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Abstract

Context Given widespread population declines of

birds breeding in North American grasslands, man-

agement that sustains wildlife while supporting

rancher livelihoods is needed. However, management

effects vary across landscapes, and identifying areas

with the greatest potential bird response to conserva-

tion is a pressing research need.

Objectives We developed a hierarchical modeling

approach to study grassland bird response to habitat

factors at multiple scales and levels. We then identi-

fied areas to prioritize for implementing a bird-

friendly ranching program.

Methods Using bird survey data from grassland

passerine species and 175 sites (2009–2018) across

northeast Wyoming, USA, we fit hierarchical com-

munity distance sampling models and evaluated

drivers of site-level density and regional-level distri-

bution. We then created spatially-explicit predictions

of bird density and distribution for the study area and

predicted outcomes from pasture-scale management

scenarios.

Results Cumulative overlap of species distributions

revealed areas with greater potential community

response to management. Within each species’ poten-

tial regional-level distribution, the grassland bird

community generally responded negatively to crop-

land cover and vegetation productivity at local scales

(up to 10 km of survey sites). Multiple species
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declined with increasing bare ground and litter cover,

shrub cover, and grass height measured within sites.

Conclusions We demonstrated a novel approach to

multi-scale and multi-level prioritization for grassland

bird conservation based on hierarchical community

models and extensive population monitoring. Pasture-

scale management scenarios also suggested the exam-

ined community may benefit from less bare ground

cover and shorter grass height. Our approach could be

extended to other bird guilds in this region and

beyond.

Keywords Biodiversity � Hierarchy � Ranching �
Scale � Working lands

Introduction

Habitat loss and degradation have contributed to

widespread population declines among many avian

species (Gaston et al. 2003; Rosenberg et al. 2019).

Management for habitats and restoration of ecological

processes are needed to avert additional losses, but

actions must be matched with the appropriate biolog-

ical scale (Jackson and Fahrig 2015). Indeed, conser-

vation efforts may be more successful if multi-scale

heterogeneity in resource conditions and habitat

configuration are considered (Boyd et al. 2008), which

affect movement and persistence of individuals

(Fahrig 2013; Riffell et al. 2015; Saunders et al.

2019). Furthermore, it is often useful to understand

processes occurring within spatial hierarchies, where

lower levels form components of higher levels and

higher levels place constraints and context for pro-

cesses below (Johnson 1980; Wu 2013). A species, for

example, may be dramatically influenced by environ-

mental attributes at fine scales within its distribution

(Urban et al. 1987; O’Neill et al. 1989) but respond

little to management occurring beyond its geographic

range (Scott et al. 2001).

Globally, the grassland biome has experienced

some of the highest rates of conversion (Hoekstra et al.

2005), and bird populations breeding in North Amer-

ican grasslands declined by nearly two thirds over the

last half-century (Rosenberg et al. 2019). Many of

these declines are attributed to habitat loss from

cultivation, woody encroachment, and exotic grass

invasion (Brennan and Kuvlesky 2005; Stanton et al.

2018). Among remaining grasslands, management

paradigms reduced biodiversity by eliminating habitat

for species favoring different levels of vegetation

structure (Fuhlendorf and Engle 2001; Derner et al.

2009; Toombs and Roberts 2009). Managing range-

lands with biodiversity-friendly practices could pro-

mote habitat for the full complement of grassland bird

species, but effectiveness likely varies with landscape

structure (composition and distribution of patches;

Pillsbury et al. 2011; Duchardt et al. 2016) and the

scale of practices relative to population processes and

habitat. For example, modifying vegetation height

within a pasture may create optimal structure and

microhabitat for Grasshopper Sparrows (Ammodra-

mus savannarum; e.g., Davis et al. 2020), but have

limited impacts if the broader landscape is unsuit-

able (Wiens 1989; Levin 1992; Bakker et al. 2003).

This complexity is compounded when one considers

multiple community members with different habitat

requirements. Given finite resources available for

conservation, identifying where best to apply these

practices within and among landscapes is a pressing

research need.

This challenge is illustrated by conservation efforts

underway among grasslands of northeast Wyoming,

USA. Through the Conservation Ranching Initiative,

Audubon Rockies works with ranchers to implement

sustainable practices that also benefit birds. Imple-

mentation costs may discourage producers from

incorporating bird-friendly management in their oper-

ations (Monroe et al. 2017b; Raynor et al. 2019), and

therefore economic incentives are important (Drum

et al. 2015). Unlike commodity-based or cost-share

programs, the Conservation Ranching Initiative is

market-based, where conservation actions are mar-

keted directly to consumers. In exchange for devel-

oping a Habitat Management Plan that can include

resting pastures and completing livestock maturation

on pasture, the land is certified by National Audubon

Society as ‘‘bird friendly’’, and beef produced from

these rangelands can be sold at a premium or in an

alternative market space. As this program expands,

targeted enrollment is needed toward grasslands with

the greatest potential to support abundant and diverse

bird populations. Specifically, efficient implementa-

tion of this program requires an approach that (1)

systematically examines habitat associations at mul-

tiple scales and hierarchical levels, (2) identifies

habitat requirements of multiple species, and (3)
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integrates this information to predict conservation

outcomes from management on working lands.

