
Efficient Maximum 𝑘-Plex Computation over Large Sparse Graphs
Lijun Chang

The University of Sydney

Australia

Lijun.Chang@sydney.edu.au

Mouyi Xu

The University of Sydney

Australia

moxu7046@uni.sydney.edu.au

Darren Strash

Hamilton College

US

dstrash@hamilton.edu

ABSTRACT
The 𝑘-plex model is a relaxation of the clique model by allowing

every vertex to miss up to 𝑘 neighbors. Designing exact and effi-

cient algorithms for computing a maximum 𝑘-plex in a graph has

been receiving increasing interest recently. However, the existing

algorithms are still inefficient due to having major limitations. We

in this paper design a new algorithm kPlexS for the maximum 𝑘-

plex problem, with three novel contributions. Firstly, we propose a

new framework for computing maximum 𝑘-plex over large sparse

graphs, by iteratively extracting small dense subgraphs from it and

then solving each of the extracted dense subgraphs by a branch-

and-bound search. Secondly, we propose an efficient reduction

algorithm CTCP to reduce the input graph size by exhaustively

conducting vertex reduction and edge reduction. CTCP computes

a smaller reduced graph and also has a lower time complexity than

the existing techniques. Moreover, we iteratively invoke CTCP to

reduce the input graph once a vertex has been processed and re-

moved from it. Thirdly, we develop a branch-and-bound algorithm

BBMatrix specifically targeting the dense subgraphs that are ex-

tracted from the input graph. BBMatrix represents its input graph
by an adjacency matrix, and utilizes both first-order (i.e., individual

vertices) and second-order information (i.e., pairs of vertices) for

reduction and upper bounding. In addition, incremental techniques

are proposed to efficiently apply the reduction and upper bound-

ing during the recursion. Extensive empirical studies on large real

graphs demonstrate that our algorithm kPlexS outperforms the

state-of-the-art algorithms BnB, Maplex, and KpLeX.

PVLDB Reference Format:
Lijun Chang, Mouyi Xu, and Darren Strash. Efficient Maximum 𝑘-Plex

Computation over Large Sparse Graphs. PVLDB, 16(2): 127 - 139, 2022.

doi:10.14778/3565816.3565817

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://lijunchang.github.io/Maximum-kPlex.

1 INTRODUCTION
The graph model has been used in a wide range of data analysis

applications such as social media, communication networks, col-

laboration networks, web graphs, and the Internet, as it naturally

captures the relationship between entities. Graph data in these ap-

plications are usually globally sparse — e.g., the average degree is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.

doi:10.14778/3565816.3565817

orders of magnitude smaller than the number of vertices — but lo-

cally dense [8]. Identifying locally dense (i.e., cohesive) subgraphs

has many applications. For example, identifying large cohesive

subgraphs in social networks has been used to detect money laun-

dering and narcotics activity [2], and cohesive subgraphs are listed

as instrumental to the detection of the social network of terrorists

involved in the 2001 World Trade Centre terrorist attacks [14].

One classic notion of cohesive subgraph is clique which requires

every pair of distinct vertices to be connected by an edge, and

efficient algorithms for maximal clique enumeration and maximum

clique computation have been designed, e.g., in [5, 7, 11, 17, 18,

27, 30]. Nonetheless, the clique concept is often too restrictive, as

large and tightly connected communities in real networks hardly

appear as cliques. In view of this, various clique relaxations have

been formulated in the literature [25], such as 𝑘-plex, 𝑛-clan, 𝑛-

club, and 𝑠-clique. 𝑘-plex relaxes the clique concept by allowing

every vertex to miss up to 𝑘 neighbors (including the vertex itself)

in a subgraph; note that a 1-plex is a clique. Both the problem of

maximum 𝑘-plex computation, which computes a 𝑘-plex with the

largest number of vertices, and the problem of maximal 𝑘-plex

enumeration, which reports all 𝑘-plexes that are maximal, have

been receiving increasing interests recently, e.g., see [3, 4, 9, 10, 12,

13, 20, 21, 28, 33–35, 37, 38].

In this paper, we study the maximum 𝑘-plex problem. As the

problem is NP-hard [15], the only viable option for designing exact

algorithms is branch-and-bound search which runs in exponential

time in the worst case. To speed up the computation, all of the three

most recent approaches BnB [12], Maplex [38] and KpLeX [13]

split the computation into two stages, by first computing a reduced

graph in polynomial time in Stage-I and then process the much

smaller reduced graph (than the input graph) by branch-and-bound

search in Stage-II. Specifically, the reduced graph is a subgraph

of the input graph 𝐺 = (𝑉 , 𝐸) obtained by removing unpromising

vertices and/or edges, which are determined based on the size of

a heuristically computed 𝑘-plex, from it. Although different tech-

niques have been proposed in [12, 13, 38] for these two stages, they

are inefficient due to having the following two major limitations.

(1) For Stage-I, the existing algorithms obtain a large reduced

graph and also have a high time complexity for computing

it; note that, different algorithms may obtain different re-

duced graphs, and in general the smaller the reduced graph

the more efficient the branch-and-bound search in Stage-II.

First, all existing works, except [38], conducts only vertex

reduction. Second, althoughMaplex [38] also conducts edge
reduction, it does not iteratively conduct the reductions un-

til convergence due to its high time complexity; our empiri-

cal study shows that the size of the reduced graph obtained

by Maplex [38] is the same as that by KpLeX [13]. Third,

they have a high time complexity of eitherO(𝑟 · |𝑉 | · |𝐸 |) [13]

127

https://doi.org/10.14778/3565816.3565817
https://lijunchang.github.io/Maximum-kPlex
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565817
https://www.acm.org/publications/policies/artifact-review-and-badging-current

or O(𝑟 · |𝐸 |1.5) [38], where 𝑟 is the number of iterations of

applying the reductions which can be as large as |𝑉 |.
(2) For Stage-II, all the existing branch-and-bound search algo-

rithms exploit only first-order information (i.e., degrees of

individual vertices) for upper bounding and pruning, which

are not as powerful as second-order information (i.e., com-

mon neighbors for pairs of vertices). Note that although

the edge reduction used in Stage-I ofMaplex [38] utilizes
second-order information, it is used only in Stage-I but

not Stage-II of Maplex, and moreover, non-adjacent vertex

pairs have not been exploited.

We design a new algorithm kPlexS for efficient maximum 𝑘-plex

computation over large sparse graphs, by developing novel tech-

niques to resolve the above two limitations. Firstly, for Stage-I, we

formalize the idea of core-truss co-pruning for computing a reduced

graph that is guaranteed to be no larger than the reduced graphs

obtained by the existing algorithms. That is, given a heuristically

computed 𝑘-plex of size 𝑙𝑏, we reduce the input graph 𝐺 to its

maximal subgraph that is both a (𝑙𝑏 + 1 − 𝑘)-core — by iteratively

removing vertices whose degrees are less than 𝑙𝑏 + 1 − 𝑘 (vertex
reduction) — and a (𝑙𝑏 + 1 − 2𝑘)-truss — by iteratively removing

edges that participates in less than 𝑙𝑏 +1−2𝑘 triangles (edge reduc-
tion). However, the naive approach of iteratively applying vertex

reduction followed by edge reduction until convergence would take

O(𝑟 · |𝐸 |1.5) time, where 𝑟 is the number of iterations and can be

as large as |𝑉 |. To speed up the computation, we design the CTCP
algorithm to conduct core-truss co-pruning in O(𝛿 (𝐺) × |𝐸 |) time,

where 𝛿 (𝐺) is the degeneracy of𝐺 that is small in practice and guar-

anteed to be at most

√︁
|𝐸 | [11]. Consequently, kPlexS computes a

smaller reduced graph in a faster time than the existing algorithms.

Secondly, for Stage-II, we propose to further exploit the second-

order information, in addition to the first-order information, for

upper bounding and pruning in the branch-and-bound search. To do

so, given a partial solution (i.e., 𝑘-plex) 𝑆 , for each pair of vertices

𝑢 and 𝑣 in the current working graph, we need to compute the

number of common neighbors of 𝑢 and 𝑣 that are not in 𝑆 , denoted

cn
𝑆
(𝑢, 𝑣). We then utilize these cn

𝑆
(·, ·) values to obtain upper

bounds such that we can prune either vertices from the graph (see

our reduction rule RR4 in Section 5), or edges from the graph (see

our reduction rule RR5 in Section 5), or even the entire search

branch/instance (see our upper bound UB2 in Section 5). However,

it is inefficient to compute cn
𝑆
(·, ·) on-the-fly and is challenging, if

not infeasible, to store andmaintain cn
𝑆
(·, ·) for large sparse graphs;

note that, the reduced graph computed from Stage-I could still be

sparse, see Table 4 in Section 6. To circumvent this, we design a

new framework for computing maximum 𝑘-plex over large sparse

graphs, by running branch-and-bound search over dense subgraphs
that are iteratively extracted from the input graph. Then, we develop

a new branch-and-bound search algorithm BBMatrix specifically
targeting these dense subgraphs. In BBMatrix, we represent its

input graph by an adjacency matrix, and incrementally maintain

cn
𝑆
(·, ·) for all vertex pairs and use these values for upper bounding

and pruning.

Contributions. Our main contributions are as follows.

• We design a new framework for computing maximum 𝑘-

plex over large sparse graphs, by running branch-and-bound

search over dense subgraphs that are iteratively extracted

from a sparse graph. (Section 3)

• We develop an efficient algorithm CTCP for computing

the reduced graph in O(𝛿 (𝐺) × 𝐸) time. CTCP computes a

smaller reduced graph and also has a lower time complexity

than the existing algorithms. Moreover, CTCP is not only

used in the preprocessing step to compute the reduced

graph, but also iteratively invoked by our framework to

reduce the graph size whenever a vertex has been processed

and removed. (Section 4)

• Wepropose a branch-and-bound algorithmBBMatrix specif-
ically targeting the dense subgraphs that are extracted from

the input graph. BBMatrix uses adjacencymatrix graph rep-

resentation and exploits both first-order and second-order

information for upper bounding and pruning. In addition,

incremental techniques are proposed to efficiently apply

the upper bounding and pruning. (Section 5)

We conduct extensive empirical studies on two collections of bench-

mark graphs (Section 6). The results show that for any given time

limit, our algorithm kPlexS always solves more graph instances

than the state-of-the-art algorithms BnB, Maplex, and KpLeX.

Related Works. We categorize related works as follows.

(1) Maximum 𝑘-plex Computation. The concept of 𝑘-plex was in-

troduced by Seidman and Foster [28] in the context of social net-

work analysis. The NP-hardness of maximum 𝑘-plex computation

follows from the general proof of [15]. Balasundaram et al. [3]

formulated an integer linear program for maximum 𝑘-plex com-

putation, and designed a branch-and-cut implementation IPBC.
McClosky and Hicks [20] developed a combinatorial algorithm

OsterPlex which is an adaptation of the maximum clique compu-

tation algorithm proposed in [22]. Moser et al. [21] designed an

algorithmGuidedBranching for the complement problem that aims

to find the largest vertex-induced subgraph whose maximum de-

gree is at most 𝑘 − 1. Xiao et al. [37] designed the BS algorithm

that improves the worst-case running time to 𝑐𝑛𝑛O(1) where 𝑐 < 2

is a constant depending only on 𝑘 . BnB [12], Maplex [38], and

KpLeX [13] are the three most recent algorithms, which have been

discussed above.

(2) Maximal 𝑘-plex Enumeration. The problem of enumerating all

maximal 𝑘-plexes (i.e., those 𝑘-plexes that are not contained in

a larger 𝑘-plex) is also extensively studied. Most of the maximal

𝑘-plex enumeration algorithms, such as [10, 33, 35], follow the

framework of the Bron-Kerbosch algorithm [5] that enumerates

all maximal cliques. Besides these algorithms, a polynomial delay

enumeration algorithm is proposed in [4], and simple pruning tech-

niques are used in [9, 34] for enumerating maximal 𝑘-plexes that

are larger than a given threshold 𝜏 . However, these enumeration

algorithms are inefficient for computing maximum 𝑘-plex due to

lack of advanced pruning and bounding techniques. On the other

hand, the maximum 𝑘-plex computed by our algorithm provides a

guideline for choosing the threshold 𝜏 .

(3) Maximum Clique Computation. Designing exact algorithms for

maximum clique computation has also been extensively studied,

e.g., [6, 7, 16, 17, 23, 24, 26, 27, 30, 31, 36]. Upper bounds based

on graph coloring and MaxSAT reasoning have been shown to be

128

𝑣1 𝑣2 𝑣3

𝑣4𝑣5

𝑣6 𝑣7

𝑣8𝑣9

𝑣10 𝑣11

𝑣12𝑣13

𝑣14

Figure 1: An example graph

the most successful techniques for maximum clique computation.

