
nsDB: Architecting the Next Generation Database by Integrating
Neural and Symbolic Systems

Ye Yuan
Beijing Institute of Technology

Beijing, China
yuan-ye@bit.edu.cn

Bo Tang
Southern Univ. of Sci. and Tech.

Shenzhen, China
tangb3@sustech.edu.cn

Tianfei Zhou
Beijing Institute of Technology

Beijing, China
ztfei.debug@gmail.com

Zhiwei Zhang
Beijing Institute of Technology

Beijing, China
zwzhang@bit.edu.cn

Jianbin Qin
Shenzhen University
Shenzhen, China

qinjianbin@szu.edu.cn

ABSTRACT
In this paper, we propose nsDB, a novel neuro-symbolic database
system that integrates neural and symbolic system architectures
natively to address the weaknesses of each, providing a strong
database capable of data managing, model learning, and complex
analytical query processing over multi-modal data. We employ a
real-world NBA data analytical query as an example to illustrate
the functionality of each component in nsDB and highlight the
research challenges to build it. We then present the key design
principles and our preliminary attempts to address them.

In a nutshell, we envision that the next generation database
system nsDB integrates the complex neural system with the simple
symbolic system. Undoubtedly, nsDBwill serve as a bridge between
databases with AI models, which abstracts away the AI complexities
but allows end users to enjoy the strong capabilities of them. We
are in the early stages of the journey to build nsDB, there are many
opening challenges, e.g., in-databasemodel training, multi-objective
query optimization, and database agent development. We hope the
researchers from different communities (e.g., system, architecture,
database, artificial intelligence) could tackle them together.

PVLDB Reference Format:
Ye Yuan, Bo Tang, Tianfei Zhou, Zhiwei Zhang, and Jianbin Qin. nsDB:
Architecting the Next Generation Database by Integrating Neural and
Symbolic Systems. PVLDB, 17(11): 3283 - 3289, 2024.
doi:10.14778/3681954.3682000

1 INTRODUCTION
On one hand, either traditional relational database systems (e.g.,
PostgreSQL [17], MySQL [15]) or modern big data systems (e.g.,
Spark [7], Flink [5], Hive [6]) employs symbolic system (a.k.a. al-
gebraic computation [19]) as the building brick in the system ar-
chitecture. In particular, the complex data processing procedure
in them is transferred to exact computation with expressions con-
taining variables and are manipulated as symbols, i.e., relational

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682000

Find clips of LeBron James dunking
from the Los Angeles Lakers' regular
season videos where he scored at
least 30 points in those games.

NBA statistics table S NBA game video V

query result

…

Figure 1: User query in video database

algebra. The major advantage of symbolic system is that it provides
exact computation and its computation procedure is step-by-step
and explicit. On the other hand, both machine learning and deep
learning in the field of artificial intelligence utilize mathematical
models (a.k.a neuro system [37]) to learn from data and generalize
to unseen data, and thus perform tasks without explicit instructions.
The representative mathematical models are statistical algorithms
and artificial neural networks. In recent years, the neuro system
brings huge attention as its success in natural language processing
(NLP), computer vision (CV), speech recognition, etc. The most im-
portant properties of neuro system are intuitive and unconscious.
In recent years, many applications in various domains [25, 38, 57]
have been emerged, which cannot be efficiently processed by either
symbolic-based data management system or neuro-based artificial
intelligence system independently.
Example. Considering the illustrated example in Figure 1, the data
analysts in NBA marketing team want to advertise NBA all-star
game by promoting the NBA super star “Lebron James” [1]. Hence,
they want to find the clips from the NBA data repository such
that Lebron James is dunking in these games when his team is
“Los Angeles Lakers” and he scored at least 30 points. Inherently,
it is not trivial to answer by either symbolic-based databases or
neuro-based AI systems as it includes two fundamental tasks: (i)
identify the specific frames from video database, i.e., the frames
Lebron James is dunking; and (ii) finding all these frames in a large
video database with attribute constraints, e.g., scored at least 30
points and in Los Angeles Lakers.

A straight forward idea to address the above query is combining
the abilities of both symbolic system and neuro system. In the liter-
ature, integrating ML tasks into database system has been studied

3283

https://doi.org/10.14778/3681954.3682000
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682000

at the beginning of 2000 [43]. Many techniques have been proposed
over these years in both academia [10, 28, 33, 42, 45, 55, 57] and in-
dustry [2, 3, 11, 12, 16, 18]. In particular, these system architectures
can be classified into three categories: AI-centric, UDF-centric, and
relation-centric. Zhou et al. [57] proposed a novel RDBMS by seam-
lessly integrating these three architectures. However, none of these
existing solutions can natively process the analytical query in the
above example. The core reason is that the result accuracy of the AI
models is ignored among them as they assume the used AI models
are given and well-trained. For example, during the above query
processing, none of them take the accuracy of different dunking
action recognition models into account.
The nsDB vision. To overcome the limitations of existing solu-
tions, in this work, we envision a novel type of neuro-symbolic
database system nsDB to process these new emerged queries. It in-
tegrates neural with symbolic systems to address the weaknesses of
each, providing a strong database capable of data managing, model
learning, complex and multi-model analytical query processing.
Specifically, nsDB abstracts away the complexities of AI models,
and allows end users to build AI projects and use them for their
individual upstream applications, even they are without any code
skills, AI expertise and system developing experiences. To achieve
that, the neuro system is abstracted as a native-supported module
in nsDB, and the result accuracy and processing latency are con-
sidered simultaneously during query optimization. However, it is
not trivial to achieve the above goal as the implicit property of the
neuro system compromises accuracy and performance inherently.
For example, the more accurate of the dunk action detection model,
the higher the model inference latency.