We therefore demonstrate an approach to identify-

ing priority areas for grassland bird conservation in the

Powder River-Thunder Basin region of northeast

Wyoming using hierarchical community models. We

studied bird densities among 175 survey sites in

response to ground-based (within 50 m) and local-

scale (up to 10 km) habitat measurements while

considering potential species distributions across the

broader study region ([ 64,000 km2). We also used

relationships with ground-based habitat measurements

to infer potential management objectives for each

species and predict community responses. Hierarchi-

cal community models assume species-level parame-

ters are drawn from community-level

hyperparameters, and this information sharing permits

analyzing counts from species with sparse records and

estimating community-level statistics, such as rich-

ness, within a unified framework (Sollmann et al.

2016). Because responses to site-level factors were

both constrained by, and components of, regional-

level bird distributions, our approach extended hier-

archical community models to consider a spatial

hierarchy of species density and distribution across

the study landscape.

Methods

Study area

We conducted this study in northeast Wyoming within

the Badlands and Prairies Bird Conservation Region

(BCR 17, Fig. 1). The study area (64,464 km2) is

comprised of high plains and is part of the unglaciated

Missouri Plateau sub-region of the Great Plains

province. The area is characterized by open high hills

and sagebrush-grassland tablelands with intermittent

escarpments. Elevation ranges from 947 to 2242 m,

and climate is typical of a semi-arid, high plains steppe

environment with large variations in seasonal temper-

atures and recurring periods of extended drought.

Mean annual minimum and maximum temperatures

(1981–2010) were - 0.1 �C and 15.2 �C, respec-

tively (NOAA 2020), and mean annual precipitation

was 38 cm (NOAA 2020). The study area proper is

comprised of a mix of sagebrush steppe and mixed-

grass prairie with some encroaching stands of conifers.

Wyoming big sagebrush (Artemisia tridentata

wyomingensis) dominates sagebrush steppe while

silver sagebrush (A. cana) and black greasewood

(Sarcobatus vermiculatus) occur in drainage bottoms.

Jurisdiction is primarily private (77%), followed by

federal (15%) and state (8%; BLM 2020). Most (87%)

of the land is in use as rangeland, whereas 3% is used

for crop production (TBGPEA 2020). Energy produc-

tion (coal and gas/oil) is widespread in the region, and

there is high potential for additional habitat loss from

energy development and cultivation (Walker et al.

2007).

Bird surveys

Over 10 years (2009–2018), trained field technicians

conducted all bird counts following protocols from the

Integrated Monitoring in Bird Conservation Regions

(IMBCR) monitoring program (McLaren et al. 2019).

Technicians conducted counts at sites each consisting

of up to 16 points arranged in a 4 9 4 grid, with points

spaced 250 m apart. Ninety sites were located across

the study area based on Generalized Random Tessel-

lation Stratification (GRTS; Stevens and Olsen 2004),

a balanced sampling algorithm (Pavlacky et al. 2017),

and 35 sites were established for monitoring on federal

lands (Fig. 1). Beginning in 2016, an additional 50

sites were distributed among ranches enrolled in the

Conservation Ranching Initiative. Number of points

surveyed at each site varied among years from 1 to 16

(median = 12), and each site was surveyed for

1 - 10 years (median = 7 years), totaling 617 site-

years (hereafter, surveys). Technicians conducted

counts once during the breeding season (May 13–July

20) from approximately 0.5 h before sunrise until 5 h

after sunrise. During each point count, one observer

recorded the minute when an individual or cluster of

birds was first detected (out of 5 min in 2009, 6 min

thereafter), species observed, and unlimited radial

distance (m) from the observer.

Local-scale habitat

We compiled data characterizing local landscapes

around the centroid of each site, including vegetation

productivity, agricultural cover, and well density.

Vegetation productivity, approximated by the Nor-

malized Difference Vegetation Index (NDVI), can

indicate local-scale habitat conditions for grassland
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birds (Green et al. 2018), cropland cover may nega-

tively affect grassland bird distribution (Guttery et al.

2017), and both positive and negative associations

have been observed with density of energy develop-

ment (Kalyn Bogard and Davis 2014; Ludlow et al.

2015). We acquired NDVI data from Moderate

Resolution Imaging Spectroradiometer (MODIS;

Huete et al. 2002) 16-day composites (250 m resolu-

tion, MOD13Q1) during January–October,

2009–2018. We used the maximum value for each

pixel across composites each year as an index of

annual vegetation productivity (Monroe et al. 2017a).

