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Abstract

The naive Bayesclassifiergreatly simplify learn-
ing by assuminghatfeaturesareindependengiven
class. Although independencés generallya poor
assumptionin practicenaive Bayesoftencompetes
well with moresophisticatedlassifiers.

Ourbroadgoalis to understandhe datacharacter
isticswhich affectthe performancef naive Bayes.
OurapproachusesMonte Carlosimulationghatal-
low a systematicstudy of classificationaccurayg
for several classesof randomly generatedprob-
lems. We analyzethe impact of the distribution
entropy on the classificationerror, shaving that
low-entropy featuredistributions yield good per
formanceof naive Bayes. We also demonstrate
that naive Bayesworks well for certain nearly-
functional featuredependencieghus reachingits
bestperformancén two oppositecasescompletely
independenfeatures(as expected)and function-
ally dependenfeatures(which is surprising). An-
othersurprisingresultis thatthe accurag of naive
Bayesis not directly correlatedwith the degree
of feature dependenciesneasuredas the class-
conditional mutual information betweenthe fea-
tures.Instead a betterpredictorof naive Bayesac-
curag is theamountof informationabouttheclass
thatis lost becauseof the independenceassump-
tion.

1 Intr oduction

Bayesianclassifiersassignthe mostlikely classto a given
exampledescribedyy its featurevector Learningsuchclas-
sifierscanbe greatlysimplified by assuminghatfeaturesare
independengivenclass thatis, P(X|C) = [];, P(X;|C),

whereX = (X1,---,X,) isafeaturevectorandC is aclass.
Despite this unrealisticassumption the resulting classifier
known as naive Bayesis remarkablysuccessfuln practice,
oftencompetingwith muchmoresophisticatediechnique$6;

8; 4; 2]. Naive Bayeshasproveneffective in mary practical
applicationsjncluding text classificationmedicaldiagnosis,
andsystemserformancenanagement2; 9; 5].
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The succes®f naive Bayesin the presencef featurede-
pendencieganbe explainedasfollows: optimality in terms
of zero-ondoss(classificatiorerror)is notnecessarilyelated
to the quality of thefit to a probability distribution (i.e., the
appropriatenessf theindependencassumption)Ratheran
optimal classifieris obtainedaslong asboth the actualand
estimatedlistributionsagreeon the most-probablelass|[2].
For example,[2] prove naive Bayesoptimality for someprob-
lemsclasseshathave a high degreeof featuredependencies,
suchasdisjunctive andconjunctive concepts.

However, this explanationis too generalandthereforenot
very informative. Ultimately, we would like to understand
thedatacharacteristicsvhich affectthe performancef naive
Bayes. While most of the work on naive Bayescompares
its performanceo otherclassifierson particularbenchmark
problems(e.g.,UCI benchmarks)pur approachusesMonte
Carlosimulationgthatallow a moresystematicstudyof clas-
sificationaccurag on parametricfamilies of randomlygen-
eratedproblems. Also, our currentanalysisis focusedonly
on the bias of naive Bayesclassifier not on its variance
Namely we assumaninfinite amountof data(i.e., a perfect
knowledgeof datadistribution) which allows us to separate
the approximationrerror (bias) of nave Bayesfrom the error
inducedby training samplesetsize(variance).

We analyze the impact of the distribution entrogy
on the classification error, showving that certain almost-
deterministic,or low-entropy, dependenciegield good per
formanceof naive Bayes. (Note that almost-deterministic
dependenciesre a commoncharacteristidn mary practi-
cal problemdomains,suchas, for example,computersys-
tem managemenanderror-correctingcodes.) We show that
theerrorof naive Bayesvanishesastheentropy H (P(X|C))
approachegero. Another classof almost-deterministicle-
pendenciegeneralizegunctionaldependenciebetweerthe
featuresParticularly, we shav thatnaive Bayesworksbestin
two casescompletelyindependenteaturegasexpectedand
functionallydependenfieaturegwhichis lessobvious),while
reachingts worstperformancédetweertheseextremes.

