
Sorting on Byte-Addressable Storage:
The Resurgence of Tree Structure

Ying Zheng
National University of Singapore

zheng@comp.nus.edu.sg

Kian-Lee Tan
National University of Singapore

tankl@comp.nus.edu.sg

ABSTRACT
The tree structure is notably popular for storage and indexing; how-
ever, tree-based sorting such as tree sort is rarely used in practice.
Nevertheless, with the advent of byte-addressable storage (BAS),
the tree structure captures our attention with its write-once prop-
erty. This property aligns well with BAS’s asymmetric read-write
characteristics. In this paper, we seek to answer the question: Can
tree-based sorting algorithms outperform existing algorithms in
the hybrid DRAM-BAS system? To address this, first, we conduct a
comprehensive study to assess the compatibility of existing sorting
algorithms with such hybrid memory systems and explore the chal-
lenges. We then delve into various design dimensions of tree-sort
algorithms which leads to an optimized variant, TSort. Finally, a
comparative analysis is conducted among three different sets of
sorting algorithms, including in-place sorts, external sorts, and tree-
based sorts. The results indicate that TSort not only challenges
the traditional negative perceptions of the tree structure in sorting
but also exhibits excellent performance. It outperforms all other
counterparts across diverse datasets, whether uniformly distributed
or skewed, in most cases.

PVLDB Reference Format:
Ying Zheng and Kian-Lee Tan. Sorting on Byte-Addressable Storage:
The Resurgence of Tree Structure. PVLDB, 17(6): 1487-1500, 2024.
doi:10.14778/3648160.3648185

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/iamzhengying/sort.

1 INTRODUCTION
Ordering is often intricately linked to efficiency, indicating that the
sorting algorithm plays an important role in diverse data-intensive
applications [3, 14, 38, 41, 45, 53]. For example, in database manage-
ment systems, sorting is the foundation of many query operations,
such as ORDER BY, JOIN, DISTINCT, and GROUP BY. Therefore, a
large amount of research has been devoted to designing efficient
sorting algorithms.

Recently, byte-addressable storage (BAS) technologies [8, 15,
46, 51] have received lots of attention as potential alternatives to
current storage media. They have impressive access performance
compared to SSDs, and are more cost-effective and scalable than

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648185

DRAM [18, 20, 49]. Given these attributes, the hybrid DRAM-BAS
memory stands out as the most promising next-generation stor-
age device [29, 47]. However, existing algorithms may not be able
to adapt well to the following inherent characteristics of BAS to
perform optimally:
⋄ (A) Asymmetric read andwrite performance. BAS exhibits a more

significant difference in read and write performance. Specifically,
its sequential write is up to 4x worse than sequential read and
even worse than random read [49]. Also, it suffers from limited
write endurance [17]. Both result in writes being more expensive
than reads.

⋄ (B) Byte addressability. BAS supports byte-level small-size access,
which makes its random access cheaper than that of traditional
disks. Meanwhile, its random read performance is comparable to
sequential read performance when the access size is larger than
256B [49]. Therefore, BAS is particularly tolerant of random read
scenarios.

⋄ (C) Constrained concurrency. BAS shows constrained perfor-
mance on concurrent operations, especially for writes. With a
non-optimal degree of parallelism, its write performance may
drop to half of its peak [12, 37]. Its read, on the other hand, ex-
hibits a more predictable performance, which initially improves
as the degree of parallelism increases and then stabilizes after
reaching a certain threshold. In short, BAS’s maximal access
bandwidth is determined jointly by access mode, access size, and
the degree of parallelism.

⋄ (N) Non-volatility. Although BAS’s non-volatility ensures data
persistence, it also implies that in-place processing is at risk of
data corruption when a crash occurs.
Table 1 lists how well several existing sorting algorithms cope

with the above characteristics. We add a fifth column (D) for DRAM
to indicate the ability of the algorithm to leverage additional DRAM
to enhance performance. For example, IPS4o (in-place) [4, 5] is not
write-efficient (no checkmark in column A), takes advantage of
BAS’s byte addressability (which allows it to run directly on BAS),
is multithreaded (although it does not specifically focus on thread
management), poses risk of data corruption (as it operates on the
original dataset), and does not utilize main memory. On the other
hand, B*Sort [30] is a write-limited scheme that leverages the BAS’s
property of byte addressability and is not affected by crashes (since
the original dataset is read-only, and the sorted data is stored as a
separate tree structure), but it does not utilize main memory. The ta-
ble also distinguishes between two types of algorithms: value-based
sorting schemes, which sort the entire record, and pointer-based
schemes, which operate on (key, pointer)-pairs. The latter schemes
require making a copy of (key, pointer)-pairs before sorting, and
retrieving the value part to complete the sort. So, they naturally do
not corrupt the original dataset in the event of a crash. Interestingly,

1487

https://doi.org/10.14778/3648160.3648185
https://github.com/iamzhengying/sort
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648185
https://www.acm.org/publications/policies/artifact-review-and-badging-current

none of these schemes effectively address all five characteristics.
Given the unique characteristics of BAS, there is a clear need to
identify, if not develop, efficient BAS-friendly sorting algorithms.

Among all data structures, the tree structure catches our atten-
tion, although it is often overlooked by most sorting algorithm
designers. Intrinsically, tree structures exhibit asymmetry between
read and write operations during construction, with far more reads
than writes. This inherent asymmetry aligns well with the unique
read-write characteristics of BAS, which inspired us to explore the
performance of tree-based sorting algorithms. The traditional and
well-known tree-based sorting algorithm, tree sort [35, 36], does
the sorting by constructing a binary search tree. It then traverses
the constructed tree to obtain a globally ordered sequence. Despite
its theoretically appealing 𝑂 (𝑛 log𝑛) best-case time complexity
(where 𝑛 is the number of data elements), tree sort has limitations
in practice. Its frequent random accesses during construction result
in a large number of cache misses. Additionally, it builds a very tall
tree when handling large-scale datasets, which leads to significant
traversal overhead. The multithreaded implementation of tree sort
is also inefficient: the tree construction process typically involves
mutex locks, which incurs substantial locking overhead and thread
blocking. Furthermore, implementing an efficient multithreaded
global tree traversal process is challenging due to ordering con-
straints. Finally, tree sort struggles with skewed datasets; when
sorting such data, it may degenerate into a linked list.

Considering the above limitations, we decide to explore the po-
tential of the tree-sort algorithm in the following design dimensions.

(1) Dimension #1: no batching (N) v.s. batching. The batching tech-
nique [10, 39] buffers a batch of data elements and inserts them
into the tree together, which can be further classified as single-
buffer batching (B) and double-buffer batching (D) [28].

(2) Dimension #2: global tree (G) v.s. multiple subtrees. Instead
of building one global tree, the multitree scheme [30, 34] con-
structs a set of range-continuous trees and locates the target
tree through hash-based (H) or binary-based (B) searches.

(3) Dimension #3: single thread (S) v.s. multiple threads. Because
of BAS’s property of constrained concurrency, we shall discuss
both general multithreading (M’) and augmented BAS-aware
multithreading (M) [6, 54] implementations.

(4) Dimension #4: Synchronous manner (S) v.s. asynchronous man-
ner (A). This dimension indicates whether threads are working
together for a particular operation in the multithreaded imple-
mentation [23].

In our experiments, the variant with BHMA exhibits the best per-
formance, which we denote as TSort. To evaluate the efficiency of
TSort, we conduct a comprehensive experimental study among in-
place sorting algorithms (including Introsort, IPS4o, and selection
sort), external sorts (such as traditional external merge sort [25]
and WiscSort [6]), and tree-based sorts (like B*-sort and TSort).
Our evaluation results reveal that TSort outperforms all other al-
gorithms across both uniformly and skewed distributed datasets
in most cases. From another perspective, this study revives the
ever-forgotten tree structure in the field of sorting, opening up
new design directions for sorting algorithms on BAS devices. In
summary, the contributions of this paper include:

Table 1: Algorithm’s compatibility to the ABCN(D) design
principle. (Note: "✓" - the scheme supports the feature well,
"⃝" - there is room for improvement.)

Algorithm A B C N D

Value-based sorting schemes

IPS4o (in-place) [4, 5] ⃝ ⃝
B*-Sort [30] ✓ ⃝ ✓
External merge sort [25] ✓ ⃝ ✓ ✓
segment sort [42] ⃝ ⃝
NVMSort [32] ⃝ ⃝ ✓
MONTRES-NVM [24] ✓ ⃝ ✓ ✓
NVMSorting [11] ✓ ⃝ ✓ ✓

Pointer-based sorting schemes

IPS4o (optimized) ✓ ⃝ ✓
PMSort [16] ✓ ✓ ✓
WiscSort [6] ✓ ✓ ⃝ ✓ ✓

⋄ According to the characteristics of BAS devices, we comprehen-
sively study and analyze the problems faced by existing conven-
tional and BAS-friendly sorting algorithms.

⋄ We provide the first thorough analysis of tree-sort algorithms
on the BAS device across different design dimensions to explore
its potential.

