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ABSTRACT
Thompson sampling is a well-known approach for balancing explo-
ration and exploitation in reinforcement learning. It requires the
posterior distribution of value-action functions to be maintained;
this is generally intractable for tasks that have a high dimensional
state-action space. We derive a variational Thompson sampling
approximation for DQNs which uses a deep network whose param-
eters are perturbed by a learned variational noise distribution. We
interpret the successful NoisyNets method [11] as an approxima-
tion to the variational Thompson sampling method that we derive.
Further, we propose State Aware Noisy Exploration (SANE) which
seeks to improve on NoisyNets by allowing a non-uniform pertur-
bation, where the amount of parameter perturbation is conditioned
on the state of the agent. This is done with the help of an auxil-
iary perturbation module, whose output is state dependent and is
learnt end to end with gradient descent. We hypothesize that such
state-aware noisy exploration is particularly useful in problems
where exploration in certain high risk states may result in the agent
failing badly. We demonstrate the effectiveness of the state-aware
exploration method in the off-policy setting by augmenting DQNs
with the auxiliary perturbation module.
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1 INTRODUCTION
Exploration is a vital ingredient in reinforcement learning algo-
rithms that has largely contributed to its success in various ap-
plications [13, 16–18]. Traditionally, deep reinforcement learning
algorithms have used naive exploration strategies such as 𝜖-greedy,
Boltzmann exploration or action-space noise injection to drive the
agent towards unfamiliar situations. Although effective in simple
tasks, such undirected exploration strategies do not perform well
in tasks with high dimensional state-action spaces.

Theoretically, Bayesian approaches like Thompson sampling
have been known to achieve an optimal exploration-exploitation
trade-off in multi-armed bandits [2, 3, 15] and also have been shown
to provide near optimal regret bounds for Markov Decision Pro-
cesses (MDPs) [4, 22]. Practical usage of such methods, however, is
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(a) A high risk state

(b) A low risk state

Figure 1: The white car which is controlled by the agent, has
to move forward while avoiding other cars. (a) In this state,
any action other than moving straight will result in a crash,
making it a high risk state. (b) This is a low risk state since
exploring random actions will not lead to a crash.

generally intractable as they require the posterior distribution of
value-action functions to be maintained.

At the same time, in practical applications, perturbing the pa-
rameters of the model with Gaussian noise to induce exploratory
behaviour has been shown to be more effective than 𝜖-greedy and
other approaches that explore primarily by randomization of the ac-
tion space [11, 25]. Furthermore, adding noise to model parameters
is relatively easy and introduces minimal computational overhead.
NoisyNets [11], in particular, has been known to achieve better
scores on the full Atari suite than other exploration techniques[31].

In this paper, we derive a variational Thompson sampling approx-
imation for Deep Q-Networks (DQNs), where the model parameters
are perturbed by a learned variational noise distribution. This en-
ables us to interpret NoisyNets as an approximation of Thompson
sampling, where minimizing the NoisyNet objective is equivalent
to optimizing the variational objective with Gaussian prior and ap-
proximate posterior distributions. These Gaussian approximating
distributions, however, apply perturbations uniformly across the
agent’s state space. We seek to improve this by approximating the
Thompson sampling posterior with Gaussian distributions whose
variance is dependent on the agent’s state.

To this end, we propose State Aware Noisy Exploration (SANE),
an exploration strategy that induces exploration through state de-
pendent parameter space perturbations. These perturbations are
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added with the help of an augmented state aware perturbation
module, which is trained end-to-end along with the parameters of
the main network by gradient descent.

We hypothesize that adding such perturbations helps us mitigate
the effects of high risk state exploration, while exploring effectively
in low risk states. We define a high risk state as a state where a
wrong action might result in adverse implications, resulting in an
immediate failure or transition to states from which the agent is
eventually bound to fail. Exploration in such states might result in
trajectories similar to the ones experienced by the agent as a result
of past failures, thus resulting in low information gain. Moreover, it
may also prevent meaningful exploratory behaviour at subsequent
states in the episode, that may have been possible had the agent
taken the correct action at the state. A low risk state, on the other
hand, is defined as a state where a random exploratory action does
not have a significant impact on the outcome or the total reward
accumulated by the agent within the same episode. A uniform per-
turbation scheme for the entire state space may thus be undesirable
in cases where the agent might encounter high risk states and low
risk states within the same task. An instance of a high risk state
and low risk state in Enduro, an Atari game, is shown in Figure
1. We try to induce uncertainty in actions, only in states where
such uncertainty is needed through the addition of a state aware
perturbation module.