We also show that, surprisingly the accurag of nawve
Bayesis notdirectly correlatedvith the degreeof featurede-
pendenciesneasureds the class-conditionamutual infor-
mation betweenthe features,I(X;; X;|C) (X; and X; are
featuresand C' is the class). Instead,our experimentsre-
veal that a betterpredictorof naive Bayesaccurag canbe



the loss of information that featurescontainaboutthe class
whenassumingave Bayesmodel,namelyI (C; (X;, X;))—
Ing(C; (X;, X;)), wherely g is themutualinformationbe-
tweenfeaturesandclassundernaive Bayesassumption.

This paperis structuredasfollows. In the next sectionwe
provide necessarpackgroundanddefinitions.Section3 dis-
cussegaive Bayesperformancdor nearly-deterministicle-
pendenciesywhile Section4 demonstratethatthe “informa-
tion loss” criterion can be a bettererror predictorthan the
strengthof featuredependenciesA summaryand conclu-
sionsaregivenin Sectionb.

2 Definitions and Background

LetX = (Xi,...,X,) beavectorof obsernedrandomvari-
ables,calledfeatures whereeachfeaturetakesvaluesfrom
its domainD;. The setof all featurevectors(examples or
state$, is denotedQ? = D; x ... x D,,. Let C beanun-
obsenedrandomvariabledenotingthe classof anexample,
whereC cantake oneof m valuesc € {0, ...,m — 1}. Capi-
tal letters,suchas X;, will denotevariableswhile lower-case
letters,suchasz;, will denotetheir values;boldfaceletters
will denotevectors.

A functiong : @ — {0,...,m — 1}, whereg(x) = C,
denotesa conceptto be learned. Deterministicg(z) corre-
spondgto a conceptwithout noise,which alwaysassignghe
sameclassto a givenexample(e.qg.,disjunctive andconjunc-
tive conceptsaredeterministic).In generalhowever, a con-
ceptcanbenoisy, yielding arandomfunctiong(x).

A classifieris definedby a (deterministic)function b :
Q — {0,...,m — 1} (a hypothesiy that assignsa class
to arny given example. A commonapproachis to asso-
ciate eachclassi with a discriminantfunction f;(x), i =
0,...,m — 1, andlet the classifierselectthe classwith max-
imum discriminantfunction on a given example: h(x) =
arg maxe(o,....m—1} fi(%).

TheBayestlassifierh* (x) (thatwe alsocall Bayes-optimal
classifieranddenoteBO(x)), usesasdiscriminantfunctions
the classposteriorprobabilitiesgiven a featurevector, i.e.
f#(x) = P(C = i|X = x). Applying Bayesrule gives
P(C = i[X = x) = PESEEINCED whereP(X = x)
is identicalfor all classesandthereforecanbeignored.This
yields Bayesdiscriminantfunctions

fi(x) = P(X =x|C = i)P(C =), 1)

whereP(X = x|C = i) is calledtheclass-conditionaprob-
ability distribution (CPD). Thus,the Bayesclassifier

h*(x) = arg max PX=x|C=49)P(C=1i) (2

finds the maximuma posteriori probability (MAP) hypothe-
sisgiven examplex. However, directestimationof P(X =

x|C = i) from agivensetof trainingexamplesis hardwhen
thefeaturespacses high-dimensionalTherefore approxima-
tions are commonlyused,suchas usingthe simplifying as-
sumptionthat featuresareindependengiventhe class. This

yieldsthe naiveBayesclassifierN B(x) definedby discrimi-

nantfunctions

P (x) =T}, P(X; = zj|C =i)P(C =i). (3)
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The probability of a classificatiorerror, or risk of aclas-
sifier h is definedas

R(h) = P(h(X) # 9(X)) =
=Y P(h(x) # 9(x)P(X = x) = Ex{P(h(x) # g(x))},

xeQ
whereEy is theexpectatioroverx. R* = R(h*) denoteghe
Bayeserror(Bayesrisk).

