ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Parallel hardware implementation of a broad
class of spiking neurons using serial arithmetic

Benjamin Schrauwen™ Jan Van Campenhout
ELIS, Ghent University, Belgium
Benjamin.Schrauwen@UGent.be

Abstract. Current digital, directly mapped implementations of spik-
ing neural networks use serial processing and parallel arithmetic. On a
standard CPU, this might be the good choice, but when using a Field
Programmable Gate Array (FPGA), other implementation architectures
are possible. This work present a hardware implementation of a broad
class of integrate and fire spiking neurons with synapse models using par-
allel processing and serial arithmetic. This results in very fast and compact
implementations of spiking neurons on FPGA.

1 Introduction

Compact, directly mapped hardware implementations of spiking neurons have
previously [3, 4] been implemented using serial processing of the synapses and
decay operations, but using parallel arithmetic (i.e., operating on words, as nor-
mal CPUs do). When implementing this on a standard CPU architecture, this
might be a good choice, but when using FPGAs (like all these implementations
do), other architectures are possible and might be better suited. In this work we
present a hardware implementation of a broad class of Leaky Integrate and Fire
(LIF) neurons with synapse models, using parallel processing of the synapses
and serial arithmetic. Pipelining is used to optimize hardware usage. A directly
mapped implementation using pipelining was already presented in [6]. There
however, only a single processing element was used which simulated a very sim-
ple neuron model using parallel arithmetic.

Because we are interested in compact implementations of rather small net-
works (< 1000 neurons) of spiking neurons we opt to use time step based simu-
lation instead of event based simulation!. Applications of such ‘small’ networks
include autonomous robot control, LSM based speech recognition [5], embedded
learning signal processors, ... Event based simulation does allow very large net-
works of spiking neurons to be simulated approximately 10 times faster (when
we assume an average neuron activity of 1%) than time step based simulation,
but they require a lot of hardware resources (multiple FPGA chips [2]), and
currently do not allow parallel processing. Event based systems also do not
guarantee strict real-time behaviour (they could, but then they are an order of
a magnitude slower), which in many applications is mandatory.

*This research is partially funded by FWO Flanders project G.0317.05.
! Applications for such ‘small’ networks include autonomous robot control [3], speech recog-
nition [5], embedded learning signal processors, ...

623

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

input 4

input 5

input 6

control
signals

Fig. 1: Overview of an example neuron architecture

2 Spiking neuron model

The hardware architecture we present can implement a broad class of spiking
neurons [1] with a LIF membrane model and several different synapse types per
neuron. Absolute refractoriness, or the temporary insensitivity of the neuron
after it has fired, is also supported. All synapses of the same type (and same
time constant) are grouped in a so called synapse model. This is allowed by the
linear nature of the synapses. The supported synapse models are exponential
or Dirac delta (no synapse model). Note that two exponential synapse models
could be placed one after another to construct for example alpha-type synapse
responses. Due to the modular structure of the neuron model, more complex
dynamic synapses with facilitation and depression can also be implemented as
long as they can be modelled by a combination of exponential filtering operations.

3 Implementation

An overview of the general neuron architecture is given in Figure 1. Each of the
inputs is fed to a synapse block, these will serially shift out (least significant bit
first) their weights in case of an incoming spike. Two synapse outputs are joined
together by a dendrite adder which serially adds the two streams by adding bit
by bit, least significant bit first, and remembring the carry. A synapse model
block implements exponentially decaying synapse models by leaky-integrating
the input. The membrane block implements a LIF membrane using serial arith-
metic. Because the implementation is pipelined (flip-flops are added after each
processing stage to improve throughput) a delay line for the control signals is
needed.

