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Abstract
1.	 Knowledge of variation in population processes (e.g. population growth) across 

broad spatiotemporal scales is fundamental to population ecology and critical for 
conservation decision-making. Count data from rigorous surveys (e.g. surveys 
with probabilistic sampling design and distance sampling information) can inform 
population processes but are often limited in space and time. Participatory sci-
ence data cover broader spatiotemporal extents but are prone to bias due to lim-
ited to no sampling design and lack of distance sampling information, hindering 
their capability of informing population processes.

2.	 Here, we developed an integrated dynamic N-mixture model that jointly analy-
ses rigorous survey and participatory science data to inform population growth 
at broad spatiotemporal extents. The model contains a flexible scaling param-
eter that allows fixed and random effects to account for biases and errors in 
participatory science data. We conducted simulations to evaluate the inference 
performance of this model across a broad range of spatial and temporal overlap 
between rigorous survey and participatory science data. We also conducted a 
case study of Baird's Sparrow (Centronyx bairdii), a species of conservation con-
cern, to illustrate the application of the integrated model with rigorous survey 
data from the Integrated Monitoring in Bird Conservation Regions programme 
and participatory science North American Breeding Bird Survey and eBird data.

3.	 Simulations showed that the integrated model improved precision without bias-
ing parameter estimates, in comparison with a model informed by rigorous sur-
vey data alone. The case study further demonstrated the utility of the integrated 
model for quantifying range-wide, long-term population processes and environ-
mental drivers despite limited spatiotemporal extent of rigorous survey data. In 
particular, we found that population growth rate peaked under medium tempera-
ture, which were only apparent in the integrated model.
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1  |  INTRODUC TION

Understanding spatial and temporal variation in population pro-
cesses (i.e. population growth and vital rates) beyond simply de-
scribing population trends is fundamental to population ecology 
and critical for developing conservation strategies for wildlife 
populations under increasing climate and land use change (Benton 
et  al.,  2006; Davis, Saunders, et  al.,  2023; Gamelon et  al.,  2017; 
Lewis et al., 2023). In particular, accelerating population declines el-
evate the value of understanding range-wide, long-term population 
processes of wildlife species, which is critical for evaluating and pre-
dicting their responses to various threats and conservation actions 
(Paniw et al., 2023; Zhao et al., 2019). Traditional approaches that 
use capture-based data (e.g. capture–recapture; Pollock, 1991) to in-
form population processes, however, are logistically and financially 
intractable to implement across the broad spatial and temporal ex-
tents for many species.

Recent advances in dynamic N-mixture models (Bellier 
et al., 2016; Dail & Madsen, 2011; Hostetler & Chandler, 2015) allow 
estimation of parameters representing population processes (pop-
ulation growth, apparent survival and recruitment) from counts of 
unmarked populations. Reliable estimation of these parameters re-
quires count data from rigorous surveys, that is surveys with a proba-
bilistic sampling design (Albert et al., 2010; Williams & Brown, 2019) 
and auxiliary information (e.g. distance sampling and removal sam-
pling; Seber, 1982, Royle et al., 2004, Sollmann et al., 2016). While 
probabilistic sampling design allows unbiased representation of the 
study populations, auxiliary information is important for separating 
observation errors from ecological processes (Knape et  al.,  2018; 
Zhao & Royle,  2019). The requirements increase the time and fi-
nancial resources needed for data collection, which limits the spa-
tiotemporal extent of rigorous survey data and thus their ability to 
represent range-wide, long-term population processes.

Conversely, participatory science (Zoellick et  al.,  2012; also 
known as citizen science or community science) data can cover broad 
spatial and temporal extents and thus have been used broadly in eco-
logical research (Sullivan et al., 2014) such as those related to species 
distributions (Bradsworth et al., 2017; Clark et al., 2017; Johnston 
et al., 2020; Steen et al., 2021), migration (Cox et al., 2023; Sharma 
et al., 2022) and community structure (Davis, Bai, et al., 2023; Reif 

et al., 2022). Participatory science data, however, are often collected 
under limited to no sampling design and without strong auxiliary in-
formation (e.g. distance sampling), making them prone to sampling 
biases and observations errors that are difficult to separate from 
ecological processes (Bowler et  al., 2022; Hochachka et  al., 2012; 
Johnston et al., 2023; Kamp et al., 2016; Lukyanenko et al., 2016). 
Due to such limitations, researchers have mainly used participatory 
science data to inform population trends (Fink et al., 2023; Horns 
et al., 2018; Phalan et al., 2019; Sauer & Link, 2011). Using participa-
tory science data in dynamic N-mixture models leads to biased pa-
rameter estimates and thus inaccurate understanding of population 
processes (Hostetler & Chandler, 2015).

Integrated distribution models (IDMs) provide a way to leverage 
the strengths while overcoming the weaknesses of multiple data 
sets from unmarked populations (count, detection/non-detection 
and presence-only; Dorazio,  2014, Pacifici et  al.,  2017, Fletcher 
et al., 2019, Miller et al., 2019, Isaac et al., 2020), sometimes involving 
participatory science data (Di Febbraro et al., 2023; Farr et al., 2021; 
Pagel et  al.,  2014; Robinson et  al.,  2020; Schindler et  al.,  2022; 
Stillman et al., 2023). Given the relative ease with which participa-
tory science data can be obtained across broad spatiotemporal ex-
tents, IDMs can thus provide new opportunities for understanding 
relationships between ecological patterns and global change drivers 
(Di Febbraro et al., 2023; Doser et al., 2021; Grüss et al., 2023).