However, they cannot be applied to compute maximum 𝑘-plex for

𝑘 ≥ 2, as they heavily rely on the clique property. On the other

hand, second-order techniques have not been used in the existing

studies of maximum clique computation. We remark that for the

special case of 𝑘 = 1 where a 1-plex is also a clique, the existing

maximum clique solvers will be more efficient than our algorithms.

2 PRELIMINARIES
In this paper, we focus on a large unweighted and undirected graph
𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of

undirected edges. We consider only simple graphs, i.e., without
self-loops and parallel edges. We denote the undirected edge be-

tween 𝑢 and 𝑣 by both (𝑢, 𝑣) and (𝑣,𝑢); then, 𝑢 (resp. 𝑣) is said

to be adjacent to and a neighbor of 𝑣 (resp. 𝑢). The set of neigh-

bors of 𝑢 in 𝐺 is 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the de-
gree of 𝑢 in 𝐺 is 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |. Given a vertex subset 𝑆 of

𝐺 , we use 𝐺 [𝑆] to denote the subgraph of 𝐺 induced by 𝑆 , i.e.,

𝐺 [𝑆] = (𝑆, {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}). For ease of presentation, we
simply refer to an unweighted and undirected graph as a graph,

and omit the subscript 𝐺 from the notations when the context is

clear. For an arbitrary given graph 𝑔, we denote its set of vertices

and its set of edges by 𝑉 (𝑔) and 𝐸 (𝑔), respectively.

Definition 2.1 (Clique). A graph 𝑔 is a clique if there is an edge

in 𝑔 between every pair of distinct vertices, or equivalently, every

vertex 𝑢 ∈ 𝑉 (𝑔) has degree 𝑑𝑔 (𝑢) = |𝑉 (𝑔) | − 1.

Definition 2.2 (𝑘-plex). A graph 𝑔 is a 𝑘-plex if for every vertex

𝑢 ∈ 𝑉 (𝑔), its degree satisfies 𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) | −𝑘 , i.e., 𝑢 misses edges

to at most 𝑘 vertices (including 𝑢 itself).

The 𝑘-plex concept is a relaxation of the clique concept, and a 1-

plex is a clique according to the definition. Obviously, if a subgraph

𝑔 of 𝐺 is a 𝑘-plex, then the subgraph 𝐺 [𝑉 (𝑔)] of 𝐺 induced by

vertices 𝑉 (𝑔) is also a 𝑘-plex. Thus, in this paper, we simply refer to
a 𝑘-plex by its set of vertices. The size of a 𝑘-plex 𝑃 ⊆ 𝑉 is measured

by its number of vertices, denoted |𝑃 |. A 𝑘-plex 𝑃 of𝐺 is amaximal
𝑘-plex if every proper superset of 𝑃 in𝐺 is not a 𝑘-plex. A 𝑘-plex 𝑃

of𝐺 is amaximum 𝑘-plex if its size is the largest among all 𝑘-plexes

of 𝐺 ; note that maximum 𝑘-plex is not unique. Consider the graph

in Figure 1, {𝑣2, 𝑣3, 𝑣4, 𝑣5}, {𝑣6, 𝑣7, 𝑣8, 𝑣9} and {𝑣10, 𝑣11, 𝑣12, 𝑣13} are
three maximum 2-plexes of size 4.

For two vertices 𝑢 and 𝑣 that are not adjacent (i.e., not connected

by an edge), we call 𝑣 (resp. 𝑢) a non-neighbor of 𝑢 (resp. 𝑣); note

that a vertex is considered neither a neighbor nor a non-neighbor of

itself. Then, in a 𝑘-plex 𝑃 , every vertex has at least |𝑃 | −𝑘 neighbors

and equivalently at most 𝑘 − 1 non-neighbors. The property of

𝑘-plex is hereditary, i.e., any subset of a 𝑘-plex is also a 𝑘-plex.

Problem Statement. Given a graph 𝐺 = (𝑉 , 𝐸) and an integer

𝑘 ≥ 2, in this paper we study the problem of maximum 𝑘-plex

computation, which aims to find the largest 𝑘-plex in 𝐺 that is of

size at least 2𝑘 − 1. If there is no 𝑘-plex of size at least 2𝑘 − 1, then
we report an arbitrary 𝑘-plex.

Our main motivations for only considering 𝑘-plexes of size at

least 2𝑘 − 1 are as follows.
• 𝑘 is usually small in practice, e.g., 𝑘 is set to be at most 5 in

the empirical studies of [12, 37, 38]. Thus, 2𝑘 − 1 is small,

and it is natural to search for 𝑘-plexes of size at least 2𝑘 − 1.
• A 𝑘-plex of size smaller than 2𝑘 − 1 may be disconnected,

e.g., any two disjoint (𝑘 − 1)-cliques form a 𝑘-plex of size

2𝑘 − 2. In contrast, any 𝑘-plex of size at least 2𝑘 − 1 is

guaranteed to be connected.

Note that, when our algorithm reports a 𝑘-plex of size 2𝑘 − 2, then
this 𝑘-plex is also guaranteed to be maximum. Thus, when our

algorithm reports a 𝑘-plex of size smaller than 2𝑘 − 2, it means that

the maximum 𝑘-plex size is at most 2𝑘 − 2; we then can invoke any

of the existing algorithms, if a maximum 𝑘-plex is needed.

Frequently used notations are summarized in Table 1.

Table 1: Frequently used notations

Notation Meaning

𝐺 = (𝑉 , 𝐸) an unweighted and undirected graph with vertex set𝑉

and edge set 𝐸

𝑃, 𝑆 ⊆ 𝑉 𝑘-plexes

𝑆 the set of vertices that are outside 𝑆

𝑁𝑆 (𝑢) the set of neighbors of 𝑢 that are in 𝑆

𝑑𝑆 (𝑢) the cardinality of 𝑁𝑆 (𝑢) , i.e., 𝑑𝑆 (𝑢) = |𝑁𝑆 (𝑢) |
𝑁 ≤2
𝐺
(𝑢) the set of vertices that are at most 2-hops away from 𝑢

in𝐺 , i.e., 𝑢’s neighbors and 𝑢’s neighbors’ neighbors

cn
𝑆
(𝑢, 𝑣) the number of common neighbors of 𝑢 and 𝑣 in 𝑆

2.1 𝑘-Core and 𝑘-Truss
We review the concepts of 𝑘-core and 𝑘-truss here, which will be

used in our pruning techniques in Section 4.

Definition 2.3 (𝑘-core [29]). Given a graph 𝐺 and an integer 𝑘 ,

the 𝑘-core of 𝐺 is the maximal subgraph 𝑔 of 𝐺 such that every

vertex 𝑢 ∈ 𝑉 (𝑔) has degree 𝑑𝑔 (𝑢) ≥ 𝑘 in the subgraph 𝑔.

The 𝑘-core is a vertex-induced subgraph. For example, the entire

graph in Figure 1 is a 1-core, and the graph obtained by excluding

vertex 𝑣14 is a 3-core. Note that although every vertex in a 𝑘-plex

𝑃 must have degree at least |𝑃 | − 𝑘 in 𝑃 , the concepts of 𝑘-plex

and 𝑘-core are inherently different. That is, the minimum degree

requirement in 𝑘-plex depends on the size of the 𝑘-plex, while that

in 𝑘-core is independent of its size. This makes maximum 𝑘-plex

computation NP-hard [15], while computing the (maximum) 𝑘-core

is in P.

A related concept is the core number of a vertex 𝑢, denoted

core(𝑢), which is the largest 𝑘 such that 𝑢 is in the 𝑘-core. Given

the core numbers of all vertices, the 𝑘-core is simply (the subgraph

of 𝐺 induced by) the set of vertices with core number at least

𝑘 . The problem of computing the core number for all vertices is

known as the core decomposition problem. It can be computed by

the peeling algorithm in O(|𝑉 | + |𝐸 |) time [19], which iteratively

129

removes the vertex with the smallest degree from the graph. The

peeling sequence of vertices is known as the degeneracy ordering,
and the maximum core number among all vertices of 𝐺 is known

as the degeneracy of 𝐺 , denoted 𝛿 (𝐺), which is at most

√︁
|𝐸 | [11].

Definition 2.4 (𝑘-truss [32]). Given a graph 𝐺 and an integer

𝑘 , the 𝑘-truss of 𝐺 is the maximal subgraph 𝑔 of 𝐺 such that

every edge (𝑢, 𝑣) ∈ 𝐸 (𝑔) participates in at least 𝑘 triangles, i.e.,

|𝑁𝑔 (𝑢) ∩ 𝑁𝑔 (𝑣) | ≥ 𝑘,∀(𝑢, 𝑣) ∈ 𝐸 (𝑔).1

𝑘-truss is an edge-induced subgraph. For the graph in Figure 1,

the subgraph obtained by excluding edges (𝑣1, 𝑣4) and (𝑣13, 𝑣14) is
a 1-truss, i.e., each edge participates in at least one triangle. 𝑘-truss

can be considered as a higher-order version of 𝑘-core. That is, each

edge corresponds to a node, and each triangle corresponds to a

hyper-edge. Hence, the 𝑘-truss can also be computed by the peeling

algorithm, while the time complexity becomes O(𝛿 (𝐺) × |𝐸 |) [32].

3 OUR FRAMEWORK
In this paper, we propose a new framework for maximum 𝑘-plex

computation over large sparse graphs; note that our framework

also works for dense graphs, and some of the graphs tested in our

experiments in Section 6 are dense. Instead of directly conducting

a branch-and-bound search on the input large sparse graph, we

conduct branch-and-bound searches on dense subgraphs that are

iteratively extracted from it. Our framework is mainly based on the

observation of the following lemma.

Lemma 3.1. [38] Any two non-adjacent vertices in a 𝑘-plex of size
ℓ ≥ 2𝑘 − 1 must have at least ℓ − 2𝑘 + 2 common neighbors.

Following Lemma 3.1 we know that any two non-adjacent vertices
in a 𝑘-plex of size at least 2𝑘 − 1 must have at least one common
neighbor; this also means that any 𝑘-plex of size ≥ 2𝑘 − 1 must

be connected. As a result, we can restrict the computation of the

maximum𝑘-plex containing a vertex𝑢 in𝐺 to the subgraph induced

by vertices 𝑁 ≤2
𝐺
(𝑢); recall that we are only interested in 𝑘-plexes

of size at least 2𝑘 − 1. Here, 𝑁 ≤2
𝐺
(𝑢) denotes the set of vertices that

are at most 2-hops away from 𝑢 in 𝐺 . For example, to search for

a 𝑘-plex containing 𝑣1 and of size at least 2𝑘 − 1 for the graph in

Figure 1, we can restrict the computation to the subgraph induced by

vertices 𝑁 ≤2
𝐺
(𝑣1) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣9, 𝑣10}. The advantages

of working with the subgraphs induced by 𝑁 ≤2
𝐺
(𝑢) are twofold.

• The subgraphs are much smaller than the input graph.

• The subgraphs are dense as observed by our empirical stud-

ies (see Table 4 in Section 6), and thus enables second-order

techniques which would otherwise be time-consuming to

be applied on sparse graphs.

Our Framework. Based on the above observation, we propose to

iteratively extract small dense subgraphs from 𝐺 and then process

these subgraphs by branch-and-bound search. Specifically, we iter-

atively conduct the following operations until the graph is empty:

(1) Choose a vertex 𝑢 from the graph.

(2) Compute a maximum 𝑘-plex that contains 𝑢.

(3) Remove 𝑢 from the graph.

1
For presentation simplicity, the 𝑘-truss here is defined slightly different from the

literature which requires every edge to participate in at least 𝑘 − 2 triangles.