We estimated cropland cover with the ‘‘plowprint’’

dataset (Gage et al. 2016), which indicates annually

whether cropland occurs within each 30-m pixel,

including agricultural commodities planted annually

and fallowed agricultural land. Although NDVI may

reveal similar aspects of agricultural cover (such as

amount of vegetation biomass; Gu et al. 2013), we

used plowprint to distinguish between cropland and

rangeland vegetation. We identified the number of

active oil and gas wells across the study landscape

using location and activity data from theWyoming Oil

and Gas Commission (accessed 8 July 2019). Like

plowprint, changes in vegetation from energy devel-

opment can be captured with NDVI (Allred et al.

2015), so we used well density (see below) as an index

of anthropogenic features associated with oil and gas

wells. For consistency, we resampled NDVI and well

data to the same resolution (30 m) and projection as

plowprint.

Fig. 1 Location of bird count sites (n = 175) relative to Conservation Ranching Initiative ranches across the study area encompassed

by Bird Conservation Region 17 (Badlands and Prairies) within Wyoming, USA
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Ground-based habitat measurements

After completing each point count, technicians visu-

ally estimated vegetation conditions within 50 m of

the point count location (McLaren et al. 2020),

including percent cover of bare ground and litter,

percent shrub cover, and estimated height (cm) of

combined live grass, residual grass, and other herba-

ceous plants (hereafter, grass height). Grass height and

bare ground cover are useful predictors of grassland

bird habitat (Fisher and Davis 2010), and bare ground

is a common indicator related to the integrity and

function of rangeland ecosystems (Pyke et al. 2002;

Pellant et al. 2005; Veblen et al. 2014). Shrub cover

was relevant because our study area lies at the edge of

the sagebrush biome and shrubs may affect grassland

bird distribution (Davis 2005). There were slight

changes in vegetation survey protocols over the course

of the study period (e.g., bare ground and litter cover

were estimated separately in 2018; McLaren et al.

2020), so for consistency we made several modifica-

tions to point-level vegetation data before analysis

(detailed in Appendix S1).

Statistical analyses

We restricted our analyses to 15 passerine species that

breed in grasslands and were detected during surveys

(Table 1; Rosenberg et al. 2019). We analyzed point

count data using a hierarchical community model with

distance sampling (Sollmann et al. 2016) that also

estimated availability for detection (Nichols et al.

2009; Amundson et al. 2014). This model consisted of

a process model representing the true (but latent, or

unobserved) abundance and distribution of birds and a

data model for the observation process. We assumed

species-level responses were drawn from common

distributions described by community-level hyperpa-

rameters. For example, effect of plowprint cover on

species i (b1,i) was sampled from a normal distribution

with hyperparameters for the mean (lb1) and variance

(r2
b1): b1;i �N lb1;r

2
b1

� �
. We therefore posited a

mean community response while accommodating

variation among community members. We analyzed

data at the site level, summing counts and averaging

ground-based covariates among points at each survey,

and including an offset in the process model for

number of points in each survey.

Process model

Because the study area encompassed distributions of

multiple species with varying degrees of overlap, we

used a zero-inflated Poisson model to distinguish

between processes determining potential regional-

level distributions (suitability), and processes for site-

level abundance, given a site was suitable. We began

by modeling suitability of site during survey j (site(j))

for each species i with a Bernoulli distribution and

probability wi;site jð Þ:

zi;j � Bernoulli wi;site jð Þ

� �

We used a two-dimensional thin plate spline to

allow for non-linear effects of latitude and longitude

on wi;site jð Þ (Wood 2017; Rushing et al. 2019), thereby

modeling suitability as a function of location within

the broader study region. This approach involved

specifying a smooth function (f) defined by the basis

function gkwithK - 1 dimensions and parameters ak;i
where the degree of smoothing was determined by a

penalty term (k; Wood 2016):

f lati;site jð Þ; loni;site jð Þ
� �

¼
XK�1

k¼1

gk latsite jð Þ; lonsite jð Þ
� �

ak;i

logit wi;site jð Þ

� �
¼ a0;i þ f lati;site jð Þ; loni;site jð Þ

� �

Given that a site was suitable for species i (zi,j = 1),

site-level abundance (Ni,j) was the outcome of a

Poisson distribution with mean li;j:

Ni;jjzi;j � Poisson li;j � zi;j
� �

We fit multiple coefficients (b) to li;j on the log-

scale for site-level covariates, a random term for

survey and species (ei;j), and an offset for the natural

log of number of points surveyed:

log li;j
� �

¼ b0;i þ b1;igrshghtj þ b2;igroundj
þ b3;ishrubj þ b4;iwellsj þ b5;iplowprintj
þ b6;iNDVIj þ b7;iNDVI

2
j þ offsetj þ ei;j

ei;j �N 0;r2
surv

� �

For surveys where ground-based habitat data were

not collected, we imputed missing data assuming
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population-level hyperparameters of each covariate

(Royle 2009).