While numerous studies have developed IDMs, it remains chal-
lenging to integrate participatory science with rigorous survey data 
without inducing bias in parameter estimates (Di Febbraro et al., 2023; 
Hochachka et  al.,  2012; Johnston et  al.,  2023; Pacifici et  al.,  2017). 
Correctly accounting for biases and errors in participatory science data 
is particularly important for dynamic N-mixture models due to the sen-
sitivity of these models to assumption violations (Barker et al., 2018; 
Hostetler & Chandler,  2015; Link et  al.,  2018; Zhao & Royle,  2019). 
One potential solution is to introduce a parameter that scales the esti-
mates based on participatory science data to the same level as the es-
timates based on rigorous survey data (Schindler et al., 2022; Stillman 
et al., 2023). This scaling parameter, however, has only been used in 
models that inform population trends (Schindler et al., 2022, Stillman 
et  al.,  2023), but not in models that inform population processes. 
Furthermore, this scaling parameter has not been developed to ac-
count for both sampling biases and observation errors in participatory 

4.	 The integrated model developed in this study is useful for understanding wildlife 
population processes at broad spatiotemporal scales with count data. The flex-
ible structure of this model, in particular the scaling parameter, makes it highly 
adaptable to a broad range of ecological systems and survey procedures. These 
properties make this modelling approach highly relevant for both population ecol-
ogy and conservation practice.

K E Y W O R D S
citizen science, data integration, distance sampling, integrated distribution model, N-mixture 
model, opportunistic data, population dynamics, structured survey
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science data. The robustness of this scaling parameter under varying 
extents of spatiotemporal overlap between rigorous survey and partic-
ipatory science data also remains to be evaluated.

In this study, we developed an integrated dynamic N-mixture 
model that jointly analyses rigorous survey and participatory sci-
ence data to estimate the spatiotemporal variation in abundance, 
population growth and environmental drivers. The model contains 
a flexible scaling parameter that allows fixed and random effects 
to account for potential sampling biases and observation errors in 
participatory science data. We first used simulations to evaluate 
whether integrating participatory science data with rigorous survey 
data improved precision without biasing parameter estimates, while 
considering a broad range of spatiotemporal overlap between these 
data. We then illustrated the application of the integrated model 
with a case study of Baird's Sparrow (Centronyx bairdii), a species of 
conservation concern. In the case study, we jointly analysed rigorous 
survey data from the Integrated Monitoring in Bird Conservation 
Regions (IMBCR) programme (Pavlacky et al., 2017) and participa-
tory science data from North American Breeding Bird Survey (BBS; 
Sauer et al., 2017) and eBird (Sullivan et al., 2009), to quantify range-
wide, long-term population processes and environmental drivers of 
Baird's Sparrow population dynamics. Finally, we provide guidance 
for the applications of the integrated model in population ecology 
and conservation.

2  |  METHODS

2.1  |  Motivating data

Our model development was motivated by one data set from a rig-
orous survey, the IMBCR programme and two data sets from par-
ticipatory science, BBS and eBird. The IMBCR programme has been 
designed and implemented by Bird Conservancy of the Rockies across 
13 US states nested in eight Bird Conservation Regions through col-
laborations with federal and state agencies, non-governmental or-
ganizations and universities. The IMBCR programme is the largest 
land bird monitoring programme in North America with a rigorous 
survey (Pavlacky et al., 2017). Due to its probabilistic sampling de-
sign (Pavlacky et al., 2017; Stevens & Olsen, 2004) and inclusion of 
distance and removal sampling information, IMBCR data allow unbi-
ased inference of population abundance and underlying processes. 
An IMBCR site is 1 km × 1 km in area that contains maximum 16 
evenly spaced point count plots as spatial replicates to further facili-
tate the estimation of observation errors.

BBS is a long-term, volunteer-based, international monitoring 
program of North American bird species administered by the US 
Geological Survey and Canadian Wildlife Service that has been op-
erating annually during peak bird breeding season (May and June) 
since 1966 (Sauer et al., 2017; Ziolkowski Jr. et al., 2022). BBS data 
have been collected annually at >2500 routes across the United 
States and Canada (Robbins et  al.,  1986). While these routes are 
widespread across landscapes, their vicinity to road can lead to 

biased representation of local population size. Each route is approx-
imately 40 km long with 50 stops spaced 0.8 km apart; at each stop, 
surveyors implement a 3-min point count during which they record 
all species seen or heard. Along with count data, BBS provides infor-
mation distinguishing individual surveyors and whether they were 
new to BBS. Potential sampling biases and observer-specific obser-
vation errors in BBS data can be represented by random effects, and 
new observer-specific observation errors can be represented by a 
fixed effect.

