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Abstract.  This paper introduces the concept of “optimally distributed com-
putation” in feed-forward neural networks via regularisation of weight saliency.
By constraining the relative importance of the parameters, computation can be
distributed thinly and evenly throughout the network. We propose that this will
have beneficial effects on fault tolerance performance and generalisation ability
in augmented network architectures. These theoretical predictions are verified by
simulation experiments on two problems — one artificial and the other a “real
world” task. In summary, this paper presents regularisation terms for distributing
neural computation optimally.

1. -Introduction

Optimally distributed computation leads to fault tolerance and follows the spirit of Oc-
cam’s razor even in augmented networks to yield good generalisation ability. In neural
network models computation is more or less distributed in the weighted connections.
However, the “distributedness” is in no way optimal and poor performance, in terms
of fault tolerance, is not unusual. We attest that poor generalisation ability can arise
in a similar manner. Fault tolerance is optimised if the computation is spread thinly
and evenly throughout the network [6]. Generalisation ability requires that the com-
putational complexity of a network be matched with that required by the task in hand.
These are two of the key questions in neural computation that remain open, despite
advances in both theoretical and empirical methods. In addition, some complex real-
world tasks will require custom designed hardware. In that context, fault-tolerance
and optimal utilisation of resources are key to a robust and usable solution. This paper
presents regularisation terms for distributing neural computation optimally.

In this paper, along with Neal [7], we assume that regularising an augmented net-
work, i.e. an architecture enlarged to increase network capacity, is preferable over
attempting to optimise the architecture to be minimal. Using an augmented network
therefore, we are interested in regularising the complexity or weight saliency, or equi-
valently distributing computation optimally. Distributed computation is an area of
neural network research in which there has been a surprising lack of formal study.
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Minai, however, has investigated the subject, providing a theoretical basis on which
we build. He notes that a network with an optimally distributed representation is
also likely to be optimally robust in that each component will have minimal and uni-
form relevance. In addition he states that good generalisation ability can be induced
via distributive constraints and that this is an alternative to the more common struc-
tural minimality[5]. Related to these ideas are concepts underlying weight-decay,
used widely as a simple regularisation scheme, and the post-training augmentation
approach of Emmerson, used to enhance fault tolerance. This second, perhaps less
familiar algorithm replicates hidden—output weights, scaling them by the replication
factor to distribute computation over a larger network[4]. Underlying both of these
algorithms is the premise that weight-saliency, or relevance in the language of Minai,
can be approximated by weight-magnitude. In another paper we show how this is an
inaccurate approximation and one that performs poorly in practice[3]. In this paper -
we compare the weight-decay technique with two regularisation terms that use a much
more accurate measure of weight saliency. Using two application problems, one arti-
* ficial and the other a real-world task, we show how optimally distributed computation
leads to both fault tolerance and good generalisation ability in augmented networks.

2. Smoothing the Solution Locus

Distributed computation can be achieved by regularising weight-saliency. Since the er-
ror Hessian measures weight saliency, its regularisation will achieve distributed com-
putation by smoothing the curvature of the solution locus. In addition by viewing
the smoothness of the solution locus as a route to distributed computation, we can
introduce smoothness constraints that are amenable to implementation, to distribute
the computation optimally. In this section, therefore, we build on our previous work
with weight-noise [6] and show how it can be viewed as a smoothness constraint, or
regularisation term. We then propose two deterministic approaches to smoothing, one
equivalent to using weight-noise under ideal conditions and the other a more statistic-
ally feasible solution.