The processing is split up in several parts which is depicted in Figure 2. First
an idle state is needed to pre-set all internal signals. Next, several integrate
states are issued which command the synapses to serially transmit their weights,
and the synapse models and membrane to integrate them. The number of clock

624

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

ide integrate W

clk [UUUUUUUUU U U U U UL
integrate | [| | in
decay | . | ‘ L
state end || r] jun
tap [O ‘ i X

extend | ! — L
time

Fig. 2: This diagram shows the timing structure

cycles used by the integrate state is equal to the internal bit precision B. Then,
the decay state will serially implement exponential decay inside the synapse
models and the membrane using one or more taps (shifted versions of the internal
potential) which are subtracted from the original potential. Each tap takes B
clock cycles.

Figure 2 shows the detailed control sequence generated by the controller
for neurons with 12 bits internal precision and two taps. Note that only one
controller is needed if the neurons have similar architectures. The INTEGRATE
and DECAY signals represent the integrate and decay state respectively. The
STATE_END signal is high at the end of the integrate state and each of the taps
of the decay state. It is used for various maintenance tasks that need to happen
at the end of a integrate/decay state like checking the saturation and threshold,
setting the carry, ... During the decay state, the TAP signals differentiates be-
tween the different taps. The EXTEND signal is used to sign extend the shifted
version of the potentials. This is done by remembering the sign bit of the po-
tential at the correct time which depend on the actual tap value. Note that for
the membrane and each of the synapse models separate EXTEND signals are used
because they all can have different tap values (not shown in the figure).

The details of the synapse are shown in Figure 3a. It consists of a shift register
that is enabled by the INTEGRATE control signal. The output is enabled when a
spike is present. Notice that the output does not hold a flip-flop; so this block
does not increase the pipeline depth as is shown in Figure 12. A dendrite adder,
shown in Figure 3b, implements a serial addition. This is done by a single full-
adder with delayed carry. After the integrate state, the carry flip-flop is reset
to zero. We implemented a binary adder tree. The width/breadth could be
increased leading to a shallower tree and less pipeline stages, but implementing
this is only advised for FPGAs that have LUTs with more than 4 inputs (like
the Altera Stratix II).

The internal structure of the membrane block is depicted in Figure 3d. The

20n Xilinx FPGAs this shift register can be very efficiently implemented using the SRL16E
mode of lookup tables (LUTs, the basic building blocks of FPGAs) which allow each LUT to
be transformed into a 16 bit shift register. On Altera FPGAs 18 synapses could share one
M512 memory block (32x18 topology) which can be put in FIFO mode.

625

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

input

H» E‘ > output
integraty
* T stored weight s
input L\
B E* T H

‘
|
integrate |
|
i
|

clk integrate

(a) synapse

DR

shift correction)

|
|
|
|
|
|
! '
|
|
|
|
)

(d) membrane

Fig. 3: Internal structure of different building blocks

626

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Nr LUTs FFs
Synapse NI 2 0
Dendrite adder| N1 2 2
Synapse model|NS| [log, T'] + 6 B+2
Membrane | N |B+ [log, T + 15 B+4
Controller 1| 5([logy B1+1) | (S+1)+ [logy T + [logy B] + 6

Table 1: Size results

main part is the internal shift register holding the membrane potential. In the
integrate state the input is serially added to the membrane potential if the neuron
is not in its refractory period or firing. At the last clock cycle of the integrate
state three blocks check if the membrane potential is: bigger than 2547 then fire;
or bigger than 247 and smaller than —2547, then reset the membrane potential
to its reset value (this implements reset after fire and negative saturation); or
smaller than 2FFFE then keep the neuron in refractory. During the decay state,
one or more shifted and negated versions of the membrane potential are added.
Prior to each tap, the carry is set to 1 if negative. It is also set to one if all the
lower bits of the potential are equal to 1. This trick makes sure the potential
decays all the way to zero and won’t get stuck at a higher value. The extend
signal enables sign extension during the last clock cycles of the addition. In the
idle state the carry flip-flop is reset.