The rest of the paper is organized as follows. We briefly analyze
the unique aspects of nsDB within the context of extensive ongo-
ing work in Section 2. In Section 3, we first introduce the system
architecture of nsDB, then highlight the research challenges of
each component, last present our design paradigms and prelimi-
nary ideas to address them. We discuss the generality of nsDB in
Section 4 and conclude this vision paper in Section 5.

2 RELATEDWORK
In this section, we differentiate our proposal nsDB from the most
relevant systems and techniques in the literature.
Neuro-Symbolic database system. Numerous researches [2, 3,
10–12, 16, 18, 28, 28, 33, 39, 42, 44, 45, 55, 57] have been studied to
integrate DB and AI workloads in both academia and industry since
2000. The architecture of existing solutions can be classified into
three representative categories: (i) AI-centric, (ii) UDF-centric, and
(iii) relation-centric. To overcome the limitation of the solutions in
each category, a mixed solution was proposed [57] which integrates
the above three architecture categories. All these solutions (includ-
ing of our nsDB) provide AI model inferences for various analytical
tasks. However, none of the existing solutions have emerged as the
de-facto standard until now. The major reasons can be summarized
by three aspects: (i) model training, (ii) performance goal, and (iii)
optimization strategy, as shown in Table 1.
(I) Model training: Almost all existing AI and DB integrated sys-
tems assume the underlying AI models are well-trained and the

Table 1: Comparison of AI and DB integration solutions

Architecture Model Performance Optimization
category training goal strategy

AI-centric [33] Yes Latency-only Symbolic
UDF-centric [35] No Latency-only Symbolic
Rel.-centric [55] No Latency-only Symbolic
Mixed sol. [57] No Latency-only Neuro-symbolic
Our nsDB Yes Latency-accuracy Neuro-symbolic

integrated systems are designed for efficient model inferences. How-
ever, the fact is that model training cannot be ignored in real-world
applications. To make the matter worse, model training is not trivial
to support by the above integrated systems as they are designed to
provide excellent model inferring performance. Existing systems in
AI-centric category (e.g., Google Big Query [11], Amazon Redshift
ML [3]) train these models by offloading to the underlying DL sys-
tems (e.g., PyTorch, Tensorflow). Obviously, it is not efficient as the
training data should be pre-prepared and it relies on other systems.
(II) Performance goal: The performance goal of existing AI and
DB integrated systems is only the query processing latency as the
underlying AI models are well-trained, which means the accuracy
of these AI models are fixed. However, the same task can be pro-
cessed by multiple AI models. Moreover, different models have dif-
ferent result accuracy for the same task. For example, ArcFace [29],
FaceNet [49], and EigenFace [52] are the typical models for face
recognition task, and the result accuracy of them are different.
(III) Optimization strategy: Existing systems [2, 3, 10–12, 16, 18]
with AI-centric architecture offload the inference computation to
the decoupled AI runtimes. Thus, their query optimizer only use
symbolic rules to process the predicates in the analytical query
and ignore the optimization of the complex neuro-based computa-
tions. The UDF-centric systems [28, 35, 39] use UDF to model the
neuro-based computations, and apply the symbolic-based optimiza-
tion strategies on the UDF-based logical plan. The relation-centric
systems [42, 55] employ the relations to represent the model param-
eter tensor and extend the traditional relational algebra to tensor
relation algebra and optimize them in a holistic symbolic manner.
A simple co-optimization idea (i.e., devising novel query trans-
formation rules) of symbolic and neuro operators in the complex
analytical queries has been proposed in [57]. However, it cannot
achieve low latency and high accuracy goal simultaneously.

In this work, we envision the next generation database system
nsDB, which provides in-database model training, and a novel
neuro-symbolic query optimizer is devised in it to co-optimize the
performance latency and result accuracy of the complex analytical
query processing. The last row of Table 1 shows the unique aspects
of nsDB w.r.t. the existing DB and AI integrated systems.
Query processing over multi-modal data. Conducting complex
query over multi-modal data is an active research topic [24, 30, 32]
in database community in recent years. The general idea of them
to process complex query on multi-modal data is decomposing
the query into several subqueries and executing them to differ-
ent systems [24, 32]. Our nsDB differs from them in two ways:
(i) it integrates both symbolic and neural operators to process
the different tasks in the complex query over multi-modal data,

3284

User Interface

Object detection model

Query Optimizer

Execution Engine

Storage Engine

Model Manager

Face recognition model

Action recognition model

Command line Visual UI DBAgent UI

Query planningMulti-objective optimization

Query execution DAG

Neuro operator

Symbolic operator

PageStore LogStore VectorStore

ℳ
⋃

Figure 2: The architecture overview of nsDB

which is optimized in a holistic manner; and (ii) it considers the
heterogeneity-native query execution and boosts the performance
from the scratch. Moreover, nsDB does not replace these proposed
systems, it offers an alternative solution for end-users.
Model management approach. Recently, several AI model man-
agement systems have been designed, e.g., ModelDB [14], AWS
SageMaker [4], and learnware [58]. However, the fundamental prin-
ciple of the model manager in nsDB is different from them. First,
ModelDB is designed as a central repository for model tracking
but lacks advanced capability such as model creation, training, and
deployment. Second, while AWS SageMaker extends capabilities to
encompass model creation, training, and deployment, it remains
a ML platform, and the entire architecture lacks extensive interac-
tions between AI models and query processing in database systems.
Third, learnware [58] is a recently introduced model management
tool that helps users to identify suitable models from a large repos-
itory to address various tasks. However, it neither involves model
training and inference processes nor has the capability to generate
the optimal execution plans for the complex queries. In contrast,
the model manager is an integrated component within nsDB, en-
gaging closely with other components to fulfill query tasks. It is
designed to handle the entire life cycle of AI models, from training
to finetuning to deployment, within a unified database framework.