eBird is one of the largest participatory science projects glob-
ally and is managed by the Cornell Lab of Ornithology. eBird en-
ables volunteer observers to contribute opportunistic observations 
to a publicly available database through Cornell's website (Sullivan 
et  al.,  2009; https://​ebird.​org/​about/​​downl​oad-​ebird​-​data-​prod-
ucts). eBird data are often filtered to minimize effects of sam-
pling biases using the ‘auk’ package in program R (Strimas-Mackey 
et al., 2021). Specifically, we censored data to only include complete 
checklists where observers recorded counts of all species detected 
to reduce the effects of preferential species reporting; we also fil-
tered data for observations that started between 5 and 11 am, with a 
≤6-h duration, ≤10-km distance and ≤10 observers (Strimas-Mackey 
et al., 2021). We further include all non-zero counts; for counts of 
0s, we kept one observation for each location and year to reduce 
spatial clustering of the data (Robinson et al., 2018). Even with these 
filtering efforts, eBird data are still prone to sampling biases and 
observer-specific observation errors that can be represented by 
random effects and other observation errors such as those related 
to observation duration that can be represented by fixed effects. 
Permission was not needed for collecting IMBCR, BBS and eBird 
data.

2.2  |  Model description

We developed an integrated dynamic N-mixture model that jointly 
analyses count data from rigorous surveys and participatory science. 
We generalized the characteristics of IMBCR, BBS and eBird data to 
three data sets, one rigorous survey (RS) data and two participatory 
science (PS1, PS2) data so that the modelling approach is applicable 
for other data sets. More specifically, PS1 and PS2 data contained 
biases and errors represented by random and fixed effects that 
were broadly applicable for most participatory science data (Bird 
et al., 2014; Johnston et al., 2023). Due to the flexibility of our model 
in analysing a varying number of data sets, we considered a model 
that jointly analyses RS, PS1 and PS2 data, a model that jointly analy-
ses RS and PS1 data, and a model that analyses RS data only.

2.2.1  |  Process sub-model

The process sub-model specifies how abundance varies across 
space and time. More specifically, the process sub-model follows the 
model described by Hostetler and Chandler (2015) such that
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in which Ni,t is the true abundance at site i in year t that follows a 
Poisson distribution, and �i,t is its expectation. In the first year, �i,t=1 is a 
function of k environmental covariates x's with intercept and slope pa-
rameters �[0]. For subsequent years (i.e. t ≥ 2), �i,t≥2 is calculated from 
population size in the previous year Ni,t−1, population growth rate �i,t−1 
and expected number of immigrants �. Population growth rate �i,t−1 is 
further a function of density and environmental covariates with inter-
cept and slope parameters �[�].

2.2.2  |  Observation sub-models

The first observation sub-model links RS data with the true abun-
dance while utilizing distance and removal sampling information 
(Amundson et al., 2014; Royle et al., 2004; Seber, 1982) such that

in which yi,t,j,k,s is the RS count at site i in year t at point j in distance 
bin k and time interval s, and is assumed to follow a multinomial distri-
bution with detection probability �i,t,j,k,s, �i,t,j is the standard deviation 
for a half-normal distance sampling function describing the decline in 
perceptibility with distance from the surveyor, Dk,L and Dk,U are the 
distances of the lower and upper bounds of the kth distance bin, re-
spectively, r is the radius of the area within which observations are 
conducted and �i,t,j is availability within one time interval. Further, 
�i,t,j and �i,t,j are functions of the same RS-specific covariates w's with 
intercept and slope parameters �[�] and �[�], respectively, to capture 
potential heterogeneity in perceptibility and availability across sites, 
years, and points. Further, the mean �i,t,j and �i,t,j can be expressed as 
� = exp

(
�[�]

0

)
 and � = logit−1

(
�[�]

0

)
, respectively, since w's are standard-

ized to have 0 mean.
The second observation sub-model links PS1 data with abun-

dance while considering potential sampling biases and observation 
errors represented by random and fixed effects such that

where ci,t,j,o is the PS1 count at site i in year t at point j of cluster (e.g. ob-
servations collected by the same observer) o, � i,t,j,o is a scaling param-
eter that represents potential sampling biases and observation errors 

with mean � = exp
(
�
[�]
0

)
, a cluster-specific random effect �o with 

mean 0 and standard deviation �[�] and fixed effects of PS1-specific 
covariates z's with slope parameters �[�].

The third observation sub-model links PS2 data with abundance 
while considering potential sampling biases and observation errors 
represented by fixed effects such that

where ei,t,j is the PS2 count at site i in year t at point j, and �i,t,j is 
a scaling parameter with mean � = exp

(
�[�]

0

)
 and driven by PS2-

specific covariates v's with slope parameters �[�]. By specifying 
separate observation sub-models for PS1 and PS2 data, our ap-
proach enables estimating separate scaling parameters for each 
data set to achieve flexibility.

2.3  |  Simulation study

We conducted simulations to detect any bias in parameter estimates. 
The simulations also aimed to compare the precision of parameter 
estimates between the three models. During the simulations, we con-
sidered a broad range of spatial and temporal overlap between RS, 
PS1 and PS2 data that went beyond the situation for IMBCR, BBS 
and eBird data so that our study can guide integration of other data.