Figure 3c depicts the internal working of an exponentially decaying synapse
model. Notice the similarities with the membrane block. A synapse model block
is actually a membrane block without reset, threshold detection and refractori-
ness. The output is just the buffered result from the serial accumulation of the
input value and the internal potential.

The current implementation uses direct interconnection between the neurons;
but other schemes like a bus or a memory based interconnection are possible.We
also use fixed weights, meaning that the weights are predetermined at the time
of synthesis. Changing these weights afterwards is possible by re-synthesizing
the design or via dynamic reconfiguration (reprogramming parts of the FPGA
while it is operational), also used in [4]. A slightly different version of the design
was implemented where on-line changing of the weights is possible by placing all
the weight’s shift registers in a long scan chain. This can be implemented with
very few extra resources. If double buffering? is used, the design can continue
operating while the weights are being shifted in. Other parameters like time
constants, thresholds and reset values can only be redefined by re-synthesis or
dynamic reconfiguration.

3The implementation shown in Figure 3d has internal precision B = 13, number of taps
T = 2, saturation bit range SAT = 9, refractory bit range REFR = 8, first tap position
TAP1 = 3, second tap position TAP2 = 4.

4 All weight memory is doubled. One copy will be used during operation while the other can
be used to write data into. After the write operation is ready, both memories are switched.

627

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Table 1 shows the synthesis results with respect to the important parameters:
N neurons each with I inputs, S synapse models, T' taps and B bits of internal
resolution. The number of clock cycles needed to process one neuron time step
is approximately [log, I'1 4+ B(1+T) + 1. On a cheap and small Xilinx Spartan
3 FPGA device (XC3S200), using neurons with 12 bit resolution, one synapse
model and 10 inputs, we can implement approximately 56 neurons clocked at
120 Mhz, resulting in 2930 times real-neuron-time® speed. On a state-of-the-
art Virtex 4 FPGA (XC4VLX100) we can implement 1400 neurons running at
approximately 5860 time real-neuron-time speed (estimate).

Compared to the hardware models presented in [3, 4] our models do take
up more space, but are much faster (it is difficult to compare numerical values
because they used an older FPGA technology). We also support much more
complex neuron models.

4 Conclusions and future work

This work presents a directly mapped, parallel implementation using serial arith-
metic of a broad class of LIF spiking neurons with synapse models. As a result
we are able to implement 1400 neurons running at 5860 times real-neuron-time
on state-of-the-art FPGAs.

Currently no weight adaptation was implemented. For future work we plan
to incorporate Spike Timing Dependant Plasticity (unsupervised learning) and
an easy interface to an accompanying CPU which can then be used to perform
supervised learning. We also plan to use this hardware to implement a speech
recognition system based on the Liquid State Machine [5] which does not need
its weights to be trained.

References

[1] W. Gerstner and W. M. Kistler. Spiking Neuron Models. Cambridge University Press,
2002.

[2] H. Hellmich, M. Geike, P. Griep, P. Mahr, M. Rafanelli, and H. Klar. Emulation engine
for spiking neurons and adaptive synaptic weights. In Proc. of IJCNN, pages 3261-3266,
2005.

[3] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano. Hardware spiking neural network
with run-time reconfigurable connectivity in an autonomous robot. In NASA/DoD Conf.
on Evolvable Hardware, pages 189-198, 2003.

[4] A. Upegui, C. A. Pefia Reyes, and E. Sanchez. An FPGA platform for on-line topology
exploration of spiking neural networks. Microprocessors and Microsystems, 29:211-223,
2005.

[5] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout. Isolated word
recognition with the liquid state machine: a case study. Information Processing Letters,
95(6):521-528, 2005.

[6] J. Waldemark, M. Millberg, T. Lindblad, K. Waldemark, and V. Becanovic. Implementa-

tion of a pulse coupled neural network in FPGA. International Journal of Neural Systems,
10(3):171-177, 2000.

5The number of times the hardware can run faster than real-time assuming a simulation
time step of 1 ms.

628