Algorithm 1: Our Framework

Input: A graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ≥ 2

Output: A maximum 𝑘-plex in𝐺

/* Lines 1–7 are Stage-I */

1 (𝑃∗,𝑢𝑏) ← kPlex-Degen(𝐺,𝑘) ;
2 if |𝑃∗ | < 𝑢𝑏 then
3 𝑙𝑏 ← max{ |𝑃∗ |, 2𝑘 − 2};
4 𝐺 ← the (𝑙𝑏 + 1 − 𝑘)-core of𝐺 ;

5 for each 𝑣 ∈ 𝑉 (𝐺) do deg(𝑣) ← the degree of 𝑣 in𝐺 ;

6 Compute the triangle count Δ(·, ·) for all edges of𝐺 ;

7 CTCP(𝐺, ∅, true, 𝑙𝑏 + 1 − 𝑘, 𝑙𝑏 + 1 − 2𝑘, deg,Δ) ; /* core-truss

co-pruning */;

/* Lines 8–15 are Stage-II */

8 while𝑉 (𝐺) ≠ ∅ do
9 𝑢 ← the vertex with the minimum degree in𝐺 ;

10 𝑔← the subgraph of𝐺 induced by vertices 𝑁 ≤2
𝐺
(𝑢) ;

11 𝑃 ← the maximum 𝑘-plex in 𝑔 that contains 𝑢 and is of

size at least 𝑙𝑏 + 1 by invoking BBMatrix; /* 𝑃 ← ∅ if

there is no such a 𝑘-plex */;

12 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← false;
13 if |𝑃 | > 𝑙𝑏 then
14 𝑃∗ ← 𝑃 ; 𝑙𝑏 ← |𝑃 |; 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true;

15 CTCP(𝐺, {𝑢}, 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑙𝑏 + 1 − 𝑘, 𝑙𝑏 + 1 − 2𝑘, deg,Δ) ;
/* remove 𝑢 from 𝐺, and conduct core-truss co-pruning */;

16 return 𝑃∗;

In addition, we also apply graph reduction techniques to prune

unpromising vertices and edges from the input graph𝐺 , both before

the iterative process and after removing𝑢 from the graph at Step (3).

The pseudocode of our framework is shown in Algorithm 1. We

first heuristically compute a large 𝑘-plex 𝑃∗ as well as an upper

bound 𝑢𝑏 of the maximum 𝑘-plex size, by invoking kPlex-Degen
which will be introduced shortly (Line 1). If |𝑃∗ | = 𝑢𝑏, then the

heuristically computed 𝑘-plex 𝑃∗ is guaranteed to be maximum and

the algorithm finishes. Otherwise |𝑃∗ | < 𝑢𝑏 (Line 2), we use the

size of 𝑃∗ as the lower bound 𝑙𝑏 to reduce𝐺 to its (𝑙𝑏 + 1 − 𝑘)-core
(Line 4); this is because we are now searching for 𝑘-plexes of size at

least 𝑙𝑏 + 1. Note that, if the heuristically computed 𝑘-plex is of size

smaller than 2𝑘−2, then we set 𝑙𝑏 = 2𝑘−2 as we are only interested
in 𝑘-plexes of size at least 2𝑘−1 (Line 3). Then, we obtain the degree
deg(·) for vertices of 𝐺 (Line 5), and compute the triangle count

Δ(·, ·) for all edges of𝐺 (Line 6), where Δ(𝑢, 𝑣) = |𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣) |
is the number of triangles containing the edge (𝑢, 𝑣). After that,
we conduct core-truss co-pruning based on the computed deg(·)
and Δ(·, ·) by invoking CTCP (Line 7) which will be discussed in

Section 4; note that, CTCP also updates deg(·) and Δ(·, ·) when
vertices and/or edges are removed from 𝐺 . Then, we iteratively

compute the maximum 𝑘-plex that contains 𝑢 for each 𝑢 ∈ 𝑉 (𝐺)
that is not pruned (Lines 9–11), by invoking BBMatrix which will

be introduced in Section 5. After computing the maximum 𝑘-plex

containing 𝑢, we remove 𝑢 from 𝐺 and then conduct a core-truss

co-pruning by invoking CTCP, as other vertices and/or edges may

now be able to be pruned as a result of 𝑢 being removed (Line 15);

here, 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 indicates whether the lower bound has changed or

not since the previous invocation of CTCP. Note that, as CTCPmay

130

remove vertices at Line 15, Lines 10–11 are not executed for every

vertex of 𝐺 . We will analyze the time complexity of Algorithm 1 in

Theorem 4.4 after introducing the CTCP algorithm.

As we will show in Section 5 that BBMatrix represents its input
graph 𝑔 as an adjacency matrix, it would be beneficial to reduce

the number of vertices of 𝑔 that is passed to BBMatrix at Line 11
of Algorithm 1 as this then reduces the memory footprint of the

adjacency matrix. Thus, in our implementation we extract a smaller

subgraph than 𝐺 [𝑁 ≤2
𝐺
(𝑢)] at Line 10 of Algorithm 1, without first

constructing𝐺 [𝑁 ≤2
𝐺
(𝑢)]. The main idea is based on Lemma 3.1 and

the following lemma.

Lemma 3.2. Let𝑢 be a vertex in a 𝑘-plex 𝑃 of size ℓ ≥ 2𝑘 +1. Every
vertex in the subgraph induced by 𝑢’s neighbors 𝑁𝑃 (𝑢) must have a
degree at least ℓ − 2𝑘 .

Proof. Firstly, according to the definition of 𝑘-plex, we have

|𝑁𝑃 (𝑢) | ≥ ℓ −𝑘 . Secondly, as 𝑘-plex is hereditary, 𝑁𝑃 (𝑢) is also a 𝑘-
plex. Consequently, every vertex 𝑣 ∈ 𝑁𝑃 (𝑢) has at least |𝑁𝑃 (𝑢) | −𝑘
neighbors in 𝑁𝑃 (𝑢), which is at least ℓ − 2𝑘 . □

Thus, given a lower bound 𝑙𝑏 of the maximum 𝑘-plex size, at

Line 10 of Algorithm 1 we first obtain the set of neighbors 𝑁𝐺 (𝑢) of
𝑢 and denote it by 𝑋 . Following Lemma 3.2 we iteratively remove

from 𝑋 all vertices that have less than 𝑙𝑏 + 1 − 2𝑘 neighbors in

𝑋 ; that is, we reduce 𝑋 to its (𝑙𝑏 + 1 − 2𝑘)-core. Then, following
Lemma 3.1, we obtain the set 𝑌 of non-neighbors of 𝑢 that share at

least 𝑙𝑏 − 2𝑘 + 3 common neighbors with 𝑢 in 𝑋 ; that is, each vertex

𝑣 of 𝑌 satisfies (𝑢, 𝑣) ∉ 𝐸 (𝐺) and |𝑁𝑋 (𝑢) ∩ 𝑁𝑋 (𝑣) | ≥ 𝑙𝑏 − 2𝑘 + 3.
Finally, we let 𝑔 be the subgraph of 𝐺 induced by 𝑋 ∪ 𝑌 ; note that,
𝑋 ∪ 𝑌 ⊆ 𝑁 ≤2

𝐺
(𝑢).

Algorithm 2: kPlex-Degen(𝐺 = (𝑉 , 𝐸), 𝑘)
Output: A large 𝑘-plex 𝑃 in𝐺 , and an upper bound 𝑢𝑏 of the

maximum 𝑘-plex size in𝐺

1 𝑃 ← ∅; 𝑢𝑏 ← 0;

2 for each vertex 𝑣 ∈ 𝑉 do 𝑑𝑒𝑔 (𝑣) ← the degree of 𝑣 in𝐺 ;

3 for 𝑖 ← 1 to |𝑉 | do
4 𝑣𝑖 ← argmin𝑣∈𝑉 \{𝑣1,...,𝑣𝑖−1} 𝑑𝑒𝑔 (𝑣) ;
5 if 𝑑𝑒𝑔 (𝑣𝑖) + 𝑘 ≥ |𝑉 | − 𝑖 + 1 and |𝑉 | − 𝑖 + 1 > |𝑃 | then
6 𝑃 ← 𝑉 \ {𝑣1, . . . , 𝑣𝑖−1};
7 if min{𝑑𝑒𝑔 (𝑣𝑖) + 𝑘, |𝑉 | − 𝑖 + 1} > 𝑢𝑏 then
8 𝑢𝑏 ← min{𝑑𝑒𝑔 (𝑣𝑖) + 𝑘, |𝑉 | − 𝑖 + 1};
9 for each 𝑣 ∈ 𝑁𝐺 (𝑣𝑖) do 𝑑𝑒𝑔 (𝑣) ← 𝑑𝑒𝑔 (𝑣) − 1;

10 return (𝑃,𝑢𝑏) ;

Heuristically Compute a Large 𝑘-Plex. Recall that Line 1 of

Algorithm 1 invokes kPlex-Degen to heuristically compute a large

𝑘-plex, whose size serves as a lower bound of the maximum 𝑘-

plex size and is used for pruning unpromising vertices and edges

from the input graph. The pseudocode of kPlex-Degen is shown in

Algorithm 2, where the 𝑘-plex is obtained by iteratively removing

the vertex with the smallest degree in a similar way to the peeling

algorithm for core decomposition (as discussed in Section 2.1). In

Algorithm 2, we also compute an upper bound 𝑢𝑏 of the maximum

𝑘-plex size in𝐺 . The algorithm runs for |𝑉 | iterations (Lines 4–9).

In each iteration, it first obtains the vertex 𝑣𝑖 that has the smallest

degree in the current graph (Line 4); if there is a tie, an arbitrary

vertex with the smallest degree is selected. If the current graph is a

𝑘-plex (i.e., 𝑑𝑒𝑔(𝑣𝑖) +𝑘 ≥ |𝑉 | − 𝑖 +1) and its size is larger than 𝑃 (i.e.,

|𝑉 | − 𝑖 +1 > |𝑃 |), then 𝑃 is updated by the current graph (Lines 5–6).

It also updates the upper bound 𝑢𝑏 (Lines 7–8), based on an upper

bound of the maximum 𝑘-plex containing 𝑣𝑖 in the current graph,

which ismin{𝑑𝑒𝑔(𝑣𝑖) + 𝑘, |𝑉 | − 𝑖 + 1}. Finally, it (virtually) removes

𝑣𝑖 and its associated edges from the graph (Line 9).

The time complexity of Algorithm 2 is O(|𝑉 | + |𝐸 |). Note that,
as Algorithm 2 also computes an upper bound 𝑢𝑏 of the maximum

𝑘-plex in 𝐺 , the heuristically computed 𝑘-plex 𝑃 is a maximum

𝑘-plex if its size is the same as 𝑢𝑏 (Line 2 of Algorithm 1).

4 EFFICIENT CORE-TRUSS CO-PRUNING
Stage-I of our framework (i.e., Lines 1–7 of Algorithm 1) removes

unpromising vertices and edges from the input graph based on a

heuristically computed 𝑘-plex. We call the resulting graph of 𝐺

obtained after Line 7 the reduced graph. In this section, we propose

an efficient core-truss co-pruning algorithm to compute a small

reduced graph, based on the following two lemmas.

Lemma 4.1 (Core Pruning [12]). Theminimum degree of a𝑘-plex
of size ℓ is at least ℓ − 𝑘 .

Lemma 4.2 (Truss Pruning [13]). Any two adjacent vertices in a
𝑘-plex of size ℓ ≥ 2𝑘 + 1 must have at least ℓ − 2𝑘 common neighbors,
i.e., each edge participates in at least ℓ − 2𝑘 triangles, in the 𝑘-plex.

Following Lemma 4.2, the edge between vertices 𝑢 and 𝑣 that

have less than ℓ − 2𝑘 common neighbors cannot be in a 𝑘-plex of

size at least ℓ .2 Thus, we can safely remove the edge (𝑢, 𝑣) from the

graph if we are searching for a 𝑘-plex of size at least ℓ . Let 𝑙𝑏 be

the size of a heuristically computed 𝑘-plex or the currently found

largest 𝑘-plex. Then, we will be searching for a 𝑘-plex of size at

least 𝑙𝑏 + 1 when computing the maximum 𝑘-plex, and we thus can

reduce the graph 𝐺 based on the above two lemmas as follows.

Vertex Reduction: We can remove from𝐺 all vertices whose

degrees are smaller than 𝑙𝑏 + 1 − 𝑘 , i.e., we reduce 𝐺 to its
(𝑙𝑏 + 1 − 𝑘)-core.

Edge Reduction: We can remove from 𝐺 all edges that par-

ticipate in less than 𝑙𝑏 + 1 − 2𝑘 triangles, i.e., we reduce 𝐺
to its (𝑙𝑏 + 1 − 2𝑘)-truss.

Note that, a (𝑙𝑏 +1−𝑘)-core is not equivalent to a (𝑙𝑏 +1−2𝑘)-truss.
That is, a (𝑙𝑏 +1−𝑘)-core is not necessarily a (𝑙𝑏+1−2𝑘)-truss, and
a (𝑙𝑏 +1−2𝑘)-truss may not necessarily be a (𝑙𝑏 +1−𝑘)-core. Thus,
we will need to conduct these two reduction steps iteratively and

exhaustively to reduce 𝐺 as much as possible. Then, the remaining

graph is the maximal subgraph that is both a (𝑙𝑏 + 1 − 𝑘)-core and
a (𝑙𝑏 + 1 − 2𝑘)-truss. We call this process the core-truss co-pruning.