To test our assumptions, we experimentally compare two SANE
augmented Deep Q-Network (DQN) variants, namely the simple-
SANE DQN and the Q-SANE DQN, with their NoisyNet counter-
parts [11] on a suite of 11 Atari games. Eight of the games in the
suite have been selected to have high risk and low risk states as
illustrated in Figure 1, while the remaining three games do not
exhibit such properties. We find that agents that incorporate SANE
do better in most of the eight games. An added advantage of SANE
over NoisyNets is that it is more scalable to larger network mod-
els. The exploration mechanism in NoisyNets [11] adds an extra
learnable parameter for every weight to be perturbed by noise in-
jection, thus tying the number of parameters in the exploration
mechanism to the network architecture being perturbed. The noise-
injection mechanism in SANE on the other hand, is a separate
network module, independent of the architecture being perturbed.
The architecture of this perturbation module can be modified to
suit the task. This makes it more scalable to larger networks.

2 BACKGROUND
2.1 Markov Decision Processes
A popular approach towards solving sequential decision making
tasks involves modelling them as MDPs. A MDP can be described
as a 5-tuple, (S,A,R(.),T (.), 𝛾), where S and A denote the state
space and action space of the task, T and R represent the state-
transition and reward functions of the environment respectively
and 𝛾 is the discount factor of the MDP. Solving a MDP entails
learning an optimal policy that maximizes the expected cumulative
discounted reward accrued during the course of an episode. Plan-
ning algorithms can be used to solve for optimal policies, when T
and R are known. However, when these functions are unavailable,
reinforcement learning methods help the agent learn good policies.

2.2 Deep Q-Networks
A DQN [18] is a value based temporal difference learning algo-
rithm, that estimates the action-value function by minimizing the
temporal difference between two successive predictions. It uses a
deep neural network as a function approximator to compute all
action values of the optimal policy𝑄𝜋∗ (𝑠, 𝑎), for a given a state 𝑠 . A
typical DQN comprises two separate networks, the Q network and
the target network. The Q network aids the agent in interacting
with the environment and collecting training samples to be added
to the experience replay buffer, while the target network helps in
calculating target estimates of the action value function. The net-
work parameters are learned by minimizing the loss L(𝜃 ) given in
Equation 1, where 𝜃 and 𝜃 ′ are the parameters of the Q network and
the target network respectively. The training instances (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 )
are sampled uniformly from the experience replay buffer, which
contains the 𝑘 most recent transitions experienced by the agent.

L(𝜃 ) = E
[ 1
𝑏

𝑏∑
𝑖=1

(𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃 ) − (𝑟𝑖 + 𝛾 max
𝑎
𝑄 (𝑠 ′𝑖 , 𝑎;𝜃

′)))2
]

(1)

2.3 Thompson Sampling
Thompson sampling [32] works under the Bayesian framework
to provide a well balanced exploration-exploitation trade-off. It
begins with a prior distribution over the action-value and/or the
environment and reward models. The posterior distribution over
these models/values is updated based on the agent’s interactions
with the environment. A Thompson sampling agent tries to maxi-
mize its expected value by acting greedily with respect to a sample
drawn from the posterior distribution. Thompson sampling has
been known to achieve optimal and near optimal regret bounds in
stochastic bandits [2, 3, 15] and MDPs [4, 22] respectively.

3 RELATEDWORK
Popularly used exploration strategies like 𝜖-greedy exploration,
Boltzmann exploration and entropy regularization [30], though ef-
fective, can be wasteful at times, as they do not consider the agent’s
uncertainty estimates about the state. In tabular settings, count
based reinforcement learning algorithms such as UCRL [6, 14] han-
dle this by maintaining state-action visit counts and incentivize
agents with exploration bonuses to take actions that the agent is
uncertain about. An alternative approach is suggested by posterior
sampling algorithms like PSRL [29], which maintain a posterior dis-
tribution over the possible environment models, and act optimally
with respect to the model sampled from it. Both count based and
posterior sampling algorithms have convergence guarantees in this
setting and have been proven to achieve near optimal exploration-
exploitation trade-off. Unfortunately, sampling from a posterior
over environment models or maintaining visit counts in most real
world applications are computationally infeasible due to the high
dimensional state and action spaces associated with these tasks.
However, approximations of such methods that do well have been
proposed in recent times.

Bellemare et al. [8], generalizes count based techniques to non-
tabular settings by using pseudo-counts obtained from a density
model of the state space, while [28] follows a similar approach but
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uses a predictive model to derive the bonuses. Ostrovski et al. [24]
builds upon [8] by improving upon the density models used for
granting exploration bonuses. Additionally, surprise-based moti-
vation [1] learns the transition dynamics of the task, and adds a
reward bonus proportional to the Kullback–Leibler (KL) divergence
between the true transition probabilities and the learned model to
capture the agent’s surprise on experiencing a transition not con-
forming to its learned model. Such methods that add exploration
bonuses prove to be most effective in settings where the rewards
are very sparse but are often complex to implement [25].

Randomized least-squares value iteration (RLSVI) [23] is an ap-
proximation of posterior sampling approaches to the function ap-
proximation regime. RLSVI draws samples from a distribution of
linearly parameterized value functions, and acts according to the
function sampled. [20] and [21] are similar in principle to [23];
however, instead of explicitly maintaining a posterior distribution,
samples are procured with the help of bootstrap re-sampling. Ran-
domized Prior Functions [19] adds untrainable prior networks with
the aim of capturing uncertainties not available from the agent’s
experience, while [7] tries to do away with duplicate networks by
using Bayesian linear regression with Gaussian prior. Even though
the action-value functions in these methods are no longer restricted
to be linear, maintaining a bootstrap or computing a Bayesian lin-
ear regression makes these methods computationally expensive
compared to others.