We considered 100 sites for RS, 150 sites for PS1 and 200 sites 
for PS2 in our simulations to represent the idea that participatory 
science data often cover a larger number of sites than rigorous sur-
vey data. Initial abundance and population growth were functions of 
a covariate representing an environmental gradient with a quadratic 
form, while the covariate was random generated from a standard 
Normal distribution. We set �  to 1.5 and � to 5 to allow substantial 
bias in PS1 and PS2 data. Further, �, �, � and � contained variation 
that was explained by random and/or fixed effects. More specifi-
cally, we considered two fixed effects for �, two fixed effects for 
�, one random effect and three fixed effects for � and three fixed 
effects for �, using the approach described in Equations 2–4.

The first simulation aimed to evaluate the performance of the 
models under different temporal availability of RS data due to the 
concern that rigorous surveys often cover a shorter time period than 
participatory science and may not be implemented in consecutive 
years (Hochachka et al., 2012; Johnston et al., 2023). In this simula-
tion, we assumed that all three data sets covered the entire study area, 
and 50% of the sites from RS overlapped with sites from PS1 and PS2 
(Table S1). In the first scenario, all three surveys covered the entire 
study period of 20 years. In the second scenario, RS covered the last 
10 years, PS1 covered the entire 20 years and PS2 covered the last 
15 years. In the third scenario, RS covered the 10 odd years (i.e. 1, 3, …, 
19), PS1 covered the entire 20 years and PS2 covered the last 15 years.

The second simulation aimed to evaluate the performance of the 
models while assuming that RS data covered different proportion of 

(1)

Ni,t-Poisson
�
�i,t

�

log
�
�i,t=1

�
=�

[0]
0

+�
[0]
1

×xi,1,1+ … +�
[0]
k

×xi,1,k

�i,t≥2=Ni,t−1×�i,t−1+�

log
�
�i,t−1

�
=�

[�]

0
+�

[�]

D
×Ni,t−1+�

[�]

1
×xi,t,1+ … +�

[�]

k
×xi,t,k

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(2)

yi,t,j,k,s-Multinomial
�
Ni,t ,�i,t,j,k,s

�

�i,t,j,k,s =

2×�2
i,t,j

×

�
exp

�
−D2

k,L

2×�2
i,t,j

�
−exp

�
−D2

k,U

2×�2
i,t,j

��

r2
×

��
1−�i,t,j

�s−1
×�i,t,j

�

log
�
�i,t,j

�
=�[�]

0
+�[�]

1
×wi,t,j,1+ … +�[�]

l
×wi,t,j,l

logit
�
�i,t,j

�
=�[�]

0
+�[�]

1
×wi,t,j,1+ … +�[�]

l
×wi,t,j,l

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(3)
ci,t,j,o-Poisson

�
Ni,t ×� i,t,j,o

�

log
�
� i,t,j,o

�
=�

[�]
0

+�o+�
[�]
1

×zi,t,j,1+ … +�
[�]
l

×zi,t,j,l

⎫
⎪⎬⎪⎭
,

(4)
ei,t, j-Poisson

�
Ni,t ×�i,t,j

�

log
�
�i,t,j

�
=�[�]

0
+�[�]

1
×vi,t,j,1+ … +�[�]

l
×vi,t,j,l

⎫
⎪⎬⎪⎭
,
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the environmental gradient due to the concern that rigorous surveys 
often cover limited spatial extents and thus environmental gradient 
(Hochachka et al., 2012, Johnston et al., 2023). In this simulation, we 
assumed that 50% of the sites from RS overlapped with sites from 
PS1 and PS2. We also assumed that RS covered the last 10 years, PS1 
covered the entire 20 years and PS2 covered the last 15 years. In the 
three scenarios, we assumed that RS covered the upper 50%, 25% 
and 10% proportion of the environmental gradient, respectively, 
while PS1 and PS2 covered the entire environmental gradient.

The third simulation aimed to evaluate the performance of the 
models while assuming varied numbers of overlapped sites between 
RS and PS1/PS2 due to the concern that rigorous surveys and partic-
ipatory science often are not coordinated and thus may not cover the 
same sites (Hochachka et al., 2012, Johnston et al., 2023). In this sim-
ulation, we assumed that RS covered the last 10 years, PS1 covered 
the entire 20 years and PS2 covered the last 15 years. We also as-
sumed that RS covered the upper 50% proportion of the environmen-
tal gradient, while the PS1 and PS2 covered the entire environmental 
gradient. In the three scenarios, we assumed that 50%, 25% and 0% 
of RS sites overlapped with PS1 and PS2 sites, respectively (Table S1).

Because �  and � represent a combined effect of sampling bi-
ases and observation errors, they can be greater (data overrepre-
sent abundance) or less than 1 (data underrepresent abundance). To 

evaluate the performance of the integrated model when data under-
represent abundance, we conducted a complementary simulation in 
which we set �  to 0.1 and � to 0.2.

We simulated 100 data sets for each scenario. Posterior sam-
ples of all 100 simulations for each situation were pooled to create 
violin plots. Each violin plot represents the posterior distribution of 
the parameter. Additionally, a violin plot also contains a boxplot that 
represents key statistics of the posterior distribution including the 
median, 50% credible interval and 95% credible interval. We con-
sidered a lack of evidence for bias in parameter estimates if the 50% 
credible interval of the posterior distribution covers the true value 
of the parameter used in data simulation (Bellier et al., 2016; Doser 
et al., 2021). Precision was also visualized from the width of the vio-
lin plots (Figures 1–3, Figures S1–S3).

