
An Interactive Multi-modalQuery Answering System
with Retrieval-Augmented Large Language Models
Mengzhao Wang
Zhejiang University
wmzssy@zju.edu.cn

Haotian Wu
Zhejiang University

jxk706060666@gmail.com

Xiangyu Ke
Zhejiang University

xiangyu.ke@zju.edu.cn

Yunjun Gao
Zhejiang University
gaoyj@zju.edu.cn

Xiaoliang Xu
Hangzhou Dianzi University

xxl@hdu.edu.cn

Lu Chen
Zhejiang University
luchen@zju.edu.cn

ABSTRACT
Retrieval-augmented Large LanguageModels (LLMs) have reshaped
traditional query-answering systems, offering unparalleled user ex-
periences. However, existing retrieval techniques often struggle to
handle multi-modal query contexts. In this paper, we present an
interactive Multi-modal Query Answering (MQA) system, empow-
ered by our newly developed multi-modal retrieval framework and
navigation graph index, integrated with cutting-edge LLMs. It com-
prises five core components: Data Preprocessing, Vector Representa-
tion, Index Construction, Query Execution, and Answer Generation,
all orchestrated by a dedicated coordinator to ensure smooth data
flow from input to answer generation. One notable aspect of MQA
is its utilization of contrastive learning to assess the significance
of different modalities, facilitating precise measurement of multi-
modal information similarity. Furthermore, the system achieves
efficient retrieval through our advanced navigation graph index,
refined using computational pruning techniques. Another highlight
of our system is its pluggable processing framework, allowing seam-
less integration of embedding models, graph indexes, and LLMs.
This flexibility provides users diverse options for gaining insights
from their multi-modal knowledge base. A preliminary video intro-
duction of MQA is available at https://youtu.be/xvUuo2ZIqWk.

PVLDB Reference Format:
Mengzhao Wang, Haotian Wu, Xiangyu Ke, Yunjun Gao, Xiaoliang Xu,
and Lu Chen. An Interactive Multi-modal Query Answering System with
Retrieval-Augmented Large Language Models. PVLDB, 17(12): 4333 - 4336,
2024.
doi:10.14778/3685800.3685868

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ZJU-DAILY/MQA.

1 INTRODUCTION
Query Answering (QA) systems are pivotal in extracting insights
from vast knowledge bases, offering intuitive and real-time in-
formation retrieval functionality. Traditional QA systems rely on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685868

Certainly! Here are three options:

I prefer the third, but with the provided floral pattern:

Here are some floral tops you may like:

I prefer the second. Show some short-sleeved blue ones?

Found short-sleeved blue floral tops for mature ladies:

...

Could you help me find a long-sleeved top for older woman?

Figure 1: An example of multi-modal QA.

simplistic keyword matching, which lacks semantic comprehension.
Recent advancements in Large Language Models (LLMs), such as
ChatGPT, have equipped QA systems with sophisticated context-
understanding capabilities [6]. Major tech companies, likeMicrosoft
and Baidu, have launched their ownQA applications based on LLMs,
such as NewBing and ERNIE Bot, respectively. Despite their success,
challenges such as hallucinations and outdated knowledge persist
in LLM-based QA systems, impacting their performance [3]. The in-
troduction of retrieval-augmented LLMs offers a promising solution
by incorporating vector search techniques [7]. It enables QA sys-
tems to provide answers using external knowledge sources, thereby
promoting factually consistent and reliable responses [4]. However,
current retrieval methods, which cater mainly to single-modality
situations, struggle in multi-modal QA contexts. Given the growing
complexity of user interactions, multi-modal QA has become in-
creasingly important. It allows for a comprehensive understanding
and response to queries by considering various input forms, includ-
ing text, images, etc. To address this, we have recently developed a
novel multi-modal retrieval framework, MUST [8], specifically de-
signed to facilitate efficient and accurate multi-modal retrieval. In
this demonstration proposal, we focus on the multi-modal QA task,
leveraging the capabilities of MUST alongside LLMs.