Parameter perturbations which form another class of exploration
techniques, have been known to enhance the exploration capabil-
ities of agents in complex tasks [10, 25, 33]. Rückstieß et al. [26]
show that this type of policy perturbation in the parameter space
outperforms action perturbation in policy gradient methods, where
the policy is approximated with a linear function. However, Rück-
stieß et al. [26] evaluate this on tasks with low dimensional state
spaces. When extended to high dimensional state spaces, black box
parameter perturbations [27], although proven effective, take a long
time to learn good policies due to their non adaptive nature and
inability to use gradient information. Gradient based methods that
rely on adaptive scaling of the perturbations, drawn from spheri-
cal Gaussian distributions [25], gradient based methods that learn
the amount of noise to be added [11] and gradient based methods
that learn dropout policies for exploration [33] are known to be
more sample efficient than black box techniques. NoisyNets [11],
a method in this class, has been known to demonstrate consistent
improvements over 𝜖-greedy across the Atari game suite unlike
other count-based methods [31]. Moreover, these methods are also
often easier to implement and computationally less taxing than the
other two classes of algorithms mentioned above.

Our exploration strategy belongs to the class of methods that
perturb parameters to effect exploration. Our method has common-
alities with the parameter perturbing methods above as we sample
perturbations from a spherical Gaussian distribution whose vari-
ance is learnt as a parameter of the network. However, the variance
learnt, unlike NoisyNets [11], is conditioned on the current state
of the agent. This enables it to sample perturbations from different
Gaussian distributions to vary the amount of exploration when the
states differ. Our networks also differ in the type of perturbations
applied to the parameters. While [11] obtains a noise sample from
possibly different Gaussian distributions for each parameter, our

network, like [25], samples all perturbations from the same, but
state aware, Gaussian distribution. Moreover, the noise injection
mechanism in SANE is a separate network module that is subject
to user design. This added flexibility might make it more scalable
to larger network models when compared to NoisyNets, where this
mechanism is tied to the network being perturbed.

4 VARIATIONAL THOMPSON SAMPLING
Bayesian methods like Thompson Sampling use a posterior distri-
bution 𝑝 (𝜃 |D) to sample the weights of the neural network, given
D, the experience collected by the agent. 𝑝 (𝜃 |D) is generally in-
tractable to compute and is usually approximated with a variational
distribution 𝑞(𝜃 ). Let 𝐷 = (𝑋,𝑌 ) be the dataset on which the agent
is trained, with 𝑋 being the set of inputs, and 𝑌 being the target
labels. Variational methods minimize the KL divergence between
𝑞(𝜃 ) and 𝑝 (𝜃 |𝐷) to make 𝑞(𝜃 ) a better approximation. Appendix A
[5] shows that minimizing 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 |𝐷)) is equivalent to maxi-
mizing the Evidence Lower Bound (ELBO), given by Equation 2.

𝐸𝐿𝐵𝑂 =

∫
𝑞(𝜃 ) log𝑝 (𝑌 |𝑋, 𝜃 )𝑑𝜃 − 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 )) (2)

For a dataset with 𝑁 datapoints, and under the i.i.d assumption,
we have :

log𝑝 (𝑌 |𝑋, 𝜃 ) = log
𝑁∏
𝑖=1

𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 ) =
𝑁∑
𝑖=1

log𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 )

So, the objective to maximize is :

max
∫

𝑞(𝜃 )
𝑁∑
𝑖=1

log𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 )𝑑𝜃 − 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 ))

= max

[(
𝑁∑
𝑖=1

∫
𝑞(𝜃 ) log𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 )𝑑𝜃

)
− 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 ))

]
In DQNs, the inputs 𝑥𝑖 are state-action tuples, and the its corre-

sponding target𝑦𝑖 is an estimate of𝑄 (𝑠, 𝑎). Traditionally, DQNs are
trained by minimizing the squared error, which assumes a Gaussian
error distribution around the target value. Assuming the same, we
define log𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 ) in Equation 3, where 𝑦𝑖 is the approximate
target Q value of (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ) given by𝑇𝑖 = 𝑟 𝑖𝑡 +max

𝑎
𝛾𝑄 (𝑠𝑖

𝑡+1, 𝑎;𝜃
′), 𝜎2𝑒 is

the variance of the error distribution and 𝐶 (𝜎𝑒 ) = − log
√
(2𝜋)𝜎𝑒 .

log 𝑝 (𝑦𝑖 |𝑥𝑖 , 𝜃 ) =
−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃 ) −𝑇𝑖 )2

2𝜎2𝑒
+𝐶 (𝜎𝑒 ) (3)