3 THE SYSTEM ARCHITECTURE OF NSDB
Figure 2 depicts the system architecture of nsDB. It consists of
5 major components: (i) user interface, (ii) model manager, (iii)
query optimizer, (iv) execution engine, and (v) storage engine. Each
component in nsDB should be loosely decoupled to support diverse
analytical queries efficiently, in contrast to a monolithic system
where a fixed number of computing devices on the same server.

SELECT clips

FROM NBA data D
WHERE team= “LA Lakers”
& Player = “LeBron James”
& Points >= 30
& Time in [2018, now)
& FaceM(D) has “LeBron
James”
& ActionM(D, “LeBorn
James”) = “Dunk”

Parser Optimizer Executor

(a) User query (b) Logical plan (c) Physical plan (d) Query execution

data seg1

data seg2

data seg3

CPU

GPU

FPGA

./

V

�

S

ℳ!

ℳ"
./

V �

S

Vmae

ArcF

./

V �

S

Vmae

ArcF

Figure 3: Query processing in nsDB

3.1 User Interface
Users submit their queries to nsDB via the user interface, e.g., the
data analysts could submit their analytical query via command line
or visual UI. nsDB plans to support advanced methods: end-users
can express their query intention via natural language, and the
large language model-based DBAgent of nsDB could convert it to
the corresponding complex analytical SQL query. We will explain
the concept of DBAgent shortly.

3.2 Model Manager
As shown in Figure 3, the user query first is parsed to the logical
plan. One of the major characteristics of the logical plan in nsDB
is that it includes: (i) the traditional symbolic SQL operators, see 𝛿
and Z on the relational NBA data table S in Figure 3(b); and (ii) the
neuro AI operators, e.g., the face recognition modelM𝐹 and action
recognition model M𝐴 on the NBA video data V in Figure 3(b).
nsDB utilizes the strong capability of neuro operators to process
the unstructured data of various modalities, such as images, videos,
texts, and audio. Thus, the first key challenge is building a suitable
model manager in nsDB as it plays a vital role to process the
complex queries on multi-modal data.

Traditional symbolic-based databases are known for their user-
friendliness and ease to use, which can handle all kinds of queries
by combining a limited number of SQL operators. In contrast, the
neuro system lacks such high-level abstractions, primarily due to
the inherent complexity of AI model. For example, developing and
deploying AI models are complicated, involving various stages such
as data collection, network design, model training, efficient infer-
ence, and many more. Properly navigating through these stages
demands expertise in AI, posing a barrier to the widespread appli-
cability of neuro models among the end users, which probably are
not familiar with AI techniques. In this work, we combine symbolic
operators and neural AI models via model manager component in
nsDB. This combination facilitates end-users to engage with AI
models through simple AI operators and empower users to pro-
cess complex queries (e.g., the above analytical query involving
multi-modal data) by harnessing the strengths of both realms.

A crucial component in ourmodel manager is an AI agent, named
as DBAgent. Powered by large language models (LLMs), DBAgent
possesses advanced reasoning and planning capabilities, and offers
key benefits to nsDB: (1) DBAgent provides a declarative approach
for users to interact with nsDB. Users can describe their queries
via natural language or high-level programs, and DBAgent is able
to decompose them into a stream of sub-tasks, and translate them
into queries compatible with nsDB. (2) DBAgent allows nsDB to
efficiently support large-scale systems that potentially interleave

3285

variedmodalities of data. For optimal performance, different modali-
ties might be processed by different programming languages, posing
great challenges for existing data management platforms. DBAgent
tackles this by reprogramming heterogeneous components via a
unified language. This makes nsDB a highly scalable framework for
real-world, complex systems. (3) Furthermore, the strong decision-
making capability of DBAgent will enhance the autonomy of the
model manager in nsDB through autonomously triggering, e.g., net-
work pruning, model compression, or model retraining, if existing
models do not meet the query criteria.