Figure 1 illustrates how users can engage in multi-round dia-
logues with a QA system, incorporating multi-modal information.
For instance, a user may initially submit an inquiry for a “long-
sleeved top for older women” in text or audio form. Subsequently,
based on the images returned in response, the user can choose a
preference and suggest alterations, such as adding a “floral pattern”
to the selected image. This interaction process continues until the
user is satisfied with the outcomes. Multi-modal QA diverges from
the conventional text-only QA model by offering more complex
and tailored results, significantly enhancing the user experience
[2]. Despite the demonstrated proficiency of advanced LLMs in

4333

https://youtu.be/xvUuo2ZIqWk
https://doi.org/10.14778/3685800.3685868
https://github.com/ZJU-DAILY/MQA
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685868
https://www.acm.org/publications/policies/artifact-review-and-badging-current


understanding multi-modal content (such as GPT-4 [1]), the re-
trieval techniques currently employed by LLMs are inadequate for
capturing multi-modal contexts. This is evident in two prevalent
multi-modal retrieval frameworks, Multi-streamed Retrieval (MR)
[5] and Joint Embedding (JE) [2]. These frameworks either com-
bine the results of individual vector searches for each modality or
carry out a single-channel vector search by jointly encoding all
modalities. However, as empirically confirmed in our MUST paper
[8], both baselines exhibit limitations in efficiency and accuracy
due to their inability to consider the varying importance of fus-
ing information across modalities and the absence of a dedicated
indexing and search method for multi-modal data.

To address the aforementioned challenge, we develop an inter-
active Multi-modal Query Answering (MQA) system based on our
meticulously designed multi-modal retrieval framework and navi-
gation graph index [8], integrated with cutting-edge LLMs [1]. This
system offers advanced multi-modal data interaction capabilities
via an intuitive interface. The key features are outlined below:
User-friendliness. MQA presents an intuitive interface that ac-
commodates multiple modalities, such as text and images, facilitat-
ing customizable searching within a multi-modal knowledge base.
A key aspect of the system is its iterative refinement process, em-
powering users to fine-tune initial results through ongoing dialogue.
In image retrieval, MQA transforms descriptive text into visuals,
establishing a feedback loop where additional details refine the
outcomes, guiding the system towards more relevant outputs, even
with vague initial inputs. Moreover, our system integrates advanced
LLMs, enhancing the intelligence of the interaction process.
Accuracy.MQA improves query accuracy by utilizing an innova-
tive multi-vector representation technique across multi-modal data.
It encodes objects and queries using standalone unimodal encoders
or a complex multi-modal encoder, achieving comprehensive vec-
torized representation. Additionally, the method is refined by our
unique, effective vector weight learning model [8], capturing indi-
vidual modality importance through contrastive learning for better
similarity evaluations. This empowers users to meticulously adjust
searches, hence aligning results with their distinct preferences.
Flexibility.MQA demonstrates flexibility, embracing a wide range
of encoders, weight configurations, index algorithms, and retrieval
frameworks. Firstly, it supports seamless encoder integration, such
as LSTM, ResNet, and CLIP [8]. Additionally, it allows tailored
weight adjustments using intrinsic vector weight learning or user-
specific inputs for search refinement. Moreover, it enables index de-
ployment via an intricate navigation graph framework, effortlessly
incorporating existing components. Lastly, it accommodates vari-
ous retrieval frameworks—MR, JE, and MUST—as well as advanced
LLMs like GPT-4, fostering a robust ecosystem for multi-modal QA.
Scalability. To meet efficiency requirements in large-scale data
retrieval, MQA employs an advanced navigation graph index de-
signed for multi-modal data [8]. This approach assigns multiple
vectors per object to a unified index, capturing object similari-
ties. The resulting structure, with vertices representing objects and
edges reflecting similarity, narrows the search space, ensuring di-
rect retrieval with minimal traversal. Additionally, MQA optimizes
both the index structure and multi-vector computations to enhance
scalability over a vast knowledge base.

Coordinator

Data Preprocessing

B
ac

ke
n

d
Fr

o
n

te
n

d

Answer 
Generation

Vector Representation

Index Construction

Query Execution

Configuration box

• Knowledge Base
• Embedding
• Index

• Retrieval 
• LLMs

Dialog box

• Input (Text-only or 
Image-assisted)

• Output (Multi-modal)

Figure 2: The overall architecture of MQA.

