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ABSTRACT

This paper introduces SyncSignature, the first fully parallelizable
algorithmic framework for tree similarity joins under edit distance.
SyncSignature makes use of implicit-synchronized signature gen-
eration schemes, which allow for an efficient and parallelizable
candidate-generation procedure via hash join. Our experiments
on large real-world datasets show that the proposed algorithms
under the SyncSignature framework significantly outperform the
state-of-the-art algorithm in the parallel computation environment.
For datasets with big trees, they also exceed the state-of-the-art
algorithms by a notable margin in the centralized/single-thread
computation environment. To complement and guide the experi-
mental study, we also provide a thorough theoretical analysis for
all proposed signature generation schemes.
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1 INTRODUCTION

In this paper we consider the problem of tree similarity joins under
edit distance (or, tree similarity joins for short), where given a
collection of trees T = {𝑇1, . . . ,𝑇𝑁 } and a distance threshold 𝐾 , we
want to find all similar pairs of trees (𝑇𝑖 ,𝑇𝑗 ) such that TED(𝑇𝑖 ,𝑇𝑗 ) ≤
𝐾 , where TED denotes the tree edit distance defined as the minimum
number of node insertions, deletions, and substitutions to transfer
one tree to the other. We consider rooted, ordered trees with labeled
nodes. A node substitution is simply a node relabeling. When we
delete a node 𝑣 , we relink all the children of 𝑣 to 𝑣 ’s parent. When
we insert a node 𝑣 as a child of a node 𝑢, we relink a contiguous
segment of 𝑢’s children under 𝑣 .

Tree-structured data is essential in modern data representa-
tion and analysis, and is widely used in data management (e.g.,
XML/JSON), code analysis and natural language processing (e.g., ab-
stract syntax trees), bioinformatics (e.g., RNA secondary structures),
and many other areas. An important primitive in these settings is to
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identify similar items under certain distance measurement, which
is critical to various data analytics such as clustering, classification,
and nearest neighbor queries. The tree edit distance is the most
widely used distance function for measuring the similarity between
a pair of trees.

Tree similarity joins has already attracted much attention in the
past two decades [1, 2, 4, 5, 13, 14, 16, 30, 37]. Most of these works
adopt the filter-then-verify framework: We first extract a set of can-
didate pairs trees such that this candidate set is a superset of the final
output, and then verify for each pair of trees in the candidate set
whether their tree edit distance is no more than the distance thresh-
old by an exact tree edit distance computation. Different methods
vary in their ways of performing the filtering and verification steps.
A popular direction is to transform trees to simpler objects such
as strings [1, 2, 13] and sets [4, 5, 16, 37], and then compute some
distance (e.g., Euclidean distance, 𝐿1 distance, string edit distance,
etc.) on the resulting pair of strings/sets which serves as a lower
bound of the tree edit distance of the original pair of trees. This
lower bound can be computed much more efficiently than tree edit
distance, and can be used in a pruning step to quickly filter out
tree pairs that should not be in the final output. The performance
of these algorithms depends on the effectiveness of the pruning
steps and the time for computing the lower bound. The difficulty
with this approach is that obtaining a tight lower bound via the
corresponding strings or sets is difficult because much of the tree
structure is lost in the transformation.

Tang et al. [30] took a partition-based approach. The idea is to
build an index containing a collection of subtrees. At each stepwhen
we process a new tree 𝑇 , we search in the index for the (partial)
subtree rooted at each node of 𝑇 to find other trees that share the
same subtree. After that, we partition 𝑇 to subtrees of balanced
sizes and add all the partitions to the index. The correctness of
the algorithm is guaranteed by the pigeonhole principle, that is,
for any pair of trees whose tree edit distance is no more than the
threshold, they share at least one common subtree, which can be
guaranteed if each tree is partitioned into sufficientlymany subtrees.
Although various optimizations are provided to speed up the search
for common subtrees, the main algorithm in [30] is an index nested
loop join and the number of subtree comparisons can be massive
when the number and/or size of trees is large.

The state-of-the-art algorithm by Hütter et al. [14] also uses an
index nested loop join approach. In their algorithm, more structures
of the trees are taken into consideration when dynamically building
the index. In addition, an efficient verification scheme is presented
to speed up the overall join operation.

A critical issue with the index nested loop joins is that it does
not support parallel execution. Recall that in index nested loop join
algorithms, we process input trees one at a time, use the index to
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look for similar trees in the set of processed trees, and then up-
date the index with the newly processed input tree. As a result,
algorithms proposed [14, 30] are not fully scalable in multicore
architecture or massive parallel computation environments. In this
paper, we propose a simple, efficient, yet fully parallelizable algo-
rithmic framework for tree similarity joins that scales much better
in parallel computation environments.

Our Approach and Contributions.We propose an algorithmic
framework named SyncSignature for tree similarity joins (Sec-
tion 2). The high-level idea of our approach is to generate for each
tree a set of signatures and then perform a hash join using these
signatures. A crucial property of our signature-based join is that
the set of signatures for each tree is generated individually, which
makes the overall framework fully parallelizable. Different from
the previous partition-based approach [30], our signature genera-
tion process is “implicitly synchronized” between different trees.
Intuitively speaking, the process guarantees that if two trees share
a large enough common subtree, then with a good probability there
will be common signatures generated from this common subtree
on both trees, even if the signature generation process on each tree
is performed individually without any coordination. This implicit
synchronization feature facilitates an effective candidate-producing
procedure via hash join.

Under the above framework, we propose two signature genera-
tion schemes that fit tree similarity joins. Both schemes are random-
ized since it may not be possible for deterministic partition schemes
to achieve effective implicit synchronization. Consequently, our
algorithms may miss a small number of valid tree pairs, but with the
proper choices of parameters, they can reach near-perfect accuracy
in theory and in most datasets we studied. Through an extensive
set of experiments, we show that our proposed algorithms not only
exceed the state-of-the-art algorithm in the centralized model on
big datasets, but that they can also be fully parallelized, giving them
a significant advantage in parallel computation environments.

Other Related Work.We briefly summarize other related works.

String similarity joins. Similarity joins under edit distance has also
been studied extensively on strings [3, 7, 9, 12, 15, 19, 21, 26, 34–
36, 38, 39]. Among these works, the one that is most relevant to
ours is [39]. To some extent, our approach can be thought of as
a generalization and extension of the MinJoin algorithm used for
string similarity joins in [39], but there are multiple challenges
when applying the idea in MinJoin to trees. We will discuss these
challenges in Section 3.1.

The computation of tree edit distance in RAM. Tree edit distance
can be computed in polynomial time in the RAM model. Tai [29]
proposed the first polynomial time algorithm with a running time
𝑂 (𝑛6) where 𝑛 is the size of (the larger of) the two trees. Zhang and
Shasha [40] improved Tai’s algorithm to 𝑂 (𝑛4) by observing that
not all possible subproblems in the dynamic programming need to
be solved. Klein [18] further improved the result to 𝑂 (𝑛3 log𝑛) us-
ing heavy path decomposition. This line of research culminated in the
algorithm by Demaine et al. [10] with a running time𝑂 (𝑛3). Pawlik
and Augsten also proposed an 𝑂 (𝑛3) algorithm named RTED [23],
which demonstrates better practical performance. Later, the same
authors proposed APTED [24] with the same running time but a

Table 1: Summary of Notations

Notation Definition
[𝑛] [𝑛] ≜ {1, 2, . . . , 𝑛}
𝐾 edit distance threshold
T set of input trees
𝑇𝑖 𝑖-th tree in T
𝑁 number of input trees, i.e., 𝑁 = |T |
Σ alphabet of labels of nodes in T
Π hash function Σ𝑞 → (0, 1) for generating ranks
Γ hash function Σ∗ → N for computing fingerprints
𝑧 neighborhood size parameter
𝜏 signature similarity parameter
𝑁𝑟 (𝑣) neighborhood of 𝑣 of radius 𝑟

better space usage. For the threshold version of the tree edit dis-
tance problem where we only need to decide whether the distance
is at most 𝐾 or larger than 𝐾 , Touzet [31] proposed an algorithm
with running time 𝑂 (𝑛𝐾3). Recently, Pawlik and Augsten [25] de-
signed an algorithm for threshold tree edit distance with improved
practical performance. All these algorithms, however, cannot be ap-
plied directly to tree similarity joins without an effective candidate
generation step.

