
Demonstration of OpenDBML, a Framework for Democratizing
In-Database Machine Learning

Mahdi Ghorbani
University of Edinburgh

Edinburgh, United Kingdom

mahdi.ghorbani@ed.ac.uk

Amir Shaikhha
University of Edinburgh

Edinburgh, United Kingdom

amir.shaikhha@ed.ac.uk

ABSTRACT

Machine learning over relational data has been used in several

applications. The traditional approach of joining relations �rst

and then training a model on the joined table is time-consuming

and requires a signi�cant amount of memory. Recent research has

focused on in-database machine learning (in-DB ML) to address

this issue; these methods train the models over relations without

joining, resulting in amore e�cient process. However, such systems

have ad-hoc user interfaces and speci�c data formats, making them

challenging to use. To address this problem, this paper presents

OpenDBML, a framework for democratizing in-DBML. OpenDBML

o�ers a Python interface for multiple in-DB ML systems, a set of

commonly used datasets, and the ability to add new datasets and

in-DB ML systems via both Python and web interfaces. The paper

also presents comprehensive demonstration scenarios to illustrate

how to use OpenDBML e�ectively.

PVLDB Reference Format:

Mahdi Ghorbani and Amir Shaikhha. Demonstration of OpenDBML, a

Framework for Democratizing In-Database Machine Learning. PVLDB,

16(12): 3970 - 3973, 2023.

doi:10.14778/3611540.3611598

1 INTRODUCTION

Relational data is used for many real-world applications, such as E-

commerce, �nances, and healthcare. In several applications, training

a machine learning model over relational data can be needed and

bene�cial (e.g., recommendation systems). The traditional approach

to train a machine learning model over relational data is to join all

relations �rst and then use a framework such as scikit-learn [12],

TensorFlow [1], or PyTorch [11] to train a machine learning model

over the joined table. Although the approach is simple to imple-

ment, joining several relations results in signi�cant redundancy

and consumes excessive amounts of time and memory.

Several in-database machine learning (in-DB ML) systems [2, 5–

8, 10, 13–20] have been proposed to overcome these issues. These

systems cast the in-DB ML pipeline as a linear algebra problem [2,

7, 8, 13, 20], an aggregate-join problem [5, 10, 14], or a program in a

new intermediate language [15–19]. This way, the ML operators are

pushed down to relations and executeML algorithms over relational

data without joining them.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611598

Despite the numerous advantages, the existing in-DB ML sys-

tems are not widely adopted for various reasons. One of the key

reasons is the lack of a Python API in the majority of these systems.

Since Python is the most popular language for machine learning,

supporting a Python API is essential for increasing system use-

fulness. Another major drawback is that each system has its own

data format requirements, making it more inconvenient to use.

Thus, comparing the run time and accuracy of machine learning

algorithms in di�erent systems is challenging.

For instance, to use the most e�cient version of LibFM [13] on

relational data, the user needs to provide the data in a specialized

format, called block-structured format. LMFAO [14] needs the data

to be written in CSV �les with two con�g �les containing informa-

tion about features, relations, relationships across them, and the

join order. Morpheus [2] requires the data to be provided in the

normalized matrix format and additionally expects all features of

the relations to be categorical; for continuous features, the user

is responsible to use binning to categorize them. For data scien-

tists converting datasets from Pandas DataFrame [9] to these data

formats is tedious and error-prone.

In this paper, we introduce OpenDBML, a framework designed

to democratize in-database machine learning by making it more ac-

cessible and practical. OpenDBML provides a Python API enabling

users to register new (relational and nested) datasets and in-DB

ML systems to the framework. It also allows users to transform

the data to the expected format by the underlying systems, train

models, and measure their accuracy and run time.

OpenDBML plugs in various in-DB ML systems such as LM-

FAO [14], LibFM [13], or Morpheus [2]. Moreover, OpenDBML

supports commonly used datasets for in-DB ML use cases (e.g.,

MovieLens [3], BookCrossing [21], and Walmart [4]). OpenDBML

transforms all these datasets into the data format expected by each

of the in-DB ML systems and allows the user to train the supported

ML model by each of these systems.

The paper is organized as follows. Section 2 describes a high-

level overview of the work�ow of OpenDBML and its components.

Section 3 explains the OpenDBML’s Python API implementation,

the approach to integrate new datasets and systems, and how to

use OpenDBML. Our system also features a user-friendly web-

based interface that connects to the Python backend and simpli�es

the usage for the user. Details on how to use the GUI are also

included in Section 3. Finally, we illustrate several comprehensive

demonstration scenarios of OpenDBML in Section 4.