Example 4.3. Consider the graph in Figure 1 and suppose 𝑙𝑏 = 4

and 𝑘 = 2. First, the core pruning removes vertex 𝑣14 from the

graph as 𝑙𝑏 + 1 − 𝑘 = 3. Second, the truss pruning removes edge

(𝑣1, 𝑣4) from the graph as 𝑙𝑏 + 1 − 2𝑘 = 1. Third, the core pruning

removes vertex 𝑣1. Forth, the truss pruning removes edge (𝑣2, 𝑣6).
2
Together with Lemma 3.1, we can also conclude that𝑢 and 𝑣 will not appear together

in a𝑘-plex of size at least ℓ , but we will not utilize this fact in the core-truss co-pruning.

131

Fifth, the core pruning removes all vertices except 𝑣10, 𝑣11, 𝑣12, 𝑣13.

The resulting graph then is the reduced graph that cannot be further

reduced by the current 𝑙𝑏.

A naive algorithm to conduct the core-truss co-pruning would

be iteratively applying the vertex reduction followed by edge re-

duction until convergence. However, the time complexity would be

O(𝑟 · |𝐸 |1.5) where 𝑟 is the number of iterations and can be as large

as |𝑉 |, since each iteration of edge reduction takes time O(|𝐸 |1.5).
This time complexity is too high for large real graphs.

Algorithm 3: CTCP(𝐺,𝑄𝑣, 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝜏𝑣, 𝜏𝑒 , deg,Δ)
Output: Remove vertices of𝑄𝑣 from𝐺 , and then reduce𝐺 to its

maximal subgraph that is both a 𝜏𝑣-core and a 𝜏𝑒 -truss

1 Initialize an edge queue𝑄𝑒 ← ∅;
2 if 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
3 for each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) do
4 if Δ(𝑢, 𝑣) < 𝜏𝑒 then𝑄𝑒 ← 𝑄𝑒 ∪ { (𝑢, 𝑣) };

5 truss-peeling(𝐺,𝑄𝑣,𝑄𝑒 , 𝜏𝑒 , deg,Δ) ;
6 while there is a vertex 𝑣 ∈ 𝑉 (𝐺) s.t. deg(𝑣) < 𝜏𝑣 do
7 truss-peeling(𝐺, {𝑣}, ∅, 𝜏𝑒 , deg,Δ) ;

Procedure truss-peeling(𝐺,𝑄𝑣,𝑄𝑒 , 𝜏𝑒 , deg,Δ)
8 while𝑄𝑣 ≠ ∅ or 𝑄𝑒 ≠ ∅ do
9 while𝑄𝑒 ≠ ∅ do
10 (𝑢, 𝑣) ← pop an edge from𝑄𝑒 ;

11 Remove edge (𝑢, 𝑣) from𝐺 ;

12 deg(𝑢) ← deg(𝑢) − 1; deg(𝑣) ← deg(𝑣) − 1;

13 for each 𝑤 ∈ 𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣) do
14 Δ(𝑢, 𝑤) ← Δ(𝑢, 𝑤) − 1; Δ(𝑣, 𝑤) ← Δ(𝑣, 𝑤) − 1;

15 if Δ(𝑢, 𝑤) + 1 = 𝜏𝑒 then𝑄𝑒 ← 𝑄𝑒 ∪ { (𝑢, 𝑤) };
16 if Δ(𝑣, 𝑤) + 1 = 𝜏𝑒 then𝑄𝑒 ← 𝑄𝑒 ∪ { (𝑣, 𝑤) };

17 if 𝑄𝑣 ≠ ∅ then
18 𝑢 ← pop a vertex from𝑄𝑣 ;

19 for each 𝑤 ∈ 𝑁𝐺 (𝑢) do
20 Remove edge (𝑢, 𝑤) from𝐺 ;

21 deg(𝑤) ← deg(𝑤) − 1;

22 for each pair of neighbours 𝑣, 𝑤 ∈ 𝑁𝐺 (𝑢) do
23 if (𝑣, 𝑤) ∈ 𝐸 (𝐺) then
24 Δ(𝑣, 𝑤) ← Δ(𝑣, 𝑤) − 1;

25 if Δ(𝑣, 𝑤) + 1 = 𝜏𝑒 then𝑄𝑒 ← 𝑄𝑒 ∪ { (𝑣, 𝑤) };

26 Remove vertex 𝑢 from𝐺 ;

We propose an efficient algorithm CTCP to conduct the core-

truss co-pruningwith a time complexity ofO(𝛿 (𝐺)×|𝐸 |); recall that
𝛿 (𝐺) ≤

√︁
|𝐸 | is the degeneracy of 𝐺 . The pseudocode of CTCP is

shown in Algorithm 3. We present the algorithm in a more general

form, by taking a general core pruning threshold 𝜏𝑣 and a general

truss pruning threshold 𝜏𝑒 as input. The degrees of vertices and the

triangle counts of edges are, respectively, stored and maintained in

deg and Δ, which are initialized at Lines 5–6 of Algorithm 1. The

input boolean variable 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 is used to indicate whether we

need to collect the set of edges whose triangle counts are smaller

than 𝜏𝑒 ; note that an invocation to CTCP (e.g., see Lines 7 and 15

of Algorithm 1) should guarantee that if 𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 is false, then

the input graph to CTCP is itself a 𝜏𝑒 -truss. In addition, CTCP also

takes as input a set/queue of vertices 𝑄𝑣 that must be removed

from the graph; this 𝑄𝑣 is obtained from Line 15 of Algorithm 1. In

summary, CTCP removes vertices of 𝑄𝑣 from 𝐺 and then reduces

𝐺 to its maximal subgraph that is both a 𝜏𝑣-core and a 𝜏𝑒 -truss.

The main idea of CTCP is to first conduct truss pruning, and

then as long as there is a vertex whose degree is smaller than

the core pruning threshold, we remove the vertex from the graph

and conduct truss pruning again. For efficiency consideration, we

collect the set of edges, whose triangle counts are smaller than the

truss pruning threshold, only when necessary rather than in every

iteration. Details are as follows. It first collects the set of edges

whose triangle counts are smaller than 𝜏𝑒 into an edge queue 𝑄𝑒 if

𝑙𝑏_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 is true (Lines 1–4). Secondly, it invokes truss-peeling
to remove vertices of 𝑄𝑣 and edge of 𝑄𝑒 from 𝐺 , and then reduce

the resulting graph to its 𝜏𝑒 -truss (Line 5). Thirdly, as long as 𝐺 is

not a 𝜏𝑣-core, it removes a vertex of degree smaller than 𝜏𝑣 from 𝐺

and then reduces the resulting graph to its 𝜏𝑒 -truss (Lines 6–7). It

is easy to verify that when the algorithm terminates, the resulting

graph is the largest subgraph that is both a 𝜏𝑣-core and a 𝜏𝑒 -truss.

The pseudocode of truss-peeling is also shown in Algorithm 3,

where 𝑄𝑒 stores the set of edges that need to be removed as their

triangle counts are smaller than 𝜏𝑒 . We first remove all edges of

𝑄𝑒 from 𝐺 (Lines 9–16), and then remove a vertex 𝑢 ∈ 𝑄𝑣 and its

associated edges from 𝐺 (Lines 18–26). Note that, during each of

these two processes, we also (1) update the degrees (i.e., deg) and
triangle counts (i.e., Δ) for those vertices and edges that are affected
(Lines 12, 14, 21, 24), and (2) push an edge into 𝑄𝑒 if its triangle

count decreases from 𝜏𝑒 to 𝜏𝑒 − 1 (Lines 15, 16, 25).
We prove the time complexity of CTCP, and more generally, the

total time complexity of all invocations to CTCP by Algorithm 1,

in the theorem below.

Theorem 4.4. The time complexity of Algorithm 1, after excluding
the time complexities of Lines 10–11, is O(𝛿 (𝐺) × |𝐸 |) when assum-
ing 𝑘 is bounded by a small constant. Consequently, the total time
complexity of all invocations to CTCP is O(𝛿 (𝐺) × |𝐸 |).

The proof is deferred to the full version [1].

Compare with the Existing Algorithms. Although the existing

algorithms BnB [12], KpLeX [13], and Maplex [38] also compute

a reduced graph, CTCP differs from them in the following three

aspects. Firstly, BnB and KpLeX only remove vertices to obtain the

reduced graph, and the reduced graph computed by our algorithm

CTCP is guaranteed to be no larger than that computed by BnB and

KpLeX since “unsupported” edges, as defined in [13], are directly

removed by our edge reduction. Moreover, CTCP has a lower time

complexity than KpLeX for computing the reduced graph, where

the time complexity of the latter is O(𝑟 · |𝑉 | · |𝐸 |); here, 𝑟 is the
number of iterations which can be as large as |𝑉 |. Secondly, al-
though Maplex also utilizes the idea of edge reduction to compute

the reduced graph, it has a high time complexity of O(𝑟 · |𝐸 |1.5),
the same as the naive algorithm discussed above. Due to the high

time complexity, the implementation of Maplex open-sourced at

https://github.com/ini111/Maplex does not conduct vertex reduc-

tion and edge reduction until convergence (see Table 8 in Section 6

for empirical comparisons). Thirdly, ourCTCP algorithm is not only

used in the preprocessing step (i.e., Stage-I) to compute the reduced

132

https://github.com/ini111/Maplex

graph, but also iteratively invoked by our framework in Stage-II to

reduce the graph size whenever a vertex has been processed and

removed (see Line 15 of Algorithm 1).

5 A BRANCH-AND-BOUND ALGORITHM FOR
DENSE GRAPHS

In State-II of our framework (i.e., Lines 8–15 of Algorithm 1), we

iteratively extract a small subgraph 𝑔 for computing a maximum 𝑘-

plex containing a vertex𝑢 for each vertex in the graph (see Lines 10–

11 of Algorithm 1). Specifically, 𝑔 is a subgraph of 𝐺 induced by a

vertex subset of 𝑁 ≤2
𝐺
(𝑢), as discussed in Section 3. Our empirical

study shows that the extracted subgraphs 𝑔 are dense, i.e., with

high density as measured by
2 |𝐸 (𝑔) |

|𝑉 (𝑔) |× (|𝑉 (𝑔) |−1) ; please see Table 4
in Section 6 for the numbers. In this section, we propose a branch-

and-bound algorithm BBMatrix to efficiently process the extracted

small and dense subgraphs 𝑔. In the following, we first present the

branching, reduction and bounding techniques in Section 5.1, then

give the pseudocode of BBMatrix in Section 5.2, and finally discuss

our incremental computation techniques in Section 5.3.

5.1 Branching, Reduction and Bounding
In the following discussions, we represent the recursively generated

instances of the branch-and-bound algorithm by 𝐼 = (𝑔, 𝑘, 𝑆, 𝑙𝑏),
where 𝑆 ⊆ 𝑉 (𝑔) is a 𝑘-plex. For a given instance (𝑔, 𝑘, 𝑆, 𝑙𝑏), it aims

to find the largest 𝑘-plex 𝑃 ⊆ 𝑉 (𝑔) such that 𝑃 ⊇ 𝑆 and |𝑃 | > 𝑙𝑏.

Note that, if the lower bound 𝑙𝑏 is not relevant to the discussion,

then we also represent an instance by 𝐼 = (𝑔, 𝑘, 𝑆).
Branching Rules. The idea of branching rules is to select which
vertex of 𝑉 (𝑔) \ 𝑆 to be processed next. That is, two branches

will be generated based on the selected branching vertex 𝑢: one

includes 𝑢 into 𝑆 , and the other excludes 𝑢 from 𝑔 and thus also

from 𝑆 . We prove in the lemma below that if there is a vertex

𝑢 ∈ 𝑉 (𝑔) \ 𝑆 such that 𝑢 has only zero or one non-neighbor in

𝑔 (i.e., 𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) | − 2), then among all maximum 𝑘-plexes

containing 𝑆 in 𝑔, there must exist one that also contains 𝑢. Thus,

we choose 𝑢 as the branching vertex, and then greedily add 𝑢 to 𝑆

without comprising the correctness; that is, we do not generate the

other branch of excluding 𝑢 from 𝑆 in this case. This reduces the

number of newly generated branches from two to one. We term

this branching rule as BR1; we note that this branching rule is also
a reduction rule (i.e., 𝑢 is in some maximum 𝑘-plex containing 𝑆).