Abstracting away the intricacies of AI model interaction is a
notable challenge in building nsDB. To tackle it, we intend to in-
troduce AI-Tables, AI-Operators and AI-Models into the model
manager. First, the introduction of AI-Tables is intended to store
essential metadata of available AI models, including model iden-
tifiers, functional description, inference speed, accuracy, network
layers/sizes, versioning information, etc. Th above abstraction of
physical AI models serve as essential input for the query planning
and optimizing. These metadata can be user-provided, automati-
cally collected based on released information for public models, or
obtained during private model training by evaluation on held-out
validation samples. Second, the model manager extends traditional
relational operators with a suite of AI-Operators at varying lev-
els of granularity. These range from coarse-grained operators like
train, inference, finetune, which encapsulate high-level opera-
tions of AI models, to the fine-grained ones like pooling-layer,
activation-layer, which are abstractions of basic building blocks
of an AI model. This will render a complete AI-to-SQL translation,
ensuring the completeness of AI operators. These operators will
enable users to smoothly interact with AI models via user-friendly
SQL. Thus, the extended operator set in nsDB can be used to process
complex analytical queries, i.e., generating the logical plan which
includes both symbolic-based SQL operators and neuro-based AI
operators. Third, the model manager will include commonly-used
public AI models like those for face recognition or object detection
as the model basis. However, in practice scenarios, public models
might not fully align with query requirements. nsDB addresses
this by offering customization options. On one hand, nsDB facili-
tates creating models from scratch. On the other hand, it allows for
specializing models from public ones. For example, while Video-
MAEV2 [54] shows state-of-the-art accuracy in recognizing human
actions, it is limited in the high inference cost. For these cases,
nsDB will allow for the distillation of knowledge from big models
to small counterparts [34]. This offers an alternative to training
from scratch and mitigate the difficulties associated with data col-
lection and labelling. New models will be stored as separate records
in AI-Tables.

3.3 Query Optimizer
Returning to the query processing example, with the supporting of
AI-Tables and AI-Operators in model manager, the logical plan is de-
rived by query planning in the query optimizer in nsDB. The query
optimizer then optimizes it to the physical plan, see Figure 3(c). The
second key challenge of nsDB ismulti-objective optimization as
it considers both latency and accuracy when it is finding the most
efficient symbolic- and neuro-mixed physical execution plan. In

Latency Performance

Model Accuracy

high

low

small large

EigenFace+C3D

ArcFace+VideoMAEV2

Pareto
Frontier

Figure 4: Pareto frontier of the user query in Figure 1

traditional symbolic-based database system, the optimization goal
of user query is only minimizing the query latency.

In existing DB and AI integrated systems, their performance
goal also is only the query latency as they assume the underlying
AI models are fixed. However, the neuro AI operators in nsDB is
not exact computation, it always compromises the accuracy and
latency. For example, to detect the frames which has Lebron James,
ArcFace [29] is more accurate than EigenFace [52], but the inference
cost of ArcFace is larger than EigenFace. Thus, the optimization
goals in nsDB are two-fold: (i) query latency and (ii) result accu-
racy. Moreover, the fine-grained AI operators (e.g., pooling-layer,
activation-layer) of the selected AI models will be pipelined
with the symbolic SQL operators to derive the optimal physical
plan. For ease of presentation, we use coarse-grained AI operators
(e.g., inference of AI-models) in the examples.

We next elaborate the complexity of the query optimizer in
nsDB by utilizing the analytical query in Figure 1. Suppose the
logical plan of the user query includes two AI operators, as the face
recognition modelM𝐹 and action recognition modelM𝐴 shown
in Figure 3(b). To optimize the logical plan, there are three open
questions: (1) there are various models for each AI operator. For
example, ArcFace [29], FaceNet [49], and EigenFace [52] are the rep-
resentative solutions for face recognition task; VideoMAEV2 [54],
SlowFast [31], and C3D [51] are commonly used for action recogni-
tion task in different scenarios. The first opening question is which
one should be used in the physical execution plan? (2) Similar to
the join order selection problem in query optimizer of traditional
symbolic-based databases, the second opening problem is how to
determine the model execution order? Returning to the user query
in Figure 1, two possible execution orders are: (a) it first finds all
clips which have Lebron James then identifies these clips when he
is dunking; and (b) it first identifies all dunking clips, then extracts
a subset from them which includes Lebron James. (3) The third
opening question is how to cascade multiple models to achieve better
performance or accuracy? For example, a possible physical execu-
tion plan is employing a fast face recognition model first to find
these frames which probably includes Lebron James, then applying
a slow action recognition model to identify these dunking clips,
last utilizing a slow-yet-accurate face recognition model to refine
the final result. To make the matter worse, the above three opening
questions are not independent, they are intricately connected.

With the above multi-objective optimization problem in mind,
the query optimizer in nsDB addresses it by deriving the Pareto
frontier of the underlying optimization problem efficiently and ac-
curately. The Pareto frontier indicates the optimal performance

3286

𝑀𝐹

⋈𝐻

𝑀𝐴

𝑀𝐹

⋈𝐻

𝑀𝐴

V

S

V

S

Complex User Query: SELECT clips FROM D WHERE ···

Query Optimizer

Logical
Plan

Progressive Refinement
Component

Result

Cost model

Plan generating

trigger

Physical Plan

Execution Engine

Model
Manager

Figure 5: The architecture of query optimizer in nsDB,
adapted from our preliminary work [53]

theoretically. It can be used to guide the selection of underlying AI
models and the generation of physical execution plan. As illustrated
in Figure 4, it shows the Pareto frontier of the user query in Fig-
ure 1. Unfortunately, identifying the Pareto frontier of the complex
user query by the query optimizer in nsDB is naturally complex.
Logically, the hardness of identifying the Pareto frontier is obvious
not easier than obtaining the accurate cardinality estimations in
traditional query optimizer in symbolic-based databases. Thus, the
design principle of the query optimizer in nsDB is “achieving both
performance and accuracy goals via progressive query optimization”.