2 SYSTEM OVERVIEW
Figure 2 illustrates the system architecture ofMQA, including both
the frontend and backend. The frontend offers a user interface for
configuring the knowledge bases, embedding models, index algo-
rithms, retrieval parameters, and LLMs. It also offers a dialogue
box for users to engage in multi-modal QA interactions. The back-
end handles data preprocessing, vector representation, index con-
struction, query execution, and answer generation. A coordinator
supervises all components’ operations and their data transitions.
Data Preprocessing. This component integrates a multi-modal
knowledge base into MQA. Data is stored as an object collection
with unique IDs for indexing, allowing an expansive data repre-
sentation. For instance, a movie’s film, poster, and synopsis can be
stored as a singular object with multiple modalities. Once ingested,
data becomes usable within MQA, which enables users to leverage
the system’s embedding and indexing techniques for more effective
data storage and retrieval. Importantly, external knowledge inges-
tion is optional, and disabling it meansMQA relies solely on chosen
LLMs for responses. This setting is adjustable in the knowledge
base section of the configuration box (the frontend of Figure 2).
VectorRepresentation.Thismodule converts multi-modal objects
into vectorized forms, establishing a standardized mathematical
expression [8]. The frontend embedding configuration includes a
universal vector support function, endorsing diverse libraries and
models, such as OpenAI CLIP. MQA demonstrates remarkable ver-
satility in representing an object or query using high-dimensional
vectors derived from a range of encoders. Notably,MQA introduces
a vector weight learning model to discern the importances of dif-
ferent modalities for similarity measurement between objects [8].
The learning process adaptively adjusts weights to reflect differ-
ent modalities’ importances in similarity measurement. Ultimately,
MQA outputs the learned weights for vector concatenation, accom-
plishing a comprehensive representation of multi-modal data.
Index Construction. The index construction component builds
a unified navigation graph index based on objects’ multi-vector
representation, utilizing modality weights from the vector represen-
tation component. The navigation graph corresponds each vertex
to an object and forges connections between object pairs through
edges denoting object similarity. This index narrows the search
space, directing the query to the target object by probing a subset
of the collection. We propose a general pipeline for constructing

4334



...

① 

② 

③ 

Figure 3: User interface of MQA.

I would like some images of moldy cheese

Here are some images of moldy cheese as requested.

You can choose your favorite image by clicking it

I like this one, could you locate more cheese of this 
type that has a similar degree of mold?

I’m glad you liked the image! Here are more images 
of moldy cheese with a similar degree of mold.

You can choose your favorite image by clicking it

(a) Text-only input

Here are some coats made of a similar material to 
the one you provided. They show different styles.

You can choose your favorite image by clicking it

Could you find more coats made of similar material 
to the one I have provided?

(b) Image-assisted input

Figure 4: Interaction examples.

fine-grained navigation graphs on CGraph1, a cross-platform Di-
rected Acyclic Graph (DAG) framework. The pipeline consists of
five flexible parts, allowing any current navigation graph to be
decomposed and smoothly integrated into MQA. Furthermore, we
incorporate components from several state-of-the-art algorithms in
the context of concatenated vectors, resulting in a novel indexing
algorithm. On the configuration box’s index item, users can modify
existing navigation graphs (e.g., NSG, HNSW, DiskANN, Starling
[9]) or initiate custom graphs via the backend API.
Query Execution. The query execution component navigates effi-
ciently to relevant contexts with user queries using multi-modal
vector search methods. Upon receiving a query,MQA launches a
merging-free search across modalities within the navigation graph.
The query is projected into a high-dimensional vector space, where
multi-modal objects are located, forming a query point.MQA tra-
verses the graph, starting at a random or fixed vertex, and explores
neighboring vertices closer to the query point. This iterative search
terminates when no closer vertex is discovered. In this process,
distances are calculated via incremental scanning, enhancing effi-
ciency by circumventing unnecessary calculations. Notably, any
previous outcome can be chosen to augment the current user query
input (as indicated by the dotted arrow in the backend of Figure 2),
promoting an intelligent multi-modal search procedure. Users can
modify retrieval settings, like result count, framework, andmodality
weights at the query point, in the frontend’s configuration box.
Answer Generation. This component formulates responses from
retrieved results and the user query context. Beyond sourcing rele-
vant information from the knowledge base,MQA generates natural,
conversational replies, enhancing user interactions. The output
includes additional details like preference markers. Users have the
1https://github.com/ChunelFeng/CGraph

