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Abstract
Aim: Characterizing animal habitat selection is central to ecology and conservation, 
and understanding selection across multiple spatial scales is a particular priority for 
research. However, the ability of selection models to capture multi-scale response has 
been limited by the dual analytical hurdles of cross-scale collinearity and overlapping 
landscapes. The aim of this study was to overcome these limitations using a novel, 
spatially hierarchical approach.
Location: North America’s northern Great Plains (U.S.A. and Canada).
Methods: We developed a novel adaptation of the occupancy modelling framework 
that integrates animal response conditionally across scales. We then compared out-
comes to those from a traditional multi-scale model. We illustrated our approach using 
the breeding distribution of two North American grassland songbirds of conservation 
concern, Sprague’s Pipit Anthus spragueii and Chestnut-collared Longspur Calcarius 
ornatus.
Results: Our model successfully captured bird response to local habitat within a 
broader landscape context, even when habitat associations occurred in opposite di-
rections across scale. Probabilities of occupancy were more strongly affected by local 
conditions when landscape context was favourable than when it was unfavourable. 
The traditional multi-scale approach extended problems of scale into spatial predic-
tions by over-estimating occurrence where conditions were locally favourable but re-
gionally unsuitable.
Main conclusions: The spatially hierarchical approach provides an integrated model of 
habitat selection across scales by allowing broader landscape context to shape local 
response to conditions. For grassland songbirds, our application enabled targeting that 
could enhance the expected benefits of conservation when compared to the tradi-
tional approach.
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1  | INTRODUCTION

The study of habitat selection is a central focus of ecology that informs 
wildlife management and conservation (Boyce & McDonald, 1999; 

Manly, 2002). Habitat selection is a hierarchical process, with animals 
making movement decisions ranging from long-distance dispersal or 
migration to microscale selection of nesting or foraging sites (Hutto, 
1985; Johnson, 1980; Wiens, 1973). Models of selection therefore 
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are highly sensitive to scale, which includes the resolution of sampling 
(grain) and the size of the study area (extent; Dungan et al., 2002; 
Boyce, 2006; Mayor, Schaefer, Schneider, & Mahoney, 2007). Grains 
that are too large for animal or habitat data will miss patterns at finer 
scales, whereas extents that are too small constrain the order of se-
lection captured and restrict inference (Boyce, 2006; Johnson, 1980).

Biologists often want to identify ecologically important scales of 
selection and to understand how relationships with habitat change 
across scale. Understanding scales of selection can be particularly im-
portant for conservation management applications. For example, the 
United States Endangered Species Act (ESA, 1973) is the country’s 
strongest conservation law. It mandates that critical habitat for endan-
gered species must be identified and protected but does not specify 
scale. Ignoring how variables across scales influence habitat suitability 
could lead to inappropriate or ineffective legal designations. Because 
of its known importance, multi-scale analysis is commonly included 
in species–habitat studies (Mayor, Schneider, Schaefer, & Mahoney, 
2009). However, two major obstacles have plagued attempts to char-
acterize selection across scales: (1) cross-scale collinearity and (2) the 
problem of overlapping landscapes around fine-scale survey data.

1.1 | Collinearity

Collinearity among predictors is a common challenge facing habitat 
models (Dormann et al., 2013), which is compounded in multi-scale 
studies (Battin & Lawler, 2006). Habitat attributes are almost always 
autocorrelated in space, meaning that local-scale variables show a 
strong relationship with similar measures at broader scales (Figure 1a; 
Purtauf, Thies, Ekschmitt, Wolters, & Dauber, 2005). Frequently, re-
searchers address collinearity by dropping all but the single “best” vari-
able from a highly correlated cross-scale group. While this does reduce 
collinearity within predictors, it is not desirable because potentially im-
portant information is lost from other scales. Further, ecological vari-
ables can behave in unpredictable and often unintuitive ways across 
scale, making selection of a single best scale a non-trivial task that has 
profound implications for model interpretation (Wheatley, 2010).

