suicide attacks is using a central authority such
as a base station. Upon detecting a node M engaging in some illegal activity,
node A sends a suicide note suicideA,M with the identities of both A and M
to the base station authenticated by the pairwise unique key shared between
the node and the base station. The base station S confirms that node A is
entitled to revoke node M and informs the other nodes in the network by send-
ing either individually authenticated messages or a single TESLA-authenticated
message [20]. Note that the decision mechanism remains distributed: it is the
nodes, not the authority, who decide when to revoke each other since nodes are
better positioned to detect misbehavior than far-away base stations.

4.2 Distributed Suicide Using Signatures

Nodes may not have access to a trusted base station; instead node A broadcasts
a signed note suicideA,M with the identities of both A and M . The other nodes
in the network verify the signature and, if correct, revoke both A and M by
deleting all keys shared with them and/or adding both identities to a blacklist.

Public key cryptography works when nodes are sufficiently capable. The owner
generates a new public-private key pair for each node and signs the public key.
The key pair, certificate and owner’s public key are stored on the node. When a
node issues a suicide note, it broadcasts its public key certificate along with the
suicide note for other nodes to verify the public key and suicide note.

In constrained devices, one-time signatures using only pseudo-random func-
tions may be substituted [21]. Each node is pre-loaded with a single private
signing key and the associated public key: this key might be certified by the
network owner, or a hash of the key might be the device’s name, depending on
the deployment model and computational constraints. Nodes verifying a signed
suicide note must be able to authenticate the public key. Thus the owner con-
structs a hash tree with the public keys as leaves suitably ordered to tie a node’s
identity to its position in the tree. Each node stores the root-authentication
value and the log n path-authentication values required to verify their own pub-
lic key. The path-authentication values are subsequently broadcast along with
the signed suicide note.

240 T. Moore et al.

4.3 Flypaper and Trolling Attacks

One challenge for a decentralized suicide scheme is ensuring that multiple nodes
do not issue suicide notes for a single misbehaving node. In a flypaper attack, a
malicious node in a fixed location presents widely observable misbehavior to at-
tract many simultaneous suicides. A base station S can trivially resolve multiple
suicide offers for the same node by accepting just one of them:

1. A : detects M misbehaving

2. A −→ S : A, M, HMACKAS (suicideA,M)

3. S : verify signature, wait for duplicates

4. S −→ B : A, M, HMACKSB (suicideA,M) ∀B ∈ N

5. ∗ : verifies signature, deletes keys shared with A, M , adds to blacklist

In a decentralized scheme, where each node must be able to reach a decision
independently, two precautions can mitigate a flypaper attack. First, a node can
wait a random back-off period (0 ≤ tr < tmax) before transmitting an offer.
If it observes another suicide note for the same node while waiting for its own
timer to expire, the node abandons its offer in favor of the already-published
one. If its timer does expire, the node transmits a suicide message. Larger values
of tmax lower the probability of a collision at the expense of slower revocation.
This back-off can significantly reduce the number of simultaneous transmissions;
however, duplicate offers are still possible if a second timer expires before the
first transmitted suicide message is received by the second node.

To address this possibility, a tie-breaking mechanism is required. If loose time
synchronization exists in the network, nodes can append a timestamp to their
signed suicide message. Nodes then wait long enough for all offers to be broadcast
(tbcast) and honor the suicide note with the earliest timestamp. Alternatively,
time synchronization can be avoided by using a using a random number trans-
mitted along with each suicide message. However, using time stamps to resolve
conflicts is more efficient since earlier offers are likely to propagate faster. One
consequence when using one-time signatures is that we must now store Q key
pairs per node, or generate signing keys on the fly from a secret (using a modi-
fied hash chain or stream cipher encryption of a secret). Here is the distributed
protocol for two nodes A and B detecting M misbehaving:

1a. A : detect M misbehaving; start random timer tr

1b. B : detect M misbehaving; start random timer tr′

2. A : Timer tr expires (assuming tr < tr′)

3. A −→ ∗ : A,M, tA, {suicideA,M , tA}
K−1

A

4. ∗ : waits tbcast for earlier offers, verifies signature, deletes keys shared

with A,M and adds them to blacklist

Trolling is where a node presents itself in several locations, either re-using iden-
tities (node replication) or presenting different ones (Sybil). This could be done
with the aid of collusive malicious nodes that present the same misbehaving
identity in multiple locations. Alternatively, a powerful transmitter or flying

New Strategies for Revocation in Ad-Hoc Networks 241

over the area achieves the same effect. We have assumed in this paper that other
mechanisms exist for detecting and preventing Sybil and node-replication at-
tacks. However, our multiple-offer resolution mechanism addresses trolling with
re-used identities even when node replication detection is not available, provided
the network is connected and a long enough time-out is used to allow multiple
offers notes to traverse the network.

If the adversary is capable of partitioning the network, then a single malicious
node can kill multiple good nodes either by issuing different suicide notes in each
partition, or by misbehaving in different partitions with the aim of prompting
multiple suicide notes. The number of honest nodes affected is proportional to
the number of partitions. A potential countermeasure is resurrection: once the
network is reconnected, several suicide attacks on a single node can be converted
into the resurrection of all but the first sacrificed node along with revoking the
replicated node. In this case, suicide notes would have to be stored, and a black-
list operated in preference to deleting keys. (Note that if revocation is reversible,
then all the mechanisms compared in this paper become more complex.)

4.4 Extensions: Probabilistic Suicide and Suicide Pacts

Suicide may not be well suited to detection mechanisms that identify malicious
nodes with less than high confidence. Yet the basic mechanism can be extended
to cope with uncertainty. Suppose a node detects behavior that is probably
malicious, and can assign a probability to this (e.g., bad with p = 0.7).

One solution is for a node to maintain a running total for each node it can
observe. When the total exceeds a specified threshold (e.g.,

∑
pi ≥ 1), a sui-

cide attack is triggered. A stateless alternative is for the node to attack with
probability p. One limitation of these approaches is that each node operates in
isolation, gaining no benefit from the collective knowledge of its neighbors.

We can modify the suicide offers to include probability p as offerA,M , tA, p,
{offerA,M , tA, p}K−1

A
. Thus revocation decisions can be made on collective knowl-

edge of uncertain observations, and the nodes participating in this decision might
be thought of as having entered into a suicide pact against the suspect. Deciding
which member of the pact has to carry out the suicide attack should reflect the
probability claimed in the suicide offer, whether based on a weighted, verifiable
coin toss, or simple probabilistic attack in the second round of the protocol.

5 Analysis and Comparison

5.1 Storage and Communication Costs

A comparison of the storage costs is presented in Table 1. Each column represents
the tasks discussed in Sections 2.3 & 3.1.

Reelection is more efficient than blackballing in terms of storage: access shares
(‘positive votes’) need only be verified by one node, and only one node (the target
node) need store the authentication information for the recovered token. Thus,
storage costs for reelection are O(vT + log n), compared to O(vT + v log n) for

242 T. Moore et al.

Table 1. Node storage costs for alternative schemes

Node storage for 1. 2. 3. 4.
Blackballing vT v log Tv vT 1 + v log n
Reelection vT 0 vT 1 + log n
Suicide (sym.) O(Q) Q log nQ 0 1
Suicide (asym.) 1 1 1 1

blackballing. However, reelection arguably may require more, shorter time peri-
ods (and hence larger values for T) since a revoked node does not immediately
lose access to the network but only at the end of the current time period. As
with blackballing, we can also reduce v using a weakened threat model.

Both blackballing and reelection increase storage well beyond the initial costs
of key distribution. This is not easily borne, particularly for large networks of
constrained devices. In contrast, suicide using one-time signatures is not affected
by the number of keys that are pre-assigned. Here, a node only needs the ability
to transmit a very small number (Q) of offers. But the size of each public and
private key for one-time signatures can be very large, requiring two hash values
per signed bit. Suicide using asymmetric cryptography requires far less storage
as nodes keep only their own private and public keys (small when elliptic curve
cryptography is used) as well as the owner’s public key and certificate.