2.4  |  Case study

2.4.1  |  Baird's Sparrow ecology and 
conservation status

One-third of bird populations in North America has been 
lost during the last half century, among which grassland bird 

F I G U R E  1  Posterior distributions 
(violin) and key statistics (median: white 
dot, 50% credible interval: box, 95% 
credible interval: whiskers) of process 
parameters in dynamic N-mixture models 
that use rigorous survey (RS) data only 
(red), RS and the first participatory science 
(PS1) data (blue), or RS, PS1 and the 
second participatory science (PS2) data 
(purple) when RS data cover the entire 
study period of 20 years, the second half 
of the study period, or odd years of the 
study period in the simulation study. A 
horizontal yellow line represents the true 
value of the corresponding parameter 
used in data simulation.
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populations have experienced the steepest decline with some spe-
cies having lost 70%–90% of their historic populations (Rosenberg 
et al., 2019). Baird's Sparrow (Centronyx bairdii) is a grassland bird 
species of conservation concern due to the fact that their popu-
lations have declined by 57% throughout their range from 1970 
to 2019 (Rosenberg et  al.,  2019). Therefore, the species is cur-
rently listed as a species of greatest conservation need in multi-
ple state wildlife action plans, bird of conservation concern for 
US Fish and Wildlife Service, and a tipping point species by Road 
to Recovery (https://​r2rbi​rds.​org/​tippi​ng-​point​-​species). As a spe-
cies that breeds in intact grasslands with tall grass structure and 
little shrub cover, understanding the effects of grassland habitat 
loss and climate change on its population processes is essential for 
effective conservation of this species.

2.4.2  |  Data preparation

The study area covers the breeding range of Baird's Sparrow that 
composes two Bird Conservation Regions, Prairie Pothole and 
Badlands and Prairies (Figure 4). The study area was delineated to 
5 km × 5 km grid cells to allow adequate spatial heterogeneity. All 

three data sets are associated with the grid cells if an IMBCR site, 
the starting point of a BBS route, or an eBird location falls into the 
grid cell. We used IMBCR data from years 2010 through 2021 due to 
consistency in its protocol during this period of time. We used BBS 
data from 2002 through 2021 because the numbers of routes sur-
veyed are relatively consistent during this period of time. We used 
eBird data from 2002 through 2021 to be consistent with BBS data. 
For environmental covariates, we obtained land cover data from the 
MODIS product MCD12Q1 v061 (Friedl & Sulla-Menashe,  2022) 
and mean monthly maximum temperatures from the gridded daily 
surface weather data product for North America, Daymet V4 
(Thornton et al., 2022). Grassland coverage and mean temperature 
of May–July were then calculated for each grid cell and year to rep-
resent the spatiotemporal variation of key environmental drivers of 
the species (Figures S4 and S5).

2.4.3  |  Model specification

The IMBCR only model covered the southeastern portion of 
the study area and Years 2010–2021 for which IMBCR data are 
available. We ran the two integrated models (i.e. IMBCR + BBS, 

F I G U R E  2  Posterior distributions 
(violin) and key statistics (median: white 
dot, 50% credible interval: box, 95% 
credible interval: whiskers) of process 
parameters in dynamic N-mixture models 
that use rigorous survey (RS) data only 
(red), RS and the first participatory 
science (PS1) data (blue), or RS, PS1 and 
the second participatory science (PS2) 
data (purple) when RS data cover the 
upper 50%, 25% or 10% proportion of the 
environmental gradient in the simulation 
study. The RS-only models did not 
converge under 25% and 10% coverages, 
and thus are not shown. A horizontal 
yellow line represents the true value of 
the corresponding parameter used in data 
simulation.
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IMBCR + BBS + eBird) for two purposes. First, to evaluate the 
inference consistency between the models, we limited BBS and 
eBird data to the same spatiotemporal extent as IMBCR data for 
the integrated models. Second, to illustrate the capability of the 
integrated models in range-wide, long-term inference, we ex-
tended BBS and eBird data to the entire study area and Years 
2002–2021. We also ran a model that used BBS and eBird, but 
not IMBCR data, to illustrate the importance of IMBCR data in the 
integrated model.

The model structure overall follows the description above. For 
the process sub-model, we considered zero inflation for the true 
abundance with a probability of 1 − � of having 0s, and included 
grassland coverage, temperature and temperature square as covari-
ates. For IMBCR data, we assumed constant � and � due to consis-
tency in survey effort. For BBS data, we considered random effects 
of route and observer, and a fixed effect of new observer on the 
scaling parameter (Sauer & Link, 2011). Because location coordinates 
are only available for the first stop of each BBS route, all stops of a 
given route were considered observations of the same grid where 
the first stop falls in. However, because later stops are more likely 
to fall out of the grid than earlier stops, we included an error term to 
describe the difference between the stop-level count and the true 

abundance of the grid while allowing increasing variance of the error 
term to represent increasing spatial discrepancy of the stops along 
each route. For eBird data, we considered random effects of loca-
tion (with mean 0 and standard deviation �[�]

location
) and observer (with 

mean 0 and standard deviation �[�]

observer
) and fixed effects of the type 

(stationary or travelling), duration, distance and number of observ-
ers of the observations on the scaling parameter. We also allowed 
zero inflation (with a probability of 1 − � [�]) and false-positive obser-
vation errors (with a rate of �[�]) in eBird data.