2 OVERVIEW

Figure 1 depicts the high-level work�ow ofOpenDBML. OpenDBML

reads the input dataset and performs data wrangling; it normalizes

3970

https://doi.org/10.14778/3611540.3611598
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611598


the nested data, applies feature engineering methods, and trans-

forms the data into the expected format for the underlying in-

database machine learning systems. Once the data is prepared, the

framework calls these systems to train a model on the processed

data. Next, we present detailed descriptions of each component.

2.1 Normalizing Nested Data

In order to support a wider range of datasets, OpenDBML converts

nested datasets into relational ones. Normalization is the expansion

of columns that contain nested data and converting the dataset to

normal form, i.e., a �at relational format. OpenDBML implements

three normalization behaviors to deal with various nesting patterns:

One-Many Normalization.When a column’s data is a dictionary-

like in each cell, this method expands nested rows into sub-relations.

ExplodeNormalization.Converts a nested column that lists items

to a sub-relation with an n-hot encoded representation.

Link Normalization. Expands the nested column into a new table

with its own generated primary key. Then creates an intermediate

table that records the primary keys of the main table and links them

to the relevant primary keys of the new sub-relation.

2.2 Feature Engineering

OpenDBML allows feature engineering over data at various levels.

String to Integer Encoding. To use string values as features in a

machine learning system, they must �rst be encoded as integers.

Moreover, since a string usually needs more space compared to an

integer, storing them as integers needs less storage. OpenDBML

enables the string to integer encoding.

Feature Selection. In machine learning algorithms, one might

want to use only a subset of all attributes for training. OpenDBML

allows users to specify their preferred features.

Categorization. Certain ML applications may require continuous

values in the dataset to be categorized. This requirement can be

also enforced by the underlying ML system (e.g., Morpheus). To

handle this, OpenDBML provides a histogram binning method.

2.3 Data Transformation

Finally, OpenDBML transforms the data to the desired output for-

mat. Di�erent ML systems use di�erent inputs ranging from general

design matrices to very speci�c formats (e.g., libFM’s [13] block

structure). Currently, OpenDBML supports a variety of formats: (1)

Block-structured format used by libFM [13], (2) Con�g �les and

dataset format supported by LMFAO [14], (3) Normalized matrix

format supported by Morpheus [2], (4) Individual CSV �les for each

relation, and (5) Join of relations of the dataset as a single CSV �le.

For instance, to transform the dataset to the normalized matrix

format, OpenDBML gets the unnested and binned data from pre-

vious stages. Then all features are one-hot encoded and stored in

a sparse format. Next, the target feature is stored separately from

other features. After that, a series of mappings from the number of

lines in the target feature �le to all other relations are created that

represent how the features should be joined. Finally, all computed

values are stored in �les, which they can be fed to Morpheus [2].

 LibFM
Nested Data Relational Data

Joined Table

Expected Data Format

Nesting
Normalization

Feature
Engineering

Data
Transformation

 LMFAO

 Morpheus

 ML
 System

 In-DB ML
 System

Block-Structured

Config Files and
Relational Data

Normalized Matrices

.

..

Figure 1: OpenDBML work�ow overview.

3 IMPLEMENTATION

In this section, we walk through the implementation and the web-

based user interface of OpenDBML. Our GUI connects and simpli-

�es the underlying Python API for the user. We implemented the

GUI using Vue.js framework1 and Ace Python IDE2 for the user’s

convenience. Next, we describe all stages of the process, including

dataset preparation, system registration, and model training.

3.1 Extending Datasets

To register a new relational dataset, its schema, primary keys, how

the data should be read, and normalization and feature engineering

parameters are required. As an example, we illustrate the step-

by-step process of registering the MovieLens [3] dataset into our

system. Figure 2 shows the dataset registration user interface. The

top part of the �gure is con�gurations for movies relation, and the

bottom part is the general con�gurations for the whole dataset.

1 Relation’s Schema. The �rst step is preparing the schema of

each relation in a Python dictionary format. The schema comprises

a mapping of all attributes of the relation to their corresponding

Python type, in the same order as the relation’s columns.

2 Relation’s Con�gurations. Path to relation, type of the underly-

ing �le for the relation (e.g., CSV, XML, JSON), primary keys, and

separator are provided to the user interface.

3 Normalization Parameters. In the web interface, it is also neces-

sary to specify the normalization method and the separator for any

nested columns in the relation.

4 Feature Engineering Parameters. The speci�cation of string fea-

tures that are transformed to an integer, the set of training features

for each relation, and any other desired feature engineering pa-

rameters are shown in the user interface. Users may input 'all'

instead of explicitly listing all applicable features to apply these

methods universally.

1https://vuejs.org/
2https://ace.c9.io/

3971



1

2

3
4

5

6

Figure 2: TheGUI for registering a newdataset toOpenDBML.