We used a scale selection method to identify

relevant spatial scales for each local covariate (Fr-

ishkoff et al. 2019). We created matrices (Ej,s) for

mean NDVI, proportion of plowprint cover, and well

density (km–2) within buffers (s) with increasing radii

(100 m to 10 km, in 100-m increments) from the site

centroid during survey j. Although sites were in

Wyoming, some site buffers extended beyond state

boundaries. Because we lacked well data beyond

Wyoming, we assumed buffer parts within Wyoming

represented well density of the entire buffer. We used

10 km as an upper limit for grassland birds (e.g.,

Thogmartin et al. 2006) to reduce the chance of

missing relationships at larger scales (Jackson and

Fahrig 2015). The model then estimated the most

likely scale based on a uniform distribution for scale

parameter 1 and linear interpolation between adjacent

buffers (Frishkoff et al. 2019). For example, well

density at 500 m (1 = 5) yielded: wellsj = Ej,5. We

assumed species in this grassland bird community

responded similarly to local-scale covariates, so for

each covariate we assigned all species the same scale

parameter. We summarized posterior distributions of

scale parameters with 95% credible intervals (CrI) and

interpreted the mode as the best scale for predictions.

Data model

In this system, we assumed the observation process

was governed by availability probability (i.e., visible

and/or singing when present) and detection probability

(the process of perceiving an individual, given they are

present and available; Nichols et al. 2009). Like the

process model, species-level parameters were drawn

from community-level hyperparameters. We esti-

mated availability probability for each species and

survey (pai;j) using a time-removal model with a

conditional multinomial formulation (Amundson et al.

2014). We estimated multinomial cell probabilities

(pai;j;t ) from availability probability in each of T time

intervals (ai,j): pai;j;t ¼ ai;j 1� ai;j
� �t�1

. Summing cell

probabilities across time intervals yielded an overall

availability probability for each survey:

pai;j ¼
PT
t¼1

pai;j;t . We fit linear and quadratic effects of

ordinal date and a random term for year (gyear jð Þ) to ai;j

on the logit scale to account for within-season

variation in availability:

logit ai;j
� �

¼ d0;i þ d1;idatej þ d2;idate
2
j þ gyear jð Þ

Time intervals of each detection c (tintervalc,i) were

then sampled from a categorical distribution with

conditional cell probability pcai;j;t , where pcai;j;t ¼
pai;j;t
pai;j

and tintervalc;i �Categorical pcai;j;1:T

� �
.

Table 1 Common names,

species names, and number

of detections for grassland

passerine species detected

among 175 survey sites in

northeast Wyoming

(2009 - 2018). We also

report Partners in Flight

(PIF) regional combined

scores for the breeding

season, which indicate the

conservation priority of

each species based on

factors related to extinction

vulnerability (Panjabi et al.

2019)

Common name Species name Species code Detections PIF

Baird’s Sparrow Centronyx bairdii BAIS 1 16

Cassin’s Sparrow Peucaea cassinii CASP 6 11

Chestnut-collared Longspur Calcarius ornatus CCLO 51 19

Clay-colored Sparrow Spizella pallida CCSP 32 9

Eastern Kingbird Tyrannus tyrannus EAKI 385 12

Grasshopper Sparrow Ammodramus savannarum GRSP 2084 16

Horned Lark Eremophila alpestris HOLA 4873 13

Lark Bunting Calamospiza melanocorys LARB 11,531 17

Lark Sparrow Chondestes grammacus LASP 1917 12

Loggerhead Shrike Lanius ludovicianus LOSH 291 14

Savannah Sparrow Passerculus sandwichensis SAVS 44 8

Thick-billed Longspur Rhynchophanes mccownii TBLO 81 17

Vesper Sparrow Pooecetes gramineus VESP 3216 15

Western Kingbird Tyrannus verticalis WEKI 692 9

Western Meadowlark Sturnella neglecta WEME 23,596 12
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We similarly used the conditional multinomial

formulation for distance sampling to estimate proba-

bility of detecting a species in each survey (pdi;j ;

Amundson et al. 2014). We first right-truncated the

farthest * 10% of detection distances (Buckland

et al. 2001, p. 151), and we assigned detection

distances to 5 distance classes (b), each 50 m in length

(m), with midpoint radial distance rb (in hectometers).

