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Abstract

Although training an ensemble of neural network solutions increases
the amount of information obtained from a system, large ensembles may
be hard to analyze. Since data clustering is a good method to summarize
large bodies of data, we will show in this paper how to use clustering
on instances of neural networks. We will describe an algorithm based on
deterministic annealing, which is able to cluster various types of data. As
an example, we will apply the algorithm to instances of three di�erent
types of MLP's, trained to predict the time of death of ovarian cancer
patients.

1 Introduction

In neural network analysis a growing trend exists to not only train a network
to �nd the best solution, but to create an ensemble of good solutions. For
example, bootstrapping [1] leads to many di�erent models by optimizing each
model on a di�erent sample of the training set, whereas the Bayesian approach
creates a probability distribution of all solutions, from which may be sampled by
Markov Chain Monte Carlo (MCMC) procedures [2]. In order to catch the �ne
nuances of the system, the number of network representations, or models, can
be of considerable size. For large problems, the amount of models may even be
too high to keep a good overview of the solution, and special transformations
will be required to summarize the set of networks, preferably without loss of
information.

Clustering can be seen as the representation of a large data set W by a
smaller data set M . The components of W and M may be any kind of data
carrying elements; the type of the elements may vary from set W to set M , or
even within sets. The only requirement is that there exists a distance function
D(W;M ), indicating how much sets W and M di�er from each other, or rather
how much information is lost in the conversion from W to M .

Since W andM may contain any kind of data carrying elements, the method
of clustering may well be used to �nd a workable representation of any oversized
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solution space of a neural network. Taking the elements ofW to be the networks
in the original (large) solution, represented by their weights, biases and overall
structure of the network (number of hidden layers, transfer functions, etc.), M
is the (smaller) set of networks best representing the features contained in W .
It would be logical for D(W;M ) to be based on the outputs of the networks,
since these best represent the nature of each network. The form of the distance
function can well be chosen as the error function used in the original training,
since this function already expresses the distance between a \perfect" solution
and an approximation.

In this paper we will review the clustering method �rst constructed by Rose
et al [3]. Their method, based on the principles of deterministic annealing as
�rst described by Jaynes [4], was shown to yield good results for the clustering
of two-dimensional data with a Euclidean distance function. We will generalize
this method for use with other data types and distance functions, and use it to
cluster models (e.g. neural networks).

2 Theory

2.1 Notation

Suppose we have N models, fully characterized through their parameters wi,
i = 1 : : :N . We de�ne M other models, which we will refer to as cluster centres,
denoted m�, � = 1 : : :M . D(wi;m�) is the distance of model i to cluster centre
�. The distance need not be symmetric, i.e., D(w;m) may be di�erent from
D(m;w)1 We do however require that D(m;w) � 0 and D(m;m) = 0. In the
following we will assume distances of the form

D(wi;m�) =
X
�

d(y(wi; x
�); y(m�; x

�)) ;

for some distance measure d(y1; y2), where y(wi; x
�) is the output of the network

with weights wi on the input x�. Each network is supposed to have the same
input. Since, once the inputs x� are given, the only dependency of our models
wi on the result of the clustering procedure is through the outputs y(wi; x

�),
we can compute these in advance.

2.2 The derivation of the \free energy"

We de�ne variables pi� as the probability that model i belongs to cluster �. The
distances between models wi and cluster centres m� are given by D(wi;m�).
We assume that the models wi are given, but that the probabilities pi� and
cluster centres m� are still free to choose. One of the goals of clustering is to
put the cluster centres such as to minimize the average distance of the models
to the cluster centres, i.e., to �nd a low average energy

E(m; p) =
X
i�

pi�D(wi;m�) :

1Note that D(w;m) is not a distance function in the mathematical sense, but rather a
measure of the di�erence between w and m. However, since the concept of clustering is
intuitively best understood in terms of positions and distances, we will still refer to D(m;w)
as a distance.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 87-92
ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 87-92



In this framework the average energy is a weighted average over the distances
between models and cluster centres, where the weight of D(wi;m�) is equal to
the probability that model wi belongs to cluster �. For �xed cluster centres
m�, minimizing the average energy would correspond to assigning each model
to its nearest cluster centre with probability one. A proper way to regularize
this is through a penalty term of the form

S(p) = �
X
i�

pi� lnpi� ;

the discrete version of the Shannon entropy, which is the only quantity which is
positive, increases with increasing uncertainty, and is additive for independent
sources of uncertainty [4]. Maximizing S(p) therefore favours a state of total
chaos, i.e. 8i�;j� pi� = pj�, which corresponds to the notion that we have no
prior knowledge about the structure of the clusters.