Similarity joins in the massive parallel computation model. We notice
that parallel/distributed computation has already been studied for
set and string similarity joins [6, 8, 27, 28, 32]. However, to the
best of our knowledge, no fully parallelizable algorithm has been
designed for tree similarity joins.

Preliminaries. We consider rooted, ordered, unweighted, and
undirected trees with labeled nodes. For two nodes 𝑢, 𝑣 in a tree 𝑇 ,
the distance of𝑢 and 𝑣 is defined to be the length of the unique path
between𝑢 and 𝑣 in𝑇 . For a node 𝑣 in𝑇 , let 𝑁𝑟 (𝑣) be the set of nodes
in𝑇 that are within a distance of 𝑟 from 𝑣 , including 𝑣 itself. We call
𝑁𝑟 (𝑣) the neighborhood of 𝑣 of radius 𝑟 , or, the 𝑟 -neighborhood of
𝑣 .

We have listed a set of frequently used notations in this paper in
Table 1.

2 THE JOIN FRAMEWORK

Webegin by presenting our algorithmic framework SyncSignature
for tree similarity joins. The framework is described in Algorithm 1.

Let us briefly describe Algorithm 1 in words. Besides the input set
of treesT and the distance threshold𝐾 , Algorithm 1 takes twomore
parameters 𝑧 and 𝜏 . The former determines the neighborhood size
which will be used in implicitly synchronized signature generation
schemes, and the later is a parameter for comparing the similarity
of two set of signatures.

Our framework consists of three components.
(1) Signature generation. At Line 3-8, for each input tree𝑇𝑖 , we

generate a set of signatures 𝑆𝑖 . For each 𝑠 = (𝑠 .𝑘𝑒𝑦, 𝑠 .𝑝𝑜𝑠) ∈
𝑆𝑖 , where 𝑠 .𝑘𝑒𝑦 is the fingerprint of the signature and 𝑠 .𝑝𝑜𝑠
is the position of the signature which will be specified in
concrete signature generation schemes, we add (𝑖, 𝑠 .𝑝𝑜𝑠) to
the bucket in hash table D indexed by 𝑠 .𝑘𝑒𝑦.

(2) Join. Line 9-15 is the hash join. To reduce the chance of
mismatch, we include a sanity check of two signatures
with the same key; the check rejects all pairs of signatures
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Algorithm 1 SyncSignature(T , 𝐾, 𝑧, 𝜏)
Input: Collection of trees T = {𝑇1, . . . ,𝑇𝑛 }, distance threshold 𝐾 , neigh-

borhood size parameter 𝑧, signature similarity parameter 𝜏 .
Output: 𝑂 = { (𝑇𝑖 ,𝑇𝑗 ) | 𝑇𝑖 ,𝑇𝑗 ∈ T : 𝑖 ≠ 𝑗, TED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 }
1: 𝑂 ← ∅, 𝐼 ← ∅
2: Initialize an empty hash table D and an empty table of counters 𝐶 ;

generate a random hash function Π : Σ→ (0, 1) where Σ is the node
label universe, and a random hash function Γ : Σ∗ → N.

3: for each𝑇𝑖 ∈ T do

4: 𝑆𝑖 ← Signature(𝑇𝑖 ,Π, 𝑧, Γ, 𝜏 )
5: for each 𝑠 ∈ 𝑆𝑖 do
6: Add (𝑖, 𝑠 .𝑝𝑜𝑠 ) into the bucket in D indexed by 𝑠.𝑘𝑒𝑦
7: end for

8: end for

9: for each bucket of D do

10: for each pair (𝑖, 𝑝𝑜𝑠 ), ( 𝑗, 𝑝𝑜𝑠′ ) in the bucket do
11: if (

 |𝑇𝑖 | − 𝑇𝑗  ≤ 𝐾 ) ∧ ( |𝑝𝑜𝑠 − 𝑝𝑜𝑠′ | ≤ 𝐾 ) then
12: Increment counter𝐶 (𝑖, 𝑗 )
13: end if

14: end for

15: end for

16: for each (𝑖, 𝑗 ) with𝐶 (𝑖, 𝑗 ) > 0 do
17: if 𝐶 (𝑖, 𝑗 ) ≥ 𝜏 then

18: 𝐼 ← 𝐼 ∪ { (𝑖, 𝑗 ) }
19: end if

20: end for

21: for each (𝑖, 𝑗 ) ∈ 𝐼 do
22: if LowerBoundED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 then

23: if UpperBoundED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 then

24: 𝑂 ← 𝑂 ∪ { (𝑖, 𝑗 ) }
25: else if TED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 then

26: 𝑂 ← 𝑂 ∪ { (𝑖, 𝑗 ) }
27: end if

28: end if

29: end for

whose associated tree sizes differ by more than 𝐾 or their
positions in the associated trees differ by more than 𝐾 .
At Line 16-20, we collect candidate pairs of trees whose
common signatures are above a predetermined threshold 𝜏 .

(3) Verification. At Line 21-29, we perform a verification step
on each pair of candidates to remove false positives. Before
the exact tree edit distance computation, we apply some
upper and lower bounds of the tree edit distance to filter
out or early accept each candidate pair.

For LowerBoundED() at Line 22, one choice, as we select for
our ball signature generation scheme (see Section 3.2), is to use the
string edit distance of the preorder traversals of the two trees𝑇𝑖 ,𝑇𝑗 ,
which is known to be at most 𝐾 if TED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 (see, e.g., [13]).
For the Euler-tour embedding based signature generation scheme
(see Section 3.3), we will use the half of the string edit distance of
the Euler-tour embedding of𝑇𝑖 ,𝑇𝑗 , which can also be shown to be at
most 𝐾 if TED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 . For UpperBoundED() at Line 23, we use
the LGM upper bound introduced in [14]. Both check procedures
can finish in 𝑂 (max{|𝑇𝑖 |, |𝑇𝑗 |}𝐾) time.

We will propose a couple of signature generation schemes for
Signature() at Line 4 of Algorithm 1 in Section 3.

Grouping. In the SyncSignature framework, we use the same
neighborhood size 𝑧 for all trees in the dataset. This is not desirable

Algorithm 2 Tree-Similarity-Joins(T , 𝐾, 𝑐)
Input: Collection of trees T, distance threshold 𝐾 , parameter 𝑐 ∈ (0, 1) ,

signature similarity parameter 𝜏
Output: 𝑂 = { (𝑇𝑖 ,𝑇𝑗 ) | 𝑇𝑖 ,𝑇𝑗 ∈ T : 𝑖 ≠ 𝑗, TED(𝑇𝑖 ,𝑇𝑗 ) ≤ 𝐾 }
1: Let𝑚𝑎𝑥 be the smallest integer such that the size of the largest tree in
T is no more than (𝑚𝑎𝑥 + 1)𝐾/𝑐 +𝐾 .

2: for 𝑧 = 0, 1, . . . ,𝑚𝑎𝑥 do

3: T𝑧 = {𝑇𝑖 ∈ T | |𝑇𝑖 | ∈ [𝑧𝐾/𝑐, (𝑧 + 1)𝐾/𝑐 +𝐾 ] }
4: SyncSignature(T𝑧 , 𝐾, 𝑧, 𝐾/5)
5: end for

if the sizes of the trees in the dataset vary significantly. One idea
to resolve this issue is to first group input trees according to their
sizes before feeding them into Algorithm 1.

More precisely, for each 𝑧 = 1, 2, . . ., we create a group of trees

T𝑧 = {𝑇𝑖 ∈ T | |𝑇𝑖 | ∈ [𝑧𝐾/𝑐, (𝑧 + 1)𝐾/𝑐 + 𝐾] } ,

where 0 < 𝑐 ≤ 1 is a constant parameter. To avoid missing any
valid output pairs, every two adjacent groups overlap by an interval
of length 𝐾 . After the grouping, we call Algorithm 1 on each T𝑧 ,
and union the outputs of all groups at the end. The final algorithm
is presented in Algorithm 2.