In our previous work with weight-noise we showed that a distortion in the weights
leads to the network consistently finding a different solution. The learning algorithm
is normally governed by a guiding cost, or error function, however in this case the
weight-noise mediates the learning, in effect including additional penalty terms. By
modelling the noise using a Taylor expansion and averaging in time we have shown,
[6], that for the particular case of least squares training, the error function becomes :-

2
<efw,§) >=< e(w)>+§;- > <6ykp> , (1)

w,
AK,P Owa

where < ¢ (Q, §) > is the time averaged error for a network whose weight vector,
w, is perturbed by some noise vector, £ and yi, is number k of K components of the
network output vector y for pattern p of the data. This equation shows that training
with weight-noise in effect changes the error function to include this extra penalty
term. This term has been discussed in detail in our earlier work [6] and can be thought




ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 261-266

of as a mechanism for obtaining distributed computation. It is important to note at this
stage that the weight-noise analysed above could equally have been input-noise and a
similar error function produced [1]. The extra term in the input-noise error function
is one of a series of terms that are known as Tikhonov regularisers. Such terms are
commonly incorporated directly into the learning to smooth the network function,

i.e. :- )
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where the nominal error function is modified by an additional term which is of order
m, where z; is number ¢ of I components of the input vector £ and A controls the
influence of the regularisation term in the overall error reduction. Comparing our
noise-induced penalty term in (1) with this generalised Tikhonov regulariser it is clear
that (1) is also a regularisation term (where m = 1) although of the weight-output
relationship, rather than the input-output relationship. It is therefore a smoother of
- the solution locus as opposed to network function. In addition statistical theory would
suggest that for a Tikhonov regulariser, 'n = 2 provides the lowest order at which
any visual smoothness will be seen [9]. In this paper we consider two penalty terms
for fault tolerance which are smoothness regularisers of this kind, although perhaps
smoothers of the solution locus rather than network function. They are of the form :-
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and are of order m=1 and m=2. We shall subsequently refer to these roughness
penalties as M1 and M2 respectively. In the following sections two application prob-
lems, one artificial and the other a real-world task, are incorporated into simulation
experiments using MLPs trained with these roughness penalties. In addition we train
with weight-decay and compare the results.

3. Simulation Experiments

The experiments described here assess the regularisation constraints defined above
and are based on two data sets. The first problem is an artificial, 2-class classification
task in two dimensions. Samples for both classes are taken from normal distributions
with means of 0.2 and 0.3, where both distributions are circular with variance 0.05
and 0.15 respectively. In these experiments 200 patterns are used as the training pat-
tern set and a further 9800 for testing. Initially, the network architecture had an I:J: K
structure of 2:4:2, i.e. 4 sigmoidal hidden units and the outputs were encoded to clas-
sify the two classes as 1-out-of-N. This task requires the network to approximate the
Bayesian optimal decision boundary which is a circle in this case. This is a difficult
task especially for MLP networks with sigmoidal neurons (perhaps inappropriately)
used here. The initial 4 hidden units were expanded to 16 to draw out the effects
within augmented networks.
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The second test problem, link admission control, is a real task, using real data.
Link admission control is a function of an ATM (Asynchronous Transfer Mode) com-
munications network router. The task is to decide whether a particular link in the
network can accept a new link. An estimate of the probability of losing a data packet
is used to make a decision. This estimate is based on the current load present on the
link and traffic parameters characterising the new connection. The neural solution has
been developed at Uppsala University in Sweden [8]. Here 9 input fields are used
to classify a link to be admissible or not based on the probability of loss. We use a
1-out-of-N encoding of the two output classes and, initially, 6 hidden units in an MLP
network with sigmoidal neurons. The hidden layer was later increased to 16 units for
experiments with augmented networks. The data includes 500 training vectors and an
additional 4000 test vectors. For the purposes of training a simple steepest descent
technique with incorporated line search was used and was applied until a minimum
error was reached in a validation set of 2000 patterns for the 2-class problem and 1000
patterns for the link admission task. For the purpose of the experiments carried out
< for this paper the mean square error (MSE) was used as our cost function error mak-
ing the (generally naive) assumption that the MSE minimum will be equivalent to the
classification minimum.