Lemma 5.1. Given an instance 𝐼 = (𝑔, 𝑘, 𝑆),
BR1. For a vertex𝑢 ∈ 𝑉 (𝑔)\𝑆 , if𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) |−2 and 𝑆∪{𝑢}

is a 𝑘-plex, then 𝑢 is in some maximum 𝑘-plex containing 𝑆
in 𝑔.

The proof is deferred to the full version [1].

We remark that the above lemma cannot be directly extended to

handle vertices with two or more non-neighbors in 𝑔.

If the above condition is not satisfied, then we use the branching

rule that is proposed by Gao et al. [12], which we call BR2.

BR2. Let𝑉0 be the set of vertices of𝑉 (𝑔) \𝑆 that have exactly

𝑘 − 1 non-neighbors in 𝑆 , i.e., 𝑉0 = {𝑣 ∈ 𝑉 (𝑔) \ 𝑆 | |𝑆 \
𝑁𝑆 (𝑣) | = 𝑘 − 1}. If 𝑉0 = ∅, then 𝑉0 is reset as 𝑉 (𝑔) \ 𝑆 .

Among all vertices of 𝑉0, the branching vertex is selected

as the one that has the largest degree in 𝑉 (𝑔) \ 𝑆 .
That is, priority is given to vertices that have 𝑘 − 1 non-neighbors
in 𝑆 . The rational is that after such a vertex 𝑢 is added to 𝑆 , then

all non-neighbors of 𝑢 in 𝑉 (𝑔) \ 𝑆 can be removed from 𝑔 as only

neighbors of 𝑢 can be further added to 𝑆 .

Reduction Rules. The general idea of reduction rules is to remove

unpromising vertices from 𝑔. Given an instance 𝐼 = (𝑔, 𝑘, 𝑆, 𝑙𝑏), a
vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 is unpromising if either 𝑆 ∪ {𝑣} is not a 𝑘-plex,
or every 𝑘-plex containing 𝑆 ∪ {𝑣} in 𝑔 will be of size at most 𝑙𝑏. We

first use the following three reduction rules that have been widely

used by the existing approaches, e.g., [37]

RR1. For a vertex 𝑣 ∈ 𝑉 (𝑔)\𝑆 , if 𝑣 has at least𝑘 non-neighbors
in 𝑆 (i.e., |𝑆 \ 𝑁𝑆 (𝑣) | ≥ 𝑘), then we can remove 𝑣 from 𝑔 as

𝑆 ∪ {𝑣} is not a 𝑘-plex.
RR2. For a vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 , if 𝑣 has a non-neighbor 𝑢 ∈ 𝑆

such that |𝑆 \ 𝑁𝑆 (𝑢) | = 𝑘 , then we can remove 𝑣 from 𝑔 as

𝑆 ∪ {𝑣} is not a 𝑘-plex.
RR3. For a vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 , if 𝑑𝑔 (𝑣) + 𝑘 ≤ 𝑙𝑏, then we can

remove 𝑣 from 𝑔 as all 𝑘-plexes containing 𝑆 ∪ {𝑣} will be
of size at most 𝑙𝑏.

Note that RR3 is the same as vertex reduction used in Section 4.

In addition, we propose two reduction rules, based on an upper

bound of the maximum 𝑘-plex containing 𝑆 in 𝑔 as computed by

the lemma below.

Lemma 5.2. Given a graph 𝑔, a 𝑘-plex 𝑆 ⊂ 𝑉 (𝑔), and two vertices
𝑢, 𝑣 ∈ 𝑆 , the maximum size 𝑘-plex containing 𝑆 in 𝑔 is at most
|𝑆 | + 𝑟𝑆 (𝑢) + 𝑟𝑆 (𝑣) + cn𝑆 (𝑢, 𝑣). Here, 𝑟𝑆 (𝑢) = 𝑘 − |𝑆 \ 𝑁𝑆 (𝑢) | is the
maximumnumber of non-neighbors of𝑢 outside 𝑆 that can be included
in any 𝑘-plex containing 𝑆 , and cn

𝑆
(𝑢, 𝑣) = |𝑁

𝑆
(𝑢) ∩ 𝑁

𝑆
(𝑣) | is the

common neighbors of𝑢 and 𝑣 in 𝑆 (i.e., outside 𝑆) where 𝑆 = 𝑉 (𝑔)\𝑆 . 3

The proof is deferred to the full version [1].

Following Lemma 5.2, we have the following two reduction rules.

RR4. For a vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 , if there exists a vertex 𝑢 ∈ 𝑆
such that |𝑆 | + 1 + 𝑟𝑆∪{𝑣} (𝑢) + 𝑟𝑆∪{𝑣} (𝑣) + cn𝑆 (𝑢, 𝑣) ≤ 𝑙𝑏,

then we can remove 𝑣 from 𝑔; note that 𝑢 may be adjacent

to 𝑣 or not.

RR5. For an edge (𝑢, 𝑣) ∈ 𝐸 (𝑔) where 𝑢, 𝑣 ∉ 𝑆 , if |𝑆 | + 2 +
𝑟𝑆∪{𝑢,𝑣} (𝑢) + 𝑟𝑆∪{𝑢,𝑣} (𝑣) + cn

𝑆
(𝑢, 𝑣) ≤ 𝑙𝑏, then we can

remove the edge (𝑢, 𝑣) from 𝑔.

RR4 and RR5 are second-order reductions that consider a pair

of vertices 𝑢 and 𝑣 . Note that, they are different from the edge

reduction used in Section 4. Firstly, bothRR4 andRR5 have another
non-empty vertex set 𝑆 . Secondly, in RR4, 𝑢 and 𝑣 can be either

adjacent or non-adjacent, and 𝑢 could be in 𝑆 .

Upper Bounds. The general idea of upper bounds is to compute

an upper bound of the maximum 𝑘-plex size containing 𝑆 in 𝑔, such

that we can prune the entire branch/instance 𝐼 = (𝑔, 𝑘, 𝑆) if its
upper bound is no larger than 𝑙𝑏. In this paper, we use two upper

bounds, and take the minimum among them.

UB1. min𝑢∈𝑆 {𝑑𝑔 (𝑢)} + 𝑘 .
UB2. min𝑢,𝑣∈𝑆,𝑢≠𝑣{𝑟𝑆 (𝑢) + 𝑟𝑆 (𝑣) + cn𝑆 (𝑢, 𝑣)} + |𝑆 |.

3
Note that Lemma 5.2 generalizes the ones proved in existing studies [12, 13], by

allowing 𝑆 to be an arbitrary𝑘-plex and𝑢 and 𝑣 can be either adjacent or non-adjacent.

133

Algorithm 4: BBMatrix(�, �, ��)
Input: A (dense) graph � represented by its adjacency matrix, an

integer � , and a lower bound �� of the maximum �-plex size

1 � ← heuristically compute a �-plex of �;

2 if |� | > �� then �∗ ← � ; �� ← |� |;
3 � ← the (�� + 1 − �)-core of �;
4 for each � ∈ � (�) do � (�) ← the degree of � in �;

5 for each �, � ∈ � (�) s.t. � ≠ � do cn(�, �) = |�� (�) ∩ �� (�) |;
6 CTCP(�, ∅, true, �� + 1 − �, �� + 1 − 2�,�, cn) ;
7 BBSearch(�, �, ∅, �, cn) ;
8 return �∗

;

Procedure BBSearch(�, �, �,�, cn)
9 if � = � (�) then
10 if |� | > �� then �∗ ← � ; �� ← |� |;
11 else
12 (�,����_�ℎ���
) ← choose a branching vertex from� (�)\� ;

/* The first branch includes � into � */

13 � ← � ∪ {�};
14 Reduce � based on � and � by using reduction rules;

15 if UB(�, �, �,�, cn) > �� then BBSearch(�, �, �,�, cn) ;
16 Undo the changes made for � at Line 14;

17 � ← � \ {�};
18 if����_�ℎ���
 = false then

/* The second branch excludes � from � */

19 Remove � from �;

20 Reduce � based on � and � by using reduction rules;

21 if UB(�, �, �,�, cn) > �� then BBSearch(�, �, �,�, cn) ;
22 Undo the changes made for � at Line 20;

23 Add � back to �;

UB1 has been widely used in the literature. The correctness of UB2
directly follows from Lemma 5.2. Note that, in computing UB2, �
and � can be either adjacent or non-adjacent.

Note that, reduction rules RR3, RR4, RR5 share similar ideas

with the upper bounds, i.e., these three reduction rules are also

based on upper bounds. But they are different in the following

ways. Firstly, RR3 computes upper bounds for vertices of � (�) \ �
and prunes vertices from � based on the computed upper bounds,

while UB1 computes upper bounds for vertices of � and prunes

the entire branch/instance based on the computed upper bounds.

Secondly, RR4 computes upper bounds for pairs of vertices where

one is from � and the other is from � (�) \ � , while UB2 computes

upper bounds for pairs of vertices that are both from � . Lastly, RR5
computes upper bounds for pairs of vertices that are both from

� (�) \ � and prunes edges based on the computed upper bounds.

5.2 Pseudocode of BBMatrix
Based on the branching, reduction, and upper bounding techniques

discussed in Section 5.1, the pseudocode of BBMatrix is shown in

Algorithm 4. Note that we store the input graph � to BBMatrix as
an adjacency matrix, because (1) � is small and dense and (2) we

will need to compute and store cn(·, ·) for all pairs of vertices of
� that occupies a quadratic space w.r.t. |� (�) |. In our implementa-

tion, we map the vertex ids of � (�) into consecutive integers in

An instance
of BBSearch

New instance of
BBSearch

1. Include vertex to
2. Apply reduction rules RR1

RR5 to reduce the instance to

3. Compute an upper bound of the
instance by UB1 and UB2. If it is
not pruned, then go to recursion.

Choose a
branching

vertex by
BR1 and BR2

New instance of
BBSearch

1. Exclude vertex from and
2. Apply reduction rules RR1

RR5 to reduce the instance to

3. Compute an upper bound of the
instance by UB1 and UB2. If it is
not pruned, then go to recursion.

Figure 2: An overview of the flow of the BBSearch algorithm

{0, 1, . . . , |� (�) | − 1}, such that the adjacency matrix of � is stored

in an array of size |� (�) | × |� (�) |.
BBMatrix first preprocesses � by heuristically computing a �-

plex (Line 1), reducing � to its (��+1−�)-core (Line 3), and conduct-
ing core-truss co-pruning (Line 6), in a similar way to Algorithm 1.

However, instead of only computing the triangle counts for all

edges of �, we compute the number of common neighbors for each

pair of vertices (whether they are adjacent or not), denoted cn(·, ·),
on Line 5. This is because we will later use cn(�, �) for reduction,
pruning, and upper bounding no matter � and � are adjacent or

not. After that, we call our branch-and-bound search algorithm

BBSearch for computing a maximum �-plex in �.

The pseudocode of BBSearch is also given in Algorithm 4; an

overview of the flow ofBBSearch is shown in Figure 2.We represent

a branch-and-bound instance by � = (�, �, �, ��), where � ⊆ � (�) is a
�-plex in �, and we aim to compute a maximum �-plex of size larger

than �� that contains � in �. Note that, � (·) and cn(·, ·) maintained

by the algorithm actually represent �� (·) and cn
�
(·, ·); we omit

the subscript for notation simplicity. We first select a branching

vertex from � (�) \ � , denoted by �, by branching rules BR1 and

BR2 (Line 12). Note that, if the branching rule BR1 is actually in

effect here, then � can be greedily added to � without backtracking

and����_�ℎ���
 will be true; otherwise,����_�ℎ���
 will be false.
Thenwe generate the first branch, which includes� into � (Lines 13–

15). After the branch, we undo the changes that we have made in

this branch (Lines 16–17). This is because we may update � (i.e.,

remove edges from �), � and cn throughout the algorithm; recall

that, for an instance � = (�, �, �, ��), cn(�, �) stores the number of

common neighbors of � and � in � (�) \ � . If � is not determined

to be must included (Line 18, see BR1), we similarly generate the

second branch that excludes � from � (Lines 19–21). Note that, after

generating each branch, we first apply reduction rules, RR1 – RR5,
to reduce the size of the instance (Lines 14 and 20), and then prune

the instance if its upper bound computed by either UB1 or UB2
is no larger than �� (Lines 15 and 21). Note that at the point that

reduction rules are applied or UB is evaluated, a vertex �’s degree

� (�) is the degree of � in � (i.e., �� (�)) and the number of common

neighbors cn(�, �) of vertices � and � is the common neighbors in

� (i.e., cn
�
(�, �)).