The architecture of the query optimizer in nsDB is illustrated in
Figure 5. Specifically, we follow the query re-optimization paradigm
to implement the design principle of progressive query optimiza-
tion. The core reason is that it is almost impossible to obtain the
optimal query execution plan at the first glance even in traditional
symbolic-based database systems. As shown in Figure 5, the query
optimizer of nsDB works as follows. It first utilizes the metadata
of AI operators, which is provided by model manager (as we elab-
orated in Section 3.2), the cost model and the plan generator to
generate the initial physical execution plan. During the query exe-
cution, the trigger observes the intermediate result and identifies
the Pareto-frontier obtained so far. The progressive refinement
component refines the execution plan by taking both the runtime
statistics and metadata of the AI models into consideration. Thus,
the execution plan will be adjusted progressively and dynamically.
There are two possible approaches for the progressive refinement
component: (i) symbolic-based and (ii) neural-based. For (i), the
intermediate runtime statistics are used as optimization constrains.
For (ii), these statistics are used as training data to improve the un-
derlying decision AI model in the progress refinement component.

There are many research problems and technical challenges (e.g.,
cost model, query compilation) to build the query optimizer of nsDB.
Our general idea is exploiting the successful existing techniques [9]
and avoiding to reinvent the wheels. For example, the number of
floating point values should be used as one of the cost metrics
in the cost model nsDB by following the idea in [55]. The query
compilation and optimization framework in [36] and the unified
intermediate representation in [57] also will be considered in nsDB.

3.4 Heterogeneity-native Query Execution
Back to the query processing procedure in nsDB, the last step is
executing the optimized physical plan in the execution engine of

data subsetdata

CPU-GPU jobs on GPU CPU-GPU jobs on CPU

Syncrhonization

Jobs

Executed CPU-GPU jobs Executed CPU-only jobs

GPU CPU

data subset
sync
info

GPU memory
 CPU-GPU computing job CPU-only computing job

CPU-CPU computing job but executed on CPU

sync
info

CPU memory

Figure 6: The execution engine in nsDB, adapted from our
preliminary work [46]

nsDB, as shown in Figure 3(d). Specifically, the optimized physical
plan is a directed acyclic graph (DAG), which consists of a set of both
symbolic- and neuro- operators. The execution engine schedules
them to the heterogeneous computing units (e.g., CPU, GPU, FPGA),
and executes them by accessing the data in storage engine.

In nsDB, we advocate to architect a heterogeneity-native execution
engine as the heterogeneity is obvious in modern data-intensive
systems. In particular, many database systems [23, 26, 27, 41] are
designed to exploit the heterogeneous hardware, e.g., CPU, GPU
and FPGA. The specialized computing hardware (e.g., TPU, DPU)
also have been widely emerged and utilized in AI systems. The
third key challenge of nsDB is architecting heterogeneity-native
query execution. It is not trivial as the physical plan includes both
symbolic SQL operators and neuro AI operators.

Abstractly, given a set of operators in the physical plan DAG and
a set of available computing units, how to execute them efficiently is
an opening question. The technical challenges to address it are from
three aspects. First, it is assigning right operator to the right compu-
tation unit. Specifically, there are four operators in the physical plan
of the user query, as shown in Figure 3(c). It is not straight-forward
to efficiently execute them via the available computing units, i.e.,
CPU, GPU, and FPGA in Figure 3(d). Second, it is guaranteeing the
load balance among all these heterogeneous computation units. In
particular, the execution engine should maximize both intra- and
inter- parallelism during the physical plan execution. It only can be
achieved by balancing the workload in each computing unit. Third,
it is facilitating the execution by careful-designed data layouts in
storage engine. For example, the columnar data layout boosts the
analytical query processing in traditional OLAP systems. However,
the execution logic of the neuro AI operators are more complex
than analytical queries. It is an opportunity to improve its execution
performance by specific data layout in storage engine.

Hence, we plan to address the above challenges by following
the design principle “decomposition facilitates allocation” in nsDB.
From the operating system perspective, existing execution unit
is abstracted by thread. The major limitation of this abstraction
is that the context switch overhead is expensive when executing
the physical DAG. To overcome it, several lightweight user-space
execution units (e.g., Arachne [47], boost fiber [8], libco [13]) have
been proposed to provide low latency and high throughput for the

3287

upstream applications. Motivated by them, we plan to decompose
each operator in the physical execution DAG into a set of fine-
grained execution units in nsDB. These fine-grained execution
units either enjoy low latency and high throughput or facilitate
the allocation and execution [40]. In particular, we abstract the
atomic execution unit “job” for each operator in the physical plan
DAG, i.e., “𝑛𝑥 ” shown in Figure 6. The requirements of the fine-
grained “𝑛𝑥 ” are: (i) run-to-completion, which guarantees atomic
and facilitates execution; and (ii) supporting code variants, which is
key to build heterogeneity-native execution engine. For example, it
should have GPU- and FPGA- based code implementations for the
matrix multiply operator if it may be executed on GPU or FPGA.
The executing types of the job 𝑛𝑥 are determined by its available
code variants. As the CPU-GPU heterogeneous execution example
shown in Figure 6, the jobs of some operators in the DAG are 𝑛0 to
𝑛11. The jobs 𝑛0 to 𝑛9 can be executed by both CPU or GPU (see
red nodes). However, 𝑛10 and 𝑛11 only can be executed by CPU (see
blue nodes). During the execution, all ready jobs are scheduled to
the heterogeneous hardware and be executed simultaneously. For
example,𝑛0 to𝑛3 are executed onGPU, and𝑛10 and𝑛11 are executed
in CPU. To ensure the load balance among different computing units,
the executor will take the runtime utilization of the hardware into
consideration. For example, 𝑛8 and 𝑛9 are scheduled and executed
in CPU even though it can execute on GPU. The reason is that
when GPU is processing 𝑛4 to 𝑛7, CPU is ideal then it is used to
execute 𝑛8 and 𝑛9. It is worth to point out the generic of the above
example can be achieved by replacing the GPU in the left to any
other computing units, e.g., FPGA or others.