𝐸𝐿𝐵𝑂 =

(
𝑁∑
𝑖=1

∫
𝑞(𝜃 )

[
−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃 ) −𝑇𝑖 )2

2𝜎2𝑒

]
𝑑𝜃

)
− 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 )) + 𝑁𝐶 (𝜎𝑒 )

=𝐶1

(
𝑁∑
𝑖=1

∫
𝑞(𝜃 )

[
−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃 ) −𝑇𝑖 )2

]
𝑑𝜃

)
− 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 )) + 𝑁𝐶 (𝜎𝑒 ) (4)
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We approximate the integral for each example with a Monte
Carlo estimate by sampling a 𝜃𝑖 ∼ 𝑞(𝜃 ), giving

𝐸𝐿𝐵𝑂 ≈𝐶1

(
𝑁∑
𝑖=1

−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃𝑖 ) −𝑇𝑖 )2
)
− 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 )) + 𝑁𝐶 (𝜎𝑒 )

As 𝐶 (𝜎𝑒 ) is a constant with respect to 𝜃 , maximizing the ELBO
is approximately the same as optimizing the following objective.

max

[
𝐶1

(
𝑁∑
𝑖=1

−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃𝑖 ) −𝑇𝑖 )2
)
− 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 ))

]
(5)

4.1 Variational View of NoisyNet DQNs
The network architecture of NoisyNet DQNs usually comprises a
series of convolutional layers followed by some fully connected
layers. The parameters of the convolutional layers are not perturbed,
while every parameter of the fully connected layers is perturbed
by a separate Gaussian noise whose variance is learned along with
the other parameters of the network.

For the unperturbed parameters of the convolutional layers, we
consider 𝑞(𝜃𝑐 ) = N(𝜇𝑐 , 𝜖𝐼 ). The parameters of any neural network
are usually used in the floating point format. We choose a value of
𝜖 that is close enough to zero, such that adding any noise sampled
from these distributions does not change the value of the weight as
represented in this format with high probability. For the parameters
of the fully connected layers, we take 𝑞(𝜃 𝑓 𝑐 ) = N(𝜇𝑓 𝑐 , Σ𝑓 𝑐 ) where
Σ is a diagonal matrix with Σ𝑖𝑖

𝑓 𝑐
equal to the learned variance for

the parameter 𝜃𝑖 . We take the prior 𝑝 (𝜃 ) = N(0, 𝐼 ) for all the
parameters of the network.

With this choice of 𝑝 (𝜃 ) and 𝑞(𝜃 ), the value of 𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 ))
can be computed as shown in Equation 6, where 𝑘1 and 𝑘2 are the
number of parameters in the the convolutional and fully connected
layers respectively. Note that 𝑘1, 𝑘2 and 𝜖 are constants given the
network architecture.

𝐾𝐿(𝑞(𝜃 ), 𝑝 (𝜃 )) =1
2

[
−𝑘1 log(𝜖) + 𝑘1𝜖 + ∥𝜇𝑐 ∥22 − 𝑘1

]
+1
2

[
− log |Σ𝑓 𝑐 | + 𝑡𝑟 (Σ𝑓 𝑐 ) +

𝜇𝑓 𝑐22 − 𝑘2] (6)

As NoisyNet DQN agents are usually trained on several million
interactions, we assume that the KL term is dominated by the log
likelihood term in the ELBO. Thus, maximizing the objective in
Equation (5) can be approximated by optimizing the following
objective :

max

(
𝑁∑
𝑖=1

−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃𝑖 ) −𝑇𝑖 )2
)

(7)

which is the objective that NoisyNet DQN agents optimize. In
NoisyNets, every sample 𝜃𝑖 ∼ N(𝜇, Σ) is obtained by a simple
reparameterization of the network parameters : 𝜃𝑖 = 𝜇 + Σ𝜖 , where
𝜖 ∼ N(0, 𝐼 ). This reparameterization helps NoisyNet DQNs to learn
through a sampled 𝜃𝑖 .

4.2 State Aware Approximating Distributions
It can be seen that the approximate posterior distribution 𝑞(𝜃 ) is
state agnostic, i.e., it applies perturbations uniformly across the

state space, irrespective of whether the state is high risk or low
risk. We thus postulate that 𝑞(𝜃 |𝑠) is potentially a better variational
approximator. 𝑞(𝜃 ) is a special case of a state aware variational
approximator where 𝑞(𝜃 |𝑠) is the same for all 𝑠 . A reasonable ELBO
estimate for such an approximate distribution would be to extend
the ELBO in Equation 4 to accommodate 𝑞(𝜃 |𝑠) as shown in 8.