Note that in Algorithm 2, there is only one parameter 𝑐 , as 𝑧 runs
over 1, 2, . . .. When calling SyncSignature, we set 𝜏 = 𝐾/5. We
note in advance that 𝜏 = 𝐾/5 satisfies the requirement 𝜏 = 𝑂 (𝐾) in
Theorem 3.2 and Theorem 3.4 for our signature generation schemes.
Both 𝑧 and 𝑐 control the neighbor size.We have 𝑧 = 𝑐𝜂/𝐾 , where𝜂 is
the smallest tree size in the 𝑧-th group. We call 𝑐 the (neighborhood)
resolution, and will discuss how to choose a good value for 𝑐 in
Section 4.

In the rest of this paper, we always assume that the size of the
input trees are all within a constant factor, since we perform the
grouping operation before calling SyncSignature.

2.1 Parallel Implementation

We now describe the parallel implementation of SyncSignature
framework (Algorithm 1). Let𝑀 be the number of cores/machines.
First, the signature generation phase (Line 3-8) can be fully par-
allelized, since signature generation for each tree is performed
independently. We only need to evenly distribute the set of trees to
the 𝑀 machines. To insert the signatures into the hash table, the
𝑀 machines can first generate a hash table locally, and then merge
the𝑀 hash tables.

For the join phase (Line 9-15), we try to distribute the workload
to the𝑀 machines in the following way. Suppose there are 𝑡 non-
empty buckets in the hash table D, let 𝑎1, 𝑎2, . . . , 𝑎𝑡 be the number
of signatures that are hashed into the 𝑡 buckets, and let 𝑏𝑖 =

𝑎𝑖
2


be the number of signature pairs in the 𝑖-th bucket that we need
to consider. Let 𝑏 =


𝑖∈[𝑡 ] 𝑏𝑖 . We try to partition the 𝑡 buckets to

the𝑀 machines so that each machine handles a similar number of
signature pairs. More precisely, let 𝑖1 be the smallest index such that
𝑏1+. . .+𝑏𝑖1 ≥ 𝑏/𝑀 ; we assign the first 𝑖1 buckets to the first machine.
Let 𝑖2 be the smallest index such that 𝑏𝑖1+1 + . . . + 𝑏𝑖2 ≥ 𝑏/𝑀 ; we
assign the (𝑖1 + 1)-th to the 𝑖2-th buckets to the second machine.
And so on. At the end, the𝑀 machines merge local counters𝐶 (𝑖, 𝑗).

The amount of work at Line 16-20 is insignificant; we can just
execute these lines sequentially using one machine.
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The verification phase (Line 21-29) can be fully parallelized. We
evenly distribute the set of candidate pairs in 𝐼 to the𝑀 machines,
and union all𝑀 output sets at the end. We note that the verification
step in most algorithms following the filter-then-verify framework
can be parallelized in the same way.

3 SIGNATURE GENERATION SCHEMES

In this section, we introduce several signature generation schemes
for the SyncSignature framework. We first present a direct ex-
tension of the local hash minima partition scheme (LHM-partition)
for trees; LHM-partition was originally designed for string sim-
ilarity joins [39]. However, the direct extension cannot perform
well in practice due to the unbalanced signature sizes. We then pro-
pose two effective signature generation schemes whose practical
performance are not entirely comparable.

3.1 Local Hash Minima Partition

The direct extension of LHM-partition to tree similarity joins is as
follows: For each input tree 𝑇 , we create a random rank for each
node of the tree. We next define for each node 𝑥 its neighborhood
to be all nodes in the ball of radius 𝑟 centered at 𝑥 . We designate
a node 𝑥 as anchor if 𝑥 has the smallest rank among all nodes in
the neighborhood. We then partition 𝑇 at all of its anchor nodes,
transforming the tree into a collection of subtrees. After the LHM-
partition, we select all pairs of trees that share at least one common
subtree as candidates of the join output, and conduct a verification
step for all candidate pairs at the end.

Note that the partition on each tree is performed individually
without any coordination. Intuitively, the anchors (i.e., local hash
minima) provide an implicit coordination among all trees so that if
two trees share a large common subtree, then with high probability
this subtree will be cut at exactly the same set of anchors on both
trees, generating a common partition. On the other hand, by the
pigeonhole principle we know that if two trees have a small edit
distance, then they must share a large common subtree, which gives
the correctness of the algorithm.

However, there are several challenges of this direct extension.
(1) Different from the string case, the neighborhood sizes of

different nodes in trees can be very different – for a node
with degree Θ(𝑛), the neighborhood size can be Θ(𝑛) even
if the radius 𝑟 = 1! The analysis of LHM-partition naturally
requires that the probabilities for nodes being anchors are
similar, which necessitates that all nodes’ neighborhood
sizes be close.

(2) If we force the sizes of different nodes’ neighborhoods to
be similar, symmetry may break: it is possible for 𝑣 to be
𝑤 ’s neighbor while𝑤 is not 𝑣 ’s neighbor.

(3) A single edit operation may change a large number of par-
titions, and consequently make the pigeonhole principle
inapplicable. While in the string case, one edit can only
affect at most two anchors (thus at most three substrings).

To tackle the first problem, we transform each tree to a left-child
right-sibling binary tree with the degree of each node bounded
by 3. More precisely, for each node 𝑣 with 𝑚 ordered children
𝑣1, . . . , 𝑣𝑚 , we replace edges (𝑣, 𝑣1), (𝑣, 𝑣2), . . . , (𝑣, 𝑣𝑚) with edges
(𝑣, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑚−1, 𝑣𝑚).

Algorithm 3 Partition-Signature(𝑇,Π, 𝑧, Γ, ·)
Input: Input tree𝑇 , random hash function Π : Σ→ (0, 1) , neighborhood

size parameter 𝑧, random hash function Γ : Σ∗ → N
Output: A set of signatures 𝑆 of𝑇
1: Initialize 𝑆 ← ∅, 𝐴← ∅
2: for each 𝑣 ∈ 𝑇 do

3: Assign rank 𝑟𝑣 ← Π (ℓ𝑣 ) ⊲ ℓ𝑣 is the label of node 𝑣
4: end for

5: Convert𝑇 into a left-child right-sibling binary tree𝑇 ′
6: for each 𝑣 ∈ 𝑇 ′ do
7: Choose the minimal radius 𝑟 of neighborhood 𝑣 in 𝑇 ′ such that
|𝑁𝑟 (𝑣) | ∈ [𝑧, 2𝑧 )

8: if 𝑟𝑣 = min𝑥 ∈𝑁𝑟 (𝑣) 𝑟𝑥 then

9: 𝐴← 𝐴 ∪ {𝑣}
10: end if

11: end for

12: for each 𝑣 ∈ 𝐴 do

13: Cut the tree 𝑇 ′ at node 𝑣; duplicate 𝑣 with deg(𝑣) copies, each
connecting to one of the adjacent nodes of 𝑣 in𝑇 ′

14: end for

15: Let𝐶1, . . . ,𝐶𝑀 be the set of connected components after cutting𝑇 ′ at
nodes in 𝐴

16: for 𝑖 = 1, . . . , 𝑀 do

17: Let (𝑢1, . . . ,𝑢 |𝐶𝑖 | ) be the preorder traversal of𝐶𝑖

18: 𝑠𝑖 .𝑘𝑒𝑦 ← Γ (ℓ𝑢1 · · · ℓ𝑢 |𝐶𝑖 |
)

19: 𝑠𝑖 .𝑝𝑜𝑠 ← min𝑢∈𝐶𝑖
{index of node 𝑢 in the preorder traversal of𝑇 ′ }

20: end for

21: return 𝑆 = {𝑠1, . . . , 𝑠𝑀 }

Fact 1 (see, e.g., [30]). If we apply the left-child right-sibling bi-

nary tree transformation on each input tree, the edit distance between

any pair of trees after the transformation will be increased by at most

a factor of 2.

To compensate for the factor 2 transformation distortion, we
need to double the distance threshold 𝐾 to retain the correctness
of our algorithm. That is, we need to find pairs of binary trees
(after the transformation) with edit distance at most 2𝐾 for verifi-
cation. However, such a change will not affect the correctness of
our algorithms. We will give a detailed explanation in Section 3.4.

The problem of asymmetry is built into the tree structure. Fortu-
nately, we can show that asymmetry has little effect on the algo-
rithm’s soundness if the neighborhood sizes of all nodes are close,
via a careful analysis which is significantly more complicated than
that for the original LHM-partition on strings (see Lemma 3.1).

