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Abstract

Context Over the past decades, numerous threats

from climate- and land-use change to ecosystems have

been identified. Grassland ecosystems are among the

most endangered in the world and ongoing grassland

declines in the Great Plains have been a major concern

for avian biodiversity conservation.

Objectives Threat mitigation may include biofuel

cultivation, CO2 emissions reductions, and land con-

servation strategies. However, spatially explicit and

species-specific population responses to future sce-

narios remain unknown.We show how future land-use

and climate scenarios may affect abundance and

biodiversity patterns for grassland birds in the Upper

Missouri River Basin.

Methods We used georeferenced abundance records,

20 environmental predictors, and gradient boosting

machines to create spatial abundance models for 24

grassland bird species. Models were scored to current

conditions and seven future landcover/climate-change

scenarios to spatially predict changes in bird abun-

dance for 2050.

Results Model accuracy varied by species (0.2% B

NRMSE B 39.3%) but spatial predictions were highly

accurate (.03 B MAE B 7.67). Mean abundances

declined for eight species in at least one scenario,

whereas abundances increased for 16 species. Multi-

species change analyses identified areas of decreasing

abundance, particularly in the southeast, whereas

increasing were predicted at higher elevations to the

west. Important predictors included temperature,

forest distance, and elevation.

Conclusions Predicted abundances varied by species

and geography. Abundances and distributions

expanded for most species, but multi-species declines

also occurred in many low-elevation areas. These

models may improve understanding of species-speci-

fic responses to environmental change by identifying

emerging areas of avian conservation concern.

Keywords Biofuels � Ecological niche model �
Gradient boosting machines � Great plains � Land-
use/land-change

Introduction

North American temperate grasslands are among the

most threatened and heavily degraded biomes in the

world (Hoekstra et al. 2004). Grasslands provide

numerous ecosystem services, including serving as
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important wildlife habitat (White et al. 2000), seques-

tering carbon (Silver et al. 2010), providing grazing

lands for livestock production, and providing clean

drinking water for an estimated 44 million people

(Havstad et al. 2007; WWF 2018). In North America,

over 60–80% of native mixed grass prairie and

20–85% of shortgrass prairie have been lost (Samson

and Knopf 1994). The conversion of native grassland

habitats into agricultural lands (both cultivated crop-

lands and rangelands) is the largest contributor to land-

use change in North America (Gage et al. 2016;

Stanton et al. 2018; Correll et al. 2019). Incursions by

oil and gas infrastructure are degrading the continuity

of grasslands and leases now occur on 21% of all

North American grasslands (Copeland et al. 2011;

Bernath-Plaisted and Koper 2016). Encroachment by

woody shrubs (Maestre et al. 2016; Greer et al. 2016)

and exotic species (Saalfeld et al. 2016) has also

resulted in reductions in grassland habitat, and that

which remains is becoming increasingly fragmented

and degraded (Hamer et al. 2006).

Biomass biofuel cultivation is one means of

harnessing the carbon sequestration capabilities of

grasslands. Cultivation of bioenergy crops, including

switchgrass (Panicum virgatum) and canola (Brassica

napus), aims to remove carbon from the atmosphere

using a BECCS (Bioenergy with Carbon Capture and

Storage) pathway (van Vuuren et al. 2013). Crops

sequestering atmospheric carbon in tissues are then

harvested and combusted in power-plants equipped

with carbon capture technology (Stoy et al. 2018;

Dolan et al. 2019). The theoretical end result is a net

reduction in atmospheric carbon. But the cultivation of

land for biomass biofuels requires land and water that

could also be used to produce food or provide habitat

for native grassland fauna. Some bioenergy crops,

such as switchgrass, may offer benefits for certain

grassland birds (Murray et al. 2003; Robertson et al.

2012; Blank et al. 2014), but if native grasslands are

brought under cultivation to meet increased bioenergy

demand, biofuel cultivation may also accelerate

biodiversity losses and compromise ecosystem ser-

vices even as it counteracts carbon emissions (Ber-

inger et al. 2011; Hof et al. 2018).

Climate change is also threatening many species by

shifting climatic envelopes, altering environmental

pressures on species and pushing migratory and

breeding phenologies earlier (Swanson and Palmer

2009; Brookshire and Weaver 2015; Boelman et al.

2017). Grassland specialist birds, which rely exclu-

sively on native prairie ecosystems or predictable sea-

sonality of resources, and species with already small

ranges are most vulnerable to the synergistic effects of

environmental change (Staudt et al. 2013; Correll et al.

2019). These species may be poorly equipped to cope

with novel climatic conditions that strain physiolog-

ical limits and rearrange ecological communities

(Williams and Jackson 2007; Hof et al. 2018; Correll

et al. 2019). Further research to predict spatially

explicit, species-specific population responses to

landscape change, including incorporating satellite-

derived Ecosystem Functional Attributes (ESA) to

improve model predictions, is still needed to improve

models and direct conservation actions (Arenas-Cas-

tro et al. 2019).

Avian abundance has declined by * 30% (3

billion breeding birds) in North America over the past

half-century, with grassland birds suffering the great-

est population declines (Peterjohn and Sauer 1999;

Schipper et al. 2016; Rosenberg et al. 2019). These

declines have been attributed partially to habitat losses

on the breeding grounds caused by a combination of

land-use and climate change (Wright and Wimberly

2013; Gage et al. 2016; Rosenberg et al. 2019).

Fragmented and degraded habitats reduce species

diversity, abundance, and nesting success among

grassland birds (Bakker and Higgins 2009; Greer

et al. 2016). About 53% of original grasslands remain

in the Great Plains, with 87% of these occupying soils

that are marginal for cultivation (WWF 2018). How-

ever, as the global demands for food and energy grow,

cultivation of native grasslands will result in addi-

tional habitat loss and further declines for many

grassland birds unless significant conservation actions

are taken (Lipsey et al. 2015; Wright and Wimberly

2013).