Another common approach when dealing with cross-scale col-
linearity is to model animal response separately at several scales and 
then compare model likelihoods (Lawler & Edwards, 2006). This ap-
proach, too, can be misleading because variables modelled at any one 
scale may still include substantial information from latent cross-scale 

F IGURE  1 Common problems facing studies of habitat selection at multiple scales compared with a spatially hierarchical approach. (a) 
Concentric buffers often lead to cross-scale collinearity in habitat covariates. Numbers indicate proportional cover of a vegetation type in each 
buffer. (b) Overlapping landscapes result from clustering of survey points and artificially decrease variability in the predictor. (c) Two occupied 
broad-scale units from the spatially hierarchical sampling frame. Shading indicates observed occupancy at intermediate and fine scales. [Colour 
figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c)
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correlations (Battin & Lawler, 2006; Cushman & McGarigal, 2002; 
Mahon, Martin, & Lemay, 2008). For example, Bakermans and 
Rodewald (2006) reported that availability of insect prey was not re-
lated to Empidonax virescens (Acadian Flycatcher) abundance in ripar-
ian forests of central Ohio, despite a known importance of prey to 
territory selection and reproductive success. Broader scales of anal-
ysis revealed that birds were avoiding more urbanized areas that also 
happened to have higher than average insect abundance (Bakermans 
& Rodewald, 2006). In this case, the broad-scale correlation between 
insect abundance and land use was likely confounding observed pat-
terns of local selection. Without the broad-scale analysis, the results 
of this study could have led managers to disregard an important com-
ponent of habitat quality for this species.

1.2 | Overlapping landscapes

Although broad-scale processes like land use or climate gradients 
almost certainly influence distributions of many species, the abil-
ity to detect their effects is often limited by sampling constraints. 
Survey data are typically clustered at a relatively fine scale, leading 
to an increasingly high degree of overlap in surrounding landscapes 
as scale of analysis increases (Figure 1b). Use of habitat data from 
overlapping landscapes equates to pseudoreplication in most mod-
elling frameworks and can result in non-independence of residuals 
(Eigenbrod, Hecnar, & Fahrig, 2011; Zuckerberg et al., 2012), artifi-
cially narrow confidence intervals (Legendre, 1993) and diminished 
statistical power from reduced variability in predictors (Eigenbrod 
et al., 2011).

Ecologists have used three basic strategies to mitigate the prob-
lem of overlap, none of which is entirely satisfactory (Zuckerberg et al., 
2012). Some researchers proactively design sampling to minimize 
clustering and overlap (Eigenbrod et al., 2011), whereas others thin 
data by removing overlapping sites a posteriori (Koper & Schmiegelow, 
2006). The first approach reduces the efficiency of data collection and 
the second results in information loss and wasted sampling effort. 
Most frustrating perhaps is that the elimination of overlap does not 
necessarily remove autocorrelation in the data, and neither method 
guarantees statistical independence (Zuckerberg et al., 2012). A third 
approach controls for autocorrelation directly by modelling it and 
removing its effect (Dormann et al., 2007; Thogmartin & Knutson, 
2007). However, because autocorrelation can reflect latent biological 
or environmental processes (Keitt, Bjørnstad, Dixon, & Citron-Pousty, 
2002; McIntire & Fajardo, 2009), its removal can actually obscure pat-
terns of interest.

1.3 | Spatially hierarchical models

Hierarchical models represent an elegant solution to the problems of 
collinearity and overlapping landscapes in studies of multi-scale habi-
tat selection. In a hierarchical model, parameters are related to one an-
other through a joint probability that reflects the dependence among 
them (Gelman, Carlin, Stern, & Rubin, 2004). This framework provides 
the basis for the rapidly growing field of occupancy modelling, which 

has already supplied myriad novel and innovative ways to analyse bio-
logical data. Occupancy modelling was first developed as a method to 
integrate imperfect detection in survey data as a nested process within 
species distribution models. It differs from standard logistic regression 
because it estimates probability of occupancy (ψ) rather than prob-
ability of occurrence (Lele, Merrill, Keim, & Boyce, 2013; MacKenzie 
et al., 2006). Occupancy is then separated from probability of detec-
tion (p) by parameterization through repeated sampling in time or 
space (MacKenzie et al., 2006). The structure of occupancy models is 
naturally hierarchical, wherein the detection process is constrained by 
the occupancy state. For example, if a species is absent, it cannot be 
detected no matter how high the probability of detection. Occupancy 
models have already been extended to address diverse ecological 
questions including habitat selection (MacKenzie et al., 2002), spe-
cies abundance and diversity (Royle, 2004), spatial replicates (Kery 
& Royle, 2008), multiple observers (MacKenzie et al., 2006), multiple 
detection methods (Nichols et al., 2008) and multi-scale occupancy 
(Mordecai, Mattsson, Tzilkowski, & Cooper, 2011; Nichols et al., 
2008; Pavlacky, Blakesley, White, Hanni, & Lukacs, 2012).