The third problem can also be resolved via amore careful analysis
once the node degrees of the trees are bounded by 3.

Our partition-based signature generation scheme is described in
Algorithm 3. At Line 2-4, we assign each node a random rank. We
then convert the tree to a left-child right-sibling binary tree (Line 5),
and identify all anchors based on the random ranks (Line 6-11).
Finally, we partition the tree at all anchors and create a signature
for each resulting connected components/subtrees (Line 12-16).

The signature of each connected component 𝐶 consists of a key
and a position. The key of 𝐶 is simply a hash value of the preorder
traversal of nodes of𝐶 , and the position of𝐶 is the minimum index
of nodes in 𝐶 in the preorder traversal of the input tree.

The following lemma gives a good estimate of the number of
anchors that Algorithm 3 produces, and will be used in the analysis
in Section 3.2. The proof of this lemma is quite technical and can
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Figure 1: (Example) Input trees

be skipped during the first reading. Due to space constraints, we
leave it to Appendix A.1 of the full version of this paper [17]. In
the rest of this paper, when we say appendix we always mean the
appendix of the full version.

Lemma 3.1. Let 𝑛 ≜ |𝑇 | be the size of the tree. If 𝑧 = 𝑜 (𝑛1/3), then
the number of anchors generated by Algorithm 3 falls in the range

(𝑛/(3𝑧), 2𝑛/𝑧) with probability 1 − 𝑜 (1).

An Example. Let us use an example to illustrate how Partition-
Signature works.

Figure 1 describes the set of four input trees. We set the distance
threshold 𝐾 = 1, two parameters 𝑧 = 2 and 𝜏 = 1, and assume that
the random hash function Π gives the following order of labels on
the trees:

Π(𝑏) < Π(𝑑) < Π(𝑔) < Π(𝑎) < Π(𝑐) < Π(𝑒) < Π(𝑓 ) < Π(ℎ).
Given the random ordering Π, the set of anchors in 𝑇1 is {𝑏, 𝑑}.
Since 𝑧 = 2, the neighborhood associated with each node is sim-
ply the node itself and all of its adjacent nodes. Cutting 𝑇1 at
{𝑏, 𝑑} and duplicating the anchor nodes, we get three signatures
{(𝑏, 2), (𝑎𝑏𝑐𝑑𝑒 𝑓 , 1), (𝑑, 4)}, where for the illustration purpose the
fingerprint of each ball is simply represented as a concatenation of
the labels of nodes in the ball according to the preorder traversal
without applying the hash function Γ. We perform the same opera-
tion on other trees; Table 2 summarizes the tree signatures. Table 3
shows the hash table after inserting all signatures.
A Major Issue with Partition-Signature when working

with the SyncSignature framework. The main issue with Algo-
rithm 3 is that it may produce subtrees with very different sizes,
and many of them are small. Particularly, since at least have of the
nodes are leaves, many of them would become singletons after the
partition under the random ranking scheme (see, e.g., nodes 𝑏, 𝑑 in
Table 2). This phenomenon is very different from the string/path

Table 2: Signatures produced by Partition-Signature

tree ball signatures
𝑇1 (𝑏, 2), (𝑎𝑏𝑐𝑑𝑒 𝑓 , 1), (𝑑, 4)
𝑇2 (𝑏𝑔, 2), (𝑎𝑏𝑐𝑑𝑒 𝑓 , 1), (𝑑, 5)
𝑇3 (𝑏, 2), (𝑎𝑏𝑔, 1), (𝑔𝑐𝑑𝑒 𝑓 , 3), (𝑑, 5)
𝑇4 (𝑏𝑔ℎ, 2), (𝑎𝑏𝑐𝑑𝑒 𝑓 , 1), (𝑑, 5)

Table 3: Hash table for Partition-Signature

key bucket contents
𝑏 (𝑇1, 2), (𝑇3, 2)
𝑑 (𝑇1, 4), (𝑇2, 5), (𝑇3, 5), (𝑇4, 5)
𝑎𝑏𝑔 (𝑇3, 1)
𝑏𝑔ℎ (𝑇4, 2)
𝑔𝑐𝑑𝑒 𝑓 (𝑇3, 3)
𝑎𝑏𝑐𝑑𝑒 𝑓 (𝑇1, 1), (𝑇2, 1), (𝑇4, 1)

setting, since a path only has two leaves/end-nodes. Small partitions
are more likely to get matched. Consequently, the join framework
may produce many false positives and set a significant burden
to verification step, making the algorithm impractical on large
datasets. In our example, all 6 pairs of trees will be candidate pairs
for verification.

In the next two subsections, we propose two variants of Algo-
rithm 3 that can generate subtrees/signatures of similar sizes for a
much better performance.

3.2 Signatures Using Neighborhoods

The first idea to resolve the issue mentioned above is to simply take
the neighborhoods of all anchors as the subtree signatures. We call
this scheme Ball-Signature, described in Algorithm 4. Compared
with Algorithm 3, the main difference is that in Algorithm 4 we
directly take the neighborhoods of anchors as signatures at Line 13.
To further speed up the signature generation process, we first sort
all nodes of the tree according to their ranks in the increasing order,
and then try to find anchors starting from the node with the lowest
rank. We end the process when 5𝜏 anchors have been identified,
or all anchors have been found. We note that 5𝜏 is just used to
facilitate the theoretical analysis; any larger constant than 5 will
also work.

An Example. Let us again use the four input trees in Figure 1 to
illustrate Algorithm 1 equipped with Ball-Signature. We again
set 𝐾 = 1, 𝑧 = 2, and 𝜏 = 1. Assume the random hash function Π
gives the following order of labels on the trees:

Π(𝑏) < Π(𝑐) < Π(𝑔) < Π(𝑎) < Π(𝑑) < Π(𝑒) < Π(𝑓 ) < Π(ℎ).
Given this random ordering, the set of anchors in 𝑇1 is {𝑏, 𝑐}.

The set of signatures of 𝑇1 is {(𝑎𝑏, 1), (𝑎𝑐𝑑𝑒, 1)}, where for the il-
lustration purpose the fingerprint of each ball is again represented
as a concatenation of the labels of nodes in the ball according to
the preorder traversal without applying the hash function Γ. We
perform the same operations on other trees; Table 4 summarizes
the tree signatures.

We next add all signatures to the hash table D; the results are
described in Table 5.

Algorithm 1 checks at Line 11 the following pairs:

{(𝑇1, 1), (𝑇3, 1)}, {(𝑇1, 1), (𝑇2, 1)}, {(𝑇1, 1), (𝑇4, 1)}, {(𝑇2, 1), (𝑇4, 1)} .
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Algorithm 4 Ball-Signature(𝑇,Π, 𝑧, Γ, 𝜏)
Input: Input tree𝑇 , random hash function Π : Σ→ (0, 1) , neighborhood

size parameter 𝑧, random hash function Γ : Σ∗ → N, signature similar-
ity parameter 𝜏

Output: A set of signatures 𝑆 of𝑇
1: Initialize 𝑆 ← ∅
2: for each 𝑣 ∈ 𝑇 do

3: Assign rank 𝑟𝑣 ← Π (ℓ𝑣 )
4: end for

5: Sort nodes in𝑇 according to their rank in the increasing order, getting
{𝑣1, . . . , 𝑣|𝑇 | }

6: Convert𝑇 into a left-child right-sibling binary tree𝑇 ′
7: for 𝑣 = 𝑣1, . . . , 𝑣|𝑇 | do
8: Choose the minimal radius 𝑟 of neighborhood 𝑣 in 𝑇 ′ such that
|𝑁𝑟 (𝑣) | ∈ [𝑧, 2𝑧 )

9: if 𝑟𝑣 = min𝑥 ∈𝑁𝑟 (𝑣) 𝑟𝑥 then

10: Let (𝑢1, . . . ,𝑢 |𝑁𝑟 (𝑣) | ) be the preorder traversal of 𝑁𝑟 (𝑣)
11: 𝑠.𝑘𝑒𝑦 ← Γ (ℓ𝑢1 · · · ℓ𝑢 |𝑁𝑟 (𝑣) | )
12: 𝑠.𝑝𝑜𝑠 ← min