Here we aimed to predict spatially explicit popu-

lation responses of grassland birds to a range of

potential future land-use and climate scenarios. Appli-

cations of machine learning to develop ecological

niche models that predict species distributions (pres-

ence/absence) under current and future scenarios are

widespread (Elith et al. 2006; Evans et al. 2011;

Baltensperger and Huettmann 2015a, b). More

recently, boosting algorithms have been used to make

spatially explicit predictions of abundance from

surveyed populations (Howard et al. 2015; Lipsey

et al. 2015; Fox et al. 2017). Using an ecological niche
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modeling framework, we used a gradient boosting

machine algorithm to estimate current population

distributions for 24 species of grassland birds in the

Upper Missouri River Basin (UMRB; 516,832 km2;

Fig. 1) and to project population changes using seven

climate/land-use change scenarios for 2050.

We included bird species if they were grassland

obligates or facultative users of grasslands for foraging

or nesting. The 24 species selected for modeling

included waterfowl (n = 4), upland game birds

(n = 3), raptors (n = 2), shorebirds (n = 3) and

passerines (n = 12), so study species comprise a broad

taxonomic sample. Of these, seven (greater sage-

grouse, greater prairie-chicken, Sprague’s pipit, chest-

nut-collared longspur, McCown’s longspur, Baird’s

sparrow, bobolink; see Table 1 for scientific names)

are listed as ‘‘species of continental concern’’ for

ongoing population declines and threats to future

persistence (Rosenberg et al. 2016). An additional two

(lark bunting and grasshopper sparrow) are also listed

as common birds that have shown steep population

declines (Rosenberg et al. 2016). We hope that by

identifying geographic areas of population change

common to many species, private land owners and

wildlife managers may more proactively focus con-

servation efforts in the northern Great Plains.

Methods

Training data

We accessed field data from the Bird Conservancy of

the Rockies for a spatially balanced survey of

Fig. 1 Map of the Upper Missouri River Basin study area, depicting baseline landcover conditions (Sohl et al. 2019) as of 2014 and

broader position of the UMRB within a digital elevation map of the continental U.S
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Table 1 Common names, scientific names, and American Ornithological Union (AOU) codes for 24 species for which population

distribution models were developed

Common name Scientific name AOU

Code

Non-zero Training

Points (n)

Mean observed

abundance

Mean predicted

abundance

Model

NRMSE

Spatial

MAE

Baird’s sparrow Ammodramus

bairdii

BASP 67 0.70 ± 3.10 0.58 ± 1.50 3.9 0.59

Bobolink Dolichonyx

oryzivorus

BOBO 94 2.80 ± 8.30 2.80 ± 5.20 0.8 1.05

Blue-winged teal Anas discors BWTE 163 0.60 ± 2.20 0.80 ± 1.20 11.6 0.32

Chestnut-

collared

longspur

Calcarius

ornatus

CCLO 125 3.60 ± 13.70 3.30 ± 7.60 2.9 1.70

Dickcissel Spiza americana DICK 62 0.90 ± 6.10 1.20 ± 3.30 6.9 0.37

Ferruginous

hawk

Buteo regalis FEHA 30 0.10 ± 0.50 0.10 ± 0.20 5.0 0.03

Gadwall Mareca strepera GADW 86 0.60 ± 2.40 0.70 ± 1.30 4.1 0.24

Grasshopper

sparrow

Ammodramus

savannarum

GRSP 479 11.70 ± 16.60 10.90 ± 12.50 0.2 3.29

Greater prairie-

chicken

Tympanuchus

cupido

GPCH 22 0.30 ± 2.80 0.50 ± 2.20 39.3 0.18

Greater sage-

grouse

Centrocercus

urophasianus

GSGR 26 0.20 ± 1.80 0.20 ± 0.70 9.2 0.07

Lark bunting Calamospiza

melanocorys

LABU 334 14.90 ± 30.70 18.10 ± 24.10 1.5 3.19

Lark sparrow Chondestes

grammacus

LASP 516 6.40 ± 8.50 6.10 ± 5.20 1.2 2.13

Long-billed

curlew

Numenius

americanus

LBCU 77 0.60 ± 3.00 0.80 ± 1.60 4.6 0.32

Marbled godwit Limosa fedoa MAGO 72 0.40 ± 1.80 0.50 ± 1.00 7.5 0.57

Mallard Anas

platyrhynchos

MALL 303 1.80 ± 3.10 2.20 ± 1.80 0.9 0.16

McCown’s

longspur

Rhynchophanes

mccownii

MCLO 20 0.20 ± 2.70 0.20 ± 1.00 14.9 0.08

Northern pintail Anas acuta NOPI 77 0.30 ± 1.20 0.40 ± 0.70 4.0 0.18

Savannah

sparrow

Passerculus

sandwichensis

SASP 164 2.30 ± 8.00 3.89 ± 6.80 3.0 1.45

Sprague’s pipit Anthus spragueii SPPI 46 0.30 ± 1.80 0.30 ± 0.80 11.9 0.07

Sharp-tailed

grouse

Tympanuchus

phasianellus

STGR 151 0.90 ± 3.50 0.90 ± 1.50 2.1 0.32

Swainson’s hawk Buteo swainsoni SWHA 92 0.30 ± 0.90 0.40 ± 0.50 3.1 0.12

Upland

sandpiper

Bartramia

longicauda

UPSA 356 3.40 ± 5.80 3.90 ± 4.40 1.4 0.92

Vesper sparrow Pooecetes

gramineus

VESP 520 9.00 ± 12.30 10.00 ± 8.40 1.2 3.03

Western

meadowlark

Sturnella

neglecta

WEME 687 45.60 ± 40.70 44.00 ± 28.50 0.6 7.67

Training sample sizes (number of points where species were detected), mean observed and predicted mean abundances (individuals/

km2) with standard deviations across all 786 training locations. Mean-normalized root mean square errors (NRMSE), and mean

absolute error (MAE) of predicted versus observed abundances are also included
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landbirds conducted across Montana (MT), Wyoming

(WY), Colorado (CO), North Dakota (ND), and South

Dakota (SD) between 2007 and 2018 (Hanni et al.