5 Target Value. The target value for the machine learning predic-

tion is provided in the general con�guration section.

6 Join Order. The general con�gurations panel includes a sep-

arate variable for the join tree. Join order may have name, key,

foreign-key, children, and output_name as keys. The name of

the relation is speci�ed by name, and the primary key of the relation

by key. In addition, key is used as the join key when the foreign

key in the top relation has the same name as the primary key of the

sub-relation. If their names are di�erent, then foreign-key will be

provided in the sub-relation. The output_name is used when the

result of the join of the top and sub-relation needs to be stored in

a �le with the speci�ed name. Finally, children provides all the

information about sub-relations and how they should be joined

with the top relation.

Speci�c System’s Con�gurations. Con�gurations related to the

speci�c system can be provided in the individual con�guration

sections or the general dataset con�guration section, depending

on their application. For example, if the dataset is being prepared

for parallel execution using LMFAO [14], the number of threads

for each relation must be speci�ed. Otherwise, the code will run

sequentially by default. For example, the dataset con�guration

section might include the following:

number_of_threads = { 'ratings ': 8, 'users ': 4,

'movies ': 4, 'genres ': 2 }

Similarly, when preparing the dataset for Morpheus [2], the

number of bins for continuous features is speci�ed in the con�gu-

ration. If not speci�ed, a default number of bins will be assigned.

For instance, the ratings’s con�guration may contain:

number_of_bins = { 'rating ': 5 }

3.2 Extending Machine Learning Systems

The �rst step of integrating an in-database machine learning system

toOpenDBML is providing an implementation for the PythonAPI of

1 2 3 4 5

Figure 3: The GUI for registering a new in-database machine

learning system to OpenDBML.

OpenDBML through the user interface. OpenDBML’s API consists

of four methods and a class that must be implemented. After that,

the system can be registered to our framework. Figure 3 represents

the user interface for system registration.

1 Data Transformation. All systems require a function that trans-

forms the input data into their expected format. Additionally, cer-

tain systems, such as LMFAO [14], may require con�guration �les

that provide meta-information about the dataset (e.g., information

about relations, features, and relationships across them). Imple-

menting this function ensures that any relational dataset registered

in OpenDBML can be used by new systems.

2 Pre-compilation. This function performs pre-compilation and

code generation if required. Then prepares the machine learning

model and returns the resulting model object.

3 Setup. This function glues all the previously provided functions

together, thereby carrying out all the necessary steps for setting up

a machine learning model given a particular system.

4 Training. The underlying method of communicating with the

system to train a model over a dataset given the dataset con�gu-

ration is implemented here. This implementation uses the dataset

information and the system’s internal arguments to develop the

Model class. Implementation of this class is necessary to execute

machine learning algorithms within the system.

5 Main. This method is responsible for parsing the input argu-

ments, calling setup, and training the model.

3.3 Model Training

The user interface for training a model on a dataset requires the

speci�cation of training parameters, including the train-test split

ratio, whether to shu�e the dataset, the accuracy metrics, the time

measurement unit, the number of training iterations, the number

of runs, and any additional parameters (cf. Figure 4). If any of these

parameters are not available, OpenDBML will use default values.

4 DEMONSTRATION SCENARIO

We will demonstrate three scenarios that illustrate OpenDBML’s

capabilities. Next, we describe each scenario.

3972



Figure 4: The user interface for training a model on a sup-

ported dataset using OpenDBML.

4.1 New Dataset Registration

Our �rst demonstration scenario is registering a new dataset to

OpenDBML using the user interface shown in Figure 2. We do not

include MovieLens [3] in our supported datasets, to begin with,

and then proceed to add it. There are two ways of doing this. One

way is selecting New Dataset from the drop-down menu, then

click on the plus button and provide the name of relations and

their con�gurations. The other way is to select an existing dataset

to view its con�guration and use it as a template. The tabs in the

panel can be renamed, removed, or added if required. Once all the

parameters for all relations are provided, we will enter the name of

our new dataset and register it to our framework.

4.2 New In-DB ML System Registration

The second demonstration scenario is extending OpenDBML to

support more in-database machine learning systems using the user

interface shown in Figure 3. We do not include Morpheus [2] in

our supported systems, to begin with, then we proceed to add it.

Similar to dataset registration, this is possible in two ways. First,

the user can select New System from the drop-down menu and

implement the code in the �ve provided tabs. Second, the user can

use an already existing system as a template for the new system’s

implementation. If the new system needs more auxiliary functions

to be implemented, the user can use the plus button to de�ne new

functions. When the implementation is done, the user provides the

name of the new system and adds it to OpenDBML.