This paper extends the spatially hierarchical occupancy frame-
work pioneered by Nichols et al. (2008), Pavlacky et al. (2012) and 
Mordecai et al. (2011) to incorporate a multi-scale habitat selection 
process. Nichols et al. (2008) were the first to apply an occupancy 
model hierarchically across two spatial scales, separating species use 
of sample units from presence at individual survey sites. Pavlacky 
et al. (2012) used this multi-scale framework to effectively account 
for non-independence of spatially replicated monitoring data, but did 
not include habitat covariates. Mordecai et al. (2011) applied a two-
scale model to analyse distribution of Seiurus motacilla (Louisiana 
Waterthrush) in the south-eastern U.S.A. Although these authors 
did associate habitat with distribution across scales, variables were 
each measured at only one scale. Here, we extend their approach 
by scaling habitat variables along with occupancy and relating them 
across multiple, nested scales. Our method represents a novel adap-
tation of the occupancy modelling framework that addresses some 
of the most common problems facing studies of multi-scale habitat 
selection.

The hierarchical structure of occupancy modelling allows for 
conditional integration of multi-scale covariates, which reduces col-
linearity and overlapping landscapes and clarifies interpretation of 
species–habitat relationships across scale (Figure 1c). Cross-scale 
collinearity is reduced because the dependence among scales is mod-
elled explicitly through a joint probability. Because occupancy is also 
hierarchical in space, habitat covariates at broad scales are related 
to landscape occupancy at the same scale prior to integration across 
scales; thus, landscapes have no need to overlap (Figure 1c). Here, 
we applied the spatially hierarchical framework to investigate how 
variables of known local importance scale up to broader extents and 
how patterns at broad extents constrain local selection. To illustrate 
model application, we analysed the breeding distribution of two at-
risk grassland songbird species in the northern Great Plains of North 
America and compared results to those from traditional multi-scale 
logistic regression.
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2  | METHODS

2.1 | Modelling framework

Our application of spatially hierarchical models uses a consistent set 
of variables to estimate integrated response to habitat across scales. 
We conducted analyses in Program r (R Development Core Team, 
2013) and estimated model parameters with jags (Plummer, 2003) 
through package r2jags (Su & Yajima, 2012).

Traditional models of habitat selection seldom include the same 
covariate measured at different scales because collinearity violates 
model assumptions and confuses interpretation. The separation of 
scales of analysis into different levels of a hierarchical model allows 
us to overcome these limitations. Further, this framework provides 
a method of gaining additional information from the same data and 
does not require additional sampling. Our model is spatially hierar-
chical where occupancy at finer scales is conditional on occupancy at 
broader scales. The parameter ψ represents broad-scale occupancy 
and can be interpreted as the proportion of broad-scale units that are 
occupied in the study region. The parameters for finer-scale occupancy 
correspond to species presence conditional on presence in the scale(s) 
above. Intermediate-scale occupancy (θ) is conditional on ψ and local 
occupancy (ϕ) is conditional on θ and ψ. The conditional product ψ|θ|φ 
corresponds to local-scale occupancy. Within each level, habitat co-
variates can be included in logistic regression to estimate level-specific 
probability of occupancy. The model for nested units of three scales i, 
j and k (Figure 1) is specified as:

Broad-scale process model in unit i: 

Intermediate-scale observation model in unit i,j: 

Fine-scale observation model in unit i,j,k: 

where X, Y and Z are the latent occupancy state at broad-, intermediate- 
and fine-scale levels, respectively, and can be either occupied (1) or not 
occupied (0). Covariates are measured at the scale of occupancy in each 
level.

2.2 | Case study: grassland songbirds in the North 
American Great Plains

Scale-dependent habitat selection is well recognized in migratory 
songbirds (Battin & Lawler, 2006; Hutto, 1985; Wiens, 1973). To 
demonstrate application of our multi-scale modelling approach, we 
analysed the breeding distribution of two grassland songbird spe-
cies of high conservation concern in the northern Great Plains of the 

U.S.A. and Canada. Sprague’s Pipit Anthus spragueii (Audubon, 1844; 
herein “pipit”) is a grassland specialist that breeds in relatively moist, 
native mixed-grass prairie (Davis, Robbins, & Dale, 2014). Chestnut-
collared Longspur Calcarius ornatus (Townsend, 1837; herein “long-
spur”) shares a similar breeding distribution but prefers grassland with 
sparser cover (Hill & Gould, 1997; Lipsey & Naugle, in press). Both 
species have been declining across North America more than 3% an-
nually since 1966 (Sauer et al., 2014) and are federally Threatened 
in Canada (COSEWIC, 2009; Environment Canada, 2012). The 
International Union for Conservation of Nature lists the pipit as glob-
ally Vulnerable and the longspur as Near-Threatened (IUCN, 2014).