2018). Field technicians conducted point counts of

birds for 6 min at each of 16 points spaced 250 m apart

and arranged in a 1 km 9 1 km sampling grid (Hanni

et al. 2018). We limited records to the UMRB as

defined by Sohl et al. (2019; Fig. 1), resulting in a

dataset totaling 170,610 observations for 24 species at

4578 points among sampling grids (Table 1).

We assumed each point in a grid was independent,

with a maximum detection radius of 125 m, so total

area sampled in each full grid (16 points) was * 1

km2. We collapsed raw species counts into mean

relative abundances (hereafter ‘abundance’) using a

cross-tabulation query to sum species detections

across all points in a grid for the years sampled. Using

the ‘mean center’ tool in ArcGIS 10.5 (ESRI, Inc.,

Redlands, CA, USA) we determined the geographic

center of each sampling grid and assigned correspond-

ing mean abundances to these 786 points. Sampling

grids where a species was never detected during the

12-year study were assigned a value of 0.0, to train

absences in models.

We did not correct abundance estimates for

detectability because we used georeferenced, spatially

explicit point-level count data to calculate average

numbers of detected birds in each sampling grid,

rather than calculating densities by habitat. Because

calculation of the detection function is based on many

points within a habitat type, we decided not to correct

point-level count data. Our results, therefore, under-

estimate actual bird densities, as birds farther from

points were less likely to be detected. Because surveys

were conducted in open grassland habitats, primarily

mixed- and shortgrass prairies, we assumed within-

species detectability was similar among points, so

errors in abundance estimates should be systematic

across the UMRB.

Model development

All abundances and associated geographic coordinates

were attributed in R 3.6.1, with 20 climatic, topo-

graphic, and anthropogenic raster predictors hypoth-

esized to influence population distributions of

grassland birds in the region (Online Material 1).

Climatic predictors were downloaded from World-

Clim 1.4 (worldclim.org/data/cmip5.html) and we

used the BCC-CSM1-1 global climate model (GCM)

projections, downscaled to 30 s resolution and aver-

aged over 2010–2018.

To predict species abundances across the UMRB,

we used a gradient boosting machine algorithm with

inverse distance weighting (IDW; spm package in R

3.6.1; R Core Team 2019; Li et al. 2019). The

gbmidwcv function allowed for tenfold cross-valida-

tion of tree predictions and selection of the most

accurate models using the lowest root-mean square

error (RMSE). This algorithm was more accurate

than others we tried, including randomForest in R

(stat.berkeley.edu/*breiman/RandomForests), Tree-

Net (Minitab, LLC, State College, PA) and gradient

boosting machines without inverse-distance weight-

ing. To compare among species, we calculated the

normalized RMSE (NRMSE) by dividing RMSE by

the observed mean abundance for each species (Will-

mott et al. 1985). Predictive spatial accuracy was

assessed using mean absolute error (MAE) of pre-

dicted versus observed abundances, standardized by

standard deviation.

Gradient boosting machines are a type of machine

learning algorithm that uses binary recursive decision

trees in sequence to parse data into terminal nodes that

minimize within-group variances. Machine learning

methods are non-parametric and are adept at incorpo-

rating multi-variate interactions among collinear pre-

dictors to analyze large or inconsistent datasets. As

such, they are effective tools to describe and predict

the complexity of ecological systems (Craig and

Huettmann 2009; Oppel et al. 2009; Wiersma et al.

2011).

In addition to using environmental predictors to

develop models, gbmidwcv also incorporates IDW to

tune predictions to appropriate numeric ranges. This

becomes especially important when correlative pat-

terns between environmental predictors and training

points become less informative as the non-zero

training sample gets smaller. We varied the number

of trees grown (2000–10,000), learning rate

(0.0001–0.01), minimum number of observations per

node (3–10), and the inverse distance power (1–3) in

order to identify the hyper-parameters that produced

the most accurate models. To avoid biases associated

with high-level categorical predictors ([ 20 cate-

gories) in decision tree models, and to ensure the most

accurate predictions, we treated landcover (29 cate-

gories; see Sohl et al. 2019; Fig. 1) and geology (63
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categories; see mrdata.usgs.gov/geology/kb.html) as

continuous predictors. Slightly penalizing their con-

tribution maximized predictive accuracy and ensured

models were not dominated by any single predictor, as

often occurs with high-level categorical predictors

(Steinberg 2006; Hofner et al. 2011). Default settings

were used for all other model parameters.

Prediction scenarios

Models were scored to a set of regularly spaced grids

of points (1 km resolution), attributed with the same

environmental predictors (Online Material 1), to make

current predictions. We also scored models to a set of

seven future landcover/climate scenarios consisting of

combinations of WorldClim 1.4 climate predictions

and FORE-SCE land-use/land-change scenarios for

the UMRB (Sohl et al. 2007, 2019). Projections were

based on the 5th IPCC (2018; International Panel on

Climate Change) report using the BCC-CSM1-1 GCM

averaged over 2041–2060. We selected this model for

its availability for the time periods and representative

concentration pathways (RCP) of interest. Scored

models were smoothed using IDW to generate

continuous rasters of predicted species abundances,

given future landcover and climate conditions.