⋄ We systematically conduct a rigorous empirical study among
in-place sorting algorithms, external sorting algorithms, and tree-
based sorting algorithms to identify their relative strengths and
weaknesses in different scenarios.
The rest of this paper is organized as follows. In the next section,

we provide background knowledge and motivations for this work.
Then, in Section 3, we detail the design dimensions of tree-based
schemes. Section 4 offers a comprehensive analysis of tree-sort
algorithms with various design dimensions. Section 5 presents
a thorough performance evaluation among three sets of sorting
algorithms. Afterward, we review several existing BAS-related al-
gorithms in Section 6. Finally, this paper is concluded in Section 7.

2 BACKGROUND AND MOTIVATION
In this section, we present an overview of in-place and external
sorting algorithms, their BAS-based implementations, as well as
the motivation for studying tree-sort algorithms.

2.1 In-place Sorting Algorithm
In-place sorting algorithms like Introsort, selection sort, and IPS4o
are widely used in main memory (DRAM). Introsort is a hybrid of
quicksort, heapsort, and insertion sort. It begins with quicksort and
switches to heapsort when the recursion depth exceeds a level based
on the number of data elements being sorted, and uses insertion sort
for small partitions for efficiency. Selection sort is commonly used
for small datasets. It iteratively scans the unsorted part of the input
sequence, selects the smallest element (assuming a non-descending
sort), and places it in the correct position in the sorted part. IPS4o is
a state-of-the-art (parallel) sorting algorithm implemented based on

1488

IPS⁴o
(in-place)

IPS⁴o
(only-BAS)

IPS⁴o
(hybrid)

0
25
50
75

100
La

te
nc

y
(s

)
86.0 72.2

24.3

Figure 1: Performance of different IPS4o implementations
(400 million data elements; 1/4 relative DRAM capacity).

samplesort and optimized for modern hardware architectures. It in-
tegrates ordered sequence detection methods to avoid performance
deterioration when dealing with skewed datasets.

The introduction of BAS with its byte addressability naturally
raises the question of whether these in-place sorting algorithms
can be directly migrated from DRAM to BAS. Unfortunately, such
a straightforward migration brings significant challenges. When
applied to BAS directly, traditional in-place algorithms exhibit poor
performance. One of the primary reasons is the write amplification
caused by redundant "values" in (key, value)-pairs. These values
are irrelevant to the sorting process but introduce many additional
writes. Although this phenomenon also exists in DRAM, its inef-
ficiency is masked by DRAM’s considerable write performance.
However, BAS’s relatively inefficient write performance makes this
problem evident. To mitigate redundancy and optimize BAS access,
we adopt pointer-based in-place sorting algorithms. Initially, we
extract the keys and addresses (pointers) of the (key, value)-pairs
from the dataset and store them on BAS. Subsequently, in-place
sorting algorithms process only the generated (key, pointer)-pairs
rather than the original (key, value)-pairs. Once the sorting is com-
plete, a sequence of sorted (key, pointer)-pairs is obtained, from
which the sorted (key, value)-pairs can be reconstructed by sequen-
tially accessing the corresponding pointers. In addition to reducing
redundancy, this approach also naturally addresses the issue of data
corruption in the event of a system crash.

Taking IPS4o as an example, Figure 1 illustrates a performance
comparison among its different implementations on BAS. The in-
place version implements sorting based on (key, value)-pairs, i.e., it
is a straightforward migration of the traditional IPS4o. The other
two versions are based on the (key, pointer)-pair implementation.
While the only-BAS version reconstructs the (key, value)-pairs di-
rectly on BAS as they are generated, the hybrid version uses DRAM
to buffer (key, value)-pairs and write out a batch of sorted data ele-
ments each time. When sorting 400 million uniformly distributed
data elements, the hybrid version performs about 3x faster than the
only-BAS version and 3.4x faster than the in-place version. This is
because the hybrid version not only reduces redundancy by using
(key, pointer)-pairs but also avoids small-size write operations with
the help of DRAM. Given the efficiency of the hybrid version im-
plementation (utilizing both pointer-based mechanism and DRAM),
all algorithm implementations in this paper adopt it by default.

2.2 External Sorting Algorithm
When dealing with datasets that exceed the capacity of main mem-
ory and are stored on secondary storage (e.g., SSD, HDD), the
algorithm of choice is typically the external sort [25]. It efficiently

manages large datasets by dividing them into multiple memory-
sized runs. These runs are then loaded into memory, sorted using
an in-place sorting algorithm, and written back to secondary stor-
age. Once all runs are processed, these ordered runs are merged
into a globally sorted sequence with the help of DRAM. Because
of the similarity of the traditional DRAM-disk storage structure
to the current hybrid DRAM-BAS structure, external sort can also
be migrated directly. However, such direct migration leads to poor
performance, mainly because it is not ABCN(D)-compliant in sev-
eral aspects as shown in Table 1. In response to this challenge, the
state-of-the-art BAS-friendly external merge sort, WiscSort, was
proposed [6]. Compared to the traditional method, it introduces
the pointer-based mechanism and multithreading management. By
optimizing parallel implementation at the device level, WiscSort
achieves a 2x improvement over the traditional external merge sort.

2.3 Tree structure
The tree structure is prominently utilized in the field of indexing [33,
43] and storage [9, 31]. There are also numerous tree-based algo-
rithms designed specifically for BAS devices [22, 40, 50, 52]. How-
ever, it is seldom used for sorting, especially large-scale datasets,
due to high maintenance costs. The state-of-the-art BAS-friendly
tree-based sorting algorithm is B*-sort [30]. It is designed to miti-
gate performance degradation caused by data skew and improve the
worst-case performance by optimizing the traversal process. This
method theoretically and dynamically divides the binary search
tree into multiple subtrees. It stores meta-information about these
subtrees in a linked list. When inserting a data element, B*-sort
sequentially scans the linked list to identify the target subtree, then
directly traverses this subtree instead of the entire global tree. How-
ever, its scalability is problematic in practice. As the number of
subtrees grows, scanning the linked list becomes expensive.

Despite the poor performance of B*-sort, the potential of tree-
sort algorithms remains, especially on the hybrid DRAM-BAS struc-
ture. This optimism is rooted in the fact that tree-sort’s asymmetric
read-write operations perfectly match with BAS’s asymmetric read-
write performance. More specifically, tree construction involves
a large number of random reads and a limited number of writes;
fortunately, BAS tolerates random reads despite its poor write per-
formance. Therefore, curiosity prompts us to explore the answers
to the following two questions: What existing optimization tech-
niques are crucial to BAS-friendly tree-sort algorithms? And is it
possible for a tree-sort algorithm to outperform its counterparts?
The details of the exploration are presented in subsequent sections.

3 TREE-BASED SORTING ALGORITHM
In this section, we explore the design dimensions of tree-based
sorting algorithms, including batching, multitree schemes, multi-
threading techniques, and concurrent implementations. For clarity,
we divide the tree-sort process into three stages: preparation, con-
struction, and traversal. The main task of the preparation stage is
to obtain meta-information about trees, during which both tree
ranges and tree roots are determined. The construction stage is
dedicated to building trees, where the original (key, value)-pairs
are converted to (key, pointer)-pairs and globally ordered search
trees are built on BAS. Lastly, in the traversal stage, a globally

1489

Figure 2: An example of
batch insertion.

Figure 3: Hash-based multi-
tree scheme.

ordered (key, value)-pair sequence is reconstructed by traversing
trees and accessing associated pointers. More details about design
dimensions are described below.

3.1 Batching
The first dimension concerns batching strategies [10, 39]: no batch-
ing (N), single-buffer batching (B) or double-buffer batching (D).
These strategies primarily work in the construction stage. When
no data elements are batched (N), the algorithm sequentially scans
the unsorted data elements stored on BAS and then inserts them
directly into the tree one at a time. During this process, no DRAM
resources are needed. An alternative approach is to insert a batch
of data elements each time. Here, a batch is first gathered into the
DRAM buffer and then inserted into the tree together with only
one tree traversal. To elaborate, when the DRAM buffer is full, the
scheme first sorts the data elements inside using an in-place sorting
algorithm, and then does batch insertion. During batch insertion,
it compares the data elements in the buffer with the tree node of
the target tree, and partitions the buffer into two sub-buffers; data
elements of one sub-buffer are to be inserted into the left branch,
and the elements of the other to the right. If one branch is empty,
the scheme constructs a balanced subtree from the sub-buffer’s
data elements and integrates this subtree into the vacant branch.
Otherwise, it repeats the above operations until an empty branch is
found. The balanced subtree is constructed by iteratively selecting
the median data element of the sub-buffer as the root node, with
data elements on either side forming the left and right nodes.

Figure 2 gives an example demonstrating how batch insertion
works. The tree root node 50 divides the sorted sequence in buffer
B into two parts (B1 and B2). B1, whose data elements are smaller
than node 50, goes to the left branch and B2 goes to the right.
Since the left branch is empty, a small batch of data elements in
B1 can be inserted directly. Specifically, these three data elements
are coalesced to form a balanced subtree with node 5 as the root.
Then this subtree is linked directly to the left branch of node 50 to
complete the insertion of B1. For B2, because the right branch is
not empty, it is further divided into B2-1 and B2-2 by node 70 and
inserted into the tree in the same way as B1 when an empty branch
is found. Once all data elements in buffer B are inserted into tree T,
the process of batch insertion is completed.