2.2.1 | Data preparation

We assembled songbird data from 32,204 point counts from 
2007 to 2012 in a study region that includes the northern Great 
Plains of the U.S.A. and Canadian prairie provinces (Lipsey et al., 
2015; see Appendix S1 in Supporting Information). Data were col-
lected or compiled by Alberta Fisheries and Wildlife Management 
Information System, the North American Breeding Bird Survey, the 
Bird Conservancy of the Rockies, Environment Canada, the Canadian 
Wildlife Service, Montana Natural Heritage Program, the University 
of Montana and the University of Manitoba. Surveys were at least 
200-m apart and were not repeated. We superimposed an arbitrary, 
hierarchically nested lattice across the study region with cells corre-
sponding to three spatial scales of analysis (Figure 1c). We used scales 
defined by the standard U.S. cadastral system (White, 1983) because 
these form the basis of land ownership and management in the region. 
The scales included 2.6-km2 (section), 93-km2 (township) and 1,492-
km2 (quadrangle; Figure 1c). Each unit at the finest scale of analysis 
(2.6-km2) contained from 0 to 10 individual survey points. Due to pro-
cessing limitations, we excluded 1,134 survey points that fell in units 
containing >10 points. We selected these for exclusion based on date, 
keeping the most recent.

2.2.2 | Occupancy

Observed patterns of species occupancy represented the depend-
ent variable in each level of analysis. We translated occupancy across 
scales using simple presence/absence: if a species was observed in a 
given survey, the fine-, intermediate- and broad-scale cells contain-
ing the survey point were each considered to be occupied (Figure 1c). 
Species were absent only if all surveys in the unit were non-detections. 
Units containing no surveys were treated as missing data and pre-
dicted under the Bayesian framework. Because the number of surveys 
per fine-scale unit varied from 0 to 10, those containing fewer surveys 
faced a risk of non-detection or false absence from insufficient sam-
pling. We corrected for this by including a fourth parameter to the 
model (p) to estimate species availability for detection in individual 
surveys. To control for sampling effort across fine-scale units, we 
also included the number of surveys (0–10) as a covariate in the fine-
scale observation model. We used uninformative, uniform priors con-
strained between −10 and 10 for all parameters. We ran three chains 

Xi∼Bernoulli (ψ)

logit(ψ)=β0+βx×covariatex…

Yij∼Bernoulli (Xi×θ)

logit(θ)=α0+αy×covariatey…

Zijk∼Bernoulli (Yij×ϕ)

logit(ϕ)=δ0+δz×covariatez…
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without thinning for a total of 102,000 Markov chain Monte Carlo 
iterations. The first 2,000 iterations were discarded as burn-in. Model 
convergence was determined through the Gelman–Rubin diagnostic.

The use of a multi-year dataset greatly improved spatial cover-
age compared to data from any single year. However, the inclusion 
of multiple breeding seasons violates the assumption of closure and 
p therefore refers only to availability for detection in a survey given 
that the cell has been occupied at any time during sampling. When 
survey data from multiple years occur within the same cell, this pa-
rameter accounts for annual differences in true occupancy. Similarly, 
when multiple survey points from the same year fall within the same 
cell, p accounts for non-detections in an occupied cell. This is desirable 
because our intended scope of inference was to evaluate general pat-
terns of occupancy across the breeding distribution within the 5-year 
time frame.

2.2.3 | Habitat metrics

We included two habitat metrics as model covariates across scales: 
proportion grassland and Normalized Differential Vegetation Index 
(NDVI). Grassland amount is a crucial component of habitat for both 
study species because it provides resources important throughout 
their life history (Davis et al., 2014; Hill & Gould, 1997). We derived 
a binary layer of grassland from 30-m land cover products created 
by Agriculture Agri-Food Canada (2001) and level II of the Multi-
Resolution Land Characteristics Consortium 2011 National Land 
Cover Dataset (Homer et al., 2015). We calculated proportional vari-
ables using an aggregated mean of the binary layer at each relevant 
spatial scale.

We included NDVI because vegetation biomass is an important 
habitat factor for grassland birds, eliciting strong selection responses 
that are variable across bird species (Fisher & Davis, 2010). NDVI 
allows remote detection of live green plant canopies, where higher 
values correspond with greater fractional vegetation cover and leaf 
area in the sampled pixel (Carlson & Ripley, 1997). We used remotely 
sensed NDVI from moderate resolution imaging spectroradiometer 
data sampled at a 250-m resolution for July (LP DAAC, 2014), July 
is approximately the peak of vegetative growth in the region and al-
lows good biomass discrimination (Wang, Rich, Price, & Kettle, 2005). 
Because survey locations from multiple years often fell into the same 
fine-, intermediate- or broad-scale sampling unit of the hierarchical 
model (Figure 1), we used averaged NDVI values across the full 5-year 
time frame (2007–2012). To control for the variability in NDVI caused 
by non-grassland vegetation like wetland or woodland, we included an 
interaction term between grassland amount and NDVI. To facilitate 
Bayesian parameter estimation and allow direct comparison of coeffi-
cients, we standardized all habitat covariates by centring on the mean 
and scaling by standard deviation.