Scenarios included RCP4.5, 6.0, and 8.5 climate

projections (IPCC 2018; Online Resource 2) in

conjunction with five FORE-SCE landcover scenarios

(Sohl et al. 2019). Of 33 available FORE-SCE land-

use/landcover-change scenarios (sciencebase.gov/cat-

alog/item/5c61bf67e4b0fe48cb32fd30), we used five

to model 7 future scenarios (model names in paren-

theses) for each species. Scenarios were selected to

represent a range of responses including low, medium,

and high carbon emissions, agricultural change,

biomass biofuel expansion, and prioritization of

environmental conservation. A business-as-usual sce-

nario (bau), based on extrapolation of recent

(2001–2014) landcover trends as derived from

remote-sensing data, was paired with corresponding

RCP8.5 climate predictions (bau_rcp8.5). The

gcam4.5 landcover scenario, which is consistent with

GCAM 4.5 land-use model runs of natural/non-

anthropogenic vegetation, was paired with RCP4.5

climate responses (gcam4.5_rcp4.5). The sresb2 land-

use scenario, wherein environmental conservation is

highly valued and the agricultural footprint is small,

was paired with RCP6.0 (sresb2_rcp6.0). We used

Billion Ton Update scenarios (USDOE 2016) with

farmgate prices of $40/dry ton of biofuel crop biomass

(btu40) and $80/dry ton (btu80) that were each paired

with RCP4.5 (btu40_rcp4.5; btu80_rcp4.5) and

RCP8.5 climate scenarios (btu40_rcp8.5;

btu80_rcp8.5).

Analyses

We calculated means of predicted abundances for each

species across the UMRB for each scenario. Current

predictions were subtracted from future predictions

using the Diff tool in ArcGIS to quantify pixel-by-

pixel changes in abundance predicted for 2050 under

different scenarios. We then reclassified continuous

change rasters into binary change rasters to quantify

increasing and decreasing trends separately. For each

species/scenario combination, we tallied the total

areas of both the decreasing and increasing abundance

classes and calculated predicted changes in area as of

2050. Spatially summing change rasters across species

and scenarios allowed for the identification of regional

hotspots, where abundance increases or decreases

were predicted for multiple species. We also calcu-

lated the mean number of species predicted to increase

or decrease across 7 scenarios for the UMRB. To

better understanding model responses to individual

predictors, we made partial dependence plots for

predictors in each model. In order to better visualize

class responses, we treated landcover and geology as

categorical predictors for this analysis.

Results

Model performance

Models accurately predicted observed mean abun-

dances for most species (0.2 B NRMSE B 39.3;

Table 1). The best models were for grasshopper

sparrow (NRMSE = 0.2), western meadowlark

(NRMSE = 0.6), and bobolink (NRMSE = 0.8).

Models for several species with small training sam-

ples, including greater prairie-chicken (NRMSE =

39.3), McCown’s longspur (NRMSE = 14.9), and

Sprague’s pipit (NRMSE = 11.9) were among the

least accurate (Table 1). However, spatial predictions

were highly accurate (0.03 B MAE B 7.67) for all
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species, especially after accounting for the range of

variation in observed abundances (Table 1).

Relative predictor importance

The relative importance of predictors varied widely

among species, but among the most influential

([ 10%) were: forest distance (15 species), winter

temperature (10 species), elevation (10 species), and

summer temperature (6 species; Online Resource 1).

Landcover was generally less influential than climate

in most models, influencing 7 models (i.e., dickcissel,

savannah sparrow, grasshopper sparrow, mallard,

upland sandpiper, vesper sparrow, and Swainson’s

hawk). For these species, some patterns among

landcover classes were consistent. Winter and spring

wheat were associated with higher abundances for all

of these species, except grasshopper sparrow. Canola

(biofuel) was positively correlated with abundance in

all but the dickcissel and vesper sparrow models, and

open water was directly related to higher predicted

abundances in all but the savannah sparrow and

Swainson’s hawk models. Grassland was positively

correlated with grasshopper sparrow, upland sand-

piper, and vesper sparrow abundance in the models

(Online Resource 3).

Predicted population distribution change

Future abundance projections for 24 species in the

UMRB using seven scenarios resulted in a total of 168

future models, for which change statistics were

calculated as compared to current models (Figs. 2,

3). Responses were highly variable by species,

scenario, and local geography, and mean statistics

for the UMRB tended to obscure nuanced local

responses (e.g., Fig. 4, Online Resource 4, www.osf.

io/8bgvt/files). For seven species (i.e., Baird’s spar-

row, bobolink, greater sage-grouse, lark sparrow,

long-billed curlew, savannah sparrow, and vesper

sparrow) models consistently predicted either increa-

ses or decreases in mean abundance across the UMRB

in 2050, depending on the scenario (Fig. 2). Lark

bunting was predicted to decline across all scenarios,

whereas abundances of the remaining 16 species were

predicted to increase across the UMRB under all

scenarios (Fig. 2).

While most scenarios resulted in similar responses

by species, the sresb2_rcp6.0 scenario was a

notable exception (Fig. 2). For bobolink, chestnut-

collared longspur, and gadwall, the sresb2_rcp6.0

scenario resulted in the largest increases in population

abundance (versus current predictions) as compared to

other scenarios. In contrast, this scenario accounted

for the smallest predicted increases for dickcissel,

greater prairie-chicken, grasshopper sparrow, marbled

godwit, upland sandpiper, and western meadowlark.

The btu40_rcp8.5 scenario produced the largest

increases in population abundances for many of these

same species (dickcissel, marbled godwit, mallard,

Swainson’s hawk, upland sandpiper, and western

meadowlark). However, this scenario also resulted in

the largest predicted declines of blue-winged teal,

savannah sparrow, and greater sage-grouse across the

UMRB. Errors bars indicated that lark bunting,

western meadowlark, and grasshopper sparrow

responses were highly variable under all scenarios,

exemplified by opposing responses that depended on

geography (Figs. 2, 4, Online Resource 4).

Most species models (n = 17) predicted areas of

increasing abundance that exceeded areas of decreas-

ing abundance across the UMRB under all scenarios

(e.g. dickcissel, sharp-tailed grouse, and upland sand-

piper). Seven species showed total areas of decrease

that exceeded areas of increase across some or all

scenarios (chestnut-collared longspur, greater sage-

grouse, long-billed curlew, savannah sparrow, vesper

sparrow, lark bunting and McCown’s longspur;

Fig. 3). Both lark bunting and McCown’s longspur

(whose mean abundances were not predicted to

decrease overall) had a total area of decline that

exceeded the area of gain under all scenarios, indicat-

ing that abundance increases were concentrated in just

a few hotspots while small declines were predicted

across the remainder of the UMRB (Fig. 3). Most

species predicted to decline in abundance (except

Baird’s sparrow, bobolink, and lark sparrow) also had

areas of decline that exceeded areas of gain for one or

more scenarios: greater sage-grouse (6 scenarios),

savannah sparrow (4 scenarios), vesper sparrow (4

scenarios), long-billed curlew (2 scenarios), and

chestnut-collared longspur (1 scenario; Fig. 3).