3.5 Storage Engine
The design paradigm of storage engine in nsDB is that “data layout
boosts query processing” as the data accessing cost becomes obvious
in modern data-intensive systems. In traditional symbolic-based
database systems, both row-based and column-based data layout
have been used for various applications, e.g., transaction process-
ing and analytical processing. The core idea is that the data layout
improves the data access and cache locality efficiency during query
processing. In nsDB, we follows the same idea to design the Page-
Store of the storage engine. For example, it is quite common that
there exists dependencies and similarities among the large scale
of multi-model data, e,g., different frames of NBA game video al-
ways share the same background. To improve the query processing
among the video data, we plan to use the tile data layout [56] in
the PageStore of nsDB. In particular, it splits the video into non-
overlapping 𝑁 × 𝑀 tile sequences, and each sequence supports
independent decoding, where 𝑁 and 𝑀 are the number of rows
and columns. To minimize the cost of AI models (e.g., dunking
action recognition) on these videos, the optimal tile layout can be
constructed by modeling the cost of data loading, region of interest
detecting, and tile decoding. In addition, we introduce VectorStore
in the storage engine of nsDB to store, manage, and index the
embedding vectors of multi-modal data.

4 DISCUSSION OF NSDB
We briefly discuss the generality of nsDB by elaborating how to
clean the real-world dirty data in it. Many data cleaning systems [20,

21, 48] have been proposed in the literature. The methodologies
of these systems can be divided into two categories: (i) logic rules,
and (ii) machine learning (ML). Rock [22] unifies ML and logic
deduction in a system to address data quality issues, e.g., entity
resolution and conflict resolution. Fortunately, nsDB can achieve
the same goal of Rock by including these ML classifiers into its
model manager. In particular, the proposed extension of Entity
Enhancing Rules REE++ will be divided into two parts in nsDB: (i)
the traditional logic rules in REE++ are the symbolic predicates;
and (ii) the embedded ML models (e.g., similarity checking, link
prediction) are used as neural operators. Thus, the end users could
conduct error detection on various data from different applications
(e.g., sales and logistics) by writing simple SQL queries on nsDB.

5 CONCLUSION
In this work, we envision nsDB, which integrates both neural-
and symbolic- systems and provides the capabilities of AI model
management and complex query processing. Specifically, it con-
sists of three important components: (i) robust model manager,
(ii) multi-objective optimization, and (iii) heterogeneity-native ex-
ecution. In the past few years, our team is working on several
projects [41, 46, 50, 53, 56], which are the preliminary attempts to
address these technical challenges in nsDB. For example, video data
management [56], heterogeneous computing [41, 46], AI-enhanced
query optimization [53], query performance diagnosing [50]. We
believe nsDB is the next generation database system, which can be
used for various applications, e.g., video analysis, chemistry and
natural sciences. This vision paper serves as a research road map
for building it and highlights the research challenges in the journey.
While we are in the early stages of the journey, we are excited about
the promising future of nsDB. Specifically, it not only enhances the
usability of database in various new emerged applications, but also
removes the barriers to build AI projects, and allow anyone without
expertise could use AI models in nsDB as we use SQL in database
today. There are many opening problems to build nsDB, e.g., query
compilation and optimization, the sufficiency of VectorStore for
bridging AI and DB systems.We hope the researchers from different
communities (e.g., OS, DB, AI, CHI) could tackle them together.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-
ments. Ye Yuan is supported by the National Key R&D Program
of China (Grant No.2022YFB2702100) and the NSFC (Grant Nos.
61932004, 62225203, U21A20516). Bo Tang is supported by the
Guangdong Province Key Laboratory (Grant No. 2020B121201001)
and the Shenzhen Fundamental Research Program (Grant No. 202208
15112848002). Zhiwei Zhang is supported by the National Key
R&D Program of China (No.2021YFB2700700), and the NSFC (Grant
No.U23B2019, No.62072035). Jianbin Qin is supported by National
Key R&D program of China (No. 2021YFB3301500), the Guangdong
Province Key Laboratory of Popular High Performance Computers
2017B030314073; Shenzhen University Research Fund 2023YQ017
and 20220810142731001; and CCF-Tencent Fund RAGR20230126. Bo
Tang is also affiliated with the Research Institute of Trustworthy Au-
tonomous Systems, Southern University of Science and Technology,
Shenzhen, China.

3288

REFERENCES
[1] 2024. 2023 NBA All-Star Game Promo. https://www.nba.com/watch/video/2023-

nba-all-star-game-promo.
[2] 2024. AI Functions on Databricks. https://docs.databricks.com/en/large-language-

models/ai-functions.html.
[3] 2024. Amazon Redshift ML. https://aws.amazon.com/blogs/aws/amazon-

redshift-ml-is-now-generally-available-use-sql-to-create-machine-learning-
models-and-make-predictions-from-your-data/.