flexibility to select from various LLMs in the configuration box.
When an LLM is accessible, it works in coordination with the query
execution module to handle queries and responses. The user’s query
is simultaneously dispatched to both the query execution module
and the LLM as a prompt. The search results from the query execu-
tion module are then redirected to the LLM. The final user response
is a summary from the LLM. In the absence of an available LLM,
users can still carry out a multi-modal QA procedure through direct
engagement with the query execution module.
Coordinator. The coordinator serves as the system’s central nexus,
supervising all component operations and facilitating smooth data
transition across the system. Both the frontend and backend exclu-
sively interact with the coordinator, which functions as a conduit
between them, as demonstrated by two-way arrows in Figure 2. This
arrangement fosters a streamlined and efficient codebase where
API endpoints engage with a single reference point within MQA.

3 DEMONSTRATION
MQA’s backend is built on the Flask framework, coupledwith a user-
centric frontend developed with React, Remix, and Mantine that
ensures an intuitive user experience filled with interactive features.
The demonstration begins with an introductory tour that displays
the working panels of MQA (refer to Figure 3), providing a founda-
tional understanding of user-system interaction. Subsequently, we
delve into a hands-on exploration ofMQA’s features from the user’s
perspective (see Figure 4). To exhibit our techniques’ superiority,
we provide comparative results with three baseline methods within
MQA for identical query inputs (see Figure 5).
Working Panels. As depicted in Figure 3, theMQA system encom-
passes three panels for user interaction: ① configuration, ② status
monitoring, and ③ query-answering (QA) engagement.

4335

https://github.com/ChunelFeng/CGraph


① Configuration Panel. This interface empowers users to ex-
plore the system’s features. It facilitates the selection of domain-
specific knowledge bases, customizing the search results. Upon
a user’s selection of a knowledge base, the system initiates data
loading, establishing the necessary knowledge base for retrieval.
Through embedding options, various encoders can be adjusted for
multi-modal data embedding, a critical process for transforming
multi-modal data into a vectorized format. The option to activate
vector weight learning customizes index construction and retrieval
processes with a unique weighting mechanism for the generated
vectors. Indexing configurations provide choices on methods and
parameters, setting the stage for efficient data retrieval. Addition-
ally, retrieval settings allow users to dictate the retrieval framework
and the size of the result set. LLM options present a selection of
models and control over output variability via temperature settings.
Configuration feedback is relayed through a pop-up box (located in
the bottom right corner of Figure 3), ensuring users are informed
of the system’s setup status.

② Status Monitoring Panel. This panel displays a comprehen-
sive overview of the system’s workflow, from data input to output,
providing real-time updates. Milestones such as data preprocessing,
vector representation, and index construction are visibly tracked
with tick marks and relevant details, encompassing encoder details,
modal counts, vector dimensions, index types, retrieval frameworks,
and LLM specifics. This feature ensures that users can verify and
assess their custom settings at a glance.

③ QA Panel. Serving as the interface for query submissions, this
module accepts both textual input and image uploads from users to
form a multi-modal query. It promptly returns relevant multi-modal
information, using an optimized retrieval mechanism guided by
LLM to ensure context accuracy. Users can fine-tune these results by
providing additional input, leading to tailored content. Additionally,
this module includes a demonstration example, providing a practical
reference to enhance user interaction.
Interaction Scenarios. MQA enhances user engagement through
two primary interaction scenarios, illustrated in Figure 4, with
detailed configurations displayed in the corresponding status mon-
itoring panel (Figure 3). (a) Text-only input: In the absence of a
reference image, users can initiate a search using a text description,
such as “I would like some images of moldy cheese”. The system
responds by retrieving images that match the description. Users
can select a preferred image (by clicking) and refine their request,
possibly by adding “I like this one, could you locate more cheese
of this type that has a similar degree of mold?”.MQA iteratively
refines the search based on user feedback until the user is content
with the images retrieved. (b) Image-assisted input: When a refer-
ence image is available, users upload it and describe their specific
requirements, for example, “Could you find more coats made of
similar material to the one I have provided?”. The MQA system
analyzes the visual and textual information, delivering images that
align with both the reference image and the textual specifications.
Users can further interact by selecting a preferred result for more
personalized searches.
Comparative Analysis. In MQA, we compare the outcomes of
various retrieval frameworks under identical query conditions. We
adjust the index and retrieval techniques by the configuration panel,