134

Compared to the existing branch-and-bound algorithms for maxi-

mum 𝑘-plex computation, our algorithm BBMatrix has two unique
features. Firstly, our algorithm incorporates second-order tech-

niques for reduction (i.e., RR4 and RR5) and pruning (i.e., UB2)
in the recursion, while the existing algorithms only use first-order

information in the recursion. Secondly, we apply the reduction and

bounding techniques efficiently, based on incremental computation

techniques as introduced next.

5.3 Incremental Computation
For efficiency, we apply the reduction rules and upper bound-based

pruning incrementally, instead of blindly trying all the reduction

rules and all the upper bounds. That is, we only check the vertices

or the vertex pairs that may be pruned due to the updating of the

instance 𝐼 . This is achieved by maintaining 𝑑 and cn. For example,

whenever we update cn(𝑢, 𝑣) for vertices 𝑢 and 𝑣 , we apply one of

RR4, RR5, and UB2 depending on how many of 𝑢 and 𝑣 are in 𝑆 .

• If both 𝑢 and 𝑣 are in 𝑆 , then we check whether UB2 can

be applied to prune the instance.

• If both 𝑢 and 𝑣 are not in 𝑆 and there is an edge between

𝑢 and 𝑣 , then we check whether RR5 can be applied to

remove the edge (𝑢, 𝑣) from 𝑔.

• If only one of 𝑢 and 𝑣 is in 𝑆 , assume 𝑢 ∈ 𝑆 , then we check

whether RR4 can be applied to remove 𝑣 from 𝑔.

As cn
𝑆
(𝑢, 𝑣), 𝑑𝑔 (𝑢), and 𝑑𝑔 (𝑣) are all maintained (i.e., in cn(·, ·) and

𝑑 (·)), each of the three checks can be conducted in constant time. In

this way, our reduction rules and upper bounds are applied almost

without extra cost when maintaining 𝑑 (·) and cn(·, ·).
Further details are as follows. For every vertex 𝑣 ∈ 𝑉 (𝑔), be-

sides maintaining the degree 𝑑 (𝑣) of 𝑣 in 𝑔, we also maintain the

number of neighbors of 𝑣 in 𝑆 , denoted 𝑑𝑆 (𝑣). Thus, 𝑟𝑆∪{𝑣} (𝑣) =
𝑘 − (|𝑆 ∪ {𝑣}| − 𝑑𝑆 (𝑣)); here, 𝑣 can be either inside 𝑆 or out-

side 𝑆 . For notation simplicity, we let UB(𝑣,𝑤) = |𝑆 ∪ {𝑣,𝑤}| +
𝑟𝑆∪{𝑣,𝑤} (𝑣) + 𝑟𝑆∪{𝑣,𝑤} (𝑤) + cn𝑆 (𝑣,𝑤) be the upper bound com-

puted by Lemma 5.2. In the first branch that includes 𝑢 into 𝑆 (i.e.,

Lines 13–15), we first add 𝑢 to 𝑆 and thus |𝑆 | increases by 1, and

then conduct the following operations.

(1) For each neighbor 𝑣 of 𝑢, 𝑑𝑆 (𝑣) increases by 1.

(2) For each non-neighbor 𝑣 of 𝑢,

(a) If 𝑣 ∉ 𝑆 and |𝑆 | − 𝑑𝑆 (𝑣) ≥ 𝑘 , remove 𝑣 from 𝑔 by

reduction rule RR1; note that although 𝑑𝑆 (𝑣) does not
change, |𝑆 | has increased by 1.

(b) If 𝑣 ∈ 𝑆 and |𝑆 | − 𝑑𝑆 (𝑣) = 𝑘 , remove from 𝑔 all of 𝑣 ’s

non-neighbors in 𝑉 (𝑔) \ 𝑆 by reduction rule RR2.
(3) For each non-neighbor 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 of 𝑢, check whether

𝑣 can be removed by reduction rule RR4; note that both
cn(𝑢, 𝑣) and UB(𝑢, 𝑣) remain unchanged for each vertex

𝑣 ∈ 𝑉 (𝑔) \ {𝑢}.
(4) For each pair of neighbors 𝑣,𝑤 of 𝑢, cn(𝑣,𝑤) decreases by

1 while UB(𝑣,𝑤) does not change.
(5) For each pair of non-neighbors 𝑣,𝑤 of 𝑢, cn(𝑣,𝑤) does not

change, but UB(𝑣,𝑤) decreases by 1. If UB(𝑣,𝑤) ≤ 𝑙𝑏, then

(a) If 𝑣,𝑤 ∈ 𝑆 , prune the entire branch by UB2.
(b) If 𝑣,𝑤 ∈ 𝑉 (𝑔) \ 𝑆 and (𝑣,𝑤) ∈ 𝐸 (𝑔), remove the edge

from 𝑔 by reduction rule RR5.

(c) If 𝑣 ∈ 𝑆,𝑤 ∈ 𝑉 (𝑔) \ 𝑆 , remove𝑤 from 𝑔 by reduction

rule RR4.
Note that, once a vertex or an edge is removed during the above

operations, we also need to update 𝑑𝑆 (·), 𝑑 (·) and cn(·, ·) for their
neighbors and then iteratively apply the reductions and upper

bound-based pruning, in a similar way to CTCP (Algorithm 3); we

omit the details of the cascading reduction. For the time complex-

ity analysis, if we do not consider the cascading reduction, then

it is O(|𝑉 (𝑔) |2); that is, items (1)–(3) take O(|𝑉 (𝑔) |) time in total

and items (4)–(5) take O(|𝑉 (𝑔) |2) time in total. If we consider the

cascading reduction, then the time complexity of BBSearch with-

out going into the recursion is O(|𝑉 (𝑔) |3) since in the worst case

|𝑉 (𝑔) \ 𝑆 | vertices and |𝑉 (𝑔) \ 𝑆 |2 edges could be removed during

the cascading reduction.

For the second branch that excludes𝑢 from 𝑔, we conduct similar

operations; details are omitted.

6 EXPERIMENTS
We evaluate the efficiency of our techniques for maximum 𝑘-plex

computation, by comparing the following algorithms.

• BnB4: the existing algorithm proposed in [12].

• Maplex5: the existing algorithm proposed in [38].

• KpLeX6: the existing algorithm proposed in [13].

• BnB-ct: our variant of BnB that replaces its preprocessing

algorithm with our core-truss co-pruning algorithm CTCP.
• kPlexS: our algorithm presented in Algorithm 1.

• kPlexF: a variant of kPlexS that does not apply second-order
techniques (i.e., RR4, RR5, UB2) in BBMatrix.

All the algorithms are implemented in C++, and compiled with the

-O3 flag by GCC version 7.5.0. We conduct the experiments on a

machine with an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and

128GB main memory running Ubuntu 18.04. All the experiments

are run in main memory and in single-thread mode.

Datasets. We evaluate the algorithms on two collections of graphs

that have been widely used in the literature [12, 13, 38].

• Real-world Graphs. This collection of graphs is down-

loaded fromhttp://lcs.ios.ac.cn/~caisw/Resource/realworld%

20graphs.tar.gz, which contains 139 real-world graphs with

up to 5.87× 107 vertices from the Network Data Repository.

• 10th DIMACS Graphs. This collection of graphs is down-

loaded from https://networkrepository.com/dimacs10.php,

which contains 84 graphs with up to 5.09 × 107 vertices.
We use these graphs to conduct two sets of experiments. Firstly,

we conduct a macro experiment by reporting the number of graph

instances that are successfully solved by an algorithm within a

specified time limit. Secondly, we conduct a micro experiment by

reporting more detailed information of running these algorithms on

a subset of real-world graphs. Specifically, the set of graph instances

from the real-world graphs collection that either kPlexS or KpLeX
takes at least 10s and at most 1800s to process for 𝑘 = 5 are cho-

sen. There are 22 such graphs. We name them as {𝐺1,𝐺2, . . . ,𝐺22}.
Statistics of these 22 graphs are given in Table 2.

4
https://github.com/JimNenu/codekplex

5
https://github.com/ini111/Maplex

6
https://github.com/huajiang-ynu/kplex

135

http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz
http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz
https://networkrepository.com/dimacs10.php
https://github.com/JimNenu/codekplex
https://github.com/ini111/Maplex
https://github.com/huajiang-ynu/kplex

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

80

100

120

140

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(a) 𝑘 = 2

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

80

100

120

140

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(b) 𝑘 = 3

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

80

100

120

140

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(c) 𝑘 = 5

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

80

100

120

140

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(d) 𝑘 = 7

Figure 3: Number of solved instances for real-world graphs (vary time limit, best viewed in color)

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

20

40

60

80

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(a) 𝑘 = 2

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

20

40

60

80

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(b) 𝑘 = 3

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

20

40

60

80

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(c) 𝑘 = 5

0
.1

0
.5 1 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
8
0
0

Time limit (seconds)

20

40

60

80

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(d) 𝑘 = 7

Figure 4: Number of solved instances for DIMACS10 graphs (vary time limit, best viewed in color)

Table 2: Statistics of the 22 real-world graphs that either
kPlexS or KpLeX takes between 10 and 1800 seconds for 𝑘 = 5

(density= 2 |𝐸 |
|𝑉 | (|𝑉 |−1) , last column is the maximum 5-plex size)

ID Graph |𝑉 | |𝐸 | density 𝛿 (𝐺) 𝑘 = 5

𝐺1 socfb-MIT 6402 251230 0.0123 72 48

𝐺2 scc_reality 6809 4714485 0.2034 1235 1237

𝐺3 tech-WHOIS 7476 56943 0.0020 88 76

𝐺4 socfb-Berkeley13 22900 852419 0.0033 64 53

𝐺5 socfb-Texas84 36364 1590651 0.0024 81 68

𝐺6 sc-nasasrb 54870 1311227 0.0009 35 24

𝐺7 soc-slashdot 70068 358647 0.0001 53 40

𝐺8 rec-amazon 91813 125704 0.0000 4 8

𝐺9 ia-wiki-Talk 92117 360767 0.0001 58 25

𝐺10 sc-pkustk13 94893 3260967 0.0007 41 36

𝐺11 soc-gowalla 196591 950327 0.0000 51 32

𝐺12 sc-pwtk 217891 5653221 0.0002 35 26

𝐺13 sc-msdoor 404785 9378650 0.0001 34 23

𝐺14 soc-youtube 495957 1936748 0.0000 49 26

𝐺15 soc-youtube-snap 1134890 2987624 0.0000 51 26

𝐺16 soc-lastfm 1191805 4519330 0.0000 70 27

𝐺17 soc-pokec 1632803 22301964 0.0000 47 34

𝐺18 web-wikipedia2009 1864433 4507315 0.0000 66 32

𝐺19 soc-flixster 2523386 7918801 0.0000 68 49

𝐺20 socfb-B-anon 2937612 20959854 0.0000 63 35

𝐺21 socfb-A-anon 3097165 23667394 0.0000 74 37

𝐺22 socfb-uci-uni 58790782 92208195 0.0000 16 13

Measures. We report both the processing time and peak memory
consumption of running an algorithm on a graph instance, where a

timeout of 1800s is set. The reported processing time is the total

CPU time excluding only the I/O time of loading the graph instance

from disk to main memory. The peak memory usage of a program

is recorded by the Linux utility time7. Note that, to find the exact

maximum 𝑘-plex no matter how small it is, we invoke KpLeX on

the graph instance again if our algorithm kPlexS (resp. kPlexF) fails
to report a 𝑘-plex of size at least 2𝑘 − 2. If this happens, then the
reported processing time of kPlexS (resp. kPlexF) also includes that
of KpLeX.

7
https://man7.org/linux/man-pages/man1/time.1.html

We select 𝑘 from {2, 3, 5, 7}. Note that we do not test 𝑘 = 1, as

1-plexes are cliques which have dedicated and thus more efficient

algorithms to compute (e.g., see [7]).