We saythatclassifierh is optimalon a givenproblemif its
risk coincideswith the Bayesrisk. Assumingthereis nonoise
(i.e. zeroBayesrisk), aconcepis calledsepaableby a setof
functionsS = {f.(z)|c = 0,...,m — 1} if every examplex
is classifiedcorrectlywhenusingeachf.(x) asdiscriminant
functions.

As a measureof dependencéetweentwo features Xy,
and X; we usethe class-conditionaimutualinformation[1],
which canbedefinedas

I(Xy; X;5|C) = H(X,|C) + H(X;|C) — H(Xy, X;|0),
whereH (A|C) is the class-conditionagntropy of A, defined

as:
—Y P(C=i)) P(A=t|C =i)log P(A = t|C =i).

Mutualinformationis zerowhenX; and.X; aremutuallyin-
dependengivenclassC, andincreasesvith increasindevel
of dependencegachingthe maximumwhenonefeatureis a
deterministidunction of the other

3 When doesnaive Bayeswork well? Effects
of somenearly-deterministic dependencies

In this section, we discuss known limitations of naive
Bayesandthen someconditionsof its optimality and near
optimality, thatincludelow-entropy featuredistributionsand
nearly-functionafeaturedependencies.

3.1 Conceptswithout noise

We focusfirst on conceptwith P(C = i|x) = 0 or 1 for ary
x ands (i.e. no noise),which thereforehave zeroBayesrisk.
Thefeaturesareassumedo have finite domains(i-th feature
hask; values)andareoftencallednominal (A nominalfea-
ture canbe transformednto a numericone by imposingan
orderon its domain.) Our attentionwill be restrictedto bi-
nary classificatiorproblemswherethe classis eitherO or 1.

Somelimitations of naive Bayesarewell-known: in case
of binary features(k; = 2 for all ¢ = 1,...,n), it canonly
learnlinear discriminantfunctions[3], andthusit is always
suboptimalor non-linearlyseparableonceptgthe classical
exampleis XOR function;anotheoneis m-of-n conceptg7;
2]). Whenk; > 2 for somefeatures,naive Bayesis able
to learn (some)polynomialdiscriminantfunctions[3]; thus,
polynomial separabilityis a necessaryalthoughnot suffi-
cient, conditionof naive Bayesoptimality for conceptswith
finite-domainfeatures.

Despiteits limitations, naive Bayeswasshavn to be opti-
mal for someimportantclasseof conceptghat have a high
degreeof featuredependenciesuchasdisjunctive andcon-
junctive conceptg[2]. Theseresultscan be generalizedo
conceptswith any nominalfeaturegsee[10] for details):



Theorem1 [10] The naive Bayesclassifieris optimal for
any two-classconceptwith nominal features that assigns
classO to exactly one example and class1 to the other ex-
ampleswith probability 1. *

The performanceof naive Bayesdegradeswith increas-
ing numberof class-Oexamples(i.e., with increasingprior
P(C = 0), alsodenotedP(0)), asdemonstratednh Figure
la. This figure plots averagenaive Bayeserror computed
over 1000 probleminstancesgeneratedandomly for each
value of P(C' = 0). The problemgenerator called Zer-
oBayesRisk assumesn featuregherewe only considertwo
features),eachhaving k values,andvariesthe number! of
class-Oexamplesfrom 1 to k2 /2 (sothat P(C' = 0) varies
from 1/N to 0.5; theresultsfor P(C = 0) > 0.5 aresym-
metricY. As expected)arger P(C = 0) (equivalently, larger
1), yield awiderrangeof problemswith variousdependencies
amongfeatureswhich resultinto increasecerrorsof Bayes;
a closerlook at the datashavs no othercasesof optimality
besidesP(C =0) = 1/N.

