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PEER REVIEWED

Empirically derived 1-m–resolution descriptions of (A) morning and (B) evening
urban heat islands in Portland, Oregon, on August 25, 2014. Temperatures
were recorded in 1-hour periods at 6 AM and 7 PM. In the morning, low-lying
vegetation cover had the strongest effect on temperature; in the evening,
temperatures were most strongly affected by variation in building heights.
High-resolution data sets such as those used here can inform preparation for
extreme heat events and public health interventions.

 

Background
Extreme heat events affect the most vulnerable human popula-
tions and are a lethal health hazard to urban dwellers globally; in
the United States, extreme heat causes more deaths annually than
all other weather events and natural hazards combined (1). Previ-
ous studies described urban heat islands as isolated, static, mono-
lithic areas of cities. We challenged this contention by hypothesiz-
ing that diurnal temperature cycles and diverse landscape features
create variation in places that amplify heat (2). A temporal de-
scription of urban heat islands would identify populations that are

susceptible to heat stress, particularly at night, when most people
are asleep and unable to regulate internal body temperatures. If
public health agencies are to prevent illness and death caused by
heat, they will need to know which populations are most vulner-
able to  heat  stress,  particularly at  night;  such information can
guide timely interventions (3). Researchers lack high-resolution
tools for identifying neighborhoods and households where ex-
treme weather events might have profound and fatal effects on hu-
man health. The objective of this study was to use spatial analyt-
ics at previously unattained resolutions to answer the following re-
search question: to what extent can we observe temporal variation
in urban heat islands and the physical features that induce heat
stress?

Methods
Following an established protocol (4), we collected approximately
60,000 temperature readings during 1 day of an extreme heat event
on August 25, 2014, in Portland, Oregon, when the average tem-
perature during the hottest hour of the day was in the 75th percent-
ile of 30-year historic daily temperatures for the study region. We
sampled temperatures for 1 hour at 3 times during the day (6 AM,
3 PM, and 7 PM) using vehicle traverses (cars with a mounted
temperature sensor and global positioning system [GPS]) in 6 pre-
determined sections of the city. The temperature sensor consisted
of a type T fine (30 gauge) thermocouple in a plastic shade tube
(12 cm in length and 2.5 cm in diameter) mounted on the passen-
ger-side window approximately 25 cm above the roof of each of 5
vehicles deployed. Each temperature sensor was connected to a
data-logging device with an estimated system accuracy of ±0.5°C
and a 90% response time of less than 60 s in 1 m/s airflow. A GPS
unit on each vehicle paired temperature measurement and location.

On the basis of a sensitivity analysis and research on landscape
features that mediate urban heat, we selected 6 variables as pre-
dictors:  1)  building heights,  2)  standard deviation of  building
heights, 3) building volume, 4) canopy cover, 5) low-lying vegeta-
tion, and 6) canopy biomass. Data on the first 3 variables were de-
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rived from 3-dimensional point cloud data acquired through Light
Detection and Ranging (LiDAR). LiDAR combines a laser ran-
ging device with a GPS system to provide highly resolved terrain
measurements.  The LiDAR data were extracted from the 2014
Oregon Metro Regional  Land Information System (RLIS) (5).
Data on canopy cover and low-lying vegetation were created from
2014 Portland LiDAR/photography flight data (5). The biomass
metric was created by multiplying tree height by tree density de-
termined by LiDAR-beam tree penetrability. Using a moving win-
dow analysis  at  15 spatial  extents  (also known as “buffer  dis-
tances”) from 50 m to 1 km, we tested the effective distances of
each variable on the urban heat island, wherein each pixel repres-
ented the amount of each variable within a specified distance.

We analyzed modeling techniques (Appendix) and determined that
random forest modeling (a machine-learning model available in
the statistical package R [The R Foundation]) was more accurate
than standard linear modeling. The values of the 90 new buffer-
distance grids were spatially assigned to a randomly selected 70%
of the traverse points; we tested the validity of our model by pre-
dicting the remaining 30%. This 70%–30% training model pre-
dicted a temperature for each of the 1.034 billion 1-m pixels. The
models generated data on changes in mean standard error, which
represents the effect of each on local temperature. Our statistical
technique was run for each of the 3 one-hour data-collection peri-
ods, resulting in 3 temperature-prediction grids.

Main Findings
The models for the morning and evening data-collection periods
predicted upwards of 98% (r2 = 0.98) and 97% (r2 = 0.97) of the
temperature variation across the study region; the afternoon mod-
el had a predicting power of 83% (r2 = 0.83). Although the after-
noon model was weaker, possibly because of atmospheric mixing
and surface convective processes that we were unable to detect, it
performed remarkably well.

