This Unit: Superscalar Execution

App | | App | | App e Idea of instruction-level parallelism
System software

CIS 501 Ve /o . Supers_calar scaling issues N
Computer ArChiteCtU re ¢ Multiple fetch and branch prediction

¢ Dependence-checks & stall logic
¢ Wide bypassing
¢ Register file & cache bandwidth

Unit 7: Superscalar
e “Superscalar” vs VLIW/EPIC

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania
with sources that included University of Wisconsin slides
by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

CIS 501 (Martin): Superscalar 1 CIS 501 (Martin): Superscalar 2

Readings A Key Theme of CIS 501: Parallelism

e Textbook (MA:FSPTCM) e Previously: pipeline-level parallelism
e Sections 3.1, 3.2 (but not “Sidebar” in 3.2), 3.5.1 ¢ Work on execute of one instruction in parallel with decode of next
* Sections 4.2, 4.3, 5.3.3 e Next: instruction-level parallelism (ILP)

¢ Execute multiple independent instructions fully in parallel
e Today: multiple issue
e Later:
o Static & dynamic scheduling
¢ Extract much more ILP
¢ Data-level parallelism (DLP)
¢ Single-instruction, multiple data (one insn., four 64-bit adds)
¢ Thread-level parallelism (TLP)
¢ Multiple software threads running on multiple cores

CIS 501 (Martin): Superscalar 3 CIS 371 (Martin): Superscalar 4

Scalar Pipeline and the Flynn Bottleneck Multiple-Issue Pipeline

] regdfile |

v W
ey

i

¢ Overcome this limit using multiple issue

¢ So far we have looked at scalar pipelines « Also called superscalar
* One instruction per stage « Two instructions per stage at once, or three, or four, or eight...
* With control speculation, bypassing, etc. « “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC'81]
— Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 « Today, typically “4-wide” (Intel Core i7, AMD Opteron)

— Limit is never even achieved (hazards)

R D e Some more (Power5 is 5-issue; Itanium is 6-issue)
— Diminishing returns from “super-pipelining” (hazards + overhead)

e Some less (dual-issue is common for simple cores)

CIS 501 (Martin): Superscalar 5 CIS 501 (Martin): Superscalar 6

A Typical Dual-Issue Pipeline A Typical Dual-Issue Pipeline

] regdfile |

1$ 1$
B B
P :| P :|
¢ Fetch an entire 16B or 32B cache block e Multi-ported register file
¢ 4 to 8 instructions (assuming 4-byte average instruction length) * Larger area, latency, power, cost, complexity
« Predict a single branch per cycle ¢ Multiple execution units

* Simple adders are easy, but bypass paths are expensive
e Memory unit
¢ Single load per cycle (stall at decode) probably okay for dual issue
¢ Alternative: add a read port to data cache
e Larger area, latency, power, cost, complexity

o Parallel decode
¢ Need to check for conflicting instructions
e Output of I; is an input to I,
o Other stalls, too (for example, load-use delay)