Surprisingly the strength of inter-feature dependen-
cies, measureds the class-conditionamutual information
I(X1; X»|C) (alsodenotedM I), is not a good predictorof
naive Bayesperformance:while averagenaive Bayeserror
increasegnonotonicallywith P(0), the mutual information
is non-monotonereachingits maximumaroundP(0) = 0.1.
This obsenationis consistentvith previousempiricalresults
on UCI benchmarkd2]) that also revealedlow correlation
betweerthedegreeof featuredependencandrelative perfor-
manceof naive Bayeswith respectto otherclassifiers such
asC4.5,CN2,andPEBLS.

It turnsout that the entropy of class-conditionamarmginal
distributions, P(X;|C), is a betterpredictorof naive Bayes
performancelntuitively, low entrogy of P(X;|0) meanghat
mostof Osare“concentrateciround” onestate(in the limit,
thisyieldsthe optimality conditionstatedoy Theoreml). In-
deedplottingaverageH (P(X1|0) in Figurelademonstrates
that both averageerror and averageentrofy increasemono-
tonically in P(0). Furtherdiscussionof low-entropy distri-
butionsis given next in the more generalcontext of noisy
(non-zeroBayesrisk) classificatiomproblems.

3.2 Noisyconcepts

Low-entropy feature distrib utions

Generally conceptscan be noisy, i.e. can have non-
deterministicP(C = i|x) andthusa non-zeroBayesrisk.
A naturalextensionof the conditionsof Theoreml to noisy
conceptyieldslow-entropy, or “extreme”, probability distri-
butions, having almostall the probability massconcentrated
in one state. Indeed,as shavn in [10], the independence
assumptiorbecomesmoreaccuratewith decreasingentrogy
whichyieldsanasymptoticallyoptimal performancef naive
Bayes.Namely

Theorem?2 [10] Giventhat oneof the following conditions
hold:

IClearly, this alsoholdsin caseof a singleexampleof classl.

2Notethatin all experimentperfectknovledgeof datadistribu-
tion (i.e., infinite amountof data)isassumedn orderto avoid the
effect of finite samplesize.
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NBerror, 1(X1;X2|C), and H(P(x1|c) vs. P(0) (n=2, m=2, k=10, N=1000)
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Figure 1: (a) results for the generatorZeroBayesRisk

(k=10, 1000 instances): average naive Bayes error
(NBerr), class-conditionamutual information betweenfea-
tures(I(X1; X2|C)), andentrogy of maminal distribution,
H(P(X1|0)); theerrorbarscorrespondo the standardevi-
ation of eachmeasuremenacross1000 probleminstances;
(b) Resultsfor the generatorEXTREME : averageBayes
andnaive Bayeserrorsandaveragel (X 1; X 2|C); (c) results
for the generatoFUNC1: averagedifferencebetweemaive
Bayeserror and Bayeserror (= 0.336 - constantfor all §),
andscaled (X1;X2—C) (dividedby 300).



1. a joint probability distribution P(X4, ..., X,) is such
that P(z3,...,z%) > 1 — § for somestate x* =

EEP R

(x7,..., ), 0r
2.a set of mamginal probability distributions
P(Xy),..,P(X,) is sud that for ead i,

P(X; = z}) > 1— & for somez?,
then|P(z1, .., z) — [1", P(Xi = 27)| < né.

The performanceof naive Bayeson low-entropy distri-
butions is demonstratedusing a random problem genera-
tor called EXTREME . This generatoitakes the numberof
classesm, numberof featuresn, numberof valuesperfea-
ture, k, andthe parametep, andcreatesn class-conditional
featuredistributions,eachsatisfyingthe condition P(x|C' =
¢) = 1—4if x = x° wherethex® arem differentstates
randomlyselectedrom k™ possiblestates.For eachclass,
theremainingprobabilitymassd in P(x|C = 4) is randomly
distributed amongthe remainingk™ — 1 states. Classprior
distributionsareuniform. Once P(X|C) is generatednaive
Bayesclassifier(NB) is comparedagainsthe Bayes-optimal
classifier(BO).