𝑢∈𝑁𝑟 (𝑣)
{index of node 𝑢 in the preorder traversal of𝑇 ′ }

13: 𝑆 ← 𝑆 ∪ {𝑠 }
14: end if

15: if |𝑆 | = 5𝜏 then
16: return 𝑆

17: end if

18: end for

19: return 𝑆

Table 4: Sets of signatures produced by Ball-Signature

tree ball signatures
𝑇1 (𝑎𝑏, 1), (𝑎𝑐𝑑𝑒, 1)
𝑇2 (𝑎𝑏𝑔, 1), (𝑎𝑐𝑑𝑒, 1)
𝑇3 (𝑎𝑏, 1), (𝑔𝑐𝑑𝑒, 3)
𝑇4 (𝑎𝑏𝑔ℎ, 1), (𝑎𝑐𝑑𝑒, 1)

Table 5: Hash table for Ball-Signature

key bucket contents
𝑎𝑏 (𝑇1, 1), (𝑇3, 1)
𝑎𝑐𝑑𝑒 (𝑇1, 1), (𝑇2, 1), (𝑇4, 1)
𝑎𝑏𝑔 (𝑇2, 1)
𝑔𝑐𝑑𝑒 (𝑇3, 3)
𝑎𝑏𝑔ℎ (𝑇4, 1)

All pairs except {(𝑇1, 1), (𝑇4, 1)} pass the check. The final set of
candidates for verification is {(𝑇1,𝑇3), (𝑇1,𝑇2), (𝑇2,𝑇4)}. The three
pairs will pass the verification step and appear in the final output
because each has an edit distance of 1.

Analysis of Algorithm 4. In Ball-Signature, the neighborhoods
of anchors may overlap. Compared with disjoint signatures gener-
ated from a partition scheme, overlapping signatures introduces a
new challenge: a single edit may affect many signatures. For exam-
ple, consider a star tree𝑇 with one central node and 100 leaf nodes.
Let 𝐾 = 1, 𝑧 = 2, and 𝜏 = 1. Under a random hash ranking, about
half of the leaf nodes will be anchors, whose neighborhoods will
contain the central node and itself. Consequently, a single edit on
the central node (getting another tree 𝑇 ′) will affect about half of
the signatures. This could cause the similarity check at Line 17 of
Algorithm 1 to fail even that TED(𝑇,𝑇 ′) ≤ 1.

It appears to be impossible to prove that SyncSignature equipped
with Ball-Signature will not miss any valid pairs under an ad-
versarial set of 𝐾 edits. However, if the 𝐾 edits occur at random
locations, we can still show that our join algorithm succeeds with
a good probability.

Theorem 3.2. For binary trees𝑇1,𝑇2 with |𝑇1 | = 𝑛 and TED(𝑇1,𝑇2) ≤
𝐾 , let 𝑆1 and 𝑆2 be the sets of signatures outputted by Algorithm 4 on

𝑇1 and𝑇2 respectively. For any 𝑧 = 𝑜 (min{𝑛/𝐾,𝑛1/3}) and 𝜏 = 𝑂 (𝐾),
if the (at most) 𝐾 edits take place at random nodes, then the proba-

bility that 𝑆1 and 𝑆2 shares at least 𝜏 common signatures is at least

1 − 𝑜 (1). The running time of Algorithm 4 is 𝑂 (𝑛𝑧 log𝑛).

Proof : By Lemma 3.1, we know that with probability 1 − 𝑜 (1), the
number of anchors generated by Algorithm 4 is at least 𝑛/(3𝑧),
which is at least 5𝜏 for 𝜏 = 𝑂 (𝐾) given 𝑧 = 𝑜 (𝑛/𝐾). Therefore, with
probability 1 − 𝑜 (1), Algorithm 4 returns 𝑆 containing exactly 5𝜏
signatures (early termination at Line 15-16).

We next consider the number of signatures that will be affected
by 𝐾 edits. Observe that on a binary tree, one edit can affect at most
𝑂 (1) nodes. For each signature 𝑠𝑖 (corresponding to a subtree of
size at most 2𝑧), let 𝑌𝑖 be the indicator variable for the event that
at least one of the 𝐾 edits affects 𝑠𝑖 . If the 𝐾 edits are randomly
selected, then we have

Pr[𝑌𝑖 = 1] ≤ 𝐾 ·𝑂 (1) · 2𝑧/𝑛 = 𝑂 (𝐾𝑧/𝑛) .

Let 𝑌 =
5𝜏
𝑖=1 𝑌𝑖 . Given 𝑧 = 𝑜 (𝑛/𝐾), we have

E[𝑌 ] ≤ 5 ·𝑂 (𝜏𝐾𝑧/𝑛) = 𝑜 (𝜏) .

By Markov’s inequality we have Pr[𝑌 ≤ 𝜏] ≥ 1 − 𝑜 (1), and con-
sequently Pr[5𝜏 − 𝑌 ≥ 𝜏] ≥ 1 − 𝑜 (1). That means, for a pair of
trees𝑇1,𝑇2 with TED(𝑇1,𝑇2) ≤ 𝐾 , they will share at least 𝜏 common
signatures with probability 1 − 𝑜 (1).

For the running time, for each node we spent 𝑂 (𝑧) time to con-
struct a ball neighborhood and 𝑂 (𝑧 log𝑛) for computing the signa-
ture. The time cost of other steps is of lower-order term. Thus the
total running time is 𝑂 (𝑧𝑛 log𝑛). □

3.3 Signatures Using Euler-Tour Embedding

The second idea to resolve the issue of unbalanced signature sizes
is to first embed trees to strings, use LHM-partition on strings, and
then map substrings back to subtrees to produce signatures. The
signature generation scheme based on Euler-tour embedding is
described in Algorithm 5. At Line 1 we convert the tree to a string
which is the Euler-tour of the tree. Next, we use LHM-partition
to partition the string to substrings (Line 2-8). Finally, for each
substring, we retrieve the corresponding subtree (to be explained
in the next paragraph) and generate a signature of the subtree.

The Euler-tour translates a tree 𝑇 of size 𝑛 to a string of length
2𝑛. Each element in the string consists of the label of the corre-
sponding tree node and a sign. Each node of the tree 𝑇 appears
twice in the string with different signs (‘+’ and ‘-’). The details are
described in Algorithm 6. Each substring in the Euler-tour can be
inversely mapped to a subtree in 𝑇 as follows: we first identify the
corresponding node in 𝑇 for each letter in the substring, getting a
set 𝐹 . We then remove duplicated nodes in 𝐹 (recall that each node
in 𝑇 corresponds to 2 letters in the Euler-tour). The set of nodes in
𝐹 must be connected due to the construction of the Euler-tour. The
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Algorithm 5 Euler-Signature(𝑇,Π, 𝑧, Γ, ·)
Input: Input tree𝑇 , distance threshold 𝐾 , random hash function Π : Σ→
(0, 1) , neighborhood size parameter 𝑧, random hash function Γ : Σ∗ →
N

Output: A set of signatures 𝑆 of𝑇
1: 𝐸 ← Euler-Tour(root of𝑇,𝑇 )
2: For 𝑖-th element 𝑦𝑖 in 𝐸, assign a rank 𝑟𝑖 ← Π (𝑦𝑖 )
3: Let 𝐼 be the subset of {𝑧 + 1, . . . , |𝐸 | − 𝑧} such that 𝑟𝑖 =

min𝑗 ∈{𝑖−𝑧,...,𝑖+𝑧} {𝑟 𝑗 }; denote 𝐼 = (𝑖1, . . . , 𝑖𝑘 ) with 𝑖1 < . . . < 𝑖𝑘
4: Initialize 𝑃 ← {𝑦1 . . . 𝑦𝑖1 − 1}
5: for 𝑗 = 1, . . . , 𝑘 − 1 do
6: 𝑃 ← 𝑃 ∪ {𝑦𝑖 𝑗 . . . 𝑦𝑖 𝑗+1 − 1}
7: end for

8: 𝑃 ← 𝑃 ∪ {𝑦𝑖𝑘 . . . 𝑦 |𝐸 | }
9: for each 𝑝 ∈ 𝑃 do

10: Let𝑄 be the corresponding subtree of 𝑝 in𝑇
11: Let (𝑢1, . . . ,𝑢 |𝑄 | ) be the preorder traversal of𝑄
12: 𝑠.𝑘𝑒𝑦 ← Γ (ℓ𝑢1 · · · ℓ𝑢 |𝑄 | )
13: 𝑠.𝑝𝑜𝑠 ← ⌊(index of the first element of 𝑝 in 𝐸 )/2⌋
14: 𝑆 ← 𝑆 ∪ {𝑠 }
15: end for