We conducted posterior predictive checks for the models, using 
chi-squared statistics as discrepancy measures (Conn et  al.,  2018; 
Gelman et  al.,  2014). A posterior predictive p-value between 0.1 
and 0.9 was considered indicator of adequate goodness-of-fit of the 
model to the data (Gelman et al., 2014). We calculated tail proba-
bility (p-tail) for the slope parameters that represent the effects of 
grassland coverage, temperature and temperature square on initial 
population size and population growth rate. The tail probability was 
defined as the proportion of posterior samples that are below 0 for 
a positive effect or above 0 for a negative effect. We considered to 
have a strongly supported effect when a p-tail was <0.05, a moder-
ately supported effect when a p-tail was 0.05–0.20 and no effect 
when a p-tail was >0.20 (Zhao et al., 2023).

F I G U R E  3  Posterior distributions 
(violin) and key statistics (median: white 
dot, 50% credible interval: box, 95% 
credible interval: whiskers) of process 
parameters in dynamic N-mixture models 
that use rigorous survey (RS) data only 
(red), RS and the first participatory science 
(PS1) data (blue), or RS, PS1 and the 
second participatory science (PS2) data 
(purple) when RS sites overlap with 50%, 
25% or 0% of the PS1 and PS2 sites in 
the simulation study. A horizontal yellow 
line represents the true value of the 
corresponding parameter used in data 
simulation.
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8  |    ZHAO et al.

2.5  |  Model implementation

We conducted Markov chain Monte Carlo (MCMC) computing in 
Nimble (de Valpine et al., 2017) through the R programming language 
(R Development Core Team,  2019). We used vague priors in both 
simulation and case studies. To generate posterior samples, we used 
three chains and 5000 iterations including 4000 burn-in without 
thinning for the simulation studies, and three chains and 100,000 
iterations including 40,000 burn-in without thinning for the case 
study. The convergence of the MCMC computing was checked using 
the diagnostic plot of the posterior samples and Brooks–Gelman–
Rubin Diagnostics, where R̂ ≤ 1.05 was considered indicative of con-
vergence (Brooks & Gelman, 1998).

3  |  RESULTS

3.1  |  Simulation study

We found no evidence for bias in any of the models under any 
scenario we considered because the true values of parameters 
used in data simulations were always covered by the 50% credi-
ble interval of the posterior samples of the corresponding param-
eter (Figures 1–3, Figures S1–S3). For the first simulation study 
that allowed different temporal availability of rigorous survey 
data, the integrated models had higher precision in the estimates 
of process parameters than the model that used rigorous sur-
vey data only (Figure  1). For the second simulation study that 
allowed rigorous survey data to cover different proportions of 

the environmental gradient, the model that used rigorous survey 
data only converged when the data covered 50% of the envi-
ronmental gradient but did not converge when the data covered 
25% or 10% of the environmental gradient. The integrated mod-
els always converged and had higher precision in the estimates 
of process parameters than the model that used rigorous survey 
data only, and the improvement in precision was particularly high 
for parameters related to environmental effects on initial popu-
lation size and population growth rate (Figure  2). For the third 
simulation study that allowed different levels of overlapped sites 
between rigorous survey and participatory science data, the in-
tegrated models had higher precision in the estimates of process 
parameters than the model that used rigorous survey data only 
(Figure 3). When considering values of �  and � that are less than 
1, the integrated model provided improved precision for slope 
parameters of environmental effects on initial population size 
and population growth rate (Figure S6).

3.2  |  Case study

Posterior predictive checks showed adequate goodness-of-fit 
of all three models to IMBCR, BBS and eBird data (Table 1). The 
integrated models (i.e. IMBCR + BBS, IMBCR + BBS + eBird) had 
higher precision in the estimates of process parameters than 
the IMBCR-only model (Figure  5; Table  S2). When limiting BBS 
and eBird data to the same spatiotemporal extent as IMBCR, the 
three models were highly consistent in their parameter estimates 
(Figure 5; Table S2). When extending BBS and eBird data to the 

F I G U R E  4  Location of the study area 
encompassing the Prairie Pothole Region 
(PPR) and Badlands and Prairies (BAP) 
in North America (inner panel), and the 
locations of IMBCR, BBS and eBird survey 
sites in the study area.
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    |  9ZHAO et al.

entire study area and period, the three models agreed that initial 
population size peaked under high grassland coverage and medium 
temperature, but disagreed in the effects of grassland coverage 
and temperature on population growth rate (Figure 5; Table S2). 
More specifically, the IMBCR-only model estimated a negative ef-
fect, but the IMBCR + BBS model and IMBCR + BBS + eBird model 
estimated weak effects of grassland coverage on population 
growth rate (Figure  5; Table  S2). While the IMBCR + BBS model 
and IMBCR + BBS + eBird model agreed in a quadratic relation-
ship, the IMBCR-only model supported a negative relationship 
but was uncertain about a quadratic relationship between popu-
lation growth rate and temperature (Figures  5 and 6; Table  S2). 
The model that used BBS and eBird but not IMBCR data did not 
converge (Figure S7).