Figure 1b shaws that, as expected,the naive Bayeserror
(both the averageandthe maximum)cornvergesto zerowith
é — 0 (simulationperformedon a setof 500 problemswith
n = 2, m = 2, k = 10). Notethat, similarly to the previ-
ousobsenations,the error of naive Bayesis nota monotone
function of the strengthof featuredependenciesiamely the
averageclass-conditionamutualinformationplottedin Fig-
ure 1b is a concae function reachingits maximumbetween
6 = 0.45 andd = 0.5, while the decreas®f averagenaie
Bayeserroris monotondn 4.

Almost-functional feature dependencies

Another "counterintuitve” example that demonstrategshe
non-monotoniaelationbetweerthe featuredependencand
thenaive Bayesaccuray is the caseof certainfunctionaland
nearly-functionadependencieamongfeaturesFormally,

Theorem3 [10] Given equal classpriors, Naive Bayesis
optimalif X; = f;(X,) for everyfeatue X;, i = 2,...,n,
whee f;(-) is a one-to-onemapping®.

Namely naive Bayescanbe optimalin situationsjust oppo-
siteto the class-conditionaleatureindependencévhenmu-
tual informationis at minimum) - namely in casesof com-
pletely deterministicdependencemongthe features(when
mutual information achieves its maximum). For exam-
ple, Figure 1c plots the simulationsresults obtainedusing
an "nearly-functional” feature distribution generatorcalled
FUNC1, which assumesniform classpriors, two features,
eachhaving k values,and’relaxes” functionaldependencies
betweenthe featuresusing the noiseparamete. Namely
this generatorselectsa randompermutationof £ numbers,
which correspondso a one-to-onefunction f thatbindsthe
two features: X» = f(X1) (1 — 4). Thenit generatesan-
domly two class-conditiona{marginal) distributionsfor the

3A similarobserationwasmadein [11], but theimportant’one-
to-one” condition on functional dependenciesvas not mentioned
there. However, it easyto constructan exampleof a non-one-to-
onefunctionaldependencbetweerthefeatureghatyieldsnon-zero
errorof nave Bayes.
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X, feature,Py(X1) and P, (X4), for classO andclassl, re-
spectvely. Finally, it createsclass-conditionajoint feature
distributionssatisfyingthefollowing conditions:

Pe(z1, 25 = f(21)) = Pe(21)(1 - 6),and

P2 # f(on)) = Polan) g0 = 0,1
This way the statessatisfyingfunctionaldependencebtain
1 — ¢ probabilitymasssothatby controllingd we cangetas
closeaswe wantto the functionaldependencdescribede-
fore, i.e. the generatorelaxesthe conditionsof Theorem3.
Notethat,ontheotherhand,d = ’“k;l givesusuniformdistri-
butionsoverthesecondeatureP,(z2) =, Pe(z1,72) =

%, which makesit independenbf X; (givenclasse). Thus
varying é from O to 1 exploresthe whole rangefrom deter
ministic dependenc#o completeindependencéetweenthe
featuregivenclass.

Theresultsfor 500 problemswith £ = 10 aresummarized
in Figure1c, which plotsthe differencebetweenthe average
naive BayeserrorandaverageBayesrisk (whichturnedoutto
be= 0.336, a constanfor all ) is plottedagainsty. We can
seethat naive Bayesis optimalwhend§ = 0 (functionalde-
pendenceandwhend = 0.9 (completandependencejyhile
its maximumerroris reachedetweerthe two extremes.On
the otherhand,the class-conditionainutualinformationde-
creasegnonotonicallyin 4, from its maximumat § (func-
tional dependenciedp its minimumatd = 0.9 (complete
independencé)

4 Information loss: a better error predictor
than feature dependencies?

As we obsenedbefore,the strengthof featuredependencies
(i.e. the class-conditionamutual information betweenthe
featuresjignored’ by naive Bayesis not a goodpredictorof
its classificatiorerror. This makesuslook for abetterparam-
eterthatestimatesheimpactof independencassumptioron
classification.