In contrast with previous research findings, our models suggest
that each data-collection period had unique land-use and land-cov-
er factors that helped to explain variation (Table). In the morning
(6 AM), low-lying vegetation cover had the strongest effect on
temperature, and in the afternoon (3 PM), the 2 variables for build-
ing  height  (mean  building  heights  and  variation  in  building
heights) had the strongest effect. In the evening (7 PM), temperat-
ures  were  most  strongly  affected  by  the  variation  in  building
heights. Material science and computational fluid dynamics pro-
cesses suggest that buildings absorb incoming solar radiation dur-
ing the day and re-radiate it as heat at night (2) and that variation
in building heights helps to circulate air. Indeed, diurnal patterns
of extreme heat, documented in studies of heat mortality and urb-

an heat islands, show that the re-radiation of heat by buildings
peaks at night and places vulnerable individuals at greatest risk of
death from heat. The amount of canopy cover may moderate tem-
peratures at night because this variable is the strongest predictor in
the morning.

Action
By using these empirically derived heat measures, local land-use
and land-cover variables, and spatial machine learning techniques,
we described and explained variation in the distribution of urban
heat islands in Portland, Oregon. High-resolution data sets and
analysis such as those used here can inform preparation for ex-
treme heat events and public health interventions (eg, information
campaigns, cooling centers, tree planting programs, and surveil-
lance) for vulnerable communities in local and regional areas. Our
results also suggest that policy and environmental interventions
should deploy temperature-mitigation strategies at night, when
heat stress is greatest for vulnerable communities.
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Table

Table. Landscape Factors and Their Relative Contribution to Urban Heat Islands at Three Times During One Day of an Extreme Heat Event in Portland, Oregon, Au-
gust 2014

Model Variable Ranka Variable

Percentage Increase
in Mean Standard

Error Model r2
Model Mean

Standard Error

6 AM 1 Low-lying vegetation cover within 50 m 42.5 0.98 0.02

2 Low-lying vegetation cover within 800 m 38.7

3 Building volume within 900 m 33.9

4 Canopy biomass within 1000 m 33.0

5 Mean building height 100 m 32.7

3 PM 1 Standard deviation of building height within 1000 m 40.8 0.83 0.23

2 Standard deviation of building height within 300 m 44.8

3 Canopy biomass within 50 m 38.9

4 Standard deviation of building height within 150 m 38.7

5 Standard deviation of building height within 200 m 38.5

7 PM 1 Standard deviation of building height within 1000 m 40.0 0.97 0.05

2 Low-lying vegetation cover within 100 m 32.5

3 Building volume within 1000 m 30.9

4 Canopy cover within 800 m 30.9

5 Building volume within 900 m 30.6
a Rank reflects the extent to which the variable explains the temperature throughout the study region.

PREVENTING CHRONIC DISEASE VOLUME 13, E129

PUBLIC HEALTH RESEARCH, PRACTICE, AND POLICY SEPTEMBER 2016

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,

the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.

4       Centers for Disease Control and Prevention  •  www.cdc.gov/pcd/issues/2016/16_0099.htm



Appendix. Additional Explanation of Analysis of Modeling Techniques to Determine
That Random Forest Modeling Was More Accurate Than Standard Linear Modeling
We drew our buffer distances on the basis of studies that employ land-use regression (LUR) models. These studies describe similar decay
rates for predicting the implication of land-use variables on environmental stressors (6). The literature on urban heat examines the
relationship between land use and temperature using satellite-based approaches and attempts to correlate changes in temperature on a
pixel-by-pixel approach (7). Because our techniques provide temporal characterization of urban heat through vehicle-based traverses on a
single day, satellite-based approaches (which have a lower spatial and temporal resolution) are not a viable solution. Moreover, the
existing literature on urban heat applies 1-km buffers as a maximum distance at which land-use variables have a significant effect on
temperatures.

By transforming our raster data into a table in R Statistical Software (using the “raster” package), we are able to append each variable at
each distance to a table with our observed temperature values. This table allows us to not only create a model, but to apply that model to
our rasters to predict temperatures in areas where traverses did not collect data. We would be able to create the model by examining each
temperature observation point and the land use within specified differences from them, however it would prove difficult to create an
output model from that scenario. This method of raster-level analysis not only speeds up the process, but gives us much greater accuracy
(no conversions between vector and raster) and the ability to create an output raster of our final prediction for analysis.

Based on the results of a sensitivity analysis comparing linear regression, classification and regression trees (CART), and random forest
modeling, we found strongest explanatory power using random forest modeling (8).

The processes of creating buffers on a raster (also known as a moving window analysis or focal statistics) is a common practice of data
manipulation in geographic information systems (Figure).

PREVENTING CHRONIC DISEASE VOLUME 13, E129

PUBLIC HEALTH RESEARCH, PRACTICE, AND POLICY SEPTEMBER 2016

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,

the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.

www.cdc.gov/pcd/issues/2016/16_0099.htm • Centers for Disease Control and Prevention       5



Figure. Example of the process of creating buffers on a raster. The input data (A) is converted from vector to a raster that contains pixel values representing the
results for specified distances. In this example, the raw data has the values 1 (green, representing canopy) and 0 (white, representing not-canopy). The output
describes the percentage of land cover classified as canopy.
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