[4] 2024. Amazon SageMaker. https://aws.amazon.com/sagemaker/.
[5] 2024. Apache Flink. https://flink.apache.org/.
[6] 2024. Apache Hive. https://hive.apache.org/.
[7] 2024. Apache Spark. https://spark.apache.org/.
[8] 2024. Boost Fiber. https://www.boost.org/doc/libs/1_83_0/libs/fiber/doc/html/

fiber/overview.html.
[9] 2024. DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Manage-

ment, HPC, and Machine Learning. https://daphne-eu.github.io/.
[10] 2024. EvaDB: Database system for AI-powered apps. https://github.com/georgia-

tech-db/evadb.
[11] 2024. Introduction to AI and ML in BigQuery. https://cloud.google.com/bigquery/

docs/bqml-introduction.
[12] 2024. Large Language Models for sentiment analysis with Amazon Red-

shift ML. https://aws.amazon.com/blogs/big-data/large-language-models-for-
sentiment-analysis-with-amazon-redshift-ml-preview/.

[13] 2024. libco. https://github.com/Tencent/libco.
[14] 2024. ModelDB: An open-source system for Machine Learning model versioning,

metadata, and experiment management. https://github.com/VertaAI/modeldb.
[15] 2024. MySQL. https://www.mysql.com/.
[16] 2024. PostgresML. https://postgresml.org/.
[17] 2024. PostgreSQL. https://www.postgresql.org/.
[18] 2024. SQL-only LLM for text generation using Vertex AI model in Big-

Query. https://cloud.google.com/blog/products/ai-machine-learning/llm-with-
vertex-ai-only-using-sql-queries-in-bigquery.

[19] 2024. Symbolic System. https://en.wikipedia.org/wiki/Computer_algebra.
[20] Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-scale deduplication

with constraints using dedupalog. In ICDE. 952–963.
[21] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent query

answers in inconsistent databases. In PODS. 68–79.
[22] Xianchun Bao, Zian Bao, Binbin Bie, Qingsong Duan, Wenfei Fan, Hui Lei, Daji

Li, Wei Lin, Peng Liu, Zhicong Lv, Mingliang Ouyang, Shuai Tang, Yaoshu Wang,
Qiyuan Wei, Min Xie, Jing Zhang, Xin Zhang, Runxiao Zhao, and Shuping Zhou.
2024. Rock: Cleaning Data by Embedding ML in Logic Rules. In SIGMOD.

[23] Nils Boeschen and Carsten Binnig. 2022. GaccO-A GPU-accelerated OLTP DBMS.
In SIGMOD. 1003–1016.

[24] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, Sam Madden, and Nan Tang. 2023. Sym-
phony: Towards natural language query answering over multi-modal data lakes.
In CIDR. 8–151.

[25] Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang, and
Liqing Zhang. 2020. Spatio-temporal attention-based neural network for credit
card fraud detection. In AAAI. 362–369.

[26] Monica Chiosa, Thomas B Preußer, Michaela Blott, and Gustavo Alonso. 2023.
AMNES: Accelerating the computation of data correlation using FPGAs. PVLDB
16, 13 (2023), 4174–4187.

[27] Periklis Chrysogelos, Panagiotis Sioulas, and Anastasia Ailamaki. 2019.
Hardware-conscious query processing in gpu-accelerated analytical engines.
In CIDR.

[28] Francesco Del Buono, Matteo Paganelli, Paolo Sottovia, Matteo Interlandi, and
Francesco Guerra. 2021. Transforming ML predictive pipelines into SQL with
MASQ. In SIGMOD. 2696–2700.

[29] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:
Additive angular margin loss for deep face recognition. In CVPR. 4690–4699.

[30] Wenfei Fan, Ping Lu, Kehan Pan, Ruochun Jin, and Wenyuan Yu. 2024. Linking
entities across relations and graphs. In TODS. 634–647.

[31] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. 2019. Slow-
fast networks for video recognition. In ICCV. 6202–6211.

[32] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes,
Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. 2016.
The BigDAWG polystore system and architecture. In HPEC. 1–6.

[33] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit
Sen, Carlo Curino, Jesús Camacho-Rodríguez, and Matteo Interlandi. 2023. The
tensor data platform: Towards an ai-centric database system. CIDR.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531.

[35] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J Gao. 2020. Declarative recursive computation on an RDBMS:
or, why you should use a database for distributed machine learning. ACM
SIGMOD Record 49, 1 (2020), 43–50.

[36] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an open
framework for query optimization and compilation. PVLDB 15, 11 (2022), 2389–
2401.

[37] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021.
Neuro-Symbolic Artificial Intelligence: Current Trends. arXiv e-prints, arXiv–
2105.

[38] Daniel Kang, Francisco Romero, Peter D Bailis, Christos Kozyrakis, and Matei
Zaharia. 2022. VIVA: An End-to-End System for Interactive Video Analytics. In
CIDR.

[39] Konstantinos Karanasos,Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus
Weimer, et al. 2020. Extending Relational Query Processing with ML Inference.
CIDR.

[40] Haotian Liu, Runzhong Li, Ziyang Zhang, and Bo Tang. 2025. Tao: Improv-
ing Resource Utilization while Guaranteeing SLO in Multi-tenant Relational
Database-as-a-Service. In SIGMOD.