𝐸𝐿𝐵𝑂 =𝐶1

(
𝑁∑
𝑖=1

∫
𝑞(𝜃 |𝑠𝑖𝑡 )

[
−(𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃 ) −𝑇𝑖 )2

]
𝑑𝜃

)
− 1
𝑁

𝑁∑
𝑖=1

𝐾𝐿(𝑞(𝜃 |𝑠𝑖𝑡 ), 𝑝 (𝜃 )) + 𝑁𝐶 (𝜎𝑒 ) (8)

Approximating the integral for each example with a Monte Carlo
estimate by sampling a 𝜃𝑖 ∼ 𝑞(𝜃 |𝑠𝑖𝑡 ), maximizing the ELBO is equiv-
alent to solving 9.

max

[
𝑁∑
𝑖=1

(
−𝐶1 (𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃𝑖 ) −𝑇𝑖 )2 −

1
𝑁
𝐾𝐿(𝑞(𝜃 |𝑠𝑖𝑡 ), 𝑝 (𝜃 ))

)]
(9)

We assume that the KL term will eventually be dominated by the
log likelihood term in the ELBO, given a sufficiently large dataset.
This posterior approximation leads us to the formulation of SANE
DQNs as described in the following sections.

5 STATE AWARE NOISY EXPLORATION
State Aware Noisy Exploration (SANE), is a parameter pertur-
bation based exploration strategy which induces exploratory be-
haviour in the agent by adding noise to the parameters of the net-
work. The noise samples are drawn from the Gaussian distribution
N(0, 𝜎2 (ℎ(𝑠 ;𝜃 );Θ)), where 𝜎 (ℎ(𝑠 ;𝜃 );Θ) is computed as a function
of a hidden representation, ℎ(𝑠 ;𝜃 ), of the state 𝑠 of the agent by an
auxiliary neural network module, i.e., 𝜎 (ℎ(𝑠;𝜃 );Θ) = 𝑔Θ (ℎ(𝑠;𝜃 )),
where Θ and 𝜃 refer to the parameters of the auxiliary perturbation
network (𝑔) and the parameters of the main network respectively.

5.1 State Aware Noise Sampling
To procure state aware noise samples, we first need to compute
𝜎 (ℎ(𝑠;𝜃 );Θ), the state dependent standard deviation of the Nor-
mal distribution from which the perturbations are sampled. As
stated above, we do this by adding an auxiliary neural network
module. 𝜎 (ℎ(𝑠;𝜃 );Θ) is then used to generate perturbations 𝜖 ∼
N(0, 𝜎2 (ℎ(𝑠 ;𝜃 );Θ)) for every network parameter using noise sam-
ples from the standard Normal distribution, 𝜖 ∼ N(0, 1), in tan-
dem with a simple reparameterization of the sampling network
[11, 25, 27] as shown in Equation 10.

𝜖 = 𝜎 (ℎ(𝑠;𝜃 );Θ)𝜖 ; 𝜖 ∼ N(0, 1) (10)

State aware perturbations can be added to all types of layers in
the network. The standard baseline architectures used by popular
deep reinforcement learning algorithms for tasks such as playing
Atari games mainly consist of several convolutional layers followed
by multiple fully connected layers. We pass the output of the last
convolutional layer as the hidden representation ℎ(𝑠;𝜃 ) to com-
pute the state aware standard deviation, 𝜎 (ℎ(𝑠;𝜃 );Θ), where 𝜃 is
the set of parameters of the convolutional layers. Perturbations us-
ing 𝜎 (ℎ(𝑠;𝜃 );Θ) are then applied to the following fully connected
layers.
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Figure 2: A high level view of a State Aware Noisy Exploring Network.

Our mechanism of introducing perturbations is similar to Noisy
DQNs [11] and adaptive parameter space noise [25]. Given a vec-
tor 𝑥 ∈ R𝑙 as input to a fully connected layer with 𝑚 outputs,
an unperturbed layer computes a matrix transformation of the
form 𝑦 = 𝑊𝑥 + 𝑏, where 𝑊 and 𝑏 are the parameters associ-
ated with the layer, and 𝑦 ∈ R𝑚 . We modify such layers with
state-aware perturbations, by adding noise elements sampled from
N(0, 𝜎2 (ℎ(𝑠;𝜃 );Θ)) (Equation 10). This results in the perturbed
fully connected layer computing a transform equivalent to Equa-
tion 11, where𝑊 = 𝑊 + 𝜎 (ℎ(𝑠;𝜃 );Θ)𝜖𝑤 , 𝑏 = 𝑏 + 𝜎 (ℎ(𝑠;𝜃 );Θ)𝜖𝑏 ,
and 𝜖𝑤 ∈ R𝑚×𝑙 , 𝜖𝑏 ∈ R𝑚 are vectors whose elements are samples
from a standard normal distribution.

𝑦 =𝑊𝑥 + 𝑏 (11)

A high level view of a neural network with the augmented state
aware perturbation module is shown in Figure 2. We partition 𝜃
into 𝜃𝑏 and 𝜃𝑝 , where 𝜃𝑏 is the set of parameters used to generate
the hidden state representation ℎ(𝑠;𝜃𝑏 ) using the neural network
ℎ and 𝜃𝑝 are the parameters to which noise is to be added. Given
the hidden state representation, perturbation module 𝑔Θ, is used
to compute the state dependent standard deviation 𝜎 (ℎ(𝑠;𝜃𝑏 );Θ),
which is used to perturb the parameters 𝜃𝑝 of the network 𝑘 . 𝑘
then computes action-values for all actions. Additional features
that may aid in exploration such as state visit counts or uncertainty
estimates can also be appended to ℎ(𝑠;𝜃𝑏 ) before being passed as
input to 𝑔Θ.