CIS 501 (Martin): Superscalar 7 CIS 501 (Martin): Superscalar 8

Superscalar Pipeline Diagrams - Ideal Superscalar Pipeline Diagrams - Realistic

scalar 1 2 3 4 5 6 7 8 9 10 11 12 scalar 1 2 3 4 5 6 7 8 9 10 11 12
1w 0(rl)Dr2 F D X MW 1w 0(rl)Dr2 F D X MW
1w 4(rl)=r3 F D X MW 1w 4(rl)=r3 F D X MW
1w 8(rl)=>r4 F DX MW 1w 8(rl)Dr4 F DX MW
add rl4,rl159r6 F D X MW add r4,r59ré F d& D X MW
add r12,r139r7 F DX MW add r2,r39r7 F DX MW
add rl7,rl169r8 F DX MW add r7,r69r8 F DX MW
1w 0(rl8)=r9 F DX MW 1w 4 (r8)=>r9 F DX MW
2-waysuperscalar 1 2 3 4 5 6 7 8 9 10 11 12 2-waysuperscalar 1 2 3 4 5 6 7 8 9 10 11 12
1w 0(rl)Dr2 F D X MW 1w 0(rl)Dr2 F D X MW
1w 4(rl)=r3 F D X M W 1w 4(rl)=r3 F D X M W
1w 8(rl)Dr4 F DX MW 1w 8(rl)Dr4 F DX MW
add rl4,rl59r6 F D X MW add r4,r59ré F dcd D X M W
add r12,r139r7 F D X MW add r2,r39r7 F d& D X MW
add rl7,rl69r8 F DX MW add r7,r69r8 F D X MW
1w 0(rl8)=r9 F DX MW 1w 4(r8)=2r9 F d& D X MW
CIS 501 (Martin): Superscalar 9 CIS 501 (Martin): Superscalar 10
Superscalar Challenges - Front End Superscalar Challenges - Back End
e Superscalar instruction fetch e Superscalar instruction execution
¢ Modest: need multiple instructions per cycle ¢ Replicate arithmetic units
* Aggressive: predict multiple branches ¢ Perhaps multiple cache ports
e Superscalar instruction decode e Superscalar bypass paths
¢ Replicate decoders ¢ More possible sources for data values
¢ Superscalar instruction issue e Order (N2 * P) for N-wide machine with execute pipeline depth P
 Determine when instructions can proceed in parallel e Superscalar instruction register writeback
¢ Not all combinations possible ¢ One write port per instruction that writes a register
e More complex stall logic - order N2 for N-wide machine e Example, 4-wide superscalar = 4 write ports
e Superscalar register read
e One port for each register read ¢ Fundamental challenge:
e Each port needs its own set of address and data wires ¢ Amount of ILP (instruction-level parallelism) in the program
e Example, 4-wide superscalar = 8 read ports e Compiler must schedule code and extract parallelism

CIS 501 (Martin): Superscalar 11 CIS 501 (Martin): Superscalar 12

How Much ILP is There?

e The compiler tries to “schedule” code to avoid stalls
¢ Even for scalar machines (to fill load-use delay slot)
¢ Even harder to schedule multiple-issue (superscalar)
e How much ILP is common?
¢ Greatly depends on the application
¢ Consider memory copy
¢ Unroll loop, lots of independent operations

¢ Other programs, less so

e Even given unbounded ILP,
superscalar has implementation limits

e IPC (or CPI) vs clock frequency trade-off

¢ Given these challenges, what is reasonable today?
e ~4 instruction per cycle maximum

CIS 501 (Martin): Superscalar 13

Superscalar Decode & Register Read

Superscalar Execution

CIS 371 (Martin): Superscalar 14

N2 Dependence Cross-Check

e What is involved in decoding multiple (N) insns per cycle?
¢ Actually doing the decoding?
e Easy if fixed length (multiple decoders), doable if variable length
¢ Reading input registers?
¢ Nominally, 2N read + N write (2 read + 1 write per insn)
— Latency, area « #ports?
e What about the stall logic?

CIS 501 (Martin): Superscalar 15

o Stall logic for 1-wide pipeline with full bypassing
¢ Full bypassing — load/use stalls only
X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)
e Two “terms”: « 2N
¢ Now: same logic for a 2-wide pipeline
X/M,.op==LOAD && (D/X;.rs1==X/M,.rd || D/X;.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X,.rs1==X/M,.rd || D/X,.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X;.rs1==X/M,.rd || D/X;.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X,.rs1==X/M,.rd || D/X,.rs2==X/M,.rd)
¢ FEight “terms”: « 2N2
* N2 dependence cross-check
¢ Not quite done, also need
e D/X,.rs1==D/X,.rd || D/X,.rs2==D/X;.rd

CIS 501 (Martin): Superscalar 16

Superscalar Execute

Superscalar Memory Access

e What is involved in executing N insns per cycle?