We then calculated multinomial cell probabilities

(pdb;i;jÞ for detection probability in each distance class,
where each cell probability is approximated by the

product of a probability density function (f rð Þb;i;jÞ
representing the radial distance of the distance class

relative to the maximum detection distance (maxd):

f rð Þb;i;j¼
2rbm

max2d

and a half-normal distance function (g rð Þb;i;j):

g rð Þb;i;j¼ exp � r2b
2r2

i;j

 !

pdb;i;j � f rð Þb;i;jg rð Þb;i;j
Shape of the detection function was determined by

a scale parameter (r), to which we fit a random term

for observer (xobs(j)) and a coefficient (c) for observer
experience (OEj) where OEj = 0 during the first year a

technician conducted surveys and OEj = 1 for subse-

quent years:

log ri;j

� �
¼ c0;i þ c1;iOEj þ xobs jð Þ

We summed multinomial cell probabilities to

estimate an overall detection probability for each

species and survey: pdi;j ¼
PB
b¼1

pdb;i;j . We assumed a

categorical distribution for detection distances

(dclassc,i) given conditional multinomial cell proba-

bility pcdb;i;j , where pcdb;i;j ¼
pdb;i;j
pdi;j

and

dclassc;i �Categorical pcd1:B;i;j

� �
.

Individuals detected in clusters were not indepen-

dent, so we based inferences on the number of clusters

(hereafter, abundance) rather than individuals (Buck-

land et al. 2001). Nevertheless, relatively few detec-

tions (4.9%) consisted of[ 1 individual. Total count

of each species by survey (yi,j) was drawn from a

binomial distribution given survey-level abundance,

availability probability, and detection probability:

yi;jjNi;j �Binomial Ni;j; pai;j � pdi;j
� �

We fit this model in a Bayesian framework using

NIMBLE (v. 0.91; de Valpine et al. 2016) in R (R

Development Core Team 2020). We specified vague

priors for parameters including lb �N 0; 9ð Þ,
ld �N 0; 9ð Þ, lc �N 0; 9ð Þ, rsurv �Unif 0; 3ð Þ,
ryear �Unif 0; 3ð Þ,robs �Unif 0; 3ð Þ,
a0;i �N 0; 2:72ð Þ, and log kð Þ�Unif �12; 12ð Þ. For

hyperparameter variance terms, we used weakly-

informative half-Cauchy priors (Gelman et al. 2008;

Broms et al. 2016) with scale parameters r = 10 for

intercepts and r = 2.5 for coefficients. We used this

type of prior to accommodate sparse data from certain

species in hierarchical community models (Broms

et al. 2016). Model code is reported in Appendix S2.

Prior to analysis, we standardized each continuous

covariate by subtracting the sample mean and dividing

by the sample standard deviation. We then generated

1,000,000 samples each from three parallel chains,

discarding the first 50,000 and saving every 200th

sample from each chain, yielding 14,250 posterior

samples for inference. We assessed parameter con-

vergence by visually examining chains and with the

Gelman-Rubin statistic (R̂; Gelman et al. 2014), where

model parameters indicated convergence was

achieved with R̂\1.1. We evaluated model fit using

posterior predictive checks (Bayesian P-values) com-

paring chi-squared discrepancy statistics for observed

and predicted counts summed across surveys (Amund-

son et al. 2014). Finally, we interpreted 95% credible

intervals that did not overlap 0 as indicating strong

support for covariate effects.

To identify the appropriate number of basis

dimensions (K) for the thin plate spline, we fit models

with either K = 20, 30, 40, or 50, and compared model

performance with a posterior predictive loss criterion

(Gelfand and Ghosh 1998; Hooten and Hobbs 2015).

This model selection approach involves calculating a

predictive loss term representing the level of predic-

tive error, and a penalty term that increases when

models are overparameterized. Models with smaller

posterior loss criteria are therefore favored because

they denote smaller predictive errors with fewer

parameters. We used the squared error between

predicted (~yi;j) and observed counts (yi,j) and for
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predictive loss, and variance in predicted counts for

the penalty (Dorazio and Connor 2014). Summing the

predictive loss and penalty across species and surveys

produced the following statistic (D):

D ¼
X
i

X
j

E ~yi;jjdata
� �

� yi;j
� �2þ

X
i

X
j

Var ~yi;jjdata
� �

We used parameter estimates from the best-sup-

ported model to make two sets of predictions: one set

for density and distribution across the study area based

on local-scale covariates and the suitability model, and

another set using ground-based measurements within a

ranch to infer potential responses to management. We

estimated densities (bird ha-1) from the maximum

detection distance used in our model (
li�zi

p� max2
d

), and

predictions were based on 2018 maps of local-scale

variables (plowprint, well density, and NDVI).

Because we lacked ground-based habitat measure-

ments for pixels across the study area, we used sample

mean values of these covariates for predictions. We

therefore used all available information to make

predictions across the landscape while acknowledging

that predictions may improve with additional data

from ground-based measurements. To avoid extrapo-

lating predictions beyond conditions observed near

our sample sites, we masked areas with local-scale

variables beyond 95% of any covariate sample. We

also combined predictions into community-level

measures weighted by the conservation value of each

species. Such weightings may better describe a

location’s conservation priority than abundance or

diversity by incorporating additional information such

as extinction risk (Götmark et al. 1986; Nuttle et al.