Although the batching scheme incurs extra DRAM reads and
writes, it reduces overhead on repeated accesses during multiple tra-
versals. Moreover, it efficiently constructs a more balanced subtree
for a given dataset, thus reducing the tree height and subsequent tra-
versal cost. Importantly, this mechanism makes it possible to store
some data elements, which are adjacent to each other in the tree,
in consecutive memory addresses, thereby improving cache utiliza-
tion in subsequent traversals. It achieves this as follows: whenever
a subtree for a sub-buffer is to be inserted, its data elements are
written to a contiguous memory space reserved on BAS that be-
longs to the tree. In addition, our investigation extends to both
single- and double-buffering mechanisms [28]. Both work similarly
(as described above), but the double-buffer batching approach facil-
itates parallelism - while data elements are being inserted from one
buffer, the other can be loaded simultaneously. However, splitting
the DRAM resources over two buffers means a smaller batch of
elements is inserted each time and thus may incur higher traversal
costs compared to the single-buffer batching scheme.

3.2 Multitree schemes
The second dimension considers the choice between employing a
single global tree (G) or multiple range-continuous (sub)trees [30,
34]. The global tree scheme requires minimal or no time in the
preparation stage but more time in the subsequent two stages for
the taller tree. Conversely, the multitree scheme requires time for
preparation and identifying the target tree but benefits from the
shorter tree structure. Since it is computationally inefficient to
create multiple range-continuous trees dynamically (as shown in
B*-Sort), we opt for a simpler and more effective approach that pre-
determines the number of trees (𝑛) before the sorting process. This
approach raises two main issues: (1) How to determine the range of
the (sub)trees in the preparation stage; (2) How to efficiently identify
appropriate target trees during the construction stage. To address
the above questions, we study two distinct multitree strategies: the
binary-based (B) and the hash-based (H) schemes.

For the binary-based scheme (B), we use the systematic sampling
method to extract a set of data elements from the dataset at fixed
periodic intervals. Then, we sort the sampled data elements and
construct a range-partitioning vector [13]. This vector splits the
dataset into 𝑛 (predetermined number) equally spaced and range-
continuous parts. Each part corresponds to a tree, such that each
tree is expected to hold approximately the same number of data
elements. Finally, we can easily identify the target tree for the data
elements by applying a binary search on the constructed range-
partitioning vector.

To enhance the target tree search efficiency, we also examine
a hash-based scheme as shown in Figure 3. In the preparation
stage, we first define a large number (>> 𝑛) of equi-width buckets.
Then, we count the number of data elements that fall into these
buckets with a dataset scan and build an equi-width histogram.
Afterward, we strategically combine adjacent buckets of the equi-
width histogram and build an approx-equi-depth histogram. The
guiding principle behind this process is to combine as many buckets
as possible while ensuring that the number of data elements within
each partition does not exceed a threshold (i.e., the average number
of data elements per partition). Finally, we map each partition to a

1490

tree. Once these trees are initialized, a hash-based mapping between
data elements and trees is essentially established.

3.3 Multithreading techniques
The third dimension explores the thread-related models: single-
threading (S), (conventional) multithreading (M’), and BAS-aware
multithreading (M) [6, 54]. The single-threading (S) andmultithread-
ing (M’) models are straightforward, with the former executing all
three stages using a single thread and the latter employing all the
threads throughout the entire process. BAS-aware multithreading
(M) is a parallel implementation based on the features of BAS. BAS,
unlike traditional storage devices, does not always benefit frommax-
imizing thread utilization because of its constrained concurrency.
Specifically, as the degree of parallelism increases, BAS’s write per-
formance drops significantly, sometimes to half of its peak [12, 37].
Its read performance, on the other hand, follows a more predictable
trend, which initially improves and stabilizes after reaching a cer-
tain threshold. In addition, taking into account the device’s internal
prefetching and thread distribution mechanisms [54], BAS’s max-
imal access bandwidth is determined jointly by the access mode,
access size, and the degree of parallelism [44]. Therefore, it is non-
trivial to effectively manage concurrent BAS-access operations.

Under a BAS-aware multithreading model (M) [6, 54], the thread
manager allocates varying numbers of threads based on different
access modes and access sizes. A preliminary study showed that
a higher degree of parallelism is preferred for reads and a lower
degree is optimal for writes; moreover, for large-size writes, the
optimal degree of parallelism is lower than that for small-size writes.
For example, inserting a (key, pointer)-pair to the tree is a small-size
write. On the other hand, inserting a buffer of (key, value)-pairs is
a large-size write. For the tree-sort algorithm, the final traversal
stage involves large-size writes. Here, it needs to traverse the trees
and retrieve the value component from the source dataset in order
to produce the final (key, value)-pairs. The buffered large-size (key,
value)-pairs are then written out to the BAS as the sorted output. In
our experimental study where 32 threads are employed, all threads
would be assigned for concurrent traversal reads but only 4 threads
would be assigned for such large-size writes.

3.4 Concurrent implementations
The fourth dimension pertains to whether multithreading is imple-
mented in a synchronous (S) or asynchronous (A) manner [23] dur-
ing the construction stage. In a synchronous setup, all BAS-access
threads move on to the subsequent tasks only after they have all
successfully completed the current one. Any thread lagging behind
causes other threads to be blocked. Specifically, the construction
stage is divided into three substages, which are load, sort, and insert.
In the load substage, all threads read from BAS, converting these
data elements into (key, pointer)-pair format and storing them into
the DRAM buffer. After all threads complete loading, the buffered
data elements are sorted in parallel using an in-place sorting algo-
rithm. In this way, data elements in the buffer that belong to the
same tree are clustered together. The buffer is then (virtually) parti-
tioned into multiple sub-buffers, each containing all data elements
belonging to the same tree in this buffer. Afterward, each thread
is assigned a set of sub-buffers and is responsible for inserting the

data elements inside into the corresponding trees. All threads per-
form the batch insertion of their assigned data elements in parallel.
Once all data elements in the entire buffer are fully inserted into
the trees, the threads proceed to the next iteration, i.e., load new
data elements into the buffer, etc. The process repeats until all data
elements in the dataset are inserted into the trees.

In contrast, the asynchronous approach ensures that all BAS-
access threads work independently. Once a thread completes its
current task, it can seamlessly progress to the next one without
waiting for others. To elaborate, each tree has its own sub-buffer in
this approach. These sub-buffers are defined before the construction
stage and hold the same size. From the view of a particular thread,
this mechanism is implemented as follows: First, the thread reads a
data element from BAS and places it into the appropriate DRAM
sub-buffer. Then, it checks the status of the current sub-buffer. If
the sub-buffer is full, it performs batch insertion for that sub-buffer.
Otherwise, it does nothing. Once the above process is completed,
this thread fetches the next data element from BAS and repeats the
process until all assigned data elements are inserted into the trees.
Although this approach avoids thread waiting between substages,
the overhead caused by read-write interference is increased.

3.5 Algorithmic Space
Based on the various dimensions, a large number of tree-based
sorting algorithms can be designed. Some of these are meaningless,
e.g., if single-threading is used, then there is no need to consider
the concurrent implementation dimension. We also expect schemes
that are based on batching to be superior over those that process
data elements one at a time; schemes that employ multiple subtrees
should outperform those that build only a global tree; methods that
use multithreading should in general perform better than single-
threading models. In this paper, we implement 19 tree-sort variants
- 3 "worst-case" variants that include one for no batching, one for
global tree, and one for single threading; and the other 16 are
combinations of the remaining 2 options from each dimension (after
ignoring the "worst-case" options). According to the performance
analysis in Section 4, the variant with the format "BHMA" stands
out among all tree-sort implementations; we refer to it as TSort.

Here, we give an overview of how TSort works. (1) In the prepa-
ration stage, we scan the original file to obtain statistical informa-
tion and build a hash mapping between the data elements and the
trees on DRAM through approx-equi-depth histogram1. Here, all
threads perform BAS-read operations concurrently for file scan
(each thread reads different parts of the source file), and a subset
of threads are assigned for the small-size BAS-write operations to
create the tree roots on BAS2. (2) In the construction stage, first,
we partition the entire DRAM buffer3 into multiple sub-buffers
to ensure that each tree has its own sub-buffer. All threads then
independently construct the trees asynchronously4 as described in
Section 3.4. Once all threads complete their insertion tasks, a set
of globally ordered trees is constructed on BAS. In this stage, mul-
tithreaded mixed BAS-read-and-write operations are needed, i.e.,
some threads perform BAS-read while others perform BAS-write
1TSort adopts hash-based multitree structure "H".
2TSort follows BAS-aware multithreading model "M".
3TSort takes a single-buffer batching scheme "B".
4TSort utilizes asynchronous multithread implementation "A".