4. Results

The experiments carried out here compare the two new regularisation terms derived
above with weight-decay and a control case with no regularisation. In addition the
results of further experiments with augmented networks show the effects of increasing
network capacity combined with and without the different forms of regularisation. In
the experiments 30 networks were trained for each case of a range of regularisation
coefficient () values. The results below show the minimum average generalisation
error achieved and fault tolerance using the mean error Hessian (MEH) measure :-

@

The MEH measure is the average curvature of the solution locus which is inversely
proportional to fault tolerance for arealistic small perturbation fault model [2]. During
these experiments the A coefficient was optimised using the validation data.
Considering first the results of the experiments carried out with the artificial 2-
class problem shown in Table 1. For the case of the number of hidden units J=4, it is
clear that there is a dramatic improvement in the fault tolerance over the control case,
for networks trained with the M1 and M2 regularisers as well as some improvement
in generalisation ability. The weight-decay case also exhibits moderate generalisation
improvement but at the expense of degradation in fault tolerance. This result indicates
that weight-magnitude is not equivalent to weight-saliency and that the more accurate
measure of weight-saliency implicit to the M1 and M2 regularisers is necessary for
fault tolerance enhancement. In addition, the augmentation of the network prior to
training (J=16) has a beneficial effect on generalisation performance especially when



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 261-266

Table 1: Comparison of network ensembles trained using weight decay, M1 and M2
penalties, and a control experiment with no regularisation. The task used was the
artificial 2-class problem with four and sixteen hidden neurons.

J | Control | Weight Decay | M1 M2
% Error | 4 12.51 12.44 1242 | 12.43
MEH 4 1 0.179 0.192 0.050 | 0.089
% Error | 16 | 12.39 12.36 12.32 | 12.27
MEH | 16 | 0.257 0.276 0.115 | 0.042

mediated by the regularisation constraints. This is particularly evident in the M2 case
where there is an additional fault tolerance improvement. As the optimal boundary
for the artificial task is circular, it is to be expected that more sigmoidal hidden units
will be beneficial for this task. It is encouraging however that this extra capacity can
“ be controlled by the regularisation schemes.

- For the link admission task the results are shown in Table 2. The case of J=6 shows
that there is improvement in fault tolerance and generalisation ability due to the M1
and M2 regularisers over the control case. Again the weight-decay case gives some
generalisation improvement but deterioration in fault tolerance performance. In terms
of the augmentation experiment for this task the extra nodes (i.e. in terms of J) do
not lead to enhanced performance. Comparing the results for the control experiments
in Table 2, the extra network complexity has a negative effect on both performance
metrics. This is perhaps the result of some over-fitting escaping the validation process.
We can conclude that six hidden units are sufficient for this task. It is encouraging to
note, however, that the regularisers of weight saliency provide control over this extra
network complexity and stop over-fitting to a large extent.

The results presented here show that the M1 and M2 regularisation terms can be
used to achieve fault tolerance and enhanced generalisation ability. In addition weight-
saliency regularisation can be used to distribute information optimally in an augmen-
ted network for potentially further fault tolerance enhancement and to optimise its
functional capabilities. The need for structural, or architectural, minimality and hence
the importance of choosing the number of hidden units is diminished as there is benefit
from the use of larger networks which exhibit optimally distributed computation.

Table 2: Comparison of network ensembles trained using weight decay, M1 and M2
penalties, and a control experiment with no regularisation. The task used was the link
admission problem with six and sixteen hidden neurons.

J | Control | Weight Decay M1 M2
% Error | 6 | 3.092 3.054 3.060 | 3.028
MEH 6 | 0.0197 0.0276 0.0142 | 0.0165
% Error
MEH

6| 3.19 3.048 3.082 | 3.048
6 | 0.0277 0.0341 0.0145 | 0.0180

ek | k.
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5. Conclusions

This paper has introduced optimally distributed computation. By including accurate
weight saliency constraints during learning (as penalty terms), computation can be
spread thinly and evenly throughout a network. In this way the average curvature
of the solution locus is reduced, leading to dramatic improvements in fault tolerance
for a realistic “small perturbation” fault model. In addition we have shown that such
a constraint can also be used to regularise network complexity even for very large
networks, resulting in enhanced generalisation ability.

These results are important if neural networks are to become truly parallel ar-
chitectures in hardware implementations and to be able to solve complex real-world
problems with limited data. Optimally distributed computation allows us to maximise
the fault tolerance performance of a given architecture, for realistic hardware faults.
In addition the complexity constraints allow us to produce parsimonious models even
in augmented network architectures.
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