16: return 𝑆

Algorithm 6 Euler-Tour(𝑣,𝑇 )
Input: Input tree𝑇 and a vertex 𝑣 in𝑇
Output: Euler-tour of the subtree rooted at 𝑣
1: if 𝑣 is leaf then
2: return ℓ+𝑣 ℓ

−
𝑣

3: else
4: Let 𝑣1, . . . , 𝑣𝑘 be the children of 𝑣
5: return ℓ+𝑣 ◦ Euler-Tour(𝑣1,𝑇 ) ◦ . . . ◦ Euler-Tour(𝑣𝑘 ,𝑇 ) ◦ ℓ−𝑣
6: end if

Table 6: Euler-tours of 𝑇1, 𝑇2, 𝑇3, and 𝑇4.

tree Euler-tours
𝑇1 𝑎+𝑏+𝑏−𝑐+𝑑+𝑑−𝑒+ 𝑓 + 𝑓 −𝑒−𝑐−𝑎−

𝑇2 𝑎+𝑏+𝑔+𝑔−𝑏−𝑐+𝑑+𝑑−𝑒+ 𝑓 + 𝑓 −𝑒−𝑐−𝑎−

𝑇3 𝑎+𝑏+𝑏−𝑔+𝑐+𝑑+𝑑−𝑒+ 𝑓 + 𝑓 −𝑒−𝑐−𝑔−𝑎−

𝑇4 𝑎+𝑏+𝑔+𝑔−ℎ+ℎ−𝑏−𝑐+𝑑+𝑑−𝑒+ 𝑓 + 𝑓 −𝑒−𝑐−𝑎−

subtree of the inverse mapping is simply the induced subtree in 𝑇
of the nodes in 𝐹 .

An Example.We will again use the input trees in Figure 1 as an
example to illustrate Algorithm 1 equipped with Euler-Signature.
We again set the distance threshold 𝐾 = 1, and two parameters
𝑧 = 2, 𝜏 = 1. We assume that the random hash function Π gives the
following order of labels:

Π(ℎ−) < Π(𝑔−) < Π(𝑏−) < Π(𝑓 +) < Π(𝑓 −) < Π(𝑎+)
< Π(𝑎−) < Π(𝑏+) < Π(𝑐+) < Π(𝑐−) < Π(𝑑+) < Π(𝑑−)

< Π(𝑒+) < Π(𝑒−) < Π(𝑔+) < Π(ℎ+).

The algorithm first generates the Euler-tours of the four trees,
presented in Table 6. We then partition each Euler-tour string and
generate signatures for each tree; see Table 7. The corresponding
sets of signatures of the partitions are presented in Table 8; for
simplicity, instead of mapping back to the subtrees and using the

Table 7: Partitions of Euler-tours.

tree partitions of Euler-tours
𝑇1 𝑎+𝑏+ | 𝑏−𝑐+𝑑+𝑑−𝑒+ | 𝑓 + 𝑓 −𝑒−𝑐−𝑎−
𝑇2 𝑎+𝑏+𝑔+ | 𝑔−𝑏−𝑐+𝑑+𝑑−𝑒+ | 𝑓 + 𝑓 −𝑒−𝑐−𝑎−
𝑇3 𝑎+𝑏+ | 𝑏−𝑔+𝑐+𝑑+𝑑−𝑒+ | 𝑓 + 𝑓 −𝑒−𝑐−𝑔−𝑎−
𝑇4 𝑎+𝑏+𝑔+𝑔−ℎ+ | ℎ−𝑏−𝑐+𝑑+𝑑−𝑒+ | 𝑓 + 𝑓 −𝑒−𝑐−𝑎−

Table 8: Set of signatures produced by Euler-Signature.

tree Euler signatures
𝑇1 (𝑎𝑏, 0), (𝑏𝑐𝑑𝑒, 1), (𝑎𝑐𝑒 𝑓 , 4)
𝑇2 (𝑎𝑏𝑔, 0), (𝑏𝑔𝑐𝑑𝑒, 2), (𝑎𝑐𝑒 𝑓 , 5)
𝑇3 (𝑎𝑏, 0), (𝑏𝑔𝑐𝑑𝑒, 1), (𝑎𝑔𝑐𝑒 𝑓 , 4)
𝑇4 (𝑎𝑏𝑔ℎ, 0), (𝑏ℎ𝑐𝑑𝑒, 3), (𝑎𝑐𝑒 𝑓 , 6)

Table 9: Hash table for Euler-Signature.

key bucket contents
𝑎𝑏 (𝑇1, 0), (𝑇3, 0)
𝑏𝑐𝑑𝑒 (𝑇1, 1)
𝑎𝑐𝑒 𝑓 (𝑇1, 4), (𝑇2, 5), (𝑇4, 6)
𝑎𝑏𝑔 (𝑇2, 0)
𝑏𝑔𝑐𝑑𝑒 (𝑇2, 2), (𝑇3, 1)
𝑎𝑔𝑐𝑒 𝑓 (𝑇3, 4)
𝑎𝑏𝑔ℎ (𝑇4, 0)
𝑏ℎ𝑐𝑑𝑒 (𝑇4, 3)

random hash function Γ, we just utilize the substrings as signature
keys. The corresponding hash table is presented in Table 9.

Next, Algorithm 1 checks at Line 11 the following five pairs:

{(𝑇1, 0), (𝑇3, 0)}, {(𝑇1, 4), (𝑇2, 5)}, {(𝑇1, 4), (𝑇4, 6)},
{(𝑇2, 5), (𝑇4, 6)}, {(𝑇2, 2), (𝑇3, 1)}.

All pairs except {(𝑇1, 4), (𝑇4, 6)} pass the check. The verification step
will further reject the candidate pair (𝑇2,𝑇3) whose edit distance is
greater than𝐾 = 1. The final output is again {(𝑇1,𝑇3), (𝑇1,𝑇2), (𝑇2,𝑇4)}.
Analysis of Algorithm 5. The following lemma states that Euler-
tour embedding will not increase the edit distance by more than
a factor of 2. Due to space constraints, the proof can be found in
Appendix A.2.

Lemma 3.3. Let 𝐸1 and 𝐸2 be the Euler-tour embedding of trees 𝑇1
and 𝑇2, respectively. We have ED(𝐸1, 𝐸2) ≤ 2 · TED(𝑇1,𝑇2).

Now we present the main theorem for Algorithm 5.

Theorem 3.4. For binary trees𝑇1,𝑇2 with |𝑇1 | = 𝑛 and TED(𝑇1,𝑇2) ≤
𝐾 , let 𝑆1 and 𝑆2 be the sets of signatures outputted by Algorithm 5

on 𝑇1 and 𝑇2 respectively. For any 𝑧 = 𝑜 (𝑛/𝐾) and 𝜏 = 𝑂 (𝐾), the
probability that 𝑆1 and 𝑆2 shares at least 𝜏 common signatures is at

least 1 − 𝑜 (1). The running time of Algorithm 5 is 𝑂 (𝑛 log𝑛).
Proof : We make use of the following lemma which states that the
number of partitions created by LHM-partition is tightly concen-
trated to its mean.

Lemma 3.5 ([39]). Given an input Euler-tour 𝐸 and a neighborhood
size parameter 𝑧, for any 𝑐 > 0, the size of set 𝐼 ( |𝐼 | = 𝑋 ) created
by Algorithm 5 satisfies Pr


|𝑋 − E[𝑋 ] | >

√︁
𝑐E[𝑋 ]


< 1/𝑐 , where

E[𝑋 ] = |𝐸 |−2𝑧2𝑧+1 .
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By Lemma 3.3, we know that after the embedding, the two re-
sulting strings 𝐸1 and 𝐸2 has (string) edit distance at most 2𝐾 .