e Multiple execution units ... N of every kind?
e N ALUs? OK, ALUs are small
¢ N floating point dividers? No, dividers are big, £div is uncommon
¢ How many branches per cycle? How many loads/stores per cycle?
o Typically some mix of functional units proportional to insn mix
e Intel Pentium: 1 any + 1 “simple” (such as ADD, etc.)
¢ Alpha 21164: 2 integer (including 2 loads) + 2 floating point

CIS 501 (Martin): Superscalar 17

D$ Bandwidth: Multi-Porting, Replication

e What about multiple loads/stores per cycle?
¢ Probably only necessary on processors 4-wide or wider
e Core i7: is one load & one store per cycle
e More important to support multiple loads than multiple stores
¢ Insn mix: loads (~20-25%), stores (~10-15%)
¢ Alpha 21164: two loads or one store per cycle

CIS 501 (Martin): Superscalar 18

D$ Bandwidth: Banking

¢ How to provide additional D$ bandwidth?
« Have already seen split 1$/D$, but that gives you just one D$ port
* How to provide a second (maybe even a third) D$ port?

e Option#1: multi-porting
+ Most general solution, any two accesses per cycle
— Lots of wires; expensive in terms of latency, area (cost), and power

e Option #2: replication
¢ Read from either replica, but writes update both replicas
¢ Writing both insures they have the same values
¢ Multiplies read bandwidth only (writes must go to all replicas)
+ General solution for loads, little latency penalty
— Not a solution for stores (that's OK), area (cost), power penalty
CIS 501 (Martin): Superscalar 19

e Option#3: banking (or interleaving)
¢ Divide D$ into “banks” (by address), one access per bank per cycle
¢ Bank conflict: two accesses to same bank — one stalls
+ No latency, area, power overheads (latency may even be lower)
+ One access per bank per cycle, assuming no conflicts
Complex stall logic — address not known until execute stage
To support N accesses, need 2N+ banks to avoid frequent conflicts

e Which address bit(s) determine bank?
¢ Offset bits? Individual cache lines spread among different banks
+ Fewer conflicts
— Must replicate tags across banks, complex miss handling
¢ Index bits? Banks contain complete cache lines
— More conflicts
+ Tags not replicated, simpler miss handling

CIS 501 (Martin): Superscalar 20

Superscalar Register Read/Write

Superscalar Bypass

e How many register file ports to execute N insns per cycle?
¢ Nominally, 2N read + N write (2 read + 1 write per insn)
— Latency, area « #ports?
¢ In reality, fewer than that
¢ Read ports: some instructions read only one register
» Write ports: stores, branches (35% insns) don't write registers
e Multi-porting and replication both work for register files
o Alpha 21264 used replication (more in a bit)

¢ Banking? Not used (conflicts too hard to handle)
CIS 501 (Martin): Superscalar 21

Not All N2 Created Equal

¢ N2 bypass network
— N+1 input muxes at each ALU input

versus — N2 point-to-point connections
— Routing lengthens wires
Heavy capacitive load
And this is just one bypass stage (MX)!

* There is also WX bypassing

¢ Even more for deeper pipelines
One of the big problems of superscalar

22

Mitigating N2 Bypass: Clustering

¢ N2 bypass vs. N2 stall logic & dependence cross-check
¢ Which is the bigger problem?

e N2 bypass ... by far
e 64- bit quantities (vs. 5-bit)
e Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
e Must fit in one clock period with ALU (vs. not)

¢ Dependence cross-check not even 2nd biggest N2 problem

¢ Redfile is also an N2 problem (think latency where N is #ports)
e And also more serious than cross-check

CIS 501 (Martin): Superscalar 23

¢ Clustering: mitigates N2 bypass
e Group ALUs into K clusters
¢ Full bypassing within a cluster
¢ Limited bypassing between clusters
¢ With 1 or 2 cycle delay
e (N/K) + 1 inputs at each mux
~* (N/K)? bypass paths in each cluster
¢ Steering: key to performance
¢ Steer dependent insns to same cluster
e Statically (compiler) or dynamically
¢ Hurts IPC, allows wide issue at same clock
e E.g., Alpha 21264
¢ Bypass wouldn't fit into clock cycle
¢ 4-wide, 2 clusters
CIS 501 (Martin): Superscalar 24