Table 2 shows the respective communication costs associated with each scheme.
Reelection is unique in that there is a fixed cost per session when a nodes asks
for and receives its access shares. This requires a node to broadcast a request
to its immediate neighbors, while the k shares can be returned as unicast mes-
sages. The reconstructed token is also broadcast. However, communication costs
do not increase as nodes get revoked. In contrast, the communication costs of
blackballing increase with the number of votes cast. k + 1 locally broadcast
votes are required to remove a node, where each vote comprises the vote and
log v path-authentication values. These messages may need to be forwarded by
other nodes since we are not guaranteed that all voting members are within
communication range of each other. The final revocation order must be broad-
cast across the network (along with log n path authentication values) to ensure
that everyone revokes the malicious node. Since votes are only valid in a given
session, it is possible for up to k votes to be cast each session without revoking
a node. Thus, blackballing is more efficient than reelection under low rates of
misbehavior; reelection fares better when more attackers are present.

Asymmetric suicide is noted for its low communication costs (only one
network-wide broadcast), though these energy savings are offset by increased
computational expense due to the use of signatures when compared to symmetric-
key-based schemes. Of course, voting schemes using asymmetric cryptography
faces even higher costs since signatures are required for every vote.

Suicide using one-time signatures can face high communication costs, par-
ticularly if the public key must be transmitted along with the signature in-
stead of being pre-loaded onto devices. In fact, recent work has demonstrated
that one-time-signature schemes perform only slightly better than elliptic curve

New Strategies for Revocation in Ad-Hoc Networks 243

Table 2. Communication costs for alternative schemes

Setup per Comm. Min accrued comm. Max comm.
sessions session per rev. without revocation without rev.

Blackballing T 0 k + 1 0 kT
broadcasts

Reelection T k unicasts 0 2kT unicasts 2kT unicasts
+2 broadcasts +T broadcasts +T broadcasts

Suicide (both) 1 0 1 broadcast 0 0

algorithms when considering both the communication and computational over-
head [22]. Thus, the limited asymmetric cryptographic operations needed by
suicide may be preferable to the higher complexity and storage requirements
imposed by one-time signature schemes.

Suicide does offer other advantages over any voting-based scheme, however.
Suicide does not suffer from the problem of stale votes nor a delay before the
revoked node is removed from the network. It also requires fewer, less restric-
tive assumptions. Specifically, suicide places no restrictions on node mobility for
normal or compromised nodes. It also places no topological restrictions, such as
requiring nodes to have a minimum number of neighbors.

On the other hand, suicide does require good nodes to value the social welfare
of the network over individual utility. This condition is reasonable whenever
the nodes are deployed by a single entity (e.g., a sensor network deployed on a
battlefield) but may be less so when nodes are individually controlled (e.g., a
peer-to-peer file-sharing system) [23].

5.2 Denial-of-Service Attacks

Suicide enables precision denial-of-service attacks since adversaries can remove
any node. Network topology differences increase the importance of some nodes
due to their location or number of neighbors. Even unsophisticated attackers
can wreak havoc by taking out high-value nodes with low-value-node suicides.

But suicide is arguably less susceptible to DoS attacks than threshold voting
schemes. Threshold voting schemes become totally vulnerable once the attacker
gains sufficient numerical advantage (exceeding the threshold) in a region. Here
the adversary can vote out all good nodes in the area. This is a particular
concern when devices are mobile as an attacker can use the minimum number of
compromised devices, moving them around the network and ejecting good nodes
unchallenged. Suicide, by contrast, bounds the maximum amount of damage a
set of malicious nodes can do but means that twice as many nodes are removed
from the network – one good node for every bad node.

5.3 Quantifying Suicide Abuse

While protections against flypaper and trolling attacks ensure only one good
node is sacrificed per bad node, reconciling several suicide notes due to these

244 T. Moore et al.

2 4 6 8 10

0
50

0
15

00
25

00

Simultaneous suicides

W
or

kl
oa

d
●

●

●

●
●

● ● ● ●
●

●

●

●

●
●

● ●
● ● ●

●

●

Flypaper Verification
Flypaper Broadcast
Trolling Verification
Trolling Broadcast

Fig. 1. Workload versus simultaneous suicides

attacks triggers increased communication and computational complexity. An at-
tacker may still attempt flypaper or trolling attacks aiming to consume resources
(e.g., battery life or network capacity) by forcing multiple offers to be resolved.