We now consider a particular edit operation 𝑂 on 𝐸1. It is easy
to see that the number of anchors that𝑂 can affect is bounded by 2.
Consequently, the number of partitions𝑂 can affect is bounded by 3.
Given that there are at most 2𝐾 edit operations, the total number of
partitions of 𝐸1 that may be affected by edit operations is bounded
by 6𝐾 . By Lemma 3.5, if 𝑧 = 𝑜 (𝑛/𝐾), setting 𝑐 = 𝑛0.1 = 𝜔 (1) and
recalling that |𝐸1 | = 2𝑛 and 𝜏 = 𝑂 (𝐾), we have with probability
1 − 𝑜 (1), there are at least

(1 − 𝑜 (1)) · |𝐸1 | − 2𝑧
2𝑧 + 1 − 6𝐾 ≥ 0.9 · |𝐸1 |

2𝑧
− 6𝐾 ≥ 𝜏

unaffected partitions after the 2𝐾 edits.
For the running time, the Euler tour can be constructed in 𝑂 (𝑛)

time. The set of partitions 𝑃 can be constructed in 𝑂 (𝑛) time by
a linear scan. Same as before, the fingerprint computation costs
𝑂 (𝑛 log𝑛) time. The time cost of other steps is of lower-order term.
Thus the total running time is 𝑂 (𝑛 log𝑛). □

3.4 Plugging Signature Generation Schemes to

the SyncSignatureFramework

Our signature generation schemes Ball-Signature and Euler-
Signature are both Monte Carlo randomized algorithms, which
has a small error probability. More precisely, Theorem 3.2 (for Ball-
Signature) and Theorem 3.4 (for Euler-Signature) state that
for each pair of binary trees whose edit distance is at most 𝐾 , the
pair will be include in the final output with probability at least
1 − 𝛿 for a 𝛿 = 𝑜 (1). The standard parallel repetition method can
further reduce the error 𝛿 all the way to zero. More precisely, we
repeat the signature generation step and the hash join step for log𝑁
times (𝑁 is the number of input trees), each time using independent
random ranks. We then union the log𝑁 sets of candidate pairs for
verification. Now, each pair of trees with edit distance at most 𝐾
will be included in the output with probability at least 1 − 𝛿 log𝑁 ≥
1 − 1/𝑁 100. By a union bound on 𝑂 (𝑁 2) pairs of trees, all pairs of
trees with edit distance at most 𝐾 will be included in the output
with probability at least 1−1/𝑁 . On the other hand, the verification
phase in the SyncSignature framework guarantees that there is
no false positive in the output.

By Fact 1, the binary tree transformation may increase the edit
distance between a pair of trees by at most a factor of 2, to com-
pensate which we need to find pairs of binary trees (after the trans-
formation) with edit distance at most 2𝐾 for verification. How-
ever, this change will not affect the correctness of Theorem 3.2 (for
Ball-Signature) and Theorem 3.4 (for Euler-Signature) – the
statements and the proofs of the theorems still hold if we replace
𝐾 with 2𝐾 everywhere. We note that the final verification step is
performed on the original input trees with distance threshold 𝐾 .

We have the following theorems for SyncSignature (Algorithm 1)
equipped with our signature generation schemes. Recall that after
grouping, we can assume that the sizes of all input trees are within
a constant factor. Let 𝑛 is the size of the smallest tree in the input.

Theorem 3.6. For any 𝑧 = 𝑜 (min{𝑛/𝐾,𝑛1/3}) and 𝜏 = 𝑂 (𝐾),
equipped with Ball-Signature (with log𝑁 parallel repetition), Al-

gorithm 1 solves the tree similarity joins exactly with probability at

least 1 − 1/𝑁 .

Theorem 3.7. For any 𝑧 = 𝑜 (𝑛/𝐾) and 𝜏 = 𝑂 (𝐾), equipped with
Euler-Signature (with log𝑁 parallel repetition), Algorithm 1 solves

the tree similarity joins exactly with probability at least 1 − 1/𝑁 .

Performing parallel repetition will naturally increase the run-
ning time. In our experiments, we do not use parallel repetition,
thus our algorithms may have false negatives (in theory, 𝛿 fraction
of false negatives in expectation). Our experiments in Section 4
demonstrate that on the datasets we have tested, our algorithms
achieve almost perfect accuracy in most cases without parallel rep-
etition. In the worst case, our algorithms have a false negative rate
of 1.3% (Figure 2 and Figure 6). We also show in Section 4.1 that
three parallel repetitions decrease the false negative rate to 0%.

We would also like to comment that a small accuracy loss due
to randomization is universal in big data analytics, for example, in
practically all data stream algorithms [22], locality sensitive hashing
for nearest neighbor search [11], large graph analysis [33], etc. For
the problem of tree similarity joins, first, a small number of false
negatives may not affect the downstream applications. For example,
if the subsequent task is clustering and each similar pair forms an
edge, a few (random) missing edges in the input graph may not
have a notable impact on the quality of the clustering output. To
support this statement, we have conducted some experiments on
clustering (delayed to Appendix B.4 in the full version due to space
constraints). Our experiments show that the false negatives of our
join schemes (without parallel repetition) will only cause at most
0.02% percent of nodes to be misclustered. Second, noise in the
input data may obscure the algorithm’s small accuracy loss. For
example, in biological applications, the data reads obtained using
the most advanced SMRT technology can have up to 12-18% errors.

4 EXPERIMENTS

In this section, we present our experimental studies of the SyncSig-
nature framework and the two signature generation schemes.

The Setup.We abbreviate Algorithm 2 using Algorithm 4 for the
signature generation as BJoin, and that using Algorithm 5 as EJoin.
We set the neighborhood resolution 𝑐 , the only parameter of our
algorithms, to be 0.3 by default. We will discuss the influence of 𝑐
on the running time and accuracy of the algorithms shortly.

We compare BJoin and EJoin with the previous best algorithm
for the tree similarity join [14] (denoted by TJoin). The implementa-
tion of TJoin is available online.1 We note that the partition-based
algorithm proposed in [30], as well as algorithms in earlier works
[13, 20, 37], have a considerably longer running time; these algo-
rithms cannot finish in 10 hours in all of our experiments, and do
not fit our figures if we want to provide a high resolution compar-
ison between BJoin, EJoin, and TJoin. We thus choose to leave
other algorithms out of the figures, and refer readers to [14] for a
comparison.

The theoretical analysis of our algorithms necessitates a tree size
of at least Ω(𝐾). In our experiments, we test for 𝐾 up to 40. Thus,
for trees of sizes smaller than 100, we will use TJoin to find similar
pairs. We note that a similar action was taken for the partition-
based join algorithm Tang; see the discussion in the experimental
section of [14].

1The implementation can be obtained from https://frosch.cosy.sbg.ac.at/mpawlik/ted-
experiments.
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Figure 2: Running time comparisons in the single-thread setting. The number labels associated with points represent the

accuracy; points without number labels have accuracy at least 99%

Table 10: Statistics of datasets.

name #trees min. size max. size avg. size
Swiss1K 122, 772 1, 000 48, 286 1, 902
Swiss 565, 254 105 48, 286 917

Python1K 35, 754 1, 000 46, 481 3, 016
Python 148, 270 1 46, 481 948

JScript1K 39, 110 1, 000 1, 716, 813 9, 006
JScript 142, 373 4 1, 716, 813 2, 619

We use three large real-world datasets: (1) Swiss2 : protein se-
quence data. (2) Python3: abstract syntax trees of Python files. (3)
JScript4: abstract syntax trees of JavaScript files. To better ap-
preciate the advantage of our algorithms on large trees, we also
created datasets Swiss1K, Python1K, and JScript1K, which are
obtained from Swiss, Python, and JScript after filtering out trees
of sizes smaller than 1000. The statistics of the datasets we use in
our experiments are summarized in Table 10.

This section consists of four parts. In the first part, we com-
pare BJoin and EJoin with TJoin in the single-thread (sequential)
computation setting. In the second part, we show the influence
of the tree size and the parameter 𝑐 on the accuracy and running
time of BJoin and EJoin. After that, we compare all algorithms in
the multi-thread (parallel) computation setting. Finally, we briefly
compare BJoin and EJoin. We also test how false negatives of our
algorithms affect a downstream application clustering, but due to
space constraints, we leave this part to Appendix B.4.

2https://www.uniprot.org/downloads
3https://files.sri.inf.ethz.ch/data/py150.tar.gz
4https://files.sri.inf.ethz.ch/data/js_dataset.tar.gz

All algorithms are implemented in C++. All experiments are
conducted on PowerEdge R740 server equipped with 2× Intel Xeon
Gold 6248R 3.0GHz (24-core/48-thread per CPU) and 256GB RAM.
All results are medians of 11 runs.