Mitigating N2 RegFile: Clustering++

cluster 0

_—L'_D'_ —

o

l— -

> | > | > |
¢ Clustering: split N-wide execution pipeline into K clusters
o With centralized register file, 2N read ports and N write ports

e Clustered register file: extend clustering to register file
* Replicate the register file (one replica per cluster)
o Register file supplies register operands to just its cluster
o All register writes go to all register files (keep them in sync)
¢ Advantage: fewer read ports per register!
» K register files, each with 2N/K read ports and N write ports
CIS 501 (Martin): Superscalar 25

Superscalar “Front End”

CIS 371 (Martin): Superscalar 27

Simple Superscalar Fetch

|$%
s

What is involved in fetching multiple instructions per cycle?
In same cache block? — no problem
¢ 64-byte cache block is 16 instructions (~4 bytes per instruction)
« Favors larger block size (independent of hit rate)
What if next instruction is last instruction in a block?
¢ Fetch only one instruction that cycle
¢ Or, some processors may allow fetching from 2 consecutive blocks
Compilers align code to I$ blocks (.align directive in asm)
e Reduces I$ capacity
¢ Increases fetch bandwidth utilization (more important)
CIS 501 (Martin): Superscalar 26

Simple Superscalar Fetch

|$%
s

What is involved in fetching multiple instructions per cycle?
In same cache block? — no problem
¢ 64-byte cache block is 16 instructions (~4 bytes per instruction)
« Favors larger block size (independent of hit rate)
What if next instruction is last instruction in a block?
¢ Fetch only one instruction that cycle
¢ Or, some processors may allow fetching from 2 consecutive blocks
Compilers align code to I$ blocks (.align directive in asm)
e Reduces I$ capacity
¢ Increases fetch bandwidth utilization (more important)
CIS 371 (Martin): Superscalar 28

Limits of Simple Superscalar Fetch

|$%
s

e How many instructions can be fetched on average?
¢ BTB predicts the next block of instructions to fetch
« Support multiple branch (direction) predictions per cycle
¢ Discard post-branch insns after first branch predicted as “taken”
o Lowers effective fetch width and IPC
¢ Average number of instructions per taken branch?
e Assume: 20% branches, 50% taken — ~10 instructions
e Consider a 5-instruction loop with an 4-issue processor
e Without smarter fetch, ILP is limited to 2.5 (not 4)
e Compiler could “unroll” the loop (reduce taken branchs)

e How else can we increase fetch rate?
CIS 501 (Martin): Superscalar 29

Increasing Superscalar Fetch Rate

P

insnqueue D$
:l also loop stream detector

e Option #3: “loop stream detector” (Core 2, Core i7)
e Put entire loop body into a small cache
¢ Core2: 18 macro-ops, up to four taken branches
e Core i7: 28 micro-ops (avoids re-decoding macro-ops!)
e Any branch mis-prediction requires normal re-fetch
e Option #4: trace cache (Pentium 4)
¢ Tracks “traces” of disjoint but dynamically consecutive instructions
e Pack (predicted) taken branch & its target into a one “trace” entry
¢ Fetch entire “trace” while predicting the “next trace”
CIS 501 (Martin): Superscalar 31

u m|seoel]

Increasing Superscalar Fetch Rate

P

1$ - insh queue D$
B
P :|

e Option #1: over-fetch and buffer
¢ Add a queue between fetch and decode (18 entries in Intel Core2)
¢ Compensates for cycles that fetch less than maximum instructions
e “decouples” the “front end” (fetch) from the “back end” (execute)

e Option #2: predict next two blocks (extend BTB)
¢ Transmits two PCs to fetch stage: “next PC" and “next-next PC”
o Access I-cache twice (requires multiple ports or banks)
e Requires extra merging logic to select and merge correct insns
— Elongates pipeline, increases branch penalty