We quantify the increased workload due to these attacks compared to the
transmission of a single suicide note. We use simulation since this analysis prob-
abilistically depends on the topology of the network as well as the random
back-off period. We consider three scenarios of increasing complexity: normal
operation where only a single suicide note is issued; a simple collision where two
suicide notes are issued simultaneously; and a trolling attack where misbehavior
is presented to nodes across the network simultaneously in the absence of node
replication detection to trigger multiple suicide offers. We compute two quantifi-
able measures: the number of broadcasts attributed to all suicide offers and the
number of signature verifications attributed to all suicide offers.

We simulated a wireless network comprised of 1000 nodes uniformly dis-
tributed over a plane, where the communication radius of nodes ensures an
average of 60 immediate neighbors in communication range. We averaged our
results using 10 iterations on a network sample. Each suicide note is embedded
with a timestamp. A node re-broadcasts a received suicide note to its immediate
neighbors if it is either the first one received, or has the earliest timestamp. In
this way, suicide notes are propagated throughout the network until the one with
the earliest timestamp completely dominates the network.

When one suicide note is broadcast, every node in the network broadcasts and
verifies once. Two simultaneous suicide notes increases the workload by approxi-
mately 50%, a manageable rise. But what is the effect of additional simultaneous
suicides? Figure 1 plots workload (number of broadcasts and verifications) dur-
ing trolling and flypaper attacks as a function of the number of simultaneously
issued suicide notes. As expected, the computational and communication bur-
den increases. Notably, the function is mostly marginally decreasing, so that
most additional suicides increase the workload less than previous ones. At most,

New Strategies for Revocation in Ad-Hoc Networks 245

resource consumption attacks increase system workload by a small multiple; thus
we conclude they are not as dangerous a threat as originally feared.

6 Conclusions

A major challenge for ad-hoc networks is how to remove nodes that are observed
to be behaving badly. Existing threshold voting proposals for node revocation
enfranchise too many of the wrong nodes, undermining their efficiency and se-
curity. They are susceptible to manipulation, particularly if nodes are mobile.

So we switched from voting against bad nodes to a protocol where good nodes
reelect each other to the club at regular intervals. Reelection reduces storage
costs by shifting the responsibility of verifying votes from a node’s neighbors
to the node itself. This is a significant improvement, but simple reelection re-
mains infeasible for severely constrained devices. We then proposed a lightweight
reelection mechanism requiring no pre-assigned storage and using just hash op-
erations: each node broadcasts a buddy list of trusted neighboring nodes locally
at each time period. This can support a much wider range of membership strate-
gies and is significantly cheaper. However (like the other mechanisms we have
discussed) it still has some communications costs, and it may be less effective
where there are many mobile nodes or an uneven network topology.

We then showed that the most effective way of doing revocation in general
ad-hoc networks is the suicide attack. A node observing another node behaving
badly simply broadcasts a signed message declaring both of them to be dead.
This is cheap; it scales well; it is not affected much by mobility; and it works
across interesting parameter ranges. Such strategies are well known in nature,
from bees attacking an intruder to the operation of helper T-cells in the immune
system. They even find an echo in some human societies, such as the dueling
culture of the eighteenth century and the US Wild West. We believe that suicide
attacks are attractive for a wide range of distributed system applications.