We introduce a regularization parameter T , weighting the two di�erent
terms, to arrive at the \free energy"

F (m; p) = E(m; p) � TS(p) :

Minimizing F (m; p) can be seen as a search for the best compromise between
a low average distance (minimizing E(m; p)) and keeping a reasonable amount
of chaos in the system (maximizing S(p)). For any choice of the model centres
m�, the probabilities pi� minimizing the free energy F (m; p) read (under the
constraint

P
� pi� = 1 8i)

pi�(m) =
e��D(wi;m�)X



e��D(wi;m
)
(1)

with � = 1=T . Substitution of this result into the free energy then yields

F (m) = F (m; p(m)) =
X
i

log
X
�

e��D(wi;m�) : (2)

Eq. (2) is equivalent to the result presented in [3]. The main di�erence between
our derivation and the derivation made by Rose et al [3] is the role of the
parameter �. Here it is just a regularization parameter, that can be chosen in
advance. In [3] an average energy hEi is de�ned, such that (like in statistical
physics theory) � is a Lagrange multiplier that must be tuned to ensure that hEi
stays constant. Since we have certain reservations with respect to this approach
(in information theory there usually is no way of knowing the average distance
(energy), and the fact that � in this way becomes implicitly dependent on the
cluster centres m is completely neglected) we prefer the derivation presented in
this section.

2.3 Phase transition

For small � (high temperature) the free energy is dominated by its entropy
term, leading to a solution with only one cluster centre or, equivalently, to a
solution where all cluster centres are the same. Minimization of F (m) is in this
case equivalent to �nding the global minimum of

P
iD(wi;m). However, when
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� reaches a certain level, �c, the one-cluster solution will evolve into a multiple-
cluster solution, corresponding to multiple local minima of F (m). Since the
Hessian of F (m0) passes from being positive-de�nite to non-positive-de�nite at
� = �c, the latter can be found by solving:2

det

"
@2F

@m@mT

����
m=m0

#
= 0 :

Substituting (2) yields

@2F

@m�@m
T
�

=
X
i

�
1

nc

@2Di�

@m�@m
T
�

��� �
�

nc

@Di�

@m�

@Di�

@mT
�

��� +
�

n2c

@Di�

@m�

@Di�

@mT
�

�
(3)

where Di� � D(wi;m�) and ��� is the Kronecker delta function. We have made

use of the fact that at �c all cluster centres are given by m0, so p(wi;m�) =
1
nc

8i;� where nc is the number of clusters.
In such a case, when the last term in Eq. 3 is positive-semide�nite (which it

is, being a correlation matrix), the matrix S is positive-de�nite if and only if

X
i

@2Di�

@m�@m
T
�

� �
X
i

@Di�

@m�

@Di�

@mT
�

(4)

is positive-de�nite (see [3]). Therefore, assuming that the left part of (4) has
an inverse, symmetry breaking occurs at �c = 1=�max where �max is the largest

eigenvalue of

"X
i

@2Di�

@m�@m
T
�

#
�1 "X

i

@Di�

@m�

@Di�

@mT
�

#
. Inserting the sum-squared

distance forDi� yields the result already obtained by Rose et al [3]. An extension
of this result to self-organizing maps is given in [5] by Graepel et al.