6.1 Experimental Results.

Number of Solved Instances for a Collection of Graphs.We

first conduct a macro experiment by considering all graph instances

in a graph collection, and report the number of instances that are

solved by an algorithm within a specific time limit. The results

of running all the six algorithms kPlexS, kPlexF, KpLeX, BnB-ct,
Maplex, BnB on the real-world graph collection for 𝑘 = 2, 3, 5, 7

are shown in Figure 3. We can see that for any given time limit,

our algorithms kPlexS and kPlexF always solve the largest number

of instances, and kPlexS with a time limit of 50s solves even more

instances than the existing algorithms KpLeX, Maplex, BnB with a

time limit of 1800s. As kPlexF only applies simple first-order tech-

niques in the branch-and-bound search, the superiority of kPlexF
over the existing algorithms is mainly due to our framework of

conducting branch-and-bound search on dense subgraphs that are

iteratively extracted from the input graph. Furthermore, BnB-ct,
our improved version of BnB, performs better than BnB and per-

forms similarly toMaplex. The improvement of BnB-ct over BnB
is solely due to our efficient preprocessing algorithm CTCP. How-
ever, without our branch-and-bound-algorithm BBMatrix, BnB-ct
is still slow. Lastly, kPlexS performs better than its variant kPlexF,
especially for 𝑘 ≥ 3; note that the only different between these two

algorithms is that kPlexF does not apply second-order techniques in
the branch-and-bound search. This demonstrates the superiority of

applying second-order techniques in the branch-and-bound search.

The results on the 10th DIMACS graph collection are reported

in Figure 4. The trends are similar to Figure 3. But now we see a

large drop in the number of instances solved by each algorithm

when 𝑘 increases. This is because this graph collection contains

several large instances that have a very small maximum 𝑘-plex

136

https://man7.org/linux/man-pages/man1/time.1.html

Table 3: Total processing time and peak memory usage for 𝑘 = 5 (second column shows that our
algorithm kPlexS is 𝑥 times faster than the best among KpLeX, Maplex, BnB-ct and BnB)

ID Speed up

Time (seconds) Memory (MB)

kPlexS KpLeX Maplex BnB-ct BnB kPlexS KpLeX Maplex BnB-ct BnB
𝐺1 2.3 0.24 15.51 395.50 0.56 1.56 11 313 16 11 20

𝐺2 6.9 8.26 57.04 456.81 - - 72 356 87 - 296

𝐺3 34.8 3.95 137.49 - 509.11 559.46 4 309 - 4 7

𝐺4 10.3 0.66 21.60 533.76 6.85 15.99 26 324 47 26 57

𝐺5 109.2 1.14 233.18 - 124.82 218.58 36 332 - 36 104

𝐺6 36.9 2.62 96.71 1490.74 - - 47 339 1205 - 91

𝐺7 23.8 2.20 121.66 - 52.35 90.87 7 312 - 7 31

𝐺8 3088.1 0.03 86.48 - - - 10 314 - - 21

𝐺9 19.5 5.74 111.73 - 947.10 1702.26 12 315 - 13 34

𝐺10 392.0 1.18 464.19 - - - 110 385 - - 212

𝐺11 414.9 0.16 64.55 64.41 65.71 75.54 17 323 23 18 84

𝐺12 692.4 2.58 1789.24 - - - 195 444 - 568 377

𝐺13 - 1761.51 - - - - 321 - 60599 - -

𝐺14 21.4 0.42 24.14 817.83 9.01 16.81 41 343 61 41 177

𝐺15 43.3 0.53 62.94 1039.90 22.82 38.71 61 367 83 61 292

𝐺16 1.1 182.59 196.36 - 930.37 1516.73 80 385 - 80 407

𝐺17 1.0 17.26 18.04 37.75 33.70 72.30 553 707 1113 553 1557

𝐺18 3.8 0.53 190.33 2.05 - - 98 390 124 - 466

𝐺19 - 419.12 - - - - 141 - - - -

𝐺20 7.7 29.97 1326.42 - 230.27 - 628 764 - 679 1623

𝐺21 1.8 21.75 255.35 39.30 52.42 178.95 564 748 1082 565 1779

𝐺22 0.8 15.24 12.91 25.94 16.33 21.68 2781 2373 3453 2781 11667

Table 4: Density of sub-
graphs (density 2 |𝐸 |

|𝑉 | · (|𝑉 |−1)
for reduced graph (𝑑𝑒𝑛𝐾) and
graphs input to BBMatrix)

ID 𝑑𝑒𝑛𝐾 𝑑𝑒𝑛𝑎𝑣𝑔 𝑑𝑒𝑛𝑚𝑖𝑛
𝐺1 0.2679 0.95 0.92

𝐺2 1.0000 1.00 1.00

𝐺3 0.8878 0.94 0.90

𝐺4 0.2220 0.96 0.95

𝐺5 0.8392 0.95 0.93

𝐺6 0.0009 0.77 0.66

𝐺7 0.6836 0.84 0.77

𝐺8 0.0001 0.42 0.33

𝐺9 0.1543 0.55 0.44

𝐺10 0.0011 0.92 0.82

𝐺11 0.1331 0.85 0.78

𝐺12 0.0002 0.76 0.61

𝐺13 0.0001 0.84 0.55

𝐺14 0.1017 0.69 0.54

𝐺15 0.0980 0.72 0.60

𝐺16 0.1361 0.53 0.36

𝐺17 0.0517 0.90 0.84

𝐺18 0.0071 0.88 0.75

𝐺19 0.3557 0.83 0.75

𝐺20 0.0015 0.82 0.64

𝐺21 0.0719 0.89 0.79

𝐺22 1.0000 1.00 1.00

Table 5: Total processing time for 𝑘 = 2

ID kPlexS KpLeX Maplex BnB-ct BnB
𝐺1 0.27 8.25 6.13 28.32 30.64

𝐺2 0.40 0.02 0.11 0.40 0.30

𝐺3 0.51 164.37 - - -

𝐺4 0.74 6.03 2.02 32.99 19.55

𝐺5 2.02 188.95 - - -

𝐺6 0.31 6.41 22.18 441.03 490.55

𝐺7 0.35 1.00 9.34 12.79 17.09

𝐺8 0.01 0.02 0.02 0.02 0.02

𝐺9 2.66 0.77 3.01 9.96 10.24

𝐺10 1.16 446.31 88.94 132.77 320.22

𝐺11 0.18 1.05 0.60 7.73 12.42

𝐺12 1.24 1570.30 - - -

𝐺13 8.21 - - - -

𝐺14 0.43 0.73 1.78 1.39 8.45

𝐺15 0.60 1.08 2.55 3.35 14.88

𝐺16 23.17 4.76 5.32 49.29 109.84

𝐺17 23.01 12.11 33.38 30.09 82.01

𝐺18 0.42 4.45 2.71 63.75 121.48

𝐺19 2.67 18.82 101.21 368.15 333.11

𝐺20 25.51 92.96 67.98 67.53 738.56

𝐺21 23.72 19.08 36.36 39.60 148.67

𝐺22 8.74 12.88 25.13 9.43 31.58

Table 6: Total processing time for 𝑘 = 3

kPlexS KpLeX Maplex BnB-ct BnB
0.26 11.10 50.31 6.66 17.13

0.40 0.02 0.12 0.40 0.32

0.64 25.63 - 531.26 816.95

0.70 0.95 24.28 167.55 227.34

4.41 66.28 - - -

0.31 16.78 98.24 - -

3.04 9.91 423.68 97.95 121.00

0.01 2.13 0.04 28.55 596.19

5.62 1.91 47.56 51.81 43.10

1.17 447.37 301.06 - -

0.15 1.26 0.67 8.82 13.97

1.55 1582.88 - - -

31.75 - - - -

0.48 1.25 10.11 3.58 12.07

0.78 2.38 30.41 9.07 27.88

76.62 7.54 37.51 175.50 314.57

20.52 14.52 28.57 24.65 100.28

0.41 7.49 2.53 1688.30 -

151.51 275.44 - - -

26.59 75.48 311.70 74.68 -

22.43 32.81 38.54 64.24 231.30

12.41 11.67 24.61 12.65 24.18

Table 7: Total processing time for 𝑘 = 7

kPlexS KpLeX Maplex BnB-ct BnB
0.23 5.77 1621.59 0.23 1.34

0.40 0.02 0.11 0.39 0.30

0.63 6.04 - 5.83 7.08

0.62 9.03 73.92 21.79 21.57

0.84 0.38 7.34 0.88 6.89

0.29 94.24 976.85 - -

3.78 624.12 - 19.76 30.59

0.01 0.02 0.02 0.01 0.01

1.74 - - - -

110.69 - - - -

0.14 566.02 202.47 52.78 39.32

1.12 1765.75 - - -

15.29 - - - -

0.38 376.79 - 40.55 46.28

0.49 1804.93 - 91.87 132.67

72.80 - - - -

17.26 109.23 87.52 54.56 101.20

0.69 - 4.12 - -

- - - - -

23.03 - - 41.02 158.42

19.04 - 40.49 176.30 476.70

15.05 11.62 24.04 15.04 20.17

(i.e., of size smaller than 2𝑘 − 2) for 𝑘 ≥ 5; these are the hard

instances. Note that, for these instances, our reported processing

time of kPlexS (resp. kPlexF) also includes that of KpLeX. If we
consider only the processing time of kPlexS, then the plots for

kPlexS for 𝑘 = 5, 7 would be similar to that of 𝑘 = 2; specifically,

kPlexS finishes within the time limit for 78 instances for 𝑘 = 5, 7.

We remark that kPlexS and kPlexF perform similarly on this graph

collection; this is because the benefit brought bymaintaining cn(·, ·)
for graphs in this collection does not outweigh its overhead.

Total Processing Time and Peak Memory Usage. The total

processing time and peak memory usage of running the five algo-

rithms kPlexS, KpLeX, BnB-ct, Maplex, BnB on the 22 real graphs

𝐺1, . . . ,𝐺22 for 𝑘 = 5 are reported in Table 3. Note that, these 22 real

graphs are the ones that either kPlexS or KpLeX finishes in time

between 10s and 1800s; there are 20 such graphs for KpLeX and 7

for kPlexS, where the specific graphs can be identified from Table 3.

We can see that our algorithm kPlexS solves 15 of these graphs

within 10s, while the overall second-best algorithm KpLeX needs

at least 10s for each of the 22 graphs. The second column shows

the speed up of our algorithm kPlexS over the best among KpLeX,
Maplex, BnB-ct and BnB; the larger the better. We can see that the

speed up of kPlexS over all existing algorithms can be more than

two orders of magnitude, e.g., see 𝐺5, 𝐺8, 𝐺10, 𝐺11, 𝐺12. The total

processing time for other 𝑘 values on these graphs are reported in

Tables 5, 6 and 7. The trends are similar to Table 3.

Regarding peak memory usage, we can see that our algorithm

kPlexS always have the smallest memory footprint (except on

𝐺22), despite of using the adjacency matrix graph representation in

branch-and-bound search BBMatrix. This can be explained by the

137

Table 8: Preprocessing for 𝑘 = 5 (time in seconds, 𝑃 is the heuristically computed 𝑘-plex, (𝑉𝐾 , 𝐸𝐾) is the reduced graph)

ID

kPlexS KpLeX Maplex BnB
Time |𝑃 | |𝑉𝐾 | |𝐸𝐾 | Time |𝑃 | |𝑉𝐾 | |𝐸𝐾 | Time |𝑃 | |𝑉𝐾 | |𝐸𝐾 | Time |𝑃 | |𝑉𝐾 | |𝐸𝐾 |