CIS 501 (Martin): Superscalar 30

Impact of Branch Prediction

e Base CPI for scalar pipeline is 1

Base CPI for N-way superscalar pipeline is 1/N
— Amplifies stall penalties
¢ Assumes no data stalls (an overly optimistic assumption)

Example: Branch penalty calculation

e 20% branches, 75% taken, 2 cycle penalty, no branch prediction
Scalar pipeline

e 1+ 0.2%0.75%2 = 1.3 — 1.3/1 = 1.3 — 30% slowdown

2-way superscalar pipeline

e 0.5 + 0.2%0.75*2 = 0.8 — 0.8/0.5 = 1.6 — 60% slowdown
4-way superscalar

e 0.25 + 0.2*¥0.75*2 = 0.55 — 0.55/0.25 = 2.2 — 120% slowdown

CIS 371 (Martin): Superscalar 32

Predication (not prediction, predication) Predication If-Conversion Example

e Branch mis-predictions hurt more on superscalar Source code Afo: 1df ¥(r1),£2
¢ Replace difficult branches with something else... A = Y[i]; 1u : fbne £2,4 .
o Convert control flow into data flow (& dependencies) if (A == 0) NT=50%—" —~—~—T=50%

. A = W[i]; B X
¢ Avoids mis-predictions by removing hard-to-predict branches Bl2: 1af w(r1),£2]| [4: stf £0,¥(x1) |C

else .3
¢ Can hurt performance if branch was highly predictable Y[i] = O; 2 juﬁps\‘/

e Predication: insns conditionally executed Z[i] = A*X[3il; D[5: 1df x(rl),f4
¢ Full predication (ARM, Intel Itanium) . 6: mulf £4,£f2,f6
« Can tag every insn with predicate, but extra bits in instruction Machine code 7: stf £6,2Z(rl)

« Conditional moves (Alpha, x86) (1" ;:f Ygll'fz Using Predication WV
. . .. : ne ,
* Construct appearance of full predication from one primitive 2. 1df W(rl),£2 0: 1df Y(r1),£2
cmoveq rl,r2,r3 // if (rl==0) r3=r2; 3: jump 5 1: fspne f2
— May require some code duplication to achieve desired effect 4: stf £0,Y(rl) 2: 1df(p pD,W(rl) , £2
— Doesn't handle conditional memory operations 5: 1df X(rl), f4 g: i;i ;OI,Y(rl)
; P i 6: mulf £4,£2,£6 : rl),

+ Only gciod way of ad_dlng predlcatlor_1 to an ex_lstln_g ISA 7: ste £6,%(z1) 6. mulf £4,£2 £6
o If-conversion: replacing control with predication 7: stf £6,%(xrl)
CIS 371 (Martin): Superscalar 33 CIS 371 (Martin): Superscalar 34

ISA Support for Predication CMOQV Prediction Example

0: 1df Y(rl),£2 J;.nt func(int a, int b, int* array) J;.nt func2 (int a, int b, int* array)
1: fspne £2,pl if (a > 0) { int temp = array[b] :
2: 1df.p pl,W(rl), f2 return b; if (a > 0) {
4: stf.np pl1,£f0,Y(rl) } else { return b;
5: 1df X(rl),f4 return array[b]; } else {
6: mulf f4,£f2,£f6 } return temp;
7: stf £6,Z(rl) } }
}
H . - H H func: testl %edi, %edi func2: movslqg %esi, %rax
e Itanium: change branch 1 to set-predicate insn £spne o 12 testl edi. edi _
e Change insns 2 and 4 to predicated insns movslq %esi,%rax cmovle (srdx,$rax,4), tesi
. . . movl (%rdx,%rax,4), %esi movl %esi, %eax
e 1df.p performs 1df if predicate pl is true .L2: movl %esi, %eax ret
e stf.np performs stf if predicate pl is false ret

e x86 only has a "CMOV” instruction
¢ Note: in x86’s CMOV, any “load” part is non-conditional

e Small change in the code helps the compiler optimize
CIS 371 (Martin): Superscalar 35 CIS 371 (Martin): Superscalar 36