4.3 Train a Model on a Dataset

For the third scenario, we aim to train multiple machine learning

models using the in-database machine learning systems over nu-

merous datasets in OpenDBML, including the newly registered

ones. To do so, we will use the user interface shown in Figure 4.

First, we will select the dataset, the machine learning system, and

the underlying algorithm from the drop-down menus. Then, we

will provide the required training parameters. Finally, we will click

on the Train button to start the training process. Once the training

is complete, we can see the run time and accuracy outputs. This in-

formation can be used for benchmarking considering any element

of the triple (algorithm, system, dataset) be �xed (F) or varying

(V). It can be used in many cases, such as 1) (F, V, V) to compare

systems, 2) (V, F, F) to compare algorithms, 3) (F, F, V) to benchmark

a speci�c algorithm, 4) (V, V, F) to �nd the best model for a speci�c

dataset, and 5) (V, F, V) to benchmark a speci�c system.

ACKNOWLEDGEMENT

The authors thank Austin Pan and Katherine McClorey for their

help with the software development and Huawei for their support

of the distributed data management and processing laboratory at

the University of Edinburgh.

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Systems. https://www.tensor�ow.org/ Software available from
tensor�ow.org.

[2] Lingjiao Chen, Arun Kumar, Je�rey Naughton, and Jignesh M. Patel. 2017. To-
wards Linear Algebra over Normalized Data. Proc. VLDB Endow. 10, 11 (aug
2017), 1214–1225.

[3] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015),
19 pages. https://doi.org/10.1145/2827872

[4] Kaggle. 2014. Walmart Recruiting. https://www.kaggle.com/competitions/
walmart-recruiting-store-sales-forecasting/. Accessed: 2022-04-20.

[5] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2020. Learning models over relational data using sparse
tensors and functional dependencies. TODS 45, 2 (2020), 1–66.

[6] Mijung Kim. 2014. TensorDB and tensor-relational model (TRM) for e�cient
tensor-relational operations. Arizona State University.

[7] Arun Kumar, Je�rey Naughton, and Jignesh M Patel. 2015. Learning generalized
linear models over normalized data. In SIGMOD. 1969–1984.

[8] Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing Non-
Linear Feature Interactions in Factorized Linear Algebra. In SIGMOD. New York,
NY, USA, 1571–1588.

[9] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[10] Dan Olteanu. 2020. The relational data borg is learning. Proceedings of the VLDB
Endowment 13, 12 (2020), 3502–3515.

[11] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 8024–8035.

[12] Fabian Pedregosa et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[13] Ste�en Rendle. 2013. Scaling Factorization Machines to Relational Data. Proc.
VLDB Endow. 6, 5 (mar 2013), 337–348. https://doi.org/10.14778/2535573.2488340

[14] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q Ngo, and
XuanLong Nguyen. 2019. A layered aggregate engine for analytics workloads.
In SIGMOD. 1642–1659.

[15] Hesam Shahrokhi and Amir Shaikhha. 2023. Building a Compiled Query Engine
in Python. In CC’22. 180–190.

[16] Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2022. Functional
collection programming with semi-ring dictionaries. Proceedings of the ACM on
Programming Languages 6, OOPSLA1 (2022), 1–33.

[17] Amir Shaikhha, Marios Kelepeshis, and Mahdi Ghorbani. 2023. Fine-Tuning Data
Structures for Query Processing. In CGO’23. ACM, 149–161.

[18] Amir Shaikhha, Maximilian Schleich, Alexandru Ghita, and Dan Olteanu. 2020.
Multi-layer optimizations for end-to-end data analytics (CGO’20). ACM, 145–157.

[19] Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. 2021. An intermediate
representation for hybrid database and machine learning workloads. Proceedings
of the VLDB Endowment 14, 12 (2021), 2831–2834.

[20] Keyu Yang, Yunjun Gao, Lei Liang, Bin Yao, Shiting Wen, and Gang Chen. 2020.
Towards factorized svm with gaussian kernels over normalized data. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1453–1464.

[21] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005.
Improving Recommendation Lists through Topic Diversi�cation (WWW ’05).
ACM, New York, NY, USA, 22–32.

3973

https://www.tensorflow.org/
https://doi.org/10.1145/2827872
https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/
https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/
https://doi.org/10.14778/2535573.2488340

	Abstract
	1 Introduction
	2 Overview
	2.1 Normalizing Nested Data
	2.2 Feature Engineering
	2.3 Data Transformation

	3 Implementation
	3.1 Extending Datasets
	3.2 Extending Machine Learning Systems
	3.3 Model Training

	4 Demonstration Scenario
	4.1 New Dataset Registration
	4.2 New In-DB ML System Registration 
	4.3 Train a Model on a Dataset

	References