4  |  DISCUSSION

In this study, we introduced a novel modelling approach of integrat-
ing count data from rigorous surveys and participatory science to 
understand wildlife population processes at broad spatial and tem-
poral scales. The flexibility of the scaling parameter allows fixed and 
random effects to account for sampling biases and observation er-
rors in participatory science data. Simulations demonstrated that 
integrating participatory science data with rigorous survey data 
leads to improved precision without biasing parameter estimates 
under a broad range of spatiotemporal overlap between these data, 
in comparison with a model that uses rigorous survey data only. A 
case study further demonstrated the utility of the integrated model 
for quantifying range-wide, long-term population processes and 

F I G U R E  5  Posterior summaries (white 
line: median, box: 50% CI, whiskers: 95% 
CI) of the effect of grassland coverage, 
effect of temperature, and effect of 
temperature square on initial population 
size and population growth rate in a model 
that analyses IMBCR data only, a model 
that jointly analyses IMBCR and BBS 
data, and a model that jointly analyses 
IMBCR, BBS, and eBird data. BBS and 
eBird data are either limited to the same 
spatiotemporal extent as IMBCR data, 
or extended to the entire study area and 
period. The vertical grey line represents 0, 
that is no effect.

TA B L E  1  Posterior predictive p values for IMBCR, BBS and eBird data in a model that analyses IMBCR data only, a model that jointly 
analyses IMBCR and BBS data, and a model that jointly analyses IMBCR, BBS and eBird data. BBS and eBird data are either limited to the 
same spatiotemporal extent as IMBCR data, or extended to the entire study area and period.

IMBCR-only
IMBCR + BBS, 
limited

IMBCR + BBS, 
extended

IMBCR + BBS + eBird, 
limited

IMBCR + BBS + eBird, 
extended

IMBCR data 0.256 0.257 0.272 0.259 0.275

BBS data 0.506 0.508 0.507 0.510

eBird data 0.206 0.248
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10  |    ZHAO et al.

environmental drivers despite limited spatiotemporal extent of rig-
orous survey data.

4.1  |  Model characteristics

Our modelling approach addresses a major challenge in statistical 
ecology that using participatory science data in integrated models 
may bias parameter estimates (Di Febbraro et al., 2023; Hochachka 
et  al.,  2012; Johnston et  al.,  2023; Pacifici et  al.,  2017). We ad-
dressed this challenge by using a parameter in the integrated model 
that scale the estimates of participatory science data to the same 
level of the estimates of rigorous survey data (Schindler et al., 2022; 
Stillman et al., 2023). In this way, we successfully used participa-
tory science data in a dynamic N-mixture model to inform popula-
tion growth, while previous studies that integrated participatory 
science data were mostly constrained to static (Conn et al., 2022; 
Dambly et  al., 2023; Farr et  al.,  2021; Gelfand & Shirota,  2019; 
Koshkina et  al., 2017; Robinson et  al.,  2020) or trend models 
(Schindler et al., 2022; Stillman et al., 2023). Considering the fast 
development of dynamic N-mixture models to allow inferences 
of demographic rates (Dail & Madsen,  2011), disease structures 
(DiRenzo et  al.,  2019), spatial dependency among sites (Howell 
et al., 2020) or interspecific interactions (Zhao et al., 2022), there 
are great potentials to extend our model to understand various 
ecological processes at broad spatiotemporal scales represented 
by participatory science data.

Our approach is highly generalizable because of the flexibil-
ity of the scaling parameter. In particular, we developed the scal-
ing parameter to represent a variety of factors that may influence 
sampling and observation using a combination of random and fixed 
effects. Studies have shown that observation errors in participatory 
science data can be represented by random and fixed effects (Bird 
et  al.,  2014; Johnston et  al.,  2023). For instance, Sicacha-Parada 
et al. (2021) used a combination of random and fixed effects to ad-
dress errors related to accessibility in a participatory science data 
set of moose. Here, we extended these ideas to account for spatio-
temporal variations in both biases and errors in participatory science 
data, allowing the applications of our approach to go beyond the 
data sets and taxon considered in the current study.

Furthermore, our simulations demonstrated the robustness of 
the integrated model under a broad range of spatial and temporal 
overlaps between rigorous survey and participatory science data. 
For example, the integrated model works well when rigorous survey 
data are only available in odd years, meaning that, when combined 
with participatory science data, these data are useful for inferring 
population processes even if they are not collected in consecutive 
years. The integrated model also works well when rigorous survey 
data only cover a small proportion of the environmental gradient. 
Considering that participatory science data are broadly available 
across space and time, this means even limited rigorous survey data 
can be valuable. Lastly, we showed that rigorous survey data do not 
need to be collected at the same sites as participatory science data 

to make the integrated model work, which further broadens the ap-
plication of the integrated model.

Due to the vast variation in life history characteristics (e.g. slow 
life history, group living) and sampling and observation processes, 
further investigations are needed to explore additional model struc-
tures such as zero-inflation and over-dispersion in the scaling pa-
rameter. Recent advances in Bayesian model selection (Hooten & 
Hobbs, 2015) can play an important role in identifying the optimal 
structure and predictors of this parameter.