2.2.4 | Comparison with traditional approach

To compare performance of spatially hierarchical models with a tradi-
tional multi-scale approach, we fit models for each species and each 

scale using standard logistic regression (Hosmer & Lemeshow, 2000) 
and the same set of survey data used in hierarchical model estimation. 
We calculated habitat covariates with concentric rectangular buffers 
around survey locations, corresponding to the scales used in hier-
archical models (2.6, 93 and 1,492-km2). We used the same habitat 
covariate layers used in spatially hierarchical models, including grass-
land amount and July NDVI averaged across the 5-year time frame. 
We determined the level of cross-scale collinearity among predictors 
using Pearson correlation coefficients (r). We fitted logistic regression 
models and then used Akaike’s information criterion (AIC; Anderson, 
Burnham, & Thompson, 2000) and Akaike weights (Wagenmakers & 
Farrell, 2004) to identify the most predictive scale individually for each 
covariate (Boyce, 2006). Finally, we fit full models for each species 
that included the two covariates at their selected scale(s) and their 
interaction. To allow comparison of coefficients between hierarchical 
and traditional models, we standardized covariates by centring on the 
mean and scaling by standard deviation.

We compared strength of model fit to the original dataset by cal-
culating area under the receiver operating curve (AUC; Metz, 1978) 
for each species and method. To assess how well model predictions 
matched observed patterns of distribution, we compared them to data 
from the Breeding Bird Survey (BBS; Sauer et al., 2014). We used the 
R package optimalcutpoints (Lopez-Raton, Rodriguez-Alvarez, Suarez, 
& Sampedro, 2014) to identify probability surface cut-points for each 
model that maximized both sensitivity and specificity of predictions 
and used these to create maps of predicted distribution for each spe-
cies. To evaluate models, we overlaid them with known BBS distribu-
tion and calculated proportion of overlap by area.

3  | RESULTS

3.1 | Model description

Observed proportion of occurrence ranged from 0.29–0.31 to 0.23–
0.25 for pipits and longspurs, respectively, across scales. The effective 
sample size was 16,000–300,000 for the pipit model and 12,000–
290,000 for the longspur model. The Gelman–Rubin diagnostic indi-
cated convergence at all levels of each model (.00010 > Ȓ > .0012). 
For full model outputs, see Appendix S2.

3.2 | Scale

By nesting species responses across scale, spatially hierarchical mod-
els identified the importance of environmental factors operating over 
multiple scales in shaping species distributions (Table 1). By contrast, 
highly overlapping buffers in traditional models (Figure 1b) limited 
results to consideration of only fine-scale variables. Cross-scale col-
linearity in traditional concentric buffers (Figure 1a) was extremely 
high for both habitat metrics (r = .79–.90 and r = .92–.97 for propor-
tion grassland and NDVI, respectively), necessitating the choice of a 
single scale for inclusion in models. For both species, predictor vari-
ables measured at the finest scale had by far the best fit (Table 2). We 
therefore used fine-scale metrics for covariates in traditional models.



788  |     LIPSEY et al.

3.3 | Occupancy

Estimates of occupancy from spatially hierarchical models (ψ, θ and ϕ) 
indicated that species were widely distributed within the study region 
and that this pattern was relatively consistent across scales (Table 3). 
In general, about half (34%–58%) of sample units at any scale were 
predicted to be occupied by each species. Birds were most patch-
ily distributed below the intermediate scale (93-km2). Survey-level 

availability for detection was comparable and high for both species 
(.65–.67), suggesting that if a species was detected in a fine-scale unit 
(2.6-km2) at least once during the 5-year time frame, it was likely to be 
detected in other surveys within that unit.