1491

Table 2: Default settings.

dataset size 200 million - 2000 million

data element (1) 128B: 4B key + 124B value
(2) 100B: 10B key + 90B value

relative DRAM space 1/25; 1/8; 1/4; 1/2
maximum # of threads 32
of trees 0.025% of the dataset size
of buckets 10x the number of trees

simultaneously. (3) In the traversal stage, we use the entire DRAM
space as the write buffer. Moreover, multiple threads are able to
traverse different trees together since we have global information
about the trees from the preparation stage, such as the exact tree
size and storage address. Specifically, these threads traverse the
trees, retrieve the values, and store the (key, value)-pairs on DRAM.
When the DRAM buffer is full, a large batch of sorted (key, value)-
pairs is dumped into BAS. While the entire sorted (key, value)-pair
sequence is generated on BAS, this algorithm ends. During this
stage, tree traversal and value retrieval require multithreaded BAS-
read operations, and final sorted (key, value)-pair generation needs
multithreaded large-size BAS-write operations.

4 EVALUATION OF TREE-SORT VARIANTS
In this section, we provide a comprehensive performance analysis of
the 19 tree-sort variants. Some default settings of the experimental
evaluation are listed in Table 2.

4.1 Setup
Platform. The algorithms are implemented in C++, together with
the Intel Persistent Memory Development Kit (PMDK) [19] on a
real BAS device (Optane DCPMM). The performance evaluation is
conducted on a server with Linux version 5.4.0-163 and two 2.90GHz
Intel(R) Xeon(R) Gold 6326 CPUs. Each CPU has 16 physical cores,
with a shared 24MB L3 cache. Each CPU core has a 48KB L1 data
cache, a 32KB L1 instruction cache, and a 1280KB L2 cache. The
overall OptaneDIMM space for the system is 2048GB and theDRAM
capacity is 256GB, both are large enough to store all data elements
and meet the storage requirements for all algorithms in this paper.

Datasets. The datasets used consist of a set of fixed-size (key,
value)-pairs. Each pair includes a 4B key (randomly generated inte-
ger) and a 124B value. To measure the performance across different
scenarios, both uniform- and skew-distributed datasets are gener-
ated. The uniformly distributed dataset has a size ranging from 200
million to 2000 million (key, value)-pairs, and its data elements are
randomly generated. The skewed distributed dataset exhibits varied
patterns [5, 30], including 100% ordered, 50% ordered, 25% ordered,
reversed ordered, interleaved ordered, and gathered with outliers.
In addition, a sort benchmark from [2] is used to demonstrate that
these algorithms also work for non-integer keys. The data elements
are randomly distributed and consist of 10B keys and 90B values.
In this section, we only focus on datasets comprising 400 million
128B (key, value)-pairs with uniform, interleaved ordered, and 50%
ordered distributions. The comprehensive evaluations with other
datasets will be detailed in Section 5.

Implementation. For implementation, there are four aspects to
state. (1) All multithreading implementations are run in parallel
with a maximum of 32 threads. For the tree-sort algorithm with
BAS-aware multithreading implementation, it uses 16 threads for
small-size BAS-write (in the preparation stage), 4 threads for large-
size BAS-write (in the traversal stage), and 32 threads for all other
multithreaded operations (across different stages). (2) All implemen-
tations adopt the (key, pointer)-pair mechanism during sorting, and
store the final sorted file in a (key, value)-pair format on BAS. (3)
To eliminate the influence of noise on the conclusion and disregard
the warm-up and cool-down phases, all experiments are repeated
10 times, and only the middle stable 4 runs are averaged and re-
ported. (4) To assess the algorithm’s dependence on DRAM capacity,
and to simulate scenarios where input data size is substantial (far
exceeding our current experimental platform) while the DRAM
resource is limited, all algorithms are performed on varied relative
DRAM space in the ratios: 1/25, 1/8, 1/4, and 1/2. For example, a
relative DRAM space of 1/4 for 400 million data elements means
1/4*(400000000)*16 = 1.6 GB DRAM space is allocated. The relative
DRAM space is calculated based on the size of (key, pointer)-pairs.

4.2 Uniformly Distributed Datasets
4.2.1 Dimension #1: batching. In order to understand the perfor-
mance gain in the first dimension, we first look into the perfor-
mance evaluation among NHMA, BHMA, and DHMA, which share
the same settings in other dimensions. As shown in Figure 4a, the
variants equipped with buffer (BHMA and DHMA) present im-
pressive performance enhancements compared to the no-batching
implementation (NHMA), with an average improvement of 6.21x.
The no-batching implementation (NHMA) has two primary draw-
backs: (1) There are numerous repeated scans during node insertion.
Even if two data elements are positioned closely in the tree, sep-
arate traversal rounds are required to insert them both. (2) The
no-batching scheme fails to exploit cache locality efficiently. When
successively processing data elements belonging to different trees,
the no-batching scheme needs to swap around among these trees
frequently to perform insertions, thus inducing heavy cache misses.
However, with the help of batching, we see a significant reduction
in superfluous BAS reads and an enhancement in cache utiliza-
tion, both of which improve performance. Additionally, batching
schemes manage to store (some of) the data elements that are neigh-
bors in the tree in contiguous spaces on BAS, thus reducing cache
misses in subsequent traversals.

In comparing the two batching schemes, the double-buffer batch-
ing implementation performs worse than the single-buffer batching.
Taking DHMA and BHMA as an example, despite efforts to alleviate
thread blocking, DHMA exhibits a 12% performance degradation.
This phenomenon is especially pronounced with lower DRAM ca-
pacity as shown in Figure 4a. This is because the reduced buffer
capacity leads to increased traversal overhead, which overshadows
the benefits of exploiting parallelism.

4.2.2 Dimension #2: multitree. In Figure 4a, the performance com-
parison between BGMA and BHMA/BBMA illustrates the sub-
stantial advantage brought by the multitree scheme, with perfor-
mance enhancements exceeding 200x. Constructing multiple range-
continuous trees, instead of a single global tree, distinctly shortens

1492

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
−0.05

0.00
0.05

1/25 DRAM 1/4 DRAM0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
−0.05

0.00
0.05

Dim #1: N-noBatch, B-singleBuffer, D-doubleBuffer
Dim #3: S-singleThread, M'-Multi, M-BASawareMulti

Dim #2: G-globalTree, H-hashSearch, B-binarySearch
Dim #4: S-synchronous, A-asynchronous

BH
M

S

NH
M

A

DH
M

S

BH
SS

BH
M

'A

BG
M

A

BB
M

S

BH
M

A

DB
M

S

DH
M

A

DB
M

A

BB
M

A

BH
M

'S

DH
M

'S

BB
M

'S

DB
M

'S

DH
M

'A

DB
M

'A

BB
M

'A

0
10
20
30
40
50

La
te

nc
y

(s
) 164 164 211 152 >2h >2h

(a) uniform

BH
M

S

NH
M

A

DH
M

S

BH
SS

BH
M

'A

BG
M

A

BB
M

S

BH
M

A

DB
M

S

DH
M

A

DB
M

A

BB
M

A

BH
M

'S

DH
M

'S

BB
M

'S

DB
M

'S

DH
M

'A

DB
M

'A

BB
M

'A

0
10
20
30
40
50

La
te

nc
y

(s
) 286 285 81 81 >2h >2h

(b) interleaved ordered

BH
M

S

NH
M

A

DH
M

S

BH
SS

BH
M

'A

BG
M

A

BB
M

S

BH
M

A

DB
M

S

DH
M

A

DB
M

A

BB
M

A

BH
M

'S

DH
M

'S

BB
M

'S

DB
M

'S

DH
M

'A

DB
M

'A

BB
M

'A

0
10
20
30
40
50

La
te

nc
y

(s
) 209 208 145 113 >2h >2h

(c) 50% ordered

Figure 4: Performance of tree-sort variants when sorting 400 million data elements with different distributions. (Note: In each
single bar, the colors changing from dark to light (from bottom to the top) represent the three different stages of tree-sort
variants, which are preparation, construction, and traversal.)

the height of each individual tree, thus reducing the traversal over-
head. Within the multitree scheme, exemplified by BHMA and
BBMA, the hash-based scheme (BHMA) outperforms the binary-
based scheme (BBMA) by 1.19x, and it benefits from both prepara-
tion and construction stages. In the preparation stage, it requires
1.68x less time than the binary-based scheme. In the construction
stage, it locates the target tree with only constant time complexity
for each data element, while the binary-based scheme requires a
time complexity of 𝑂 (log𝑛), where 𝑛 represents the number of
trees. When dealing with large-scale datasets, the performance gap
in the construction stage can be even larger.

Additionally, the hash-based scheme also manages to maintain
more evenly balanced trees. Its average tree height is reduced by one
level relative to the binary-based scheme. In detail, the hash-based
scheme aims to initialize a set of dual-balanced trees, ensuring both
inter-tree balanced and intra-tree balanced. In other words, all trees
contain a similar number of data elements, and the left and right
subtrees of each tree are similar in height. However, the binary-
search-based scheme cannot guarantee the dual-balance property
because of the lack of accurate global distribution information
before construction.