4.2  |  Importance of both rigorous and participatory 
science data

Rigorous survey data are indeed key for the success of this inte-
grated model because the scaling parameter is estimable only when 
rigorous survey data are used. Without rigorous survey data to allow 
separating observation errors from ecological processes, the scal-
ing parameter will be confounded with the abundance parameter 
because multiple combinations of abundance and scaling parameter 
can yield the same count value (Figure S7; also see Dorazio, 2014). 
While studies have shown the possibility of estimating abundance 
indices by using only participatory science data in N-mixture models 
(Goldstein & de Valpine, 2022), it provides inaccurate understanding 
about population processes when biases and errors are not sepa-
rated from abundance (Hostetler & Chandler, 2015). Considering the 
importance of understanding population processes in population 
ecology and conservation, we highly recommend researchers to col-
lect rigorous survey data.

F I G U R E  6  Predicted population growth rate across temperature 
gradient using parameter estimates from a model that analyses 
IMBCR data only, a model that jointly analyses IMBCR and BBS 
data, and a model that jointly analyses IMBCR, BBS and eBird data. 
BBS and eBird data cover the entire study area and period.
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    |  11ZHAO et al.

Using a case study, we demonstrated the value of participatory 
science data in range-wide, long-term inferences of population pro-
cesses. In particular, the integrated model showed a stronger sup-
port for the quadratic effect of temperature on population growth 
than the model that uses rigorous survey data only, due to the higher 
precision of the former (Figure  6). This pattern is consistent with 
theoretical expectation of an optimal temperature in the range of a 
species (Corkrey et al., 2019), which could be challenging to detect 
if the inference is geographically limited to a portion of temperature 
gradient. Taken together, both rigorous survey and participatory sci-
ence data contain unique values, and jointly analysing them provides 
a promising direction for leveraging their strength.

5  |  CONCLUSION

Understanding range-wide, long-term population processes requires 
data that allow the separation of biases and errors from ecological 
processes and cover broad spatial and temporal extents, yet, no sin-
gle data set can satisfy both requirements. The integrated model de-
veloped in this study can leverage the strength and overcome the 
weakness of count data from rigorous surveys and participatory sci-
ence for the inference of population processes. The flexible structure 
of this model, in particular the scaling parameter, makes it adaptable 
to a broad range of ecological systems and survey procedures, and 
thus highly relevant to population ecology and conservation practice.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1. Number of sites covered by rigorous survey (RS), the first 
participatory science (PS1), and the second participatory science (PS2) 
when 50%, 25% and 0% of RS sites overlap with PS1 or PS2 sites.
Table  S2. Median, 95% Credible Interval, and p-tail statistics for 
parameters in a model that analyzes IMBCR data only, a model 
that jointly analyzes IMBCR and BBS data, and a model that jointly 
analyzes IMBCR, BBS, and eBird data.
Figure S1. Posterior distributions (violin) and key statistics 
(median: white dot, 50% credible interval: box, 95% credible 
interval: whiskers) of observation parameters in dynamic N-
mixture models that use rigorous survey (RS) data only (red), RS 
and the first participatory science (PS1) data (blue), or RS, PS1 and 
the second participatory science (PS2) data (purple) when RS data 
cover the entire study period of 20 years, the second half of the 
study period, or odd years of the study period in the simulation 
study.
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Figure S2. Posterior distributions (violin) and key statistics (median: 
white dot, 50% credible interval: box, 95% credible interval: whiskers) 
of observation parameters in dynamic N-mixture models that use 
rigorous survey (RS) data only (red), RS and the first participatory 
science (PS1) data (blue), or RS, PS1 and the second participatory 
science (PS2) data (purple) when RS data cover the upper 50%, 25% or 
10% proportion of the environmental gradient in the simulation study.
Figure S3. Posterior distributions (violin) and key statistics (median: 
white dot, 50% credible interval: box, 95% credible interval: whiskers) 
of observation parameters in dynamic N-mixture models that use 
rigorous survey (RS) data only (red), RS and the first participatory 
science (PS1) data (blue), or RS, PS1 and the second participatory 
science (PS2) data (purple) when RS sites overlap with 50%, 25% or 
0% of the PS1 and PS2 sites in the simulation study.
Figure S4. Spatial distributions and temporal variation of grassland 
coverage in the study area during the study period, 2002–2021.
Figure S5. Spatial distributions and temporal variation of temperature 
in the study area during the study period, 2002–2021.
Figure S6. Posterior distributions (violin) and key statistics (median: 
white dot, 50% credible interval: box, 95% credible interval: 

whiskers) of process and observation parameters in dynamic N-
mixture models that use rigorous survey (RS) data only (red), RS and 
the first participatory science (PS1) data (blue), or RS, PS1 and the 
second participatory science (PS2) data (purple) when �  and � are 
less than 1.
Figure S7. Scatter plots showing the confounding between the 
estimates of mean abundance and mean scaling parameters for BBS 
(left panel) and eBird (right panel) data in a model that uses BBS and 
eBird, but not IMBCR data.
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