3.4 | Sprague’s Pipit habitat

Nested habitat metrics across scales allowed us to characterize how 
species’ response to local habitat varied with the broader landscape 
context (Table 1; Figure 2). Grassland was the primary factor shaping 
distribution of pipits across scales, and grass availability at intermedi-
ate scales (93-km2) was particularly important (Table 1). Pipits were 
also positively associated with high NDVI at all scales, and there was 
a positive interaction between grassland and NDVI at broad and in-
termediate scales, indicating that the positive relationship with NDVI 
occurred only when grassland amount was also high (Table 1). Pipits’ 
response to local habitat increased when landscape context was fa-
vourable, and traditional models were unable to capture this differ-
ence. For example, the hierarchical model predicted that occupancy 
for pipits in a high-quality local site (100% grass cover) was up to three 
times greater (0.6 vs. 0.2) when the landscape also contained a high 
proportion of grass (Figure 2a,b). Fine-scale grass cover was estimated 
to be four times more influential in the traditional model compared to 
the hierarchical model when landscape context was poor (probability 
of occurrence .9 vs. probability of occupancy .2; Figure 2).

3.5 | Chestnut-collared longspur habitat

Habitat relationships for longspurs were similar to those for pipits as 
both showed multi-scale selection for grassland cover. However, long-
spurs responded most strongly to grass at the broadest scale whereas 

TABLE  1 Coefficients showing response of two grassland 
songbird species to habitat covariates in central North America, 
2007–2012, comparing traditional single-scale logistic regression and 
three nested levels of a spatially hierarchical model. Covariates were 
standardized by centring on the mean and scaling by standard 
deviation. Bold type indicates coefficient significance at p < .05 
(traditional model) or Bayesian confidence interval that does not 
overlap zero (spatially hierarchical model). Scales include broad 
(1,492-km2), intermediate (93-km2) and fine (2.6-km2)

Traditional Spatially hierarchical

Fine Broad Intermediate Fine

Sprague’s Pipit

Intercept −1.63 −0.07 0.33 −0.40

Grassland 1.37 0.24 1.10 0.54

NDVI 0.28 0.13 0.50 0.33

Grass × NDVI 0.36 0.36 0.41 0.00

Chestnut-collared Longspur

Intercept −2.01 −0.43 0.06 −0.66

Grassland 1.16 1.15 0.73 0.14

NDVI −0.14 0.05 0.32 −0.22

Grass × NDVI 0.14 0.79 0.07 −0.19

(A)

βi SEi Log(Li) AICi Δ(AICi) wi(AIC)

Grassland

Fine 3.04 .044 −12,871 25,746 0 1.00

Inter. 3.18 .043 −13,238 26,481 735 0.00

Broad 2.60 .038 −14,140 28,284 2,538 0.00

NDVI

Fine −0.0004 −.00001 −14,693 29,390 0 1.00

Inter. −0.0004 −.00001 −14,734 29,472 82 0.00

Broad −0.0004 −.00001 −14,897 29,797 407 0.00

(B)

Grassland

Fine 3.08 .058 −11,890 23,784 0 1.00

Inter. 3.52 .050 −11,963 23,931 147 0.00

Broad 2.48 .068 −12,394 24,792 1,008 0.00

NDVI

Fine −0.0005 −.00001 −13,111 26,226 0 1.00

Inter. −0.0005 −.00001 −13,179 26,361 135 0.00

Broad −0.0005 −.00001 −13,380 26,764 538 0.00

TABLE  2 Parameter estimates (βi), 
standard error (SEi), log likelihood (Log[Li]), 
Akaike’s information criterion (AICi), 
difference in AIC versus top model 
(Δ[AICi]) and Akaike weights (wi[AIC]) for 
traditional logistic regression models of 
individual predictor variables across three 
spatial scales for Sprague’s Pipit (A) and 
Chestnut-collared Longspur (B). Grassland 
is proportion of grassland land cover and 
NDVI is mean Normalized Differential 
Vegetation Index. Scales include broad 
(1,492-km2), intermediate (inter.; 93-km2) 
and fine (2.6-km2). Each model was fitted 
individually with a given species, variable 
and scale. Sample size for all models was 
n = 31,070. All models were highly 
significant (p < .0001)
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pipits were more closely associated at the intermediate scale (Table 1). 
Longspurs’ relationship with NDVI is another example of the importance 
of landscape context in habitat selection. Locally, longspurs selected low 
NDVI and the traditional model suggested a weak negative relationship 
(Table 1; Figure 3). However, the hierarchical model revealed that long-
spurs selected productive grassland landscapes at broad scales and only 
selected for dry patches within these landscapes (Table 1; Figure 3). For 
example, a site with a locally low NDVI of 0.3 would have four times 
the probability of occupancy for longspurs if it was within a high-NDVI 
landscape (.4 vs. .1; Figure 3a,b). The traditional model was unable to ac-
count for broad-scale NDVI and produced estimates of high occurrence 
in dry landscapes that exceeded estimates of occupancy from hierarchi-
cal models by as much as three times (Figure 3).