4.1 Comparisons in the Single-Thread Setting

We first compare BJoin and EJoinwith the previous best algorithm
TJoin [14] in the single-thread setting. The results are described in
Figure 2.

The performance of three algorithms on full datasets (JScript,
Python, and Swiss) are very similar. This is due to the fact that the
number of output pairs is very large when we include all small trees.
Consequently, the verification of the output pairs takes up the ma-
jority of the running time; In all plots for JScript and Python, the
verification takes more than 98% of the total time. This phenomena
is why we would like to test on truncated datasets to demonstrate
that BJoin and EJoin outperform TJoin on large trees.

Due to the decreased output sizes, all algorithms on truncated
datasets run substantially faster than that on full datasets. On
all truncated datasets (JScript1K, Python1K, and Swiss1K), both
BJoin and EJoin perform much better than TJoin, typically by a
factor 2-4. On JScript1K and Python1K, the ratios increase when
𝐾 increases, but the situation is different on Swiss1K, where the
running times of BJoin and EJoin grow faster when 𝐾 increases.
This discrepancy could be related to the amount of output pairs
produced by various datasets using different distance thresholds.
Overall, BJoin and EJoin have better performance than TJoin even
in the single-thread setting.

The accuracy of BJoin and EJoin is almost perfect (at least
99.9%) on the JScript, JScript1K, Swiss, and Swiss1K datasets,
and is at least 98.9% on Python and Python1K.
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Figure 3: Running time percentages of binary-tree conversion (C), partition (P), join (J) and verification (V) of BJoin and EJoin

Running Time Distributions. In Figure 3, we present the run-
ning time of binary-tree conversion, partition, join, and verification

of BJoin and EJoin on the three datasets. We can see that the verifi-
cation step becomes more expensive when the distance threshold 𝐾
increases, which is because the number of candidate pairs increases
fast when 𝐾 grows. On JScript and Python, the running time
of the join step is negligible, while on Swiss, the join step makes
a significant contribution when 𝐾 is large. This may be because
Swiss (biological data) is a different type of dataset compared with
JScript and Python (abstract syntax trees). The binary-tree con-
version step in BJoin takes a non-trivial percentage of the running
time, which decreases percentage-wise as 𝐾 increases. Note that
EJoin does not have a binary-tree conversion step.

Parallel Repetition. Figure 4 shows the effect of parallel repetition
on BJoin and EJoin. We find that repeating the signature genera-
tion and join steps twice increases the accuracy of both BJoin and
EJoin to at least 99.7%, and repeating the steps three times already
boosts the accuracy of both algorithms to 100%.

Figure 4: Accuracy Improvement using Parallel Repetition

4.2 Influence of Tree Size and Resolution 𝑐

Influence of the Tree Size. Our next set of experiments study
the influence of the tree sizes on the performance of the three
algorithms. Generally speaking, our algorithms have better and
more stable performance when the tree sizes are large (say, at least
50𝐾 where 𝐾 is the distance threshold). Due to space constraints,
we leave this part to Appendix B.1.
Influence of Resolution c. Figure 5 presents the influence of
neighborhood resolution 𝑐 on the accuracy of BJoin and EJoin.
We utilize truncated datasets rather than full datasets because the
verification on the output pairs consumes the majority of the pro-
cessing time on full datasets, making the influence of 𝑐 harder to
discern.

The experimental results are consistent with the theoretical pre-
diction: the smaller the value of 𝑐 (therefore 𝑧), the less likely we are
to overlook a similar pair of trees. In Figure 5, we can see that both
BJoin and EJoin achieve nearly perfect accuracy on JScript1K
and Swiss1K datasets. While on Python1K, BJoin slightly outper-
forms EJoin, and both are above 98%.

Due to space constraints, we leave the experimental results on
the influence of resolution 𝑐 on the running time of the algorithms
to Appendix B.2. Generally speaking, the value of 𝑐 does not have a
significant impact on the running time of BJoin and EJoin.

4.3 Comparisons in the Multi-Thread Setting

As described in Section 2, themain advantage of our SyncSignature
framework is that it is fully parallelizable. We have implemented
the multi-threading version of BJoin and EJoin and compare them
with TJoin. To be fair, we also parallelize the verification step of
TJoin. Recall that TJoin uses an index nested loop join which
cannot be parallelized.
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Figure 5: Influence of neighborhood resolution 𝑐 on the accuracy of EJoin and BJoin

Figure 6: Running time comparisons in the multi-thread setting. The number labels associated with points represent the

accuracy; points without number labels represent accuracy of at least 99%

The results on parallel executions of the algorithms are presented
in Figure 6. We have delayed some results (for a different threshold
distance 𝐾 ) in Figure 12 in Appendix B.3 due to space constraints.
The 𝑥-axis of these figures stands for the number of threads we
use in the parallel implementation. We observe that the running

times of EJoin and BJoin decrease quickly when the number of
threads increases. The trend slows when the number of threads
becomes large, which is because the time spent on synchroniz-
ing/aggregating results from different threads becomes non-trivial.
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Figure 7: Running time percentages of binary-tree conversion (C), partition (P), join (J), and verification (V) in BJoin and EJoin
using 16 threads

On Python, since the verification step takes up the majority of
the time in all algorithms, the performance of the three algorithms
are close. The situation is different on JScript, on which BJoin
and EJoin outperform TJoin by a notable margin. On Swiss, the
advantage of BJoin and EJoin is more significant.

On truncated datasets JScript1K, Python1K, and Swiss1K, the
advantage of BJoin and EJoin over TJoin becomes significant. For
𝐾 = 10, using 16 threads, BJoin and EJoin outperform TJoin by
ratios of approximately 3 and 7 on JScript1K, ratios of 4 and 10
on Python1K, and ratios of 10 and 15 on Swiss1K. We note that the
curves for TJoin on Swiss is quite flat, which is due to the fact that
the join step in TJoin dominates the running time, and this step
cannot be parallelized.

Figure 7 present the running time of binary-tree conversion, parti-
tion, join, and verification of BJoin and EJoin on the three datasets
in the multi-thread setting. The running time distribution in the
multi-thread setting is similar to that in the single-thread setting
(see Figure 3), except that the time percentage of join is larger in
the parallel setting, which is because the hash tables generated by
different threads are merged sequentially in our implementation.

4.4 A Brief Comparison of BJoin and EJoin
Finally, we give a brief comparison between BJoin and EJoin. From
what we have observed, the practical performance of the two al-
gorithms are not entirely comparable. Generally speaking, EJoin
performs slightly better than BJoin in terms of the running time,
while the accuracy of BJoin is slightly better than that of EJoin.

There are two reasons why the running time of BJoin could
be larger than that of EJoin. First, in BJoin we need to perform
an additional binary-tree conversion step that is not needed in
EJoin. This conversion step has a non-trivial contribution to the

total running time, as seen in Figure 3. Second, we know from
Theorem 3.2 and Theorem 3.4 that that the running time of Ball-
Signature is𝑂 (𝑛𝑧 log𝑛), whereas that of Euler-Signature is only
𝑂 (𝑛 log𝑛). The actual difference of the two signature generation
schemes is not as large as 𝑧 because the constants hidden in the
big-O notation are different. We also observe that sometimes BJoin
performs better than EJoin when 𝐾 is large, which is because
𝑧 ∝ 1/𝐾 and 𝑂 (𝑛𝑧 log𝑛) becomes smaller when 𝐾 increases.

Regarding the accuracy, it could be due to some structural infor-
mation loss in EJoin when finding the anchors in the Euler-tour of
each tree. Fortunately, the accuracy loss is not significant and can be
offset by two or three parallel repetitions as previously discussed.

5 CONCLUSION

In this paper, we propose a synchronized signature based algorith-
mic framework for solving tree similarity joins under edit distance,
together with two concrete signature generation schemes. Our
synchronized signature based algorithms are simple, efficient, yet
parallelizable. They exceed the previous best algorithms for tree
similarity joins in terms of running time in the centralized/single-
thread environment at a small loss of accuracy, and have a substan-
tially larger lead in the parallel/multi-thread context.
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