Fortunato et al. [11] suggests two alternatives to generate 𝜖𝑤 and
𝜖𝑏 . The more computationally expensive alternative, Independent
Gaussian noise, requires the sampling of each element of 𝜖𝑤 and 𝜖𝑏
independently, resulting in a sampling of 𝑙𝑚+𝑚 quantities per layer.
Factored Gaussian noise, on the other hand, samples two vectors
𝜖𝑙 and ˆ𝜖𝑚 of sizes 𝑙 and𝑚 respectively. These vectors are then put
through a real valued function 𝑧 (𝑥) = 𝑠𝑔𝑛(𝑥)

√
𝑥 before an outer

product is taken to generate 𝜖𝑤 and 𝜖𝑏 (Equation 12), which are the
required noise samples for the layer. Readers are referred to [11]
for more details on these two noise sampling techniques. Being less
computationally taxing and not having any notable impact on the
performance [11], we select Factored Gaussian noise as our method

for sampling perturbations.

𝜖𝑤 = 𝑧 (𝜖𝑙 ) ⊗ 𝑧 ( ˆ𝜖𝑚), 𝜖𝑏 = 𝑧 ( ˆ𝜖𝑚) (12)

5.2 Network Parameters and Loss Function
The set of learnable parameters for a SANE network, is a union of
the set of parameters of the main network, 𝜃 , and the set of param-
eters of the auxiliary network perturbation module, Θ. Moreover,
in place of minimizing the loss over the original set of parameters,
E [L(𝜃 )], the SANE network minimizes the function E [L([𝜃,Θ])],
which is the loss corresponding to the network parameterized by
the perturbed weights of the network. Furthermore, with both the
main network and the perturbationmodule being differentiable enti-
ties, using the reparameterization trick to sample the perturbations
allows the joint optimization of both 𝜃 and Θ via backpropagation.

5.3 State Aware Deep Q Learning
We follow an approach similar to [11] to add state aware noisy
exploration to DQNs [18]. In our implementation of a SANE DQN
for Atari games, 𝜃𝑏 and 𝜃𝑝 correspond to the set of parameters in
the convolutional layers and the fully connected layers respectively.
The Q network and the target network have their own copies of
the network and perturbation module parameters.

The DQN learns by minimizing the following loss, where 𝜃, 𝜃 ′
represent the network parameters of the Q-network and the target
network and Θ,Θ′ represent the perturbation module parameters
of the Q-network and the target network respectively. The training
samples (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 ) are drawn uniformly from the replay buffer.

L(𝜃,Θ) = E
[ 1
𝑏

𝑏∑
𝑖=1

(𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃,Θ) − (𝑟𝑖 + 𝛾 max
𝑎
𝑄 (𝑠 ′𝑖 , 𝑎;𝜃

′,Θ′)))2
]

5.4 Variational View of SANE DQNs
In SANE DQNs, we allow the network to use a different posterior
approximation 𝑞(𝜃 |𝑠) for different states but restrict the perturba-
tions that is added to all parameters to be sampled by the same
distribution given a state 𝑠 . Similar to NoisyNets, for the unper-
turbed parameters of the convolutional layers and the perturbation
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Figure 3: High risk states learnt by Q-SANE in the 8 game sub-suite

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Low risk states learnt by Q-SANE in the 8 game sub-suite

module, we consider 𝑞(𝜃𝑏 |𝑠) = N(𝜇𝑏 , 𝜖𝐼 ), 𝑞(Θ|𝑠) = N(𝜇Θ, 𝜖𝐼 ) and
for the parameters of the fully connected layers, we take 𝑞(𝜃𝑝 |𝑠) =
N(𝜇𝑝 , 𝜎2 (ℎ(𝑠;𝜃𝑏 );Θ))∀𝑠 . We take the prior 𝑝 (𝜃 ) = N(0, 𝐼 ) for all
the parameters of the network. It follows that the objective to max-
imize is the same as objective (7), but where the parameters 𝜃𝑖 are
drawn from 𝑞(𝜃 |𝑠𝑖𝑡 ).

In our experiments, we compare two different SANE DQN vari-
ants, namely, the simple-SANE DQN and the Q-SANE DQN. Both
these SANE DQNs have the same network structure as shown in
Figure 2. Q-SANE DQNs and simple-SANE DQNs differ in the addi-
tional features that are added to the perturbation module. Simple-
SANE DQNs add no additional features to aid the perturbation
module. On the other hand, Q-SANE DQNs use the non-noisy Q-
values of the state as additional features. The non-noisy Q-values
are computed via a forward pass of the neural network with no
perturbations applied to 𝜃𝑝 . Adding Q-values as features to the
perturbation module can be useful, as a state where all the action
values take similar values could be an indication of a low risk state
and vice versa.