2003). For weights, we used Partners in Flight regional

scores for BCR 17 during the breeding season (PIFi),

which combined several scores for conservation

vulnerability based on population size and trend,

geographic extent of their breeding range, and threats

to reproduction (Panjabi et al. 2019). Higher scores

indicate species with greater conservation priority, and

we summed weighted potential distribution and den-

sity predictions across species to obtain conservation

values in potential richness (CVS) and total density

(CVN), respectively:

CVS ¼
X15
i¼1

zi � PIFi

CVN ¼
X15
i¼1

li � zi
p� max2d

� �
� PIFi

To evaluate sensitivity of bird community predic-

tions to changes in ground-based habitat measure-

ments, and therefore illustrate potential effects of

management, we predicted CVN across pastures in one

ranch enrolled in the Conservation Ranching Initiative

(Fig. 1) but with 25% decreases in bare ground and

litter cover, shrub cover, or grass height because of

their purported relationships with grassland bird

concealment and nest success (Davis 2005; Fisher

and Davis 2010).We created baseline predictions after

interpolating ground-based habitat measurements

from n = 29 sites in 2018 distributed among ranches

enrolled in the Conservation Ranching Initiative

(Appendix S3), and then compared percent changes

in CVN from decreases in each ground-based habitat

component relative to baseline predictions.

Results

Model selection based on posterior predictive loss

(D) indicated that 40 basis dimensions were better

supported for the regional-level spatial term (thin plate

spline; D = 153,731) than other dimensions consid-

ered (20 knots: 153,894; 30 knots: 153,786; 50 knots:

153,820). Posterior predictive checks did not indicate

lack of fit for this model (Bayesian P-value 0.30–0.67

across species). Regional-level trends indicated spe-

cies varied from nearly ubiquitous (Western Mead-

owlark [Sturnella neglecta]) to rare (e.g., Cassin’s

Sparrow [Peucaea cassinii]; Appendix S4, Fig. S1).

Credible intervals of mean hyperparameters for sev-

eral site-level parameters overlapped 0 (Appendix S4,

Table S1). Exceptions were negative effects of NDVI

at the local scale and bare ground and litter cover and

shrub cover from ground-based measurements.

At the site level, scale selection parameters indi-

cated a mode at 3.2 km for vegetation productivity

(NDVI; 95% CrI 2.3–4.5 km), whereas well density

effects occurred at broader scales (mode = 9.6 km,

95% CrI 5.6–10.0 km; Appendix S4, Fig. S2). We

estimated two modes for plowprint cover, with the
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highest density occurring at 6.8 km and another mode

near the upper limit (95% CrI 6.1–9.9 km). We used

6.8 km to predict plowprint effects while acknowl-

edging effects at broader scales were possible. Among

sites occurring within each species’ regional-level

distribution, we estimated higher densities of 4 species

(Chestnut-collared Longspur [Calcarius ornatus],

Grasshopper Sparrow, Lark Sparrow [Chondestes

grammacus], Thick-billed Longspur [Rhynchophanes

mccownii]) and fewer Western Meadowlark with

increasing well density (Fig. 2a, Appendix S4

Fig. S3). Densities of four species (Grasshopper

Sparrow, Lark Bunting [Calamospiza melanocorys],

Lark Sparrow, Western Meadowlark) declined with

greater plowprint cover whereas Western Kingbird

(Tyrannus verticalis) increased (Fig. 2a, Appendix S4

Fig. S4). As NDVI increased, Horned Lark (Ere-

mophila alpestris), Western Kingbird, and Western

Meadowlark densities declined, Vesper Sparrow

(Pooecetes gramineus) increased, and densities of

Grasshopper Sparrow and Lark Bunting were highest

at intermediate levels (Appendix S4 Fig. S5).

Among ground-based habitat attributes measured at

sites within each species’ potential regional-level

distribution, three species (Horned Lark, Vesper

Sparrow, and Western Meadowlark) declined with

increasing grass height whereasmost species indicated

neutral responses (Fig. 2b, Appendix S4 Fig. S6).

Twelve species declined with increasing bare ground

and litter cover (Fig. 2b, Appendix S4 Fig. S7), and we

estimated negative responses to shrub cover by five

species (Eastern Kingbird [Tyrannus tyrannus],

Grasshopper Sparrow, Horned Lark, Lark Sparrow,

and Western Kingbird; Appendix S4 Fig. S8).

Using predictions of potential species distribution

(Appendix S4 Fig. S1) and density (Appendix S4

Fig. S9) from across the study area, we estimated

conservation values in potential richness (CVS) and

density (CVN) were highest around the center of the

study area and lowest in the northeast (Fig. 3). When

altering habitat across pastures in one ranch (Fig. 4a),

reducing grass height by 25% produced modest

increases in CVN (4–10% change; Fig. 4b). Decreas-

ing bare ground and litter cover had a greater effect

among eastern pastures of the ranch (up to 17%

change; Fig. 4c), where baseline CVN was low

(Fig. 4a) and bare ground and litter cover was high

(Appendix S3, Fig. S3). Effects of shrub cover

reduction were more equivocal for this community

(- 1 to 5% change; Fig. 4d).