4.2.3 Dimension #3: multithread. BHMA, BHM’A, and BHSS in Fig-
ure 4a demonstrate the performance behavior of different models
in the third dimension. Since the single-threaded implementation is
the same for synchronous and asynchronousmanners (the fourth di-
mension), these three comparators share the same settings in other
dimensions. When the sorting is executed with multiple threads
(BHMA or BHM’A), the latency can be reduced by about 7x on
average because of the more efficient CPU utilization. For the mul-
tithreaded implementation, since BAS suffers from concurrency
constraints, both the conventional multithreading model (M’) and
BAS-aware multithreading model (M) are implemented and eval-
uated to demonstrate the necessity of special consideration for
BAS. Taking BHMA and BHM’A as an example, the BAS-aware
multithreading implementation improves the performance by 5%
on average. This is because it considers more parallel access details,
such as access mode and access size, and assigns different numbers
of threads for different operations. Its strategic allocation ensures
that both BAS-read and BAS-write operations are executed at their
peak efficiency. Comparing two multithreading schemes, large-size
BAS-write shows the largest difference in the number of threads
among all BAS access operations. Since the traversal stage contains
more large-size BAS-writes, these two multithreading models show
a more significant performance difference in this stage.

1493

Table 3: Four-factor ANOVA table.

Component 1/25 1/4

PoV F PoV F

D1 16.26 5623.22 2.55 515.04
D2 52.63 18 201.49 64.43 13 030.96
D3 3.66 1265.89 6.58 1331.24
D4 16.58 5734.98 16.83 3404.61
D1:D2 6.04 2087.56 1.58 319.37
D1:D3 0.01 2.10 0.08 16.04
D2:D3 0.03 11.82 0.09 17.64
D1:D4 1.32 455.82 0.37 73.98
D2:D4 2.94 1016.90 6.12 1238.10
D3:D4 0.15 53.46 0.48 98.09
D1:D2:D3 0.00 0.07 0.04 7.25
D1:D2:D4 0.21 72.92 0.48 96.97
D1:D3:D4 0.01 3.87 0.00 0.13
D2:D3:D4 0.01 4.83 0.13 26.55
D1:D2:D3:D4 0.01 3.60 0.00 0.04
Residual 0.14 0.24

4.2.4 Dimension #4: concurrency. As shown in Figure 4a, BHMA ex-
hibits a 1-second performance improvement over BHMS. Although
both asynchronous and synchronous methods experience thread
blocking, they are blocked for different reasons. The asynchronous
implementation uses mutex locks to manage threads and protect
shared resources. Therefore, thread blocking happens when one
thread tries to access a resource but another thread is accessing
it. The synchronous implementation, however, does not need to
consider consistency issues, but its thread blocking occurs between
substages of the construction stage. It attempts to reduce concur-
rent BAS-read and BAS-write operations to minimize read-write
interference, but the resulting performance improvement is not
significant. Meanwhile, its higher thread-blocking overhead leads
to poorer overall performance than the asynchronous scheme.

4.2.5 Discussion. To statistically evaluate the significance of var-
ious dimensions and their interactions, a four-factor Analysis of
Variance (ANOVA) [21] is employed. The validity of this analysis
is predicated on the normal distribution of variables and the homo-
geneity of variances. To satisfy these assumptions, log and power
transformations are applied to the data before analysis. Table 3
displays the computed Percentage of Variation (PoV) and F-value
(F) for each dimension and their interactions, excluding the worst-
case levels (no batching, single global tree, and single threading),
under two DRAM settings (1/25 and 1/4). In this table, "𝐷𝑛" rep-
resents Dimension #𝑛 and "𝐷𝑥 :𝐷𝑦" denotes the interaction effect
between 𝐷𝑥 and 𝐷𝑦. The reference F-value from the F-distribution
is 𝐹 [0.99,1,48] = 7.19, indicating that computed F-values exceeding
this threshold denote a statistically significant effect on perfor-
mance at a 99% confidence level. For clarity, PoV is also provided,
offering an informal representation of each dimension’s and their
interactions’ relative importance in percentage terms.

Regarding main effects observed in the first four rows of Ta-
ble 3, all dimensions demonstrate statistically significant effects

Table 4: The average (maximum) tree height.

Distribution 1/25 1/4

BHMA BHMS BHMA BHMS

Uniform 22 (33) 22 (31) 17 (22) 17 (21)
50% Ordered 64 (118) 16 (28) 22 (31) 13 (21)
Interleaved Ordered 107 (118) 12 (22) 27 (32) 12 (22)

on performance. The second dimension, related to the multitree
scheme, exhibits the highest F-value, signifying a dominant effect.
Notably, the first dimension, the batching scheme, has varying
effects depending on the DRAM capacities, which meets the expec-
tations. With limited DRAM, buffer capacity becomes a critical bot-
tleneck, making the choice between single-buffer and double-buffer
batching schemes crucial, as double-buffer batching exacerbates the
scarcity of DRAM. Conversely, with larger DRAM, capacity ceases
to be the primary constraint, diminishing the importance of the
batching scheme. In terms of interaction effects, it is observed that
the interactions between the first and second dimensions, as well as
between the second and fourth dimensions, are more pronounced
than others. However, certain combinations, such as D1:D2:D3:D4
and D1:D3:D4, do not exhibit statistically significant interaction
effects, indicating there are no combination effects for them on
performance.

4.3 Skewed Distributed Datasets
From Figures 4a, 4b and 4c, we observe that all tree-sort algorithms,
except for NHMA, have lower running time for skewed datasets
compared to the case where the dataset is uniformly distributed.
The relative performance among all tree-sort algorithms is not
much affected by the skewed inputs. NHMA’s performance, as ex-
pected, degenerates as the trees become taller due to the skewed
input. For all the other algorithms, which are essentially batch-
based schemes, a consistent reduction in latency is demonstrated
in both the construction and traversal stages compared to the uni-
formly distributed input. Clearly, batching allows more balanced
subtrees to be built for each batch of data elements, and contributes
to maintaining relatively balanced and shorter trees overall. This
significantly reduces the traversal overhead. Moreover, the batch-
ing schemes store neighboring data elements, which are from the
same tree, contiguously on BAS, thus increasing cache utilization
during subsequent traversal processes. This advantage becomes
particularly pronounced when (partially) ordered data elements are
processed together, i.e., in a skewed distribution.

Another interesting phenomenon that occurs when handling
skewed distributed datasets is captured in the tree height. The dif-
ference here mainly appears in the fourth dimension. Taking BHMA
and BHMS as an example, their tree heights under different scenar-
ios are shown in Table 4. For the asynchronous (A) implementation
(e.g., BHMA), the tree height depends heavily on both the DRAM
capacity and the distribution of input datasets. When dealing with
a dataset with skewed distribution, the tree height can be about
3-5x larger than in the uniform case if only 1/25 DRAM space is
provided. If larger DRAM space is given, like 1/4, the tree height
issue is mitigated, but still worse than in the uniform case. However,

1494

the synchronous (S) implementation (e.g., BHMS) performs well in
terms of tree height. It even builds a lower tree in the skewed case
than in the uniform one. This contrasts sharply with the behavior
of traditional tree structures, where skewness can lead to severely
unbalanced left and right branches. The main reason for the sig-
nificant difference in tree height between the asynchronous and
synchronous schemes is the batch size used during batch insertion.

In detail, let us assume that the total DRAM capacity is𝑀 and
the number of trees is 𝑘 . Since the asynchronous implementation di-
vides the DRAM space into multiple parts to ensure each tree has its
own buffer, the maximum batch size for this scheme would be𝑀/𝑘 .
The synchronous implementation, on the other hand, treats the
entire DRAM space as a global buffer when loading data elements
from BAS, and (virtually) partitions it only before batch insertion.
So its maximum batch size can be𝑀 in theory. As mentioned be-
fore, the batching mechanism helps a lot in constructing balanced
trees; and its strengths would be even more evident with larger
batch sizes. Therefore, the synchronous implementation enables
more balanced trees and thus shorter trees. Moreover, the synchro-
nous implementation is more likely to obtain a larger batch size in
skewed scenarios than in uniform ones. Therefore, the difference
in batch size between these two implementations becomes more
obvious when handling skewed distributed data elements. This ex-
plains why the tree height difference between them is pronounced
in skewed scenarios, but not as significant in uniform cases.

However, although the synchronous (S) scheme holds shorter
trees, it surprisingly fails to outperform the asynchronous (A)
scheme. As we mentioned, the synchronous (S) scheme benefits
from the larger batch size, which, however, might reduce the effi-
ciency of multithreading as well. Because the smallest execution
unit for multithreaded batch insertion is a tree or a batch. More
specifically, consider an extreme case where all elements in the
buffer belong to the same tree. In this case, though a more balanced
tree is built, only one thread is working when inserting all data
elements in this buffer, thus slowing down the sorting process.