Another CMOV Example (Part I)

¢ gcc —0s —fno-if-conversion

tree_t* search(tree_t* t, int key) L3:

{ cmpl %esi, (%rdi)
while (t !'= NULL) { je L4
if (t->value == key) { jle L6
return t; movg 8(%rdi), %rdi
} jmp L12
L6:
if (t->value > key) { movqg 16(%rdi), %rdi
t = t->right_ptr; Ll2:
} else { testq %rdi, %rdi
t = t->left_ptr; jne L3

}
}
return NULL;

}
e Baseline
e Same with and without —fno-in-conversion flag!

CIS 371 (Martin): Superscalar 37
Another CMOV Example (Part III)
e gcc—0Os
tree_t* search(tree_t* t, int key) L3:
{ cmpl %esi, (%rdi)
while (t !'= NULL) { je L4
if (t->value == key) { movqg 16(%rdi), %$rax
return t; movg 8(%rdi), %rdi
} cmovle %rax, %rdi
tree_t* right = t->right_ptr; L22:
tree_t* left = t->left_ptr; testq %rdi, %$rdi
if (t->value > key) { jne L3
t = right;
} else {
t = left;
}
}
return NULL;
'« Now, with —fif-converstion (enabled by default)
¢ Uses CMOV to avoid branch misprediction
CIS 371 (Martin): Superscalar 39

Another CMOV Example (Part II)

e gcc —0s —fno-if-conversion

tree_t* search(tree_t* t, int key) L3:

{ cmpl %esi, (%rdi)
while (t !'= NULL) { je L4
if (t->value == key) { movqg 8(%rdi), %rax
return t; movqg 16(%rdi), %rdi
} jle Ll12
tree_t* right = t->right_ptr; movq %rax, %rdi
tree_t* left = t->left_ptr; L12:
if (t->value > key) { testq $rdi, %$rdi
t = right; jne L3
} else {
t = left;

}

}
return NULL;

o Similar assembly as before (-fno-if-converstion)
¢ Does reduce taken branches

}

CIS 371 (Martin): Superscalar 38

Predication Performance

e Cost/benefit analysis
¢ Benefit: predication avoids branches
¢ Thus avoiding mis-predictions
¢ Also reduces pressure on predictor table (fewer branches to track)
o Cost: extra instructions (fetched, but not actually executed)

¢ As branch predictors are highly accurate...
¢ Might not help:
¢ 5-stage pipeline, two instruction on each path of if-then-else
¢ No performance gain, likely slower if branch predictable
e Or even hurt!
¢ But can help:
¢ Deeper pipelines, hard-to-predict branches, and few added insn

e Thus, prediction is useful, but not a panacea

CIS 501 (Martin): Pipelining 40

Multiple Issue
Implementations

CIS 371 (Martin): Superscalar 41

Very Long Instruction Word (VLIW)

Multiple-Issue Implementations

e Hardware-centric multiple issue problems
— Wide fetch/branch prediction, N2 bypass, N2 dependence checks
— Hardware solutions have been proposed: clustering, etc.

e Compiler-centric: very long insn word (VLIW)

» Effectively, a 1-wide pipeline, but unit is an N-insn group
o Started with “horizontal microcode”

 Compiler ensures insns within a group are independent
 If no independent insns, slots filled with nops