Availability for detection was generally constant

across the survey period for most species (Fig. 2c,

Appendix S4 Fig. S10), but availability was highest

mid-season for Grasshopper Sparrow and later in the

season for Horned Lark and Loggerhead Shrike

(Lanius ludovicianus). Observers with[ 1 year of

experience were more likely to detect individuals from

three species (Lark Bunting, Vesper Sparrow,Western

Meadowlark) at greater distances than first-year

observers whereas first-year observers detected

Grasshopper Sparrow and Horned Lark slightly farther

than more experienced observers (Fig. 2d, Appendix

S4 Fig. S11).

Discussion

Prioritizing areas for conservation is often more

effective than random or opportunistic strategies

(Scott et al. 2001; Bonnot et al. 2013) and under-

standing habitat relationships at multiple scales and

hierarchical levels can inform such prioritizations.

Here, we found hierarchical community models were

useful in predicting potential habitat for grassland

passerines breeding in northeast Wyoming, and

applicable to prioritizing enrollment in the Conserva-

tion Ranching Initiative. Importantly, our approach

considers factors measured at multiple scales that may

influence density of community members while

accounting for observation error. Inherent in this

framework are spatial hierarchies of species distribu-

tion (Wu 2013), where density at any given location is

conditional on the location’s status within the broader

study region (potential distribution). We identified, for

example, areas where potential distributions of con-

servation priority species often overlapped (high CVS;

Fig. 3) and modifying habitat is more likely to

increase the conservation value of grassland bird

communities (greater CVN) than areas with low CVS.

Within regional-level distributions, we also could

determine potential constraints to management of site-

level habitat from local-scale factors such as cropland

cover and vegetation productivity. However, some

community-level responses to pasture-scale manage-

ment scenarios were relatively modest despite associ-

ations of individual species with ground-based habitat

measurements (e.g., grass height). This latter result
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highlights a benefit of studying all community mem-

bers jointly, rather than extrapolating a common

response from individual umbrella or indicator species

to the rest of the community (White et al. 2013; Loman

et al. 2018).

At local scales, greater density of Horned Lark at

lower NDVI levels agrees with their reported affinity

for areas with short, sparse vegetation (Dinkins et al.

2019). Grasshopper Sparrow and Lark Bunting

indicated clear peaks in density with NDVI levels

resembling northern mixed grass prairie (Paruelo and

Lauenroth 1995). This pattern also may reflect asso-

ciations with intermediate levels of cover and structure

(Duchardt et al. 2018). Several species were positively

associated with well density, although we note well

densities within 9.6 km of survey sites were lower

than other parts of the landscape (maximum = 2.7

wells km–2 vs. maximum = 5.9 wells km–2,

Fig. 2 Mean species-level

parameter estimates (and

95% credible intervals) for

local-scale habitat (up to

10 km from sites; a),
ground-based habitat

measurements (within

50 m; b), availability for

detection (c), and detection

probability (d) from a

hierarchical community

distance sampling model for

grassland passerine species

in northeast Wyoming,

USA. Species codes are

arranged by color and

defined in Table 1
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respectively). Including NDVI in our models also

likely accounted for vegetation altered or removed by

energy development (Allred et al. 2015), and

responses to infrastructure (e.g., roads, vertical struc-

tures) can vary among grassland bird species (Kalyn

Bogard and Davis 2014; Ludlow et al. 2015).

Similarly, responses to plowprint cover likely

reflected broader co-occurrence of species on the

landscape with low levels of this land use (at 6.8 km

scale, maximum = 0.07 plowprint proportion vs.

maximum = 0.40 plowprint proportion across the

study area), and these results do not preclude impacts

Fig. 3 Predicted conservation value in potential richness (CVS;

left) and total density (CVN; right) derived from a hierarchical

community distance sampling model for grassland passerine

species in northeast Wyoming, USA. Pixels without color

represent areas masked because local-scale factors were above

or below 95% of our covariate samples. Density and richness

were weighted by conservation priority of each species as

indicated by Partners in Flight (PIF) breeding season combined

scores

Fig. 4 Predicted percent change in baseline estimates of

conservation value in total density of grassland birds, per ha

(a; CVN ha–1, weighted by Partners in Flight [PIF] combined

scores) after reducing grass height (b), bare ground and litter

cover (c), or shrub cover (d) by 25%, across pastures from one

ranch in northeast Wyoming, USA (see Fig. 1 for geographic

context)
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of additional cropland conversion through loss of

grassland habitat (Quinn et al. 2017; Herse et al.

2018). We refrained from extending our model

predictions beyond the range of covariates in our

sample given the relatively limited representation of

well density and plowprint, and additional sampling

and analyses in other areas could provide further

insights into their effects on grassland passerine

communities.