We startwith a basic question: which dependenciebe-
tweenfeaturescan be ignoredwhen solving a classification
task? Clearly, the dependenciesvhich do not help distin-
guishingbetweendifferentclassesj.e. do not provide ary
information aboutthe class. Formally, let I(C; (X1, X2))
be the mutual information betweenthe featuresand the
class (note the difference from class-conditionalmutual
information) given the “true” distribution P(X;, X5, C),
while Inp(C; (X1, X2)) is the samequantity computedfor
Pyp(X1,X2,C) = P(X1|C)P(X2|C)P(C), the nave
Bayesapproximationof P(X;, X5, C). Thenthe parameter
Idiff = I(C;(X1,X2))— Inp(C; (X1, X2)) measureshe
amountof informationaboutthe classwhich is “lost” dueto
naive BayesassumptionFigure2ashavsthataveragel di f f
(“information loss”) increasesnonotonicallywith P(0), just
asthe averageerrorof naive Bayes.More interestingly Fig-
ure 2b plots averagenaive Bayeserrorversusaveragel di f f
for threedifferentvaluesof k (k = 5, 10, 15), which all yield

“Notethatthemutualinformationin Figurelcis scaleddivided
by 300)to fit theerrorrange.



almostsamecurve, closelyapproximatedy aquadratidunc-
tiony = 0.3z%2 + 0.1z + 0.001. Ourresults,not shovn here
due to spacerestrictions,also demonstratehat varianceof
the error increaseswith Idif f for eachfixed k; however,
maximumvariancedecreasewith k. While the dependence
betweenthe error and the information loss requiresfurther
study it is clearthatthe for zero-Bayes-rislproblemsinfor-
mationlossis a much betterpredictorof the error thanthe
mutualdependenceetweenthe featuregcompareto Figure
la).

Ediff=RNB—R* vs. Idiff (n=2, m=2, k=10)
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Figure2: Resultsor generatoZeroBayesRisk(13 valuesof
P(0)in [0,0.5] range 2000instancepereachvalueof P(0)):
(a) Averagenaive Bayeserror and averageinformationloss
Idif f versusP(0); (b) Averagenaive Bayeserrorversusav-
erag€’informationloss” Idif f for k=5,10,and15.

For non-zerdBayesrisk, thepictureis somavhatlessclear
However, the information loss still seemsto be a betterer-
ror predictorthan the class-conditionamutual information
betweenthe features. Figure 3a plots the averagediffer-
encebetweennaive Bayeserror and the Bayesrisk, called
Ediff, andtheinformationloss Idif f versusthe parame-
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Ediff=R, ,~R* vs. Idiff and Idiff” (n=2, m=2, k=10)
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Figure 3: Informationloss Idi f f on noisy concepts:aver
ageerrordifferencebetweemaive BayesandoptimalBayes,
Edif f,andaverageldi f f for (a)generatoEXTREME and
(b) generatoFUNC1; (c) scattemplotof Edi f f versusldi f f
andversusmutualinformation M I = I(X;; X»|C) for gen-
eratorRANDOM .
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terd. At thefirst sight, it lookslike Idif f is non-monotone
in 6 while Edif f is monotone;particularly while the error
increaseswith 4, information loss decrease the intenal
0 < 6 < 0.25. Note,however, thisintervalyieldsnegative(!)
valuesof Idif f. It appearghat naive Bayesoverestimates
the amountof informationthe featureshave aboutthe class
(possibly by countingsameinformationtwice dueto thein-
dependencassumption)which resultsin negative Idif f.
If we assumethat such overestimationis not harmful, just
equivalentto notlosingary information,andplot insteadthe
averageof maz(Idif f,0) (denotedldif f*), we obsere a
monotonerelationshipbetweenthe averageof Idif f+ and
theaveragenaive Bayeserror, asonewould expect(i.e., both
increasemonotonicallyupto § = 0.9, andthendecrease).