References

1. Anderson, R.: The eternity service. In: First International Conference on the The-
ory and Applications of Cryptology (PRAGOCRYPT) (1996)

2. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: 9th ACM Conference on Computer and Communications Security
(CCS), ACM, pp. 41–47. ACM Press, New York (2002)

3. Chan, H., Perrig, A., Song, D.X.: Random key predistribution schemes for sensor
networks. In: IEEE Symposium on Security and Privacy (S&P), pp. 197–213. IEEE
Computer Society Press, Los Alamitos (2003)

4. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution
scheme for wireless sensor networks. In: 10th ACM CCS, pp. 42–51. ACM, New
York (2003)

5. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In:
10th ACM CCS, pp. 52–61. ACM Press, New York (2003)

246 T. Moore et al.

6. Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale
distributed sensor networks. In: 10th ACM CCS, pp. 62–72. ACM Press, New York
(2003)

7. Anderson, R.J., Chan, H., Perrig, A.: Key infection: Smart trust for smart dust.
In: 12th IEEE International Conference on Network Protocols, IEEE Computer
Society, pp. 206–215. IEEE Computer Society Press, Los Alamitos (2004)

8. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

9. Newsome, J., Shi, E., Song, D.X., Perrig, A.: The Sybil attack in sensor networks:
analysis and defenses. In: 3rd International Symposium on Information Processing
in Sensor Networks, pp. 259–268. ACM Press, New York (2004)

10. Parno, B., Perrig, A., Gligor, V.D.: Distributed detection of node replication at-
tacks in sensor networks. In: IEEE S&P, IEEE Computer Society, pp. 49–63. IEEE
Computer Society Press, Los Alamitos (2005)

11. Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: A defense against wormhole
attacks in wireless networks. In: 22nd IEEE INFOCOM, IEEE Computer Society
Press, Los Alamitos (2003)

12. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helle-
seth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidel-
berg (1994)

13. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: IEEE Secure
Comm., pp. 67–73. IEEE Computer Society Press, Los Alamitos (2005)

14. Capkun, S., Buttyan, L., Hubaux, J.P.: SECTOR: secure tracking of node encoun-
ters in multi-hop wireless networks. In: 1st ACM Workshop on Security of ad hoc
and Sensor Networks, pp. 21–32. ACM Press, New York (2003)

15. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mo-
bile ad hoc networks. In: 6th International Conference on Mobile Computing and
Networking, pp. 255–265. ACM Press, New York (2000)

16. Chan, H., Gligor, V.D., Perrig, A., Muralidharan, G.: On the distribution and revo-
cation of cryptographic keys in sensor networks. IEEE Transactions on Dependable
Secure Computing 2(3), 233–247 (2005)

17. Moore, T., Clulow, J.: Secure path-key revocation for symmetric key pre-
distribution schemes in sensor networks. In: 22nd IFIP TC-11 International In-
formation Security Conference 2007 (to appear)

18. Anderson, R., Bergadano, F., Crispo, B., Lee, J.H., Manifavas, C., Needham, R.: A
new family of authentication protocols. ACM SIGOPS Operating Systems Review
(OSR) 32(4), 9–20 (1998)

19. Clulow, J., Moore, T.: Suicide for the common good: a new strategy for credential
revocation in self-organizing systems. ACM SIGOPS OSR 40(3), 18–21 (2006)

20. Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Ecient authentication and signing
of multicast streams over lossy channels. In: IEEE S&P, pp. 56–73. IEEE Computer
Society Press, Los Alamitos (2000)

21. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

22. Seys, S., Preneel, B.: Power consumption evaluation of efficient digital signature
schemes for low power devices. In: IEEE International Conference on Wireless And
Mobile Computing, Networking And Communications, pp. 79–86. IEEE Computer
Society Press, Los Alamitos (2005)

23. Danezis, G., Anderson, R.: The economics of resisting censorship. IEEE Security&
Privacy 3(1), 45–50 (2005)

	Introduction
	Background
	System Model
	Dealing with Bad Nodes
	Existing Decision Mechanisms

	Reelection
	Reelection for Semi-capable Devices
	Lightweight Reelection with Buddy Lists

	Suicide Attacks
	Suicide Using a Central Authority
	Distributed Suicide Using Signatures
	Flypaper and Trolling Attacks
	Extensions: Probabilistic Suicide and Suicide Pacts

	Analysis and Comparison
	Storage and Communication Costs
	Denial-of-Service Attacks
	Quantifying Suicide Abuse

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