𝐺1 0.23 43 209 5824 0.15 43 209 5824 0.38 44 151 4183 1.24 47 60 1634

𝐺2 1.20 1236 1239 766923 2.42 1236 1239 766923 1.89 1236 1239 766923 349.73 1236 1239 766923

𝐺3 0.01 75 120 6339 0.01 75 128 6976 0.04 75 128 6976 0.10 75 121 6434

𝐺4 0.66 50 291 9368 0.30 50 292 9421 0.97 50 292 9421 4.88 50 292 9771

𝐺5 1.02 67 114 5405 0.43 68 111 5167 1.32 67 118 5686 8.03 68 111 5256

𝐺6 0.12 24 51153 1205204 0.54 24 51153 1205309 1.32 24 51153 1205309 3.31 24 51154 1231573

𝐺7 0.02 40 102 3521 0.02 39 111 3944 0.05 40 102 3521 0.10 39 113 4131

𝐺8 0.02 6 61351 95242 0.01 5 91813 125704 0.03 6 61351 95242 0.04 5 91813 125704

𝐺9 0.09 23 527 21384 0.21 21 705 29568 0.56 24 413 16478 1.77 21 715 34612

𝐺10 0.64 36 60849 1982268 1.01 27 94795 3255707 24.82 36 60849 1982268 19.37 27 94795 3258857

𝐺11 0.13 28 452 13564 0.17 27 532 16438 0.38 29 370 10738 1.80 28 460 15327

𝐺12 0.36 24 212326 5507216 4.84 24 212326 5507216 5.66 24 212326 5507216 12.43 24 212461 5524384

𝐺13 0.71 21 404785 9371658 - - - - 1.51 21 404785 9371658 - - - -

𝐺14 0.36 22 660 22114 0.46 22 663 22187 1.37 22 663 22187 4.80 22 700 27964

𝐺15 0.48 23 673 22154 0.61 22 984 33637 1.76 23 702 23009 9.89 22 1015 41671

𝐺16 0.82 25 660 29604 0.79 25 661 29633 1.75 25 661 29633 10.15 25 677 35674

𝐺17 17.23 27 814 17119 9.14 27 825 17403 27.01 27 825 17403 55.07 30 298 6207

𝐺18 0.50 14 4818 82808 0.88 14 4820 82848 2.00 15 3586 67144 3.32 14 4867 88046

𝐺19 0.36 46 244 10546 - - - - 0.09 48 226 9407 - - - -

𝐺20 23.96 21 33082 845687 30.80 21 33103 846392 39.29 23 17124 452253 240.25 21 34767 1318592

𝐺21 21.72 33 775 21559 11.86 33 777 21635 30.90 33 777 21635 87.22 33 819 27622

𝐺22 15.23 13 0 0 12.90 12 578 4556 25.94 13 0 0 21.68 13 0 0

density (i.e.,
2 |𝐸 |

|𝑉 | · (|𝑉 |−1)) of the graphs that are input to BBMatrix.
Specifically, the third and the fourth columns of Table 4, respec-

tively, report the average density and the minimum density among

all subgraphs that are solved by BBMatrix. We can see that the

average densities are at least 0.42, and the minimum densities are

always above 0.33. The second column of Table 4 shows the density

of the reduced graph (i.e., the graph obtained after Line 7 of Algo-

rithm 1). We can see that this is always no larger than 𝑑𝑒𝑛𝑚𝑖𝑛 , and

sometimes can be much smaller than 𝑑𝑒𝑛𝑚𝑖𝑛 . This demonstrates

the advantages of our framework which iteratively extracts dense

subgraph to solve. Note that, the space complexity of BBMatrix
is O(|𝑉 (𝑔) |2), as there is only one copy of the adjacency matrix

stored in the main memory; the adjacency matrix of a subgraph of

𝑔 is simply a submatrix of the adjacency matrix of 𝑔.

Preprocessing Algorithms. In this testing, we evaluate the dif-

ferent preprocessing algorithms that are used in kPlexS, KpLeX,
Maplex, and BnB for computing the reduced graph. The running

time, reduced graph size (i.e., |𝑉𝐾 | and |𝐸𝐾 |), and the heuristically

computed 𝑘-plex size |𝑃 | are reported in Table 8. We can see that

our preprocessing algorithm CTCP that is used in kPlexS is almost

always faster than existing preprocessing algorithms; this conforms

with our time complexity analysis. When comparing the reduced

graph sizes, we should be careful to only compare the reduced graph

sizes for the different algorithms that have the same |𝑃 | value; oth-
erwise, they are incomparable. We observe that Maplex always

has the same reduced graph size as KpLeX when the heuristically

computed 𝑘-plexes (i.e., |𝑃 |) are of the same size. Consistently, our

algorithm kPlexS (specifically,CTCP) always computes the smallest

reduced graph when |𝑃 | values are equal.
VaryingGraphDensity. In this testing, we evaluate the algorithms

on synthetic power-law graphs that are generated by GTGraph
8
, by

varying the graph density. Specifically, we generate five power-law

graphs, PL1, . . ., PL5, with ≈ 1.3 × 105 vertices; the average degree
varies from 8 to 120 with an increasing factor of ≈ 2. The results

of running the six algorithms for 𝑘 = 2 and 𝑘 = 5 are shown in

8
http://www.cse.psu.edu/~madduri/software/GTgraph/

PL1 PL2 PL3 PL4 PL5

100

101
T
im

e
 (

s
e
c
o
n
d
s
)

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(a) 𝑘 = 2

PL1 PL2 PL3 PL4 PL5

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

kPlexS

kPlexF

KpLeX

BnB-ct

Maplex

BnB

(b) 𝑘 = 5

Figure 5: Running time of the algorithms on synthetic power-
law graphs by varying density (best viewed in color)

Figure 5. We can see that for 𝑘 = 2, the running time of all the

algorithms increases when the graph density increases. However,

for 𝑘 = 5, the fastest running time is achieved in the middle (i.e., on

PL3); a possible reason is that the maximum 𝑘-plex sizes of PL1 and

PL2 are small (i.e., 8 and 9, respectively) compared to 2𝑘 − 1, which
makes the pruning techniques less effective and thus the search

space larger. Nevertheless, our algorithm kPlexS always outperform
the existing algorithms, except KpLeX on some instances.

7 CONCLUSION
In this paper, we proposed an efficient algorithm kPlexS for maxi-

mum 𝑘-plex computation over large sparse graphs. It incorporate

three novel ingredients: a new framework, a theoretically faster and

better preprocessing algorithm CTCP, and a matrix-based branch-

and-bound algorithm BBMatrix that incorporates both first-order

and second-order pruning techniques. Extensive experimental re-

sults on large real graphs demonstrated the efficiency of our algo-

rithms. One possible direction of future work is to incorporate the

vertex partitioning-based upper bound that is proposed in [13] and

is orthogonal to our techniques into our implementation.

ACKNOWLEDGMENTS
Lijun Chang was supported by the Australian Research Council

Fundings of FT180100256 and DP220103731.

138

http://www.cse.psu.edu/~madduri/software/GTgraph/

REFERENCES
[1] [n.d.]. Full Version. https://lijunchang.github.io/pdf/2022-Maximum-

kPlex.pdf.

[2] B Balasundaram. 2007. Graph Theoretic Generalisations of Clique: Opti-
misation and Extensions. Ph.D. Dissertation. Texas A&M University,

Berlin.

[3] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. 2011.

Clique Relaxations in Social Network Analysis: The Maximum k-Plex
Problem. Operations Research 59, 1 (2011), 133–142.

[4] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient

Enumeration of Maximal k-Plexes. In Proc. of SIGMOD’15. 431–444.
[5] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an

Undirected Graph (Algorithm 457). Commun. ACM 16, 9 (1973), 575–

576.

[6] Randy Carraghan and Panos M. Pardalos. 1990. An Exact Algorithm

for the Maximum Clique Problem. Oper. Res. Lett. 9, 6 (Nov. 1990),

375–382.

[7] Lijun Chang. 2019. Efficient Maximum Clique Computation over Large

Sparse Graphs. In Proc. of KDD’19. 529–538.
[8] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over

Large Sparse Graphs. Springer Series in the Data Sciences.

[9] Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrig-

nani, and Riccardo Torlone. 2017. Fast Enumeration of Large k-Plexes.

In Proc. of SIGKDD’17.
[10] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi,

Andrea Marino, and Luca Versari. 2018. D2K: Scalable Community

Detection in Massive Networks via Small-Diameter k-Plexes. In Proc.
of KDD’18. 1272–1281.

[11] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing All

Maximal Cliques in Large Sparse Real-World Graphs. ACM Journal of
Experimental Algorithmics 18 (2013).

[12] Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang.

2018. An Exact Algorithm for Maximum k-Plexes in Massive Graphs.

In Proc. IJCAI’18.
[13] Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao, and Zhang-

Hua Fu. 2021. A New Upper Bound Based on Vertex Partitioning for

the Maximum K-plex Problem. In Proc. of IJCAI’21. 1689–1696.
[14] V E Krebs. 2002. Mapping Networks of Terrorist Cells. International

Network For Social Network Analysis 24 (2002), 43–52. Issue 3.
[15] John M. Lewis and Mihalis Yannakakis. 1980. The Node-Deletion

Problem for Hereditary Properties is NP-Complete. J. Comput. Syst.
Sci. 20, 2 (1980), 219–230.

[16] Chu-Min Li, Zhiwen Fang, and Ke Xu. 2013. Combining MaxSAT

Reasoning and Incremental Upper Bound for the Maximum Clique

Problem. In Proc. of ICTAI’13.
[17] Chu-Min Li, Hua Jiang, and Felip Manyà. 2017. On minimization

of the number of branches in branch-and-bound algorithms for the

maximum clique problem. Computers & OR 84 (2017), 1–15.

[18] Can Lu, Jeffrey Xu Yu, Hao Wei, and Yikai Zhang. 2017. Finding the

MaximumClique in Massive Graphs. PVLDB 10, 11 (2017), 1538 – 1549.

[19] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering

and clustering and Graph Coloring Algorithms. J. ACM 30, 3 (1983),

417–427.

[20] BenjaminMcClosky and Illya V. Hicks. 2012. Combinatorial algorithms

for the maximum k-plex problem. J. Comb. Optim. 23, 1 (2012), 29–49.
[21] Hannes Moser, Rolf Niedermeier, and Manuel Sorge. 2012. Exact

combinatorial algorithms and experiments for finding maximum k-

plexes. J. Comb. Optim. 24, 3 (2012), 347–373.
[22] Patric R. J. Östergård. 2002. A Fast Algorithm for the Maximum Clique

Problem. Discrete Appl. Math. 120, 1–3 (2002), 197–207.
[23] Panos M. Pardalos and Jue Xue. 1994. The maximum clique problem.

J. global Optimization 4, 3 (1994), 301–328.

[24] Bharath Pattabiraman, Md. Mostofa Ali Patwary, Assefaw Hadish

Gebremedhin, Wei-keng Liao, and Alok N. Choudhary. 2015. Fast

Algorithms for the Maximum Clique Problem on Massive Graphs

with Applications to Overlapping Community Detection. Internet
Mathematics 11, 4-5 (2015), 421–448.

[25] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2013. On clique

relaxation models in network analysis. Eur. J. Oper. Res. 226, 1 (2013),
9–18.

[26] Ryan A. Rossi, David F. Gleich, and Assefaw Hadish Gebremedhin.

2015. Parallel Maximum Clique Algorithms with Applications to Net-

work Analysis. SIAM J. Scientific Computing 37, 5 (2015).

[27] Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. 2016. A

new exact maximum clique algorithm for large and massive sparse

graphs. Computers & Operations Research 66 (2016), 81–94.

[28] S. Seidman and B. L. Foster. 1978. A graph-theoretic generalization

of the clique concept. Journal of Mathematical Sociology 6 (1978),

139–154.

[29] Stephen B. Seidman. 1983. Network structure and minimum degree.

Social Networks 5, 3 (1983), 269 – 287.

[30] Etsuji Tomita. 2017. Efficient Algorithms for Finding Maximum and

Maximal Cliques and Their Applications. In Proc. ofWALCOM’17. 3–15.
[31] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi,

and Mitsuo Wakatsuki. 2010. A simple and faster branch-and-bound

algorithm for finding a maximum clique. In Proc. of WALCOM’10. 191–
203.

[32] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive

Networks. PVLDB 5, 9 (2012).

[33] Zhuo Wang, Qun Chen, Boyi Hou, Bo Suo, Zhanhuai Li, Wei Pan,

and Zachary G. Ives. 2017. Parallelizing maximal clique and k-plex

enumeration over graph data. J. Parallel Distributed Comput. 106 (2017),
79–91.

[34] Zhengren Wang, Yi Zhou, Mingyu Xiao, and Bakhadyr Khoussainov.

2022. Listing Maximal k-Plexes in Large Real-World Graphs. In Proc.
of WWW’22. 1517–1527.

[35] Bin Wu and Xin Pei. 2007. A Parallel Algorithm for Enumerating All

the Maximal k -Plexes. In PAKDD Workshops’07. 476–483.
[36] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. 2013. Scalable maxi-

mum clique computation using mapreduce. In Proc. of ICDE’13. 74–85.
[37] Mingyu Xiao, Weibo Lin, Yuanshun Dai, and Yifeng Zeng. 2017. A Fast

Algorithm to Compute Maximum k-Plexes in Social Network Analysis.

In Proc. of AAAI’17.
[38] Yi Zhou, Shan Hu, Mingyu Xiao, and Zhang-Hua Fu. 2021. Improving

Maximum k-plex Solver via Second-Order Reduction and Graph Color

Bounding. In Proc. of AAAI’21. 12453–12460.

139

https://lijunchang.github.io/pdf/2022-Maximum-kPlex.pdf
https://lijunchang.github.io/pdf/2022-Maximum-kPlex.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 k-Core and k-Truss

	3 Our Framework
	4 Efficient Core-Truss Co-Pruning
	5 A Branch-and-Bound Algorithm for Dense Graphs
	5.1 Branching, Reduction and Bounding
	5.2 Pseudocode of BBMatrix
	5.3 Incremental Computation

	6 Experiments
	6.1 Experimental Results.

	7 Conclusion
	Acknowledgments
	References