One of the top indicators used to assess rangeland

conditions across the Western United States is bare

ground cover (Veblen et al. 2014), which can increase

with improper ungulate grazing (Veblen et al. 2014)

and lead to degradation by wind and water erosion

(Pyke et al. 2002; Pellant et al. 2005). We found the

community responded most to reductions in bare

ground and litter cover, and pasture-scale scenarios

indicated greater increases in conservation value by

prioritizing management of this cover type in eastern

pastures of the ranch. Although birds may respond

differently to bare ground and litter (Fisher and Davis

2010), technicians estimated bare ground and litter

cover together during all years except 2018 (for

consistency, we combined both measures that year for

analysis; Appendix S1). Still, based on 2018 data, bare

ground was greater on average (30.7%) than litter

cover (25.3%) and bare ground was somewhat nega-

tively correlated with litter cover (r = - 0.29). These

patterns lend modest support to the hypothesis that

bare ground cover was a stronger driver of observed

relationships between species and this covariate. If

reductions in bare ground cover are prescribed to

improve rangeland health, our results suggest such

actions also may benefit grassland passerine commu-

nities breeding in this landscape. We caution, how-

ever, when interpreting spatial trends in density as

indicators of habitat quality, and additional demo-

graphic data are needed to test our assumptions (Van

Horne 1983; Johnson 2007).We also note that uniform

reductions in bare ground and shrub cover could

negatively impact shrubland-breeding guilds that we

did not consider here (Aldridge et al. 2011; Duchardt

et al. 2018). More generally, our management scenar-

ios should be interpreted as heuristic rather than viable

options. Indeed, extrapolating habitat requirements

across scales can be problematic (Smith et al. 2020),

and a more plausible scenario may involve increasing

heterogeneity in vegetation cover and structure at

different scales to support the entire bird community

breeding in this landscape (Knopf 1996; Derner et al.

2009; Davis et al. 2020).

Fewer species responded to variation in shrub cover

and grass height than bare ground and litter cover.

Negative responses to shrub cover conform with

previous studies of Grasshopper Sparrow (Dechant

et al. 2002) and Horned Lark (Dinkins et al. 2019).

Still, many other species in this study exhibited neutral

responses to shrub cover, and pasture-scale shrub

management produced slight increases and decreases

in CVN. Similarly, no species increased in density with

greater grass height whereas three species declined

(Appendix S4, Fig. S6), and we estimated more

modest community responses to reductions in grass

height than bare ground and litter cover. Still, few

detections may have prevented adequately evaluating

this relationship for short structure specialists like

Thick-billed Longspur. Phenological changes in grass

height during the breeding season also could obscure

this relationship (Gibson et al. 2016; McConnell et al.

2017; Smith et al. 2018), and species may be

responding to vegetation beyond the 50-m sampling

radius.

In addition to benefits of studying community

members jointly with hierarchical models, we note

several implications of this approach. Credible inter-

vals of several community-level means overlapped 0,

possibly reflecting variable responses among species

despite being assigned to the same guild (Pacifici et al.

2014; Riffell et al. 2015). We could have further

classified the study community into sub-groups (e.g.,

by microhabitat preference; Duchardt et al. 2019), but

substantial differences in community-level metrics

such as richness are unlikely (Pacifici et al. 2014).

Additionally, although hierarchical community mod-

els allowed us to include several uncommon species,

we could not adequately evaluate their responses to

most covariates, and they contributed little to our

community predictions. Also, it is unclear whether

species with sparse records were breeding because our

study area often occurred at the edge of their

geographic ranges.

Study-wide predictions (maps; Fig. 3) revealed

areas to the north and east of ranches currently

enrolled in the Conservation Ranching Initiative with

potentially high conservation values in richness

(CVS), and high conservation values in total density

(CVN) to the west, although trends in CVS and CVN

tended to be similar overall. These predictions also
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indicated areas where enrolling ranches would have

more limited potential to conserve habitat for grass-

land bird communities, such as among forested areas

in the northeast of the study area. Collectively, insights

derived from this analysis can help plan expansion of

the Conservation Ranching Initiative, ensuring

resources are invested in areas most likely to benefit

bird communities requiring habitat improvements,

given the context of landscape conditions and species

distributions. Additionally, we prioritized areas for

species vulnerable to population decline, restricted

geographic extent, and other threats (Panjabi et al.

2019), but other priorities could be identified and

weighted accordingly (e.g., Michel et al. 2020). With

continued monitoring, our modeling approach could

measure changes in population size following man-

agement actions, thereby indicating a direct link

between conservation outcomes and the price paid

by consumers in part for those outcomes. Quantifying

these relationships also may support marketing efforts

and outreach to recruit rancher participation. When

paired with extensive and systematic monitoring, our

framework can be extended beyond the study area and

to other guilds that use rangelands, such as shrubland-

and wetland-breeding birds, further informing conser-

vation programs for these communities.
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