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A b s t r a c t. The paper is concerned with the question of

definability of truth-conditions for the connectives of intensional

logics. A certain general solution of the problem is proposed for

the class of self-extensional logics. The paper develops some ideas

initiated by Suszko and Wójcicki in the seventies.

0 Introduction

In this paper we present a certain conception of truth for intensional logics.

This conception is a natural generalization of the well-known relational

semantics for intensional systems. It is based on some ideas set forth by

Suszko and Wójcicki in the seventies.

Let S = (S, f1, f2, ...) be a sentential language, i.e., S is an absolutely

free algebra generated by an infinite set of sentential variables Var(S) =
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{pn : n ∈ ω} and endowed with a set Con(S) of logical connectives f1, f2, ...,

each of a finite arity. The members of S, the universe of S, are called

sentential formulas, or simply sentences.

Now let C be any logic in S, i.e., C is a structural and finitary conse-

quence operation on S. This means that C is a mapping from the power

set P (S) of S to P (S) which satisfies the following conditions, for any sets

X,Y ⊆ S and any α ∈ S:

(reflexivity) X ⊆ C(X);

(monotonicity) X ⊆ Y implies that C(X) ⊆ C(Y );

(idempotency) C(C(X)) ⊆ C(X);

(structurality) e[C(X)] ⊆ C(e[X]) for every endomorphism

e : S → S;

(finitariness) α ∈ C(X) implies that α ∈ C(Xf ) for some finite set

Xf ⊆ X.

e[X] stands here for the e-image of the set X, i.e., e[X] := {eα : α ∈ X}.

Every endomorphism e : S → S is unambiguously determined by its values

on the variables of S. The terms “ endomorphism of S ” and “ substitution ”

are used interchangeably.

Any set T ⊆ S such that C(T ) = T is called a theory of C. By Th(C)

we denote the class of theories of C. Th(C) is obviously a closure system

on S.

A set B ⊆ Th(C) is called a base for Th(C) if every theory of C is

the intersection of some subfamily of B. We assume that S itself is the

intersection of the empty subfamily. Th(C) is clearly its own base. We

mention here two other important bases:

the family of all relatively maximal theories of C;

the family of all prime theories of C.

We recall that T is prime (relative to C) if it cannot be represented as

the meet of two theories of C distinct from T , i.e., T = T1 ∩ T2 implies

T = T1 or T = T2.

A logic C is inconsistent if C(∅) = S, or equivalently, if C(X) = S, for

all X ⊆ S. C is inconsistent if and only if Th(C) has the empty base.
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According to the semantic interpretation of consequence operations, the

fact that α ∈ C(T ) means that α is true whenever the sentences of T are

true. The semantic interpretation of a logic C is effected by:

(I). selecting suitable model conditions,

(II). choosing a truth-definition.

Model conditions define intended models of a sentential logic (e.g., ma-

trices, algebras, frames, truth-valuations, etc.). The class of intended mod-

els, associated with a given logic C, is defined through selecting a list of

properties (axioms) characteristic for the class. E.g. by assuming that a

modal logic is determined by a class of frames of the form (W,R), where

R is a binary relation on W with a prescribed list of properties (reflexivity,

transitivity, etc.). In many cases the class of intended model collapses to a

singleton. This means that the selected axioms characterize the intended

models categorically, up to isomorphism. E.g. in case of  Lukasiewicz log-

ics the construction of a single intended model is provided, which is an

appropriate  Lukasiewicz matrix - the intended model of the logic.

Needless to say that the language of model conditions has usually a

much more complex structure than the sentential language S in which the

logic C is defined.

The basic function of model conditions is to define the semantic corre-

late of sentences. (We use after Suszko this suggestive term.) E.g. when a

matrix M = (A, D) is a model of a logic, then homomorphisms h of S into

A are called reference assignments; the semantic correlate of a sentence α

(determined by h) is just the value h(α).

The component (II) defines a recursive scheme of truth-conditions for

the sentences of S or, in the terminology we prefer, for the connectives of

S.

The semantics we discuss here is formed by truth-valuations. A truth-

valuation for S is any function h : S → {0, 1} from the sentential language

to the set of two logical values: ”truth” 1 and ”falsity” 0. If H is a set of

truth-valuations, the function CnH : P (S) → P (S) defined by

α ∈ CnH(T ) if and only if, for all h ∈ H, h(α) = 1

whenever h(T ) ⊆ {1},

is a consequence operation on S. CnH need be neither finitary nor struc-

tural. But if for each h ∈ H and each substitution e : S → S, the compo-
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sition h ◦ e is in H, then the consequence CnH is structural (see Wójcicki

[1988] for more information).

Every sentential logic is complete for a set of truth-valuations, i.e., for

any C there exists a set H of truth-valuations such that C = CnH . A

justification for this is straightforward: let, for every T ∈ Th(C), the truth-

valuation hT be defined by the stipulation: hT (α) = 1 iff α ∈ T . hT is the

characteristic function of the theory T . The class H of all characteristic

functions of theories of C defines the consequence C. [The elements of H

are called admissible valuations for C.] This, somewhat trivial fact, was

observed by many logicians, we mention here Scott [1971], Routley [1976],

Suszko [1977a], van Fraassen [1973], see also da Costa and Béziau [1994]).

This observation gave rise to discussions on two-valuedness and the scope

of the principle of bivalence. Suszko seems to be the