5 COMPARATIVE STUDY
In this section, we conduct an experimental study among three sets
of sorting algorithms: in-place sorts, external sorts, and tree sorts.
All algorithms apply the (key, pointer)-pair mechanism and utilize
DRAM as a write buffer. We reiterate that the amount of DRAM
space available is given by the ratio with respect to the dataset size
of (key, pointer)-pairs (and not (key, value)-pairs). All experimental
settings are the same as the ones mentioned in Section 4.1.

5.1 Preliminary Evaluation
Prior to processing large datasets, we undertake a preliminary eval-
uation for each category of algorithms. After that, a more extensive
series of experiments are conducted only on the representative algo-
rithms. The preliminary experiment involves a dataset composed of
40 million 128B (key, value)-pairs. All algorithms are processed on
the hybrid DRAM-BAS structure, with 1/4 relative DRAM capacity.

5.1.1 Latency. As shown in Figure 5, within the in-place algo-
rithms, IPS4o stands out with its robust performance across both
uniformly and skewed distributed datasets. Selection sort, as the
onlywrite-limited in-place algorithm (in this paper), performsworst

−0.05
0.00
0.05

selection Introsort IPS⁴o external WiscSort B* TSort

0
4
8

12

La
te

nc
y

(s
)

>2h >2h

(a) uniform

0
4
8

12

La
te

nc
y

(s
)

>2h >2h

(b) interleaved ordered

in-place external tree
0
4
8

12

La
te

nc
y

(s
)

>2h >2h

(c) 50% ordered

Figure 5: Preliminary performance evaluation among three
various sets of algorithms when sorting 40 million data ele-
ments with different distributions.

IPS4o WiscSort TSort
0

2

4

6

W
rit

e
Co

un
t (
x1

08)

Figure 6: Write count of IPS4o, WiscSort and TSort when
sorting 40 million uniformly distributed data elements.

because of its 𝑂 (𝑛2) time complexity. Among external sort algo-
rithms, WiscSort outperforms the traditional external merge sort
because of its optimized BAS-aware thread management. For the
tree-based algorithm category, TSort holds better performance,
completing its sorting task in less than 3s. In stark contrast, B*-Sort
fails to complete sorting even after an extensive 2-hour period.

5.1.2 Write count. BAS devices have two characteristics that are
unfavorable to writes. First, their write bandwidth is significantly
lower than the read bandwidth. Second, they have limited write
endurance. As such, a BAS-friendly algorithm should not only be
efficient but should also minimize the number of writes. As a result,
write count is also a crucial metric to evaluate the performance
of sorting algorithms on BAS. Figure 6 shows the write count for
3 representative algorithms of various sets, i.e., IPS4o, WiscSort,
and TSort. Notably, both external-based and tree-based algorithms
exhibit exceptionally low write counts, with only two writes - one
for (key, pointer)-pairs and another for sorted (key, value)-pairs.
Therefore, they are friendly enough to BAS in terms of writing.
Conversely, IPS4o does not perform well on BAS regarding writes.
Its write count is 7.3x higher than that of WiscSort and TSort. There
is a trade-off associated with the in-place feature. Although the
in-place scheme allows algorithms to maximize cache utilization, its
frequent data element swapping incurs heavy write traffic, which
is very unfriendly to BAS.

1495

0 2
−0.05
0.00
0.05

WiscSort IPS⁴o TSort

1/25 1/8 1/4 1/2
Relative DRAM space

5

10

15

20

25

La
te

nc
y

(s
) 39

(a) 200m

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
) 66

(b) 400m

1/25 1/8 1/4 1/2
Relative DRAM space

30

45

60

75

90

La
te

nc
y

(s
) 124

(c) 800m

1/25 1/8 1/4 1/2
Relative DRAM space

45

65

85

105

125

La
te

nc
y

(s
) 184

(d) 1200m

1/25 1/8 1/4 1/2
Relative DRAM space

60

85

110

135

160

La
te

nc
y

(s
) 228

(e) 1600m

1/25 1/8 1/4 1/2
Relative DRAM space

80

110

140

170

200

La
te

nc
y

(s
) 273

(f) 2000m

Figure 7: Performance of WiscSort, IPS4o and TSort on uniformly distributed datasets with different workloads.
0 2

−0.05
0.00
0.05

WiscSort IPS⁴o TSort

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
)

(a) 100% ordered

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
) 52

(b) 50% ordered

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
) 57

(c) 25% ordered

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
)

(d) reversed ordered

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
)

(e) interleaved ordered

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50

La
te

nc
y

(s
) 65

(f) gather & outliers

Figure 8: Performance of WiscSort, IPS4o and TSort on datasets of size 400 million with different skewed distributions.

5.2 Uniformly Distributed Datasets
Based on the findings of the preliminary evaluation above, for this
and all subsequent experiments, we restrict our comparative study
to three representative schemes of the categories that perform best,
i.e., IPS4o representing in-place algorithms, WiscSort for external
sort algorithms, and TSort for tree-based schemes. For our first
set of comparative evaluation, we evaluate the three schemes on
uniformly distributed datasets. The results are shown in Figure 7, il-
lustrating the performance for processing different sizes of datasets
ranging from 200 million to 2000 million. It can be observed that:
(1) As the available DRAM capacity grows, the performance of
both TSort and WiscSort improves, but TSort depends less on the

DRAM resource. If we define the latency at 1/25 relative DRAM
space as𝑚, and the latency at 1/2 relative DRAM space as 𝑛, the
DRAM dependency rate can be calculated by |

𝑛
𝑚
−1

1/2
1/25 −1

|. For all dif-

ferent workloads, the DRAM dependency rate of TSort is only 1/2
that of WiscSort. Furthermore, TSort outperforms WiscSort by up
to 36%-55% on average for all different workloads and different
relative DRAM capacities. Its superior performance and DRAM
dependency rate are attributed to the tree structure and related
techniques. (2) The performance of TSort and IPS4o is comparable,
and both are excellent. If more than 1/8 relative DRAM space (actu-
ally it is only less than 1.7% of the size of the original dataset, and

1496

0 4 8 12 16 20 24 28 32 36 40
Time (s)

0
3
6
9

12
15
18
21
24
27

Ba
nd

wd
ith

 (G
B/

s) read
write

(a) WiscSort

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (s)

0
2
4
6
8

10
12
14
16

Ba
nd

wd
ith

 (G
B/

s)

(b) TSort

Figure 9: Comparison of BAS access bandwidth between WiscSort and TSort when sorting 400 million uniformly distributed
data elements with 1/4 relative DRAM capacity provided.

ranges from 0.4GB to 4GBwith different datasets) is provided, TSort
outperforms IPS4o. When 1/2 relative DRAM space is given (ranges
from 1.6GB to 16GB), TSort exceeds IPS4o by 12.6% on average.
The fact that TSort is more write-efficient makes it an attractive
BAS-friendly sorting scheme.

5.3 Skewed Distributed Datasets
Figure 8 depicts the performance of the three representative al-
gorithms under various skewed distributed datasets, including (a)
100% sorted, (b) 50% sorted, (c) 25% sorted, (d) reversed sorted, (e)
interleaved ordered, and (f) gathered with outliers. Each of these
datasets comprises 400 million 128B (key, value)-pairs. Carefully
comparing TSort’s performance in Figure 8 with Figure 7b, we are
surprised to find that TSort not only tolerates skewness but even
thrives under it. This contrasts sharply with the behavior of the
traditional tree structure, where skewness can lead to abysmal per-
formance. The performance difference can be attributed to both
the multitree scheme and batching mechanism, which together
enable TSort to build trees with near-optimal balance and height
and facilitate well the storage of data elements on BAS.

Delving into the first five subfigures of Figure 8 (i.e., 8a to 8e),
which represent varying degrees of sorted subsequences, we can
observe that: (1) TSort holds better performance in skewed cases
than in uniform ones. Taking 8e and 7b as an example, the perfor-
mance of TSort improves by 21% to 35% across different DRAM
cases. The reason is the same as mentioned in Section 3.1. Storing
data elements, which are neighbors in trees, together on contiguous
addresses of BAS significantly reduces traversal cost because of bet-
ter cache utilization, especially for (partially) ordered data elements.
(2) Interestingly, the improvement of TSort’s performance is more
significant in scenarios with less DRAM space. Strictly speaking, it’s
not that TSort profits more from reduced DRAM but rather it saves
more costs on random access. Although TSort benefits less from
cache locality with smaller DRAM capacity, the ordered sequence
from skewed datasets helps TSort compensate for this to some
extent. In Figure 8, this compensation can obtain up to 35% perfor-
mance improvement. (3) TSort yields more from datasets with more
sorted subsequences. TSort mainly benefits from cache utilization
when processing skewed datasets, so it is not sensitive to how the
sequences are ordered by. It ensures performance gains as long as
adjacent data elements are processed together. This trend is evident

in Figures 8a, 8d, and 8e where TSort holds similar performance in
100%-ordered, reversed-ordered, and interleaved-ordered scenarios.
And it gains more from the above scenarios than from the partially
ordered ones that have shorter sorted subsequences as shown in
Figures 8b and 8c. Moreover, it even outperforms IPS4o with only
1/25 relative DRAM space in reversed-ordered and interleaved-
ordered scenarios as shown in Figures 8d and 8e. (4) Although
TSort gains a lot, IPS4o gains more in 100%-ordered scenario. This
is because IPS4o benefits from skewed data in a different way than
TSort. TSort gains from cache utilization, whereas IPS4o profits
from reduced data processing. It stops processing after detecting an
ordered sequence. However, the reduced data processing doesn’t
give IPS4o a large performance gain, which is only about 6%, as
shown in Figures 8b-8e. This is because the performance bottleneck
for IPS4o is heavy BAS writes. However, in the 100%-ordered sce-
nario (as shown in Figure 8a), the globally ordered sequence helps
IPS4o avoid frequent data element exchanges and reduces expen-
sive BAS write operations, thereby improving performance by 42%.
(5) WiscSort also gets a performance improvement in processing
skewed data, and its improvement is between IPS4o and TSort. Its
improvement mainly comes from the in-place sorting process in
the run generation stage and the comparison process in the merge
stage. The performance gains in the former process are the same as
IPS4o, and in the latter process are through higher cache utilization.