¢ Group travels down pipeline as a unit
+ Simplifies pipeline control
+ Cross-checks within a group unnecessary
¢ Downstream cross-checks still necessary

o Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification

CIS 371 (Martin): Superscalar 43

o Statically-scheduled (in-order) superscalar
« What we've talked about thus far
+ Executes unmodified sequential programs
— Hardware must figure out what can be done in parallel
¢ E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)
¢ Very Long Instruction Word (VLIW)
- Compiler identifies independent instructions, new ISA
+ Hardware can be dumb and low power
¢ E.g., TransMeta Crusoe (4-wide)
¢ Variant: Explicitly Parallel Instruction Computing (EPIC)
¢ A compromise: compiler does some, hardware does the rest
¢ E.g., Intel Itanium (6-wide)
¢ Dynamically-scheduled superscalar
¢ Hardware extracts more ILP by on-the-fly reordering
e Core 2, Core i7 (4-wide), Alpha 21264 (4-wide)
CIS 371 (Martin): Superscalar 42

VLIW Advantages

+ Simpler instruction fetch
¢ Fetch a bundle per cycle
+ Simpler dependence check logic
o Compiler guarantees all instructions in bundle independent
+ Simpler branch prediction
e Restrict to one branch per bundle
¢ By default, doesn't help bypasses or register file problems
¢ Which are the much bigger problems!
¢ Although clustering and replication can help VLIW, too
e Compiler-visible clustering possible in VLIW
e Each “lane” of VLIW has “local” registers (read/written by this lane)
* A few “global” registers (read/written by any lane) are used to
communicate between lanes

CIS 371 (Martin): Superscalar 44

VLIW Disadvantages

— Code density

¢ Lots of “no-ops” in bundles

— Not compatible across machines of different widths
¢ “not compatible” could mean programs would execute incorrectly
¢ Or, “not compatible” can mean programs would execute slowly
¢ Is non-compatibility worth all of this?
¢ How did TransMeta deal with compatibility problem?
¢ Dynamically translates x86 to internal VLIW
e GPUs also use VLIW, do dynamic translation of graphics operations
e Finally, VLIW doesn't solve all problems
¢ VLIW mainly targets dependence checking
¢ Which isn‘t the worst N2 problem in multiple-issue
¢ Doesn't magically create ILP

CIS 371 (Martin): Superscalar 45

Trends in Single-Processor Multiple Issue

EPIC

e EPIC (Explicitly Parallel Insn Computing)
¢ Variant of VLIW (Variable Length Insn Words)
¢ Implemented as “bundles” with explicit dependence bits
¢ Helps code density
¢ Code is compatible with different “bundle” width machines
e E.g., Intel Itanium (IA-64)
¢ 128-bit bundles (three 41-bit insns + 4 dependence bits)
« Still does not address bypassing or register file issues

CIS 371 (Martin): Superscalar 46

Multiple Issue Redux

486 Pentium | PentiumIl | Pentium4 | Itanium | ItaniumIl Core2
Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

e Issue width has saturated at 4-6 for high-performance cores
¢ Canceled Alpha 21464 was 8-way issue
¢ Not enough ILP to justify going to wider issue
¢ Hardware or compiler scheduling needed to exploit 4-6 effectively

¢ For high-performance per watt cores, issue width is ~2
¢ Advanced scheduling techniques not as critical
o Multi-threading (a little later) helps cope with cache misses

CIS 371 (Martin): Superscalar 47

e Multiple issue
¢ Exploits insn level parallelism (ILP) beyond pipelining
¢ Improves IPC, but perhaps at some clock & energy penalty
¢ 4-6 way issue is about the peak issue width currently justifiable

e Problem spots
e N2 bypass & register file — clustering
e Fetch + branch prediction — buffering, loop streaming, trace cache
¢ N2 dependency check — VLIW/EPIC (but unclear how key this is)

¢ Implementations
o (Statically-scheduled) superscalar, VLIW/EPIC

CIS 371 (Martin): Superscalar 48

Next Up... Multiple Issue Summary

App | | App | | App
e Extracting more ILP via: System software
e Static scheduling in the compiler 1
¢ Dynamic scheduling in hardware Mem /o

CIS 501 (Martin): Superscalar 49 CIS 371 (Martin): Superscalar

e Superscalar hardware issues
¢ Bypassing and register file
o Stall logic
e Fetch

e Multiple-issue designs
¢ “Superscalar”
o VLIW

50