3 The algorithm

The problem of (model) clustering now consists of �nding, (for each �) the
cluster centres m� minimizing the free energy F (m�). This corresponds to
solving (for each m�):

@F

@m�

=
X
i

pi�
@Di�

@m�

= 0 : (5)

Since both pi� and @Di�

@m�
are functions of m�, and the di�erent m� are interre-

lated through their normalization (which is a function of all m�), solving Eq. 5
is not very simple. However, because of its probabilistic structure, the problem
does lend itself to be solved by a GEM (Generalized EM) algorithm. A full
description of the (Generalized) EM algorithm can be found in [6].

In the �rst step (expectation step) of the GEM algorithm the probabilities
pi�, as given by Eq. 1, are evaluated. In the second step (maximization step)
we seek to �nd new cluster centres m0

� such that:X
i

pi�D(wi;m
0

�) �
X
i

pi�D(wi;m�) : (6)

2In the following mT denotes the transpose of m.
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A solution for m0

� can be obtained from any gradient descent algorithm onP
i pi�D(wi;m) starting fromm = m�. However, for certain distance functions

(e.g. the sum-squared error or the cross-entropy error3) \average" outputs �y��
can be computed4 such that, up to irrelevant constants,X
i

pi�D(wi;m�) =
X
i

pi�
X
�

d(y(wi; x
�); y(m�; x

�)) =
X
�

d(�y��; y(m�; x
�)) :

In those cases, the M-step is nothing but minimizing the distance between �y��
and y(m�; x

�). This is achieved by training the network on the outputs �y�� and
the inputs used throughout the algorithm to obtain the actual model parame-
ters m�. However, if there are no restrictions on the outputs the network can
produce, the model parameters m� need not be retrieved in every M-step, but
only after the last step, when all cluster centres are found in terms of their corre-
sponding outputs �y��. This may lead to a tremendous speed-up in the clustering
process. The thus obtained cluster centres can be used as an initialization for
the clustering process with restrictions on the outputs.

4 Applications

Although clustering in weight space has been used in network analysis [7], model
clustering as described in this paper has not. However, several applications do
readily present themselves. One application can be found in the comparison of
networks which do not have the same structure, but are trained to perform the
same task. If the network outputs depend strongly on the network's structure,
di�erent models are likely to be assigned to di�erent cluster centres. If how-
ever two di�erently structured networks produce similar outputs, there will be
clusters inhabited by both types of networks.

Another possible application is the detection of symmetries in one type of
network [7]: clustering based on a distance function dependent on the outputs
of the networks will produce di�erent clusters than clustering in weight space
directly (e.g. with a Euclidean distance function). Comparison of the two sets
of clusters (i.e. clusters based on the outputs and clusters in weight space) may
help to gain insight in the symmetries of the system.

We have implemented a �rst application to compare three sets of feed-
forward networks, trained to predict the time of death of ovarian cancer pa-
tients, based on the patients' medical information [8, 9]. Each set contained
80 instances (obtained by Hybrid Markov Chain Monte Carlo (HMCMC) sam-
pling [2]) of a network with 1, 2 or 3 hidden units; all networks were trained on
the same data. The clustering algorithm as described in this paper was applied
to the union of these three sets. The results can be seen in Figure 1, where for

each cluster the weight (W� = 1
N

PN

i pi�) of each set is given. At � < �c all
probabilities are equal, and no distinction can be made between the di�erent
clusters or the di�erent types of models. However, at � > �c, three clusters
are formed. From the division of the three types of models over the clusters it
is clear that the models do possess di�erent properties: especially in clusters
1 and 3 the weights of the models vary signi�cantly. In cluster 2 however, the
weights are divided more equally, so although the three models do have di�erent

3d(y(wi; x�); y(m�; x
�)) = y(wi; x�) log

y(wi;x
�)

y(m�;x�)
+ [1� y(wi; x�)] log

1�y(wi;x
�)

1�y(m�;x�)
4For the sum-squared error or the cross-entropy error �y�� =

P
i
pi�y(wi; x�).
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Figure 1: Weights of the three types of models inside the three clusters. Each
bar plot represents one cluster, each bar represents one weight. In the upper
row � < �c and all weights are equal. In the bottom row � > �c and a structure
arises in the division of models over the clusters.

features, there also may exist a common denominator. With this information in
mind, comparing the models inside one cluster may lead to new insights about
the prediction problem.
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