6 EXPERIMENTS
We conduct our experiments on a suite of 11 Atari games. This suite
contains 8 games that exhibit both high and low risk states (see
Figures 1, 3 and 4) that we expect would benefit from state aware
exploratory behaviour. We expect SANE not to have any notable
benefit in the other 3 games.

6.1 Atari Test Suite
The 11 game Atari test suite has an 8 game sub-suite, consisting of
the games Asterix, Atlantis, Enduro, IceHockey, Qbert, Riverraid,
RoadRunner and Seaquest. High risk and low risk states of these

games (in order) are shown in Figures 3 and 4 respectively. The
games in this sub-suite have properties that benefit agents when
trainedwith SANE exploration. Most high risk states in these games,
occur when the agent is either at risk of being hit (or captured) by
an enemy or at risk of going out of bounds of the play area. Figures
3a, 3b, 3c, 3e, 3g and 3h illustrate this property of high risk states.
Low risk states, on the other hand, correspond to those states where
the agent has a lot of freedom to move around without risking loss
of life. Most of the states in Figure 4 demonstrate this.

Additionally, there maybe other complex instances of high risk
states. For instance, in Riverraid, states where the agent is about
to run out of fuel can be considered high risk states (Figure 3f).
Moreover, sometimes the riskiness of a state can be hard to identify.
This is illustrated by the high and low risk states of IceHockey
shown in Figures 3d and 4d respectively. In games like IceHockey,
high risk states are determined by the positions of the players and
the puck. Figure 3d is a high risk state as the puck’s possession is
being contested by both teams, while 4d is low risk as the opponent
is certain to gain the puck’s possession in the near future.

We also include 3 games, namely, FishingDerby, Boxing and
Bowling, in our suite to check the sanity of SANE agents in games
where we expect SANE exploration not to have any additional
benefits over NoisyNets.

6.2 Parameter Initialization
We follow the initialization scheme followed by [11] to initialize the
parameters of NoisyNet DQNs. Every layer of the main network of
simple-SANE and Q-SANE DQNS are initialized with the Glorot
uniform initialization scheme [12], while every layer of the pertur-
bation module of both the SANE DQN variants are initialized with
samples from N(0, 2

𝑙
), where 𝑙 is number of inputs to the layer.
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Figure 5: Learning curves of SANE DQNs, NoisyNet DQNs and 𝜖-greedy DQNs.

Table 1: Scores of DQN agents when evaluated without noise injection or exploratory action selection.

Game Q-SANE simple-SANE NoisyNets 𝜖-greedy

Asterix 126213±20478 133849 ± 49379 110566 ± 31800 15777 ± 3370
Atlantis 141337 ± 67719 265144 ± 151154 162738 ± 73271 229921 ± 41143
Enduro 2409± 321 2798 ± 311 2075 ± 24 1736± 197

IceHockey 2.99±1.4 1.43 ± 1.76 -2.4 ± 0.52 3.46 ± 0.8
Qbert 17358 ±1015 15341 ± 162 15625 ± 166 16025 ± 555

Riverraid 14620±3491 14919 ± 997 11220 ± 223 12023 ± 512
RoadRunner 49598±1635 45929 ± 1648 51805 ± 885 47570 ± 1651
Seaquest 8368±3426 8805 ± 1392 6031 ± 3567 7682 ± 1648

FishingDerby -19.78 ±7.2 -12.1 ± 4.2 -11.5 ± 5.4 -33.9 ± 9.1
Boxing 95.3 ± 3 93.2 ± 4.5 95.5 ± 1.7 96.6 ± 0.73
Bowling 29±1 28.08 ± 1.2 37.4 ± 3.8 20.6 ± 4.7

Score (8 games) 4.86 5.51 4.28 3.33
Score (11 games) 4.1 4.85 3.98 3.25

6.3 Architecture and Hyperparameters
We use the same network structure to train NoisyNet, simple-SANE,
Q-SANE and 𝜖-greedy DQNs. This network structure closely fol-
lows the architecture suggested in [18]. The inputs to all the net-
works are also pre-processed in a similar way.

The perturbations for NoisyNet, simple-SANE and Q-SANE
DQNs are sampled using the Factored Gaussian noise setup [11].
The SANE perturbation module used for all games and all SANE

agents is a 1-hidden layer fully connected neural network. We train
simple-SANE DQNs on the games of Asterix and Seaquest to deter-
mine the size of the hidden layer. A hyperparameter search over the
set {32, 64, 128, 256, 512} revealed that a module with 256 hidden
neurons gave the best results on these games. The hidden layer
uses ReLU activation, and output layer computes one output which
corresponds to the state aware standard deviation 𝜎 (ℎ(𝑠;𝜃𝑏 );Θ).