3.6 | Spatially explicit example

Models had moderate fit for both species and overall fit was compara-
ble between the hierarchical and traditional approaches (hierarchical 

model AUC = 0.77 for both species, traditional model AUC of 0.78 
and 0.77 for pipit and longspur, respectively). Predicted distributions 
from hierarchical models more closely matched BBS distributions 
than those of traditional models for both species. For pipits, the hier-
archical prediction had more overlap with BBS (80%) than that of the 
traditional model (75%). Improvement for longspurs was even more 
marked (96% vs. 84%; Figure 4).

4  | DISCUSSION

Spatially hierarchical models offer a deeper, more integrated under-
standing of multi-scale habitat selection than traditional approaches. 
Nested relationships adjust response to local habitat according to the 
broader landscape context. For instance, pipits were up to three times 
more likely to occupy the same habitat inside versus outside a high grass-
land landscape (Figure 3a,b). The traditional modelling approach could 
not capture this variability and instead linked occurrence only to locally 

Sprague’s Pipit Chestnut-collared Longspur

Mean 95% Lower 95% Upper Mean 95% Lower 95% Upper

ψ 0.48 0.41 0.56 0.40 0.32 0.48

θ 0.58 0.54 0.62 0.51 0.46 0.57

ϕ 0.40 0.37 0.43 0.34 0.31 0.37

p .65 .64 .66 .67 .66 .68

TABLE  3 Occupancy estimates for two 
species at three nested spatial scales and 
availability for detection (p) at survey 
points within occupied fine-scale units in 
central North America, 2007–2012. Scales 
include broad (ψ; 1,492-km2), intermediate 
(θ; 93-km2) and fine (ϕ; 2.6-km2)

F IGURE  2 Response of Sprague’s Pipit (Anthus spragueii) to fine-scale (2.6-km2) grassland amount depends on landscape context in central 
North America, 2007–2012. Red line shows probability of occurrence from traditional, logistic regression models using local-scale habitat 
data. Black lines show predicted probability of occupancy in a broad-scale landscape (1,492-km2) with high grass cover (100%), grey lines show 
probability of occupancy in a landscape with low grass cover (10%). Solid lines show probability of occupancy with high grass cover (100%) at 
the intermediate scale (93-km2), and dashed lines show probability of occupancy with low intermediate-scale grass cover (30%). Models were 
estimated with above-average Normalized Differential Vegetation Index (0.75) at all scales. A suitable local site would be three times more likely 
to be occupied in the high-grass landscape (a) than the low-grass landscape (b). [Colour figure can be viewed at wileyonlinelibrary.com]

a

b
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favourable habitats regardless of landscape context. Moreover, effect of 
habitat at multiple scales became cumulative when the direction of re-
sponse was consistent. Conditionally integrated responses revealed that 
changes in local conditions had a stronger influence on occupancy in 
suitable landscapes, which were already more likely to be occupied. For 
pipits, local conditions could affect probability of occupancy by as much 
as 30% in high grassland landscapes versus only 10% in grass-poor land-
scapes (Figure 3). In this case, the spatially hierarchical approach enables 
targeting that could greatly enhance the expected beneficial outcomes 
of grassland conservation or restoration for songbirds.

Many studies of habitat selection include multiple scales, such as 
a recent method developed by DeCesare et al. (2012) called scale-
integrated resource selection functions (SRSF). These authors show 
that a single SRSF can be used to simultaneously predict habitat suit-
ability at three scales and demonstrate how inclusion of multiple scales 
can affect critical habitat designations under ESA. The approach is sim-
ilar to the one presented here, except that in DeCesare et al. (2012), 
probability of use at each scale is estimated separately prior to integra-
tion. Without the joint probability distribution of a hierarchically nested 
structure, collinearity remains a concern in SRSF and variables at each 
scale must be assumed to be independent. By contrast, our spatially 
hierarchical approach is capable of capturing complex nested patterns 
of response, even when variables are highly correlated across scale(s).

Spatially hierarchical models were uniquely able to capture selec-
tion when it occurred in opposite directions across scales (Thogmartin 
& Knutson, 2007; Wheatley, 2010). Longspurs occupied grassland 

landscapes with high NDVI but locally selected sites with less biomass 
(Table 3). Measured traditionally at a single scale, these responses 
were contradictory and strength of longspurs’ local preference for low 
NDVI was diluted by landscape associations. Sign changes in response 
to habitat across scale have been reported for other species but never 
modelled explicitly. In one example, the influence of moisture in prai-
rie hardwood transition forests on Hylocichla mustelina (Wood Thrush) 
was negative at local and landscape scales but positive at intermediate 
scales (Thogmartin & Knutson, 2007). Authors interpreted findings as 
selection for dry patches within wet landscapes but were unable to 
model this nested response in an integrated fashion.