Additionally, as depicted in Figure 8f, TSort is able to efficiently
handle datasets where most data elements are gathered together
but there are a few outliers. Its high tolerance to outliers is due to
the reasonable control over the bucket interval. Such control en-
sures perfect histogram construction, allowing TSort to handle this
specific data distribution well without compromising performance.

5.4 Bandwidth
Figure 9 compares the BAS access bandwidth betweenWiscSort and
TSort. The measurements are captured while these two algorithms
are sorting 400 million 128B (key, value)-pairs with a relative DRAM
space of 1/4. It can be observed that although WiscSort can reach
a higher peak access bandwidth, TSort holds a superior average
bandwidth. During the traversal stage (corresponding to WiscSort’s
merge stage), TSort consistently reaches an impressive read band-
width, nearing 14GB/s. In contrast, WiscSort hovers just below
12GB/s. Moreover, TSort displays a remarkable write bandwidth as

1497

0 2
−0.05
0.00
0.05

WiscSort IPS⁴o TSort

1/25 1/8 1/4 1/2
Relative DRAM space

10

20

30

40

50
La

te
nc

y
(s

) 111 54

Figure 10: Performance of WiscSort, IPS4o and TSort when
sorting 400 million non-integer data elements.

well at the same stage, with performance approximately 2x that of
WiscSort. It is worth noting that although TSort does not achieve
high access bandwidth during the construction stage (from about
2.5s to 11s) because of small size accesses and read-write inter-
ference limitations, its performance is still comparable to that of
WiscSort during the run generation stage (from about 0s to 8s).
Taking similar times, TSort produces globally ordered sequences
on BAS through the tree structure, while WiscSort generates only
several locally ordered subsequences on BAS. Together with its
bandwidth and DRAM space utilization advantages in the traversal
stage, TSort ultimately provides better concurrency performance.

5.5 Non-integer Datasets
Figure 10 illustrates the performance of the three representative
algorithms that process 400 million 100B (key, value)-pairs with
non-integer keys. The relative performance among them is similar
to that of processing integer keys. With all various sizes of DRAM,
TSort outperforms WiscSort by 34%-72%. For very small relative
DRAM capacity (e.g., 1/25), TSort performs slightly worse than
IPS4o since the latter’s sorting process does not depend on DRAM.
If a larger relative DRAM space is provided (e.g., 1/8, 1/4, or 1/2),
TSort outperforms IPS4o and the performance gain can exceed 14%
when the relative DRAM capacity is 1/2.

5.6 Discussion and Future Work
Although Intel killed off the Optane DCPMM business in 2022 due
to earning issues, research on it remains meaningful [18, 48]. There
are two main reasons. First, the demand for new storage technolo-
gies to bridge the gap between DRAM and SSD is evident [6]. BAS
technologies like Optane DCPMM and CXL-attached memory are
promising solutions [26]. Hence, the exploration of BAS-friendly
algorithms is of great importance. Second, the development of
TSort is guided by the general characteristics of BAS devices and
their hybrid structures, rather than being customized for a specific
BAS device, like the Optane DCPMM. Future BAS iterations, in-
cluding CXL-attached memory [1], are expected to inherit existing
attributes such as byte addressability, asymmetric read-write perfor-
mance, enhanced random-read performance, and more. Therefore,
TSort would remain applicable to future BAS devices. Neverthe-
less, looking ahead, there are also several opportunities to further
improve TSort. For instance, a more effective mapping approach
might be utilized to optimize the hash process. In addition, more

advanced tree structures, such as B+-tree [7], could be integrated
as well to construct a more robust multitree set.

6 RELATEDWORK
Several sorting algorithms have been designed for BAS-related
architectures in recent years, focusing on the I/O efficiency and per-
formance optimization. Segment sort [42] is introduced alongside
hybrid sort and lazy sort to minimize I/O overhead by achieving a
balance betweenwrites and reads. It divides the original file into two
segments, which are sorted using read-less external mergesort and
write-less selection sort, respectively. However, it degrades to pure
external mergesort when running on practical BAS machines [16].
NVMSort [32] represents an enhanced iteration of traditional heap-
sort. It attempts to place frequently-accessed nodes, especially those
proximal to the heap root, on DRAM,while others on BAS, to reduce
the BAS access overhead. However, the real-machine implementa-
tion of NVMSort faces significant performance degradation due to
huge cache misses. B*-Sort [30] stands out as a write-limited sorting
algorithm based on a binary tree paradigm. It introduces a tunnel
list structure that records some intermediate tree nodes to support
start-from-middle (instead of root) traversal, thus shortening the
traversal depth. Despite its innovative approach, scalability remains
a challenge, primarily because the tunnel list structure necessitates
a sequential scan for each insertion which is inefficient. NVMSort-
ing [11], optimized for MONTRES [27] and MONTRES-NVM [24],
adopts a different tactic. It aims to mitigate BAS access overhead
by identifying and avoiding the repeated processing of self-ordered
sub-sequences. PMSort [16] emerges as an adaptive sorting engine,
combining various sorting approaches to ensure peak performance
across different scenarios. WiscSort [6], meanwhile, refines the
conventional external mergesort. It effectively manages threads to
address the parallelism issue in the merge stage. However, these
algorithms do not adhere to the ABCN(D) principle as mentioned
in Table 1, thus struggling to perform well on real BAS devices
with datasets of unknown distribution and when DRAM capacity
is limited. In contrast, TSort skillfully handles the aforementioned
issues and, as a result, exhibits excellent performance.

7 CONCLUSION
In this paper, we conducted an extensive analysis of tree-sort al-
gorithms, particularly when operating on a hybrid DRAM-BAS
structure. The results reveal that TSort emerged as the winner
among all tree-sort variants, while in most cases it surpasses a set
of other algorithms as well. This achievement responds positively
to the question we posed at the outset of this paper. The tree al-
gorithm indeed has the potential to outperform other widely used
sorting methods. As an emerging BAS-friendly sorting algorithm,
TSort challenges long-standing biases against the tree structure in
sorting tasks, reinvigorating its pivotal role and potential in the
field of sorting.

ACKNOWLEDGMENTS
This work was supported by a grant funded by the Singapore Min-
istry of Education (Title: inPMdb: An in-Persistent Memory Data-
base System; WBS No: A8000082-00-00). We also thank the anony-
mous reviewers for their valuable comments and suggestions.

1498

REFERENCES
[1] 2022. Samsung Shows Off CXL Server Memory Expander. https:

//www.nextplatform.com/2022/08/23/samsung-shows-off-cxl-server-memory-
expander/ [Last accessed on June 24, 2023].

[2] 2023. Sort Benchmark. http://sortbenchmark.org/ [Last accessed on June 24,
2023].

[3] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, and Adrián Soto. 2021. Worst-Case Optimal Graph Joins in Almost
No Space. In Proceedings of the 2021 International Conference on Management of
Data. 102–114.

[4] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2017. In-
Place Parallel Super Scalar Samplesort (IPSSSSo). In 25th Annual European Sym-
posium on Algorithms, Vol. 87. 9:1–9:14.

[5] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2022. En-
gineering In-Place (Shared-Memory) Sorting Algorithms. ACM Trans. Parallel
Comput. 9, 1, Article 2 (2022), 62 pages.

[6] Vinay Banakar, Kan Wu, Yuvraj Patel, Kimberly Keeton, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2023. WiscSort: External Sorting for
Byte-Addressable Storage. In Proceedings of the VLDB Endowment, Vol. 16. 2103–
2116.

[7] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance
of Large Ordered Indices. Acta Informatica 1 (1972), 173–189.

[8] E. Chen, D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts, X. Tang, and
D. Apalkov. 2010. Non-volatile spin-transfer torque RAM (STT-RAM). In 68th
Device Research Conference. 249–252.

[9] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage. In 19th
USENIX Conference on File and Storage Technologies. 17–32.

[10] Li Chen, Rupesh Choubey, and Elke A Rundensteiner. 2002. Merging R-trees:
Efficient strategies for local bulk insertion. GeoInformatica 6 (2002), 7–34.