Similarly, in Figure3b we plot theerrordifferenceFEd;i f f
aswell asIdif f andIdif f+ versusd for our secondgen-
erator of non-zeroBayesrisk problems,FUNCL1. In this
casesnave Bayesalways overestimateshe amountof in-
formationabouttheclassthusIdif f is alwaysnon-positve,
i.e. Idif f+ = 0. Its relationto the naive error Bayeswhich
reachests maximumat someintermediatevalueof § is thus
notclear

Finally, we useda “completely” randomproblemgenera-
tor (calledRANDOM ) to comparethe class-conditionaiu-
tual informationbetweerthefeatures I (X;; X2|C), andthe
information loss Idif f, on arbitrary noisy concepts. For
eachclass,this generatosampleseachP(X; = z1,Xy =
z2|C = ¢) from a uniform distribution on the interval
[0.0,1.0]; the resulting probability table is then normalized
(divided by the total sumover all entries). Figure 3c shavs
a scatterplot for Edif f, the error differencebetweemaive
Bayesand optimal Bayesclassifiers,versusfeaturedepen-
dencel(X7; X»|C) andversusinformationloss Idiff. In
this caseswe canseethatbothparameterarecorrelatedvith
the error, however, the varianceis quite high, especiallyfor
I(X1; X2|C). Furtherstudyof both parametersn different
classesof noisy conceptsis neededo gain a betterunder
standingof their relevanceto the classificatiorerror.

5 Conclusions

Despiteits unrealisticindependencassumptionthe naive
Bayesclassifieris surprisinglyeffective in practicesinceits
classificationdecisionmay often be correctevenif its prob-
ability estimatesare inaccurate. Although someoptimality
conditionsof naive Bayeshave beenalreadyidentifiedin the
past[2], a deeperunderstandingf datacharacteristicghat
affectthe performancef naive Bayesis still required.

Our broad goal is to understandhe data characteristics
which affect the performanceof naive Bayes. Our approach
usesMonte Carlosimulationghatallow a systematistudyof
classificatioraccurag for severalclasse®f randomlygener
atedproblems.We analyzetheimpactof the distribution en-
tropy onthe classificatiorerror, shaving that certainalmost-
deterministic,or low-entrogy, dependenciegield good per
formanceof naive Bayes. Particularly, we demonstratehat
naive Bayesworks bestin two cases:completelyindepen-
dentfeatures(as expected)and functionally dependenfea-
tures(which s surprising).Naive Bayeshasits worstperfor
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mancebetweertheseextremes.

Surprisingly the accurag of naive Bayesis not directly
correlatedwith the degreeof featuredependenciesmeasured
asthe class-conditionamutualinformationbetweerthe fea-
tures. Instead,a betterpredictorof accurag is the loss of
informationthatfeaturescontainabouttheclasswhenassum-
ing naive Bayesmodel. However, furtherempiricalandthe-
oreticalstudyis requiredto betterunderstandherelationbe-
tweenthoseinformation-theoretienetricsandthebehavior of
naive Bayes.Furtherdirectionsalsoincludeanalysisof naive
Bayeson practicalapplicationthathave almost-deterministic
dependenciesharacterizingtherregionsof nave Bayesop-
timality andstudyingthe effectof variousdataparametersn
the naive Bayeserror. Finally, a betterunderstandingf the
impactof independencassumptioron classificationcanbe
usedto devise betterapproximationtechniquedor learning
efficient Bayesiannet classifiersandfor probabilisticinfer-
ence.e.g.,for finding maximum-likelihoodassignments.
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