Ten species were predicted to decline in either

abundance or in occupied area, under at least one

scenario, including 8 passerines, 1 upland game bird

(greater sage-grouse), and 1 shorebird (long-billed

curlew). In contrast, 14 species were exclusively

predicted to increase in both abundance and occupied
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area, including all 4 waterfowl species, both raptors, 2

of 3 upland gamebirds, and 2 of 3 shorebirds. But, just

4 of 12 passerines were predicted to increase across all

scenarios using both area and abundance metrics,

indicating differential responses to landscape change

by taxonomic order (Fig. 4; see Online Resource 4 for

detailed descriptions of passerine model predictions).

Predicted areas of cross-species change

Focusing specifically on areas of predicted abundance

decline across species, we identified some areas where

all species were predicted to decline, primarily in the

eastern third of the UMRB (Fig. 5). Locations of

multi-species declines were largely consistent across

Fig. 2 Predicted abundances and standard errors using current conditions and seven future scenarios for 24 grassland bird species in the

Upper Missouri River Basin for 2050

Fig. 3 Predicted net change in area where population density is increasingminus where it is decreasing for each of 24 bird species in the

Upper Missouri River Basin given seven future land use change and climate scenarios for 2050
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future scenarios, varying only in number of species

and relative extent. Models of multi-species abun-

dance increases occurred from the Black Hills through

central MT to the northern edge of the UMRB (Fig. 6).

In general, scenarios that included the RCP8.5

climate data tended to have smaller mean total areas of

decline per species than the RCP4.5 or 6.0 scenarios

(Fig. 5). The btu80_rcp4.5 scenario predicted the most

intense areas of decline and the largest mean affected

land area (187,209 km2). The sresb2_rcp6.0 scenario

resulted in a smaller mean area of decline (183,056

km2), and also had smaller numbers of declining

species. The scenario with the smallest mean predicted

area of decline was btu40_rcp8.5 (162,981 km2).

Other scenarios predicted modest mean areas of

decline (gcam4.5_rcp4.5 = 185,167 km2,

btu40_rcp4.5 = 178,362 km2, btu80_rcp8.5 =

171,208 km2, bau_rcp8.5 = 165,899 km2). The over-

all mean area of predicted abundance declines across

all scenarios was 185,490 km2.

Mirroring predicted abundance declines, models

that included the RCP8.5 scenario showed the largest

total area of abundance gains (Fig. 6). The

btu40_rcp8.5 scenario predicted the largest mean

increases in area across species (353,806 km2),

followed by bau_rcp8.5 (329,355 km2), and

btu80_rcp8.5 (324,046 km2). The smallest predicted

areas of total increase were for btu80_rcp4.5 (308,045

km2), gcam4.5_rcp4.5 (310,087 km2), sresb2_rcp6.0

(312,199 km2), and btu40_rcp4.0 (316,892 km2). The

mean predicted area of abundance increases for the

ensemble mean across all models was 352,827 km2.

Discussion

We predicted distributions for 24 species of grassland

birds across the UMRB, and projected changes in

abundance by 2050 for seven climate and landcover-

change scenarios (Table 1). Responses were species-

specific and varied extensively across the UMRB.

Sixteen species were predicted to undergo increases in

mean abundance for all future scenarios, whereas eight

species were projected to experience abundance

declines in at least one scenario (Fig. 2). Models

predicted seven species to have total areas of decline

that exceeded areas of gain for at least one scenario,

whereas the total area of increasing abundance was

greater than areas of decreasing abundance for the

remaining 17 species across all scenarios (Fig. 3).

Results were geographically variable and all species

were predicted to experience both increases and

declines in abundance in different portions of the

study area (Fig. 4). Across the majority of species,

spatial analyses highlighted three main areas predicted

to experience abundance declines: western Dakotas,

lower Yellowstone River Valley, MT, and along the

eastern front of the Rocky Mountains in the north-

western UMRB (Fig. 5). The main area of increasing

abundances common to many species extended from

the Black Hills to central MT (Fig. 6).

Variability in results within and across species was

consistent with findings from other similar analyses,

but our predictions are somewhat more optimistic than

recent, continental declines in grassland bird abun-

dance might indicate (Peterjohn and Sauer 1999; Sohl

2014; Rosenberg et al. 2019). Maps of species richness

and population change developed from Breeding Bird

Survey (BBS; 1966–1996) data indicated that the

highest avian species richness occurred across the non-

mountainous portions of the UMRB (Peterjohn and

Sauer 1999). Our models predicted this same region to

undergo the largest abundance declines, whereas

patches of increasing populations were most common

to the Rocky Mountains and central MT and WY.

Cumulative population trends and projections using

BBS data also showed temporally and geographically

heterogeneous, species-specific responses (Peterjohn

and Sauer 1999; Sohl 2014; Sauer et al. 2017a).

Avian population changes

Our population change predictions for 2014–2050

indicated more positive trends than those reported by

Peterjohn and Sauer (1999), who found just 6 of 25

grassland bird species had increased from 1966 to

1996 across the continental U.S. Increases in abun-

dance during this time were most significant for

wetland birds, woodland birds, raptors, and permanent

residents, which may be related to increased wetland

protections (Peterjohn and Sauer 1999; Sohl 2014;

Sauer et al. 2017a, b). Between 1993 and 2015,

grassland bird populations had more positive trajec-

tories than during preceding decades, with 10 species

showing increasing trends (Sauer et al. 2017a, b). Our

results, which projected 35 years into the future,

predicted 16 species to experience increasing abun-

dances across the UMRB through 2050.
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Based on the high relative importance of climatic

predictors and low importance of landcover in most

models, and the scale at which changes were predicted

to occur, we ascribe predicted changes primarily to

orographic climate effects (i.e., warmer climates at

higher elevations in the future). Landcover was less

influential than climatic predictors in our study in part

because it was penalized for having a high number of

classes, so further investigation may be necessary. Our

results are, however, consistent with findings that

indicate more influence by climate than landcover at

broad scales (Pearson et al. 2004; Barbet-Massin et al.

2012; Sohl 2014). Species distribution models

typically perform best when both climate and land-

use/landcover-change are included (Sohl 2014),

although this is likely scale dependent (Pearson et al.

2004; Arenas-Castro et al. 2018). Effects of landcover

and forest distance in models were more evident

locally, especially in the agriculturally dominated,

eastern third of the UMRB. Our methods focused

primarily on making accurate predictions, which were

subsequently used to explore correlative patterns of

predictor contribution to models. We hope our results

may inspire further research to determine the effects of

scale, different GCMs, and to quantify effect sizes of

system drivers.

Patterns of predicted increasing abundance across

much of the central UMRB may have two explana-

tions. First, large-scale losses to native grassland

habitats have largely already occurred, so additional

landcover changes predicted for 2050 may have only

limited effects on populations. Second, broad, geo-

graphic shifts in climate envelopes likely outweigh the

effects of small-scale landcover changes on bird

abundances (Barbet-Massin et al. 2012; Sohl et al.

2014). The warmer/wetter conditions expected by

bFig. 4 Predicted current population distribution (Column 1),

predicted 2050 population distribution under scenario exhibiting

the largest change in mean population (Column 2), and the

predicted change in per-pixel population abundance under that

scenario (Column 3). For Baird’s sparrow, bobolink, lark

sparrow, Savannah sparrow and vesper sparrow, future popu-

lation distribution (Column 4) and change maps (Column 5) are

included for scenarios which resulted in mean population trends

that contrasted with those of the other 6 scenarios

Fig. 4 continued
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2050 may actually assist over-winter survival and

fecundity of resident species, while exacerbating

cumulative stress for winter migrants.

Areas of declining abundance common across

many species were especially pronounced in areas of

western SD, where a warming, arid climate resulted in

predicted declines from areas documented as avian

biodiversity hotspots by Sauer and Peterjohn (1999).

Increased aridity in this region is already causing

reduced clutch sizes and fecundity in some species,

which have led to observed population declines

(Kunkel et al. 2013; Wilson et al. 2018). In contrast,

the northern Great Plains is projected to experience

increased mean annual precipitation resulting in

wetter, more productive environments, likely benefit-

ing waterfowl and raptors in the future (Jonas et al.

2018; Sauer et al. 2017). Multi-species abundance

increases predicted from the Black Hills through

central MT are likely due to elevational differences.

Because this region is * 900 to 2100 m higher than

Fig. 5 Species richness maps depicting the number of species

predicted to decline in population for each pixel in the Upper

Missouri River Basin between 2014 and 2050 under each of

seven scenarios a btu40_rcp4.5, b btu40_rcp8.5,

c btu80_rcp4.5, d btu80_rcp8.5, e sresb2_rcp6.0,

f gcam4.5_rcp4.5, g bau_rcp8.5, and h grand mean of all

scenarios. Insets show the frequency distribution of predicted

species declines depicted in the maps

Fig. 6 Species richness maps depicting the number of species

predicted to increase in population for each pixel in the Upper

Missouri River Basin between 2014 and 2050 under each of

seven scenarios a btu40_rcp4.5, b btu40_rcp8.5,

c btu80_rcp4.5, d btu80_rcp8.5, e sresb2_rcp6.0,

f gcam4.5_rcp4.5, g bau_rcp8.5, and h grand mean of all

scenarios. Insets show the frequency distribution of predicted

species declines depicted in the maps
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the Missouri River Valley and includes several large

protected grassland areas, it may provide thermal

refuge for species as the broader region warms.

Among land-use scenarios, high-intensity ($80/ton)

conversion of agricultural lands to support bioenergy

crops (excluding corn ethanol) combined with modest

climate change (RCP4.5) resulted in moderate species

losses across both grass- and croplands (van Vuuren

et al. 2011). Large increases in temperatures under

RCP8.5 may benefit many species by releasing them

from cold-weather constraints. But combined with

intense biomass biofuel cultivation, (e.g.,

btu80_rcp8.5), declines in grassland birds were larger.

At $40/ton, predicted population declines were

smaller than without the incentive, so low levels of

biomass biofuel cultivation may be compatible with

population stability. The effects of biofuel cultivation

may be either tempered or exacerbated by climate

change depending on local geography, species biol-

ogy, and other environmental conditions, but the

effects of high prices and demand for biomass biofuels

could come at larger costs to grassland birds than

under land-change scenarios without a biofuel com-

ponent (Hof et al. 2018).

Implications of climate change on grassland birds

Climatic predictors were among the most important in

our models, and even small changes in magnitude

resulted in broad, landscape-level effects across the

region. But climate effects vary both geographically

and locally, and trends in temperature, precipitation,

elevation, and land-use interact in complex ways that

may counteract one another and lead to unexpected

patterns in local bird abundance. Climate projections

for the region indicate that temperatures in the

southern UMRB are predicted to warm by as much

2–4 �C by 2050, especially in winter, and precipitation

is predicted to decrease, resulting in a more arid

climate in this largely agricultural region (world-

clim.org). Our models indicate that larger climatic

changes could avail new habitat at higher elevations,

allowing birds to increase more under RCP8.5 by

expanding into new areas than under milder scenarios.