[11] Zhaole Chu, Yongping Luo, Peiquan Jin, and Shouhong Wan. 2021. NVMSorting:
Efficient Sorting on Non-Volatile Memory. In The 33rd International Conference
on Software Engineering & Knowledge Engineering.

[12] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing Persistent Memory Bandwidth Utilization for OLAP Workloads. In
Proceedings of the 2021 International Conference on Management of Data. Virtual
Event China, 339–351.

[13] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. 1991. Par-
allel Sorting on a Shared-Nothing Architecture using Probabilistic Splitting.
In Proceedings of the First International Conference on Parallel and Distributed
Information Systems. 280–291.

[14] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-
Aware Ranking in Search & Recommendation Systems with Application to
LinkedIn Talent Search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2221–2231.

[15] Frank T. Hady, Annie Foong, Bryan Veal, and Dan Williams. 2017. Platform
Storage Performance With 3D XPoint Technology. Proc. IEEE 105, 9 (2017),
1822–1833.

[16] Yifan Hua, Kaixin Huang, Shengan Zheng, and Linpeng Huang. 2021. PMSort: An
adaptive sorting engine for persistent memory. Journal of Systems Architecture
120 (2021).

[17] Kaixin Huang, Yijie Mei, and Linpeng Huang. 2020. Quail: Using NVM write
monitor to enable transparent wear-leveling. Journal of Systems Architecture 102
(2020), 101658.

[18] Wentao Huang, Yunhong Ji, Xuan Zhou, Bingsheng He, and Kian-Lee Tan. 2023.
A Design Space Exploration and Evaluation for Main-Memory Hash Joins in
Storage Class Memory. In Proceedings of the VLDB Endowment, Vol. 16. 1249–
1263.

[19] Intel. 2023. Persistent memory development kit. (2023). https://pmem.io/pmdk/
[Last accessed on June 24, 2023].

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performancemeasurements of the intel optane DC persistent memory
module. arXiv preprint arXiv:1903.05714 (2019).

[21] Raj Jain. 1991. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. Vol. 1.

[22] Saeed Kargar and Faisal Nawab. 2023. Hamming Tree: The Case for Energy-
Aware Indexing for NVMs. Proceedings of the 2023 international conference on
Management of data 1, 2, Article 182, 27 pages.

[23] Krishna M Kavi, Ben Lee, and Ali R Hirson. 1998. Multithreaded systems. In
Advances in Computers. Vol. 46. 287–328.

[24] Mohammed Bey Ahmed Khernache, Arezki Laga, and Jalil Boukhobza. 2018.
MONTRES-NVM: An external sorting algorithm for hybrid memory. In 2018
IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA).
49–54.

[25] Donald E Knuth. 1998. The art of computer programming, Volume 3: Sorting
and Searching. Addison-Westley (1998).

[26] Dimitrios Koutsoukos, Raghav Bhartia, Michal Friedman, Ana Klimovic, and
Gustavo Alonso. 2023. NVM: Is it Not Very Meaningful for Databases?. In
Proceedings of the VLDB Endowment, Vol. 16. 2444–2457.

[27] Arezki Laga, Jalil Boukhobza, Frank Singhoff, and Michel Koskas. 2017. Montres:
merge on-the-run external sorting algorithm for large data volumes on ssd based
storage systems. IEEE Trans. Comput. 66, 10 (2017), 1689–1702.

[28] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data
Analytics. Proceedings of the VLDB Endowment 9, 14, 1647–1658.

[29] Yong Li, Lingfang Zeng, Guang Chen, Chunhua Gu, Fei Luo, Weichao Ding,
Zhan Shi, and Joel Fuentes. 2022. A Multi-hashing Index for hybrid DRAM-NVM
memory systems. Journal of Systems Architecture 128 (2022), 102547.

[30] Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-Han Chen, Hsin-Wen Wei,
and Wei-Kuan Shih. 2020. B*-Sort: Enabling write-once sorting for nonvolatile
memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39, 12 (2020), 4549–4562.

[31] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael R.
Lyu, and Yangfan Zhou. 2023. SMART: A High-Performance Adaptive Radix Tree
for Disaggregated Memory. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). 553–571.

[32] Yongping Luo, Zhaole Chu, Peiquan Jin, and Shouhong Wan. 2020. Efficient
sorting and join on NVM-based hybrid memory. In International Conference on
Algorithms and Architectures for Parallel Processing. 15–30.

[33] Yongping Luo, Peiquan Jin, Qinglin Zhang, and Bin Cheng. 2021. TLBtree: A
Read/Write-Optimized Tree Index for Non-Volatile Memory. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). 1889–1894.

[34] Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J Tsotras. 2000. Parallel
External Sorting. Advanced Database Indexing (2000), 209–218.

[35] W. A. Martin and D. N. Ness. 1972. Optimizing Binary Trees Grown with a
Sorting Algorithm. Commun. ACM 15, 2 (1972), 88–93.

[36] Keith McLuckie and Angus Barber. 1986. Binary Tree Sort. Sorting Routines for
Microcomputers (1986), 58–67.

[37] Jinyoung Oh and Youngjin Kwon. 2021. Persistent memory aware performance
isolation with dicio. In Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop
on Systems. 97–105.

[38] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in
rankings and recommendations: an overview. The VLDB Journal 31 (2022),
431–458.

[39] K. Pollari-Malmi, E. Soisalon-Soininen, and T. Ylonen. 1996. Concurrency con-
trol in B-trees with batch updates. IEEE Transactions on Knowledge and Data
Engineering 8, 6 (1996), 975–984.

[40] Yifan Qiao, Xubin Chen, Ning Zheng, Jiangpeng Li, Yang Liu, and Tong Zhang.
2022. Closing the B+-tree vs. LSM-tree Write Amplification Gap on Modern
Storage Hardware with Built-in Transparent Compression. In 20th USENIX Con-
ference on File and Storage Technologies. 69–82.

[41] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[42] Stratis D Viglas. 2014. Write-limited sorts and joins for persistent memory.
Proceedings of the VLDB Endowment 7, 5 (2014), 413–424.

[43] Ke Wang, Guanqun Yang, Yiwei Li, Huanchen Zhang, and Mingyu Gao. 2023.
When Tree Meets Hash: Reducing Random Reads for Index Structures on Persis-
tent Memories. Proceedings of the 2023 international conference on Management
of data 1, 1, Article 105, 26 pages.

[44] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 496–508.

[45] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:
sextuple indexing for semantic web data management. In Proceedings of the
VLDB Endowment, Vol. 1. 1008–1019.

[46] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[47] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVMMemory Systems.. In USENIX Annual Technical
Conference. 349–362.

[48] Minhui Xie, Youyou Lu, Qing Wang, Yangyang Feng, Jiaqiang Liu, Kai Ren, and
Jiwu Shu. 2023. PetPS: Supporting Huge Embedding Models with Persistent
Memory. In Proceedings of the VLDB Endowment, Vol. 16. 1013–1022.

[49] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Technologies. 169–182.

[50] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine: An Update-in-Place Key-Value Store
for Modern Storage. Proceedings of the VLDB Endowment 16, 1, 99–112.

[51] Furqan Zahoor, Tun Zainal Azni Zulkifli, and Farooq Ahmad Khanday. 2020.
Resistive Random Access Memory (RRAM): an Overview of Materials, Switching

1499

https://www.nextplatform.com/2022/08/23/samsung-shows-off-cxl-server-memory-expander/
https://www.nextplatform.com/2022/08/23/samsung-shows-off-cxl-server-memory-expander/
https://www.nextplatform.com/2022/08/23/samsung-shows-off-cxl-server-memory-expander/
http://sortbenchmark.org/
https://pmem.io/pmdk/

Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applica-
tions. Nanoscale Research Letters 15, 1 (2020), 90.

[52] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. 2022. NBTree:
A Lock-Free PM-Friendly Persistent B+-Tree for EADR-Enabled PM Systems.
Proceedings of the VLDB Endowment 15, 6, 1187–1200.

[53] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.
2001. On supporting containment queries in relational database management

systems. In Proceedings of the 2001 international conference on Management of
data. 425–436.

[54] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and Sanid-
hya Kashyap. 2022. ODINFS: Scaling PM Performance with Opportunistic Delega-
tion. In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 179–193.

1500

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 In-place Sorting Algorithm
	2.2 External Sorting Algorithm
	2.3 Tree structure

	3 Tree-based Sorting Algorithm
	3.1 Batching
	3.2 Multitree schemes
	3.3 Multithreading techniques
	3.4 Concurrent implementations
	3.5 Algorithmic Space

	4 Evaluation of Tree-Sort Variants
	4.1 Setup
	4.2 Uniformly Distributed Datasets
	4.3 Skewed Distributed Datasets

	5 Comparative Study
	5.1 Preliminary Evaluation
	5.2 Uniformly Distributed Datasets
	5.3 Skewed Distributed Datasets
	5.4 Bandwidth
	5.5 Non-integer Datasets
	5.6 Discussion and Future Work

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