We identified important spatial scales of selection that are or-
ders of magnitude broader than those previously recognized for grass-
land songbirds. Few studies measure response to habitat in landscapes 
>1000-ha, and even fewer consider much broader scales (e.g., 80,000-ha; 
Thogmartin, Knutson, & Sauer, 2006). Cross-scale collinearity limited our 
traditional models to a single scale of analysis for habitat metrics and over-
emphasized the importance of local variables. Despite the importance of 
landscape context in hierarchical models, overlapping buffers in the tradi-
tional approach biased model selection heavily towards local scales.

Management of ecosystems often manifests at human adminis-
trative scales. For example, agricultural land sales, conversions, res-
torations and other management in the northern Great Plains occur 
at the scale of a section, or one square mile. It is an advantage of the 
spatially hierarchical approach that its conditional cross-scale inte-
gration can assess and identify wildlife responses to changes at such 

F IGURE  3 Response of Chestnut-collared Longspur (Calcarius ornatus) to fine-scale (2.6-km2) Normalized Differential Vegetation Index 
(NDVI) depends on landscape context in central North America, 2007–2012. Red line shows probability of occurrence from a traditional logistic 
regression model using fine-scale data. Black lines show predicted probability of occupancy in a broad-scale landscape (1,492-km2) with above-
average NDVI (0.75), and grey lines show probability of occupancy in a landscape with below-average NDVI (0.4). Solid lines show probability 
of occupancy with above-average NDVI (0.7) at the intermediate scale (93-km2), and dashed lines show probability of occupancy with below-
average intermediate-scale NDVI (0.3). Models were estimated with above-average grassland cover (60%) at all scales. A suitable fine-scale site 
would be four times more likely to be occupied in the high-NDVI landscape (a) than the low-NDVI landscape (b). [Colour figure can be viewed at 
wileyonlinelibrary.com]
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anthropologically relevant scales. Of course, inference from hierar-
chical models could be even further strengthened by incorporating 
biologically derived scales of analysis (Wheatley & Johnson, 2009). 
We commend recent techniques that use count (Bellier, Monestiez, 
Certain, Chadoeuf, & Bretagnolle, 2012) and movement data (Frair 
et al., 2005) to characterize the spatial scales of animal perception and 
movement. Including animal-centric scales as levels within a spatially 
hierarchical model would promise great advances in our understand-
ing of species–habitat relationships.

The inherent problem of scale in traditional habitat modelling 
extends into spatially explicit predictions used to guide real-world 
conservation decisions. We demonstrate that traditional models may 
overpredict occurrence where conditions are locally favourable but 
regionally unsuitable. For example, maps of traditional output for 
longspurs wrongly identified the south-west part of our study region 
as a priority for conservation (Figure 4a,b). Longspurs are in fact so 
rare in the south-west that BBS excludes it from the species range 
(Figure 4c,d). This xeric region was largely unoccupied by longspurs 

because locally favourable conditions were not embedded within 
more productive landscapes as identified by NDVI. Had this map been 
used to inform conservation, actions that would be better placed in 
the north and east could be wasted in the south-west.

The problem of scale is one of the greatest obstacles to under-
standing species–habitat relationships. Anthropocentric bias in sam-
pling biological communities and associated environmental attributes 
can distort our perception of habitat selection and limits the utility of 
habitat-based models in ecology and conservation. The spatially hi-
erarchical approach presented here reduces anthropocentric bias by 
providing a more holistic measure of species’ response that is less sen-
sitive to scale(s) of sampling. Further, our approach helps maximize the 
information extracted from a given set of occupancy data without re-
quiring new investments of time or resources in the field. Advantages 
extend beyond methodological considerations to include tractable 
conservation applications. Conditional integration of animal response 
across scales enables targeting of management within landscapes that 
will amplify beneficial outcomes of conservation.

F IGURE  4 Spatial predictions from traditional logistic regression (a, c) and spatially hierarchical models (b, d) for Chestnut-collared Longspur 
(Calcarius ornatus) distribution in central North America, 2007–2012. Continuous predicted probability surfaces shown in a and b. Optimal 
cut-points of 0.24 and 0.13 were used for traditional and hierarchical models, respectively, to generate predicted distributions (c, d). Observed 
distribution from the Breeding Bird Survey (BBS; Sauer et al., 2014) shown in transparent blue on top of predictions in c and d. Map projection: 
Albers Conic Equal Area. [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)
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