We train the DQNs with an Adam optimizer with learning rate,
𝛼 = 6.25 × 10−5. All other hyperparameters use the same values as
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Table 2: Scores of DQN Agents when evaluated with noise injection.

Game Q-SANE simple-SANE NoisyNets

Asterix 182797±51182 194547 ± 56492 134682 ± 26574
Atlantis 281189±126834 230837 ± 104472 166512 ± 93945
Enduro 2849 ± 464 2855 ± 579 1946 ± 136

IceHockey 2.86 ± 1.97 1.9 ± 3.25 -1.53 ± 0.45
Qbert 16950±479 15438 ± 57 13824 ± 2690

Riverraid 15168± 2068 15434 ± 891 11076 ± 889
RoadRunner 47434± 2352 47578 ± 3787 51260 ± 712
Seaquest 7184± 2806 7844 ± 1245 6087 ± 3654

FishingDerby -15.92 ± 7.9 -10.83 ± 2.34 -14 ± 2.8
Boxing 96.16± 1.73 95.1 ± 2.1 93.6 ± 2.7
Bowling 28.8± 0.61 28.13 ± 1.25 34.2 ± 2.4

Score (8 games) 6.43 6.2 4.64
Score (11 games) 5.54 5.37 4.22

used by [18]. The agents are trained for a total of 25M environment
interactions where each training episode is limited to 100K agent-
environment interactions. Both NoisyNet and SANE DQNs use
greedy action selection. Please refer to Sections B and C in the
Appendix [5] for more details about the implementation.

For each game in the test suite, we train three simple-SANE,
Q-SANE, NoisyNet and 𝜖-greedy DQN agents. Figure 5 shows the
average learning curves of all the learning agents. Each point in
the learning curve corresponds to the average reward received by
the agent in the last 100 episodes, averaged over 3 independent
runs. Table 1 shows the mean scores achieved by simple-SANE,
Q-SANE, NoisyNet and 𝜖-greedy DQNs after being trained for 25M
environment interactions on being evaluated for 500K frames with
no noise injection. The scores of the best scoring agents in each
game have been highlighted. We also evaluate simple-SANE, Q-
SANE and NoisyNet DQNs with noise injection. These scores are
presented in Table 2. Tables 1 and 2 also report the mean human-
normalized scores (HNS) [9] achieved by these methods on the
8 games which are likely to benefit from SANE exploration and
on the whole 11 game suite. We also present some high-risk and
low-risk states identified by Q-SANE agents in Figures 3 and 4.

We observe that when evaluated without noise injection, both
Q-SANE and simple-SANE outperform NoisyNets in 6 of the 8
games in the sub-suite. NoisyNets achieve higher scores than both
SANE variants in RoadRunner. In the three games not in the sub-
suite, NoisyNets achieve higher but similar scores in FishingDerby
and Boxing while performing much better in Bowling compared to
the other agents. Evaluating the agents with noise injection proves
beneficial for both SANE and NoisyNet agents, all of them achieving
higher mean HNS in the 8 game sub-suite and the whole test suite.
However, simple-SANE and Q-SANE agents achieve greater gains
as they score higher than NoisyNets in 7 games in the sub-suite.
SANE agents also score better in the remaining three games but do
not manage to score better than NoisyNets in Bowling. Q-SANE
and simple-SANE achieve the highest mean HNS on both the 8
game sub-suite and the whole test suite when evaluated with and
without noise injection respectively.

7 CONCLUSION
In this paper, we derive a variational Thompson sampling approx-
imation for DQNs, which uses the distribution over the network
parameters as a posterior approximation. We interpret NoisyNet
DQNs as an approximation to this variational Thompson Sampling
method where the posterior is approximated using a state uniform
Gaussian distribution. Using a more general posterior approxima-
tion, we propose State Aware Noisy Exploration, a novel exploration
strategy that enables state dependent exploration in deep reinforce-
ment learning algorithms by perturbing the model parameters. The
perturbations are injected into the network with the help of an aug-
mented SANE module, which draws noise samples from a Gaussian
distribution whose variance is conditioned on the current state of
the agent. We hypothesize that such state aware perturbations are
useful to direct exploration in tasks that go through a combination
of high risk and low risk situations, an issue not considered by
other methods that rely on noise injection.

We test this hypothesis by evaluating two SANE DQN variants,
namely simple-SANE and Q-SANE DQNs, on a suite of 11 Atari
games containing a selection of games, most of which fit the above
criterion and some that do not. We observe that both simple-SANE
and Q-SANE perform better than NoisyNet agents in most of the
games in the suite, achieving better mean human-normalized scores.

An additional benefit of SANE noise injection mechanism is
its flexibility of design. SANE effects exploration via a separate
perturbation module, the size or architecture of which is not tied
to the model being perturbed and hence is flexible to user design
and can be tailored to the task. As a consequence, this exploration
method might scale better to larger network models. Hence, SANE
presents a computationally inexpensive way to incorporate state
information into exploration strategies and is a step towards more
effective, efficient and scalable exploration.
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