Warmer temperatures are already causing north-

ward and upward elevational shifts in observed

distributions of numerous species worldwide (Parme-

san and Yohe et al. 2003; Baltensperger and

Huettmann 2015b). For most birds, winter

temperatures and capacity to maintain internal body

temperatures influence species distributions and cold-

range limits (Swanson and Garland 2009; Stager et al.

2016; Buckley et al. 2018). Because of the large

elevational gradient in the UMRB, mountainous areas

in the west are projected to provide climatic niche

conditions analogous to those currently at lower

elevations in the east (Williams and Jackson 2007).

As species follow suitable climatic niche space, a

longitudinal, elevational gradient may account for

predicted increases in mean population abundance and

mean occupied area observed for many species across

the UMRB.

Warmer winter temperatures may relieve some

thermal stress for non-migratory species near their

northern or elevational limits, leading to increased

abundance. Because increasing winter temperatures

impacted projected abundances for many species, this

may allow some residents, constrained by cold

temperatures near their northern limits, to expand.

Other species, already at their southern limits, may be

forced to move northward, westward, or upward to

track geographic shifts in cooler ecological niche

space. Migratory species should be less sensitive to

changes in winter temperatures, but resultant pheno-

logical shifts in limiting resources may indirectly

affect these populations as well (Travers et al. 2015;

Boelman et al. 2017).

Implications of landcover change on grassland

birds

Future land-use/landcover-change scenarios (FORE-

SCE; Sohl et al. 2019) predicted total grassland area to

decline under all scenarios except for sresb2_rcp6.0. If

landcover contributed more to our models, one would

expect this scenario to show the largest abundance

increases, yet we predicted the opposite. Any benefits

from increased grassland area were outweighed in the

models by more powerful, large-scale effects of

climate, so further investigation into the scale-depen-

dent influence of landcover in spatial abundance

models is warranted (Pearson et al. 2004). Because

the sresb2_rcp6.0 scenario also included the smallest

2050 temperature increases, this scenario provided the

smallest broad-scale, climatic benefits to bird popula-

tions. FORE-SCE scenarios also indicated that winter

wheat may become increasingly common, especially

in the more arid southern regions (Sohl et al. 2019).
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Such land-use changes could be detrimental to grass-

land bird populations if productive habitats (e.g.,

native grasslands and hay fields) are converted into

less-hospitable types (e.g., wheat). Furthermore, a

recent trend towards harvesting hayfields in June,

instead of August, is converting relatively productive

agricultural habitats into population sinks and result-

ing in higher brood losses (Bollinger et al. 1990;

Rodenhouse et al. 1993). Some species are resilient in

the face of agricultural changes, but resilience may

only occur within the constraints of new, often

inescapable, climatic regimes in the region.

Constraints on realized population growth

These models predict increases in abundance across

the UMRB for many grassland bird populations as

they follow the expansion of suitable climatic zones

into new areas. However, the existence of analogous

climatic niche space within the UMRB does not

necessarily mean that birds will be able to disperse to

or thrive in these new areas (Nixon et al. 2016). While

much of the UMRB predicted to undergo abundance

increases is already dominated by grasslands, other

areas are currently, and may remain, forested by 2050.

Warmer, wetter conditions would be unlikely to result

in the expansion of grassland areas, whereas a warmer,

drier climate could result in such a transition, but

would require disturbance to allow such a state change

to occur. High-intensity fires capable of burning to

mineral soil are capable of producing grassland

patches in forests (Baker 2015). While fire is not

currently a major force in the UMRB, it could become

more important for opening new grassland habitat at

higher elevations as climate change increases the

likelihood and intensity of fires in existing forests

(Baker 2015). Major pest outbreaks capable of deci-

mating mature, cone-bearing stands may also con-

tribute to forest-to-grassland transitions (McFarlane

et al. 2012; Mullen et al. 2018). Additional research is

necessary to determine whether landcover changes

will keep pace with climate changes that are directing

species distributions and abundances.

Conclusion

Projected changes in grassland bird abundances were

highly variable across species and local geographies.

While all species were projected to experience both

increased and decreased abundances in different areas

of the UMRB, waterfowl, shorebirds, upland game-

birds, and raptors were generally predicted to increase

over the coming decades. These species appear poised

to benefit from increasing temperature and precipita-

tion that may reduce cold stress and avail new habitats

at higher elevations, especially under RCP8.5 scenar-

ios. Scenarios that included high-intensity bioenergy

cultivation were more likely to result in smaller

population gains, but low-levels of biofuel cultivation

may be sustainable for some species. In contrast,

abundances for several passerines and greater sage-

grouse were predicted to decrease because of warming

climatic conditions, possibly due to increased thermal

stress in summer. Projected decreases were especially

pronounced in agricultural areas of ND, SD and MT,

where changing crop composition under biofuel

scenarios may exacerbate climate stress. Abundance

increases were predicted inWY andMTwhere natural

grassland habitats are more likely to persist, and

conservation of existing grasslands is paramount.

Land managers and avian conservationists should

carefully monitor grassland bird populations in areas

of projected decline, while also planning dispersal

corridors that link existing and emerging grassland

habitats under a warmer, drier future. Successful

species persistence will ultimately depend on the

extent of climate change, the connectivity of suit-

able dispersal habitat, and the adaptive capacity of

individual species.
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R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI,

123

Landscape Ecol

https://doi.org/10.1371/journal.pone.0109989
https://doi.org/10.1371/journal.pone.0109989
https://doi.org/10.1002/ece3.4537
https://doi.org/10.1002/ece3.4537
https://doi.org/10.1111/gcbb.12686


Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) In

Press.