[41] Haotian Liu, Bo Tang, Jiashu Zhang, Yangshen Deng, Xiao Yan, Xinying Zheng,
Qiaomu Shen, Dan Zeng, Zunyao Mao, Chaozu Zhang, Zhengxin You, Zhihao
Wang, Runzhe Jiang, Fang Wang, Yiu Man Lung, Huan Li, Mingji Han, Qian
Li, and Zhenghai Luo. 2022. GHive: accelerating analytical query processing in
apache hive via CPU-GPU heterogeneous computing. In SoCC. 158–172.

[42] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2018. Scalable linear algebra on a relational database system. ACM
SIGMOD Record 47, 1 (2018), 24–31.

[43] Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, and Usama Fayyad. 2000. Integra-
tion of data mining and relational databases. In VLDB. 285–296.

[44] Beng Chin Ooi, Shaofeng Cai, Gang Chen, Kian Lee Tan, Yuncheng Wu, Xiaokui
Xiao, Naili Xing, Cong Yue, Lingze Zeng, Meihui Zhang, et al. 2024. NeurDB: An
AI-powered Autonomous Data System. arXiv preprint arXiv:2405.03924 (2024).

[45] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and
Konstantinos Karanasos. 2022. End-to-end optimization of machine learning
prediction queries. In SIGMOD. 587–601.

[46] Cui Pengjie, Liu Haotian, Tang Bo, and Yuan Ye. 2024. CGgraph: An Ultra-
fast Graph Processing System on Modern Commodity CPU-GPU Co-processor.
PVLDB 17, 6 (2024), 1405–1417.

[47] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware thread management. In OSDI. 145–160.

[48] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11.

[49] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified
embedding for face recognition and clustering. In CVPR. 815–823.

[50] Qiaomu Shen, Zhengxin You, Xiao Yan, Chaozu Zhang, Ke Xu, Dan Zeng, Jianbin
Qin, and Bo Tang. 2024. QEVIS: Multi-grained Visualization of Distributed Query
Execution. TVCG, 153–163.

[51] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In ICCV.
4489–4497.

[52] Matthew A Turk and Alex P Pentland. 1991. Face recognition using eigenfaces.
In CVPR. 586–587.

[53] Fang Wang, Xiao Yan, Man Lung Yiu, Shuai LI, Zunyao Mao, and Bo Tang.
2023. Speeding Up End-to-end Query Execution via Learning-based Progressive
Cardinality Estimation. SIGMOD 1, 1 (2023), 1–25.

[54] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali
Wang, and Yu Qiao. 2023. Videomae v2: Scaling video masked autoencoders
with dual masking. In CVPR. 14549–14560.

[55] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and
Chris Jermaine. 2021. Tensor relational algebra for distributed machine learning
system design. PVLDB 14, 8 (2021).

[56] Tianxiong Zhong, Zhiwei Zhang, Guo Lu, Ye Yuan, Yu-Ping Wang, and Guoren
Wang. 2024. TVM: A Tile-based Video Management Framework. PVLDB 17, 4,
671—-684.

[57] Lixi Zhou, Qi Lin, Kanchan Chowdhury, Saif Masood, Alexandrem Eichenberger,
Hong Min, Alexander Sim, Jie Wang, Yida Wang, Kesheng Wu, Binhang Yuan,
and jia Zou. 2024. Serving Deep Learning Models from Relational Databases. In
EDBT. 717–724.

[58] Zhi-Hua Zhou and Zhi-Hao Tan. 2024. Learnware: Small models do big. Science
China Information Sciences 67, 1 (2024), 112102.

3289

https://www.nba.com/watch/video/2023-nba-all-star-game-promo
https://www.nba.com/watch/video/2023-nba-all-star-game-promo
https://docs.databricks.com/en/large-language-models/ai-functions.html
https://docs.databricks.com/en/large-language-models/ai-functions.html
https://aws.amazon.com/blogs/aws/amazon-redshift-ml-is-now-generally-available-use-sql-to-create-machine-learning-models-and-make-predictions-from-your-data/
https://aws.amazon.com/blogs/aws/amazon-redshift-ml-is-now-generally-available-use-sql-to-create-machine-learning-models-and-make-predictions-from-your-data/
https://aws.amazon.com/blogs/aws/amazon-redshift-ml-is-now-generally-available-use-sql-to-create-machine-learning-models-and-make-predictions-from-your-data/
https://aws.amazon.com/sagemaker/
https://flink.apache.org/
https://hive.apache.org/
https://spark.apache.org/
https://www.boost.org/doc/libs/1_83_0/libs/fiber/doc/html/fiber/overview.html
https://www.boost.org/doc/libs/1_83_0/libs/fiber/doc/html/fiber/overview.html
https://daphne-eu.github.io/
https://github.com/georgia-tech-db/evadb
https://github.com/georgia-tech-db/evadb
https://cloud.google.com/bigquery/docs/bqml-introduction
https://cloud.google.com/bigquery/docs/bqml-introduction
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://github.com/Tencent/libco
https://github.com/VertaAI/modeldb
https://www.mysql.com/
https://postgresml.org/
https://www.postgresql.org/
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://en.wikipedia.org/wiki/Computer_algebra

	Abstract
	1 Introduction
	2 Related Work
	3 The System Architecture of nsDB
	3.1 User Interface
	3.2 Model Manager
	3.3 Query Optimizer
	3.4 Heterogeneity-native Query Execution
	3.5 Storage Engine

	4 Discussion of nsDB
	5 Conclusion
	Acknowledgments
	References