Round

1st

2nd

MUST MR JE
GPT-4

 (DALL·E 2)Round

1st

2nd

MUST MR JE
GPT-4

 (DALL·E 2)

Figure 5: Results from two-round response using different
retrieval frameworks, with the user’s choice marked in red.

with Figure 5 illustrating the system’s two-round response. The
user begins with a textual request: “Could you assist me in finding
images of foggy clouds?”. Subsequently, upon specifying a pref-
erence “I like this one, could you provide more similar images of
foggy clouds?”,MQA returns results based on the selected image
and new user feedback. MUST consistently delivers optimal results in
both rounds. In contrast, the JE framework underperforms, initially
presenting an irrelevant image, followed by two images that do not
align with the user’s selection. Although MR initially matches MUST’s
results for text-only input, it fails to maintain alignment with the
multi-modal inputs in the subsequent round. GPT-4 (DALL·E 2),
lacking multi-modal retrieval configurations, generates synthetic
images that miss a touch of realism.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC under Grants No.
(62025206, U23A20296, and 62102351), Zhejiang Province’s “Lingyan”
R&D Project under Grant No. 2024C01259, and Ningbo Yongjiang
Talent Introduction Programme (2022A-237-G). Yunjun Gao is the
corresponding author of the work.

REFERENCES
[1] 2024. GPT-4 is OpenAI’s most advanced system, producing safer and more useful

responses. https://openai.com/gpt-4. [Online; accessed 07-April-2024].
[2] Ginger Delmas, Rafael Sampaio de Rezende, Gabriela Csurka, and Diane Larlus.

2022. ARTEMIS: Attention-based Retrieval with Text-Explicit Matching and
Implicit Similarity. In International Conference on Learning Representations (ICLR).

[3] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen,Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. A sur-
vey on hallucination in large language models: Principles, taxonomy, challenges,
and open questions. arXiv:2311.05232 (2023).

[4] Zhi Jing, Yongye Su, Yikun Han, Bo Yuan, Chunjiang Liu, Haiyun Xu, and Kehai
Chen. 2024. When Large Language Models Meet Vector Databases: A Survey.
arXiv:2402.01763 (2024).

[5] JianguoWang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu
Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao
Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo, Jun Gu,
Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built Vector Data
Management System. In Proceedings of the International Conference onManagement
of Data (SIGMOD). 2614–2627.

[6] Jiajia Wang, Weizhong Zhao, Xinhui Tu, and Tingting He. 2023. A novel dense
retrieval framework for long document retrieval. Frontiers of Computer Science
(FCS) 17, 4 (2023), 174609.

[7] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language model based autonomous
agents. Frontiers of Computer Science (FCS) 18, 6 (2024), 186345.

[8] Mengzhao Wang, Xiangyu Ke, Xiaoliang Xu, Lu Chen, Yunjun Gao, Pinpin Huang,
and Runkai Zhu. 2024. MUST: An Effective and Scalable Framework for Mul-
timodal Search of Target Modality. In IEEE International Conference on Data
Engineering (ICDE).

[9] MengzhaoWang,Weizhi Xu, Xiaomeng Yi, SonglinWu, Zhangyang Peng, Xiangyu
Ke, Yunjun Gao, Xiaoliang Xu, Rentong Guo, and Charles Xie. 2024. Starling: An
I/O-Efficient Disk-Resident Graph Index Framework for High-Dimensional Vector
Similarity Search on Data Segment. Proceedings of the ACM on Management of
Data (PACMMOD) 2, 1 (2024), 14:1–14:27.

4336


	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	Acknowledgments
	References