Jonas JL, Buhl DA, Symstad AJ (2015) Impacts of weather on

long-term patterns of plant richness and diversity vary with

location and management. Ecology 96(9):2417–2432

Kunkel KE, Karl TR, Easterling DR et al (2013) Probable

maximum precipitation and climate change. Geophys Res

Lett 40(7):1402–1408

Lipsey MK, Doherty KE, Naugle DE, Fields S, Evans JS, Davis

SK, Koper N (2015) One step ahead of the plow: using

cropland conversion risk to guide Sprague0s Pipit conser-
vation in the northern Great Plains. Biol Conserv

191:739–749

Maestre FT, Eldridge DJ, Soliveres S (2016) A multifaceted

view on the impacts of shrub encroachment. Appl Veg Sci

19:369–370

McFarlane BL, Parkins JR, Watson DOT (2012) Risk, knowl-

edge, and trust in managing forest insect disturbance. Can J

For Res 42(4):710–719

Mullen K, Yuan F, Mitchell M (2018) The mountain pine beetle

epidemic in the Black Hills, South Dakota: the conse-

quences of long term fire policy, climate change. J Geogr

Geol 10:69–82

Murray L, Best L (2003) Short-term bird response to harvesting

switchgrass for biomass in Iowa. J Wildl Manage 67:611

Nixon AE, Fisher RJ, Stralberg D, Bayne EM, Farr DR (2016)

Projected responses of North American grassland song-

birds to climate change and habitat availability at their

northern range limits in Alberta, Canada. Avian Conserv

Ecol. https://doi.org/10.1111/ddi.13057

Oppel S, Strobl C, Huettmann F (2009) Alternative methods to

quantify variable importance in ecology. University of

Munich, Munich, pp 1–6

Parmesan C, Yohe G (2003) A globally coherent fingerprint of

climate change impacts across natural systems. Nature

42(2):37–42

Pearson RG, Dawson TP, Liu C (2004) Modelling species dis-

tributions in Britain: a hierarchical integration of climate

and land-cover data. Ecography 27(3):285–298

Peterjohn BG, Sauer JR (1999) Population status of North

American grassland birds from the North American

breeding bird survey 1966–1996. Stud Avian Biol

19:27–44

R Core Team (2019) R: A language and environment for sta-

tistical computing. R Foundation for Statistical Comput-

ing,Vienna, Austria. https://www.R-project.org/

Robertson BA, Rice RA, Sillett TS, Ribic CA, Babcock BA,

Landis DA, Herkert JR, Fletcher RJ, Fontaine JJ, Doran PJ,

Schemske DW (2012) Are agrofuels a conservation threat

or opportunity for grassland birds in the United States?

Condor 114(4):679–688

Rodenhouse NL, Best LB, Oconnor RJ, Bollinger EK (1993)

Effects of temperate agriculture on neotropric migrant

landbirds. In: Finch DM, Stangel PW (eds) Status and

management of neotropical migratory birds. USDA Forest

Service, Fort Collins, pp 280–295

Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC,

Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra

PP (2019) Decline of the North American avifauna. Sci-

ence 366:120–124

Rosenberg KV, Kennedy JA, Dettmers R, Ford R, Reynolds D,

Alexander J, Beardmore C, Blancher PJ, Bogart R, Butcher

G, Camfield A, Couturier A, Demarest DW, Easton WE,

Giocomoco JJ, Keller RH, Mini AE, Panjabi AO, Pashley

DN, Rich TD, Ruth JM, Stabins H, Stanton J, Will T (2016)

Partners in flight landbird conservation plan: 2016 revision

for Canada and Continental United States. Partners in

Flight Science Committee, pp. 119

Saalfeld DT, Saalfeld ST, Conway WC, Hartke KM (2016)

Wintering grassland bird responses to vegetation structure,

exotic invasive plant composition, and disturbance regime

in coastal prairies of Texas. Wilson J Ornithol

128(2):290–305

Samson F, Knopf F (1994) Prairie conservation in North

America. Other Publ Wildl Manag 41:418–421

Sauer JR, Niven D, Hines JE, Ziolkowski DJ Jr, Pardieck K,

Link W (2017a) The North American Breeding Bird Sur-

vey, results and analysis. Version 2.07.2017. USGS

Patuxent Wildlife Research Center, Laurel, MD

Sauer JR, Pardieck KL, Ziolkowski DJ Jr, Smith AC, HudsonM,

Rodriguez V, Berlanga H, Niven D, Link W (2017b) The

first 50 years of the North American Breeding Bird Survey.

Condor 119(3):576–593

Schipper AM, Belmaker J, de Miranda MD, Navarro LM,

Bohning-Gaese K, Costello MJ, Dornelas M, Foppen R,

Hortal J, Huijbregts MAJ, Martin-Lopez B, Pettorelli N,

Queiroz C, Rossberg AG, Santini L, Schiffers K, Stein-

mann ZJN, Visconti P, Rondinini C, Pereira HM (2016)

Contrasting changes in the abundance and diversity of

North American bird assemblages from 1971 to 2010. Glob

Change Biol 22(12):3948–3959

Silver WL, Ryals R, Eviner V (2010) Soil carbon pools in

California’s annual grassland ecosystems. Rangeland Ecol

Manage 63(1):128–136

Sohl TL (2014) The relative impacts of climate and land-use

change on conterminous Unites States bird species from

2001 to 2075. PLoS ONE 9:1–18

Sohl TL, Dornbierer J, Wika S (2019) 33 high-resolution sce-

narios of land use and vegetation change in the Prairie

Potholes. In: Survey USG. (ed). Sioux Falls, SD

Sohl TL, Sayler KL, Drummond MA, Loveland TR (2007) The

FORE-SCEmodel: a practical approach for projecting land

cover change using scenario-based modeling. J Land Use

Sci 2(2):103–126

Stager M, Pollock HS, Benham PM, Sly ND, Brawn JD, Che-

viron ZA (2016) Disentangling environmental drivers of

metabolic flexibility in birds: the importance of tempera-

ture extremes versus temperature variability. Ecography

39(8):787–795

Stanton RL, Morrissey CA, Clark RG (2018) Analysis of trends

and agricultural drivers of farmland bird declines in North

America: a review. Agr Ecosyst Environ 254:244–254

Staudt A, Leidner AK, Howard J, Brauman KA, Dukes JS,

Hansen LJ, Paukert C, Sabo J, Solórzano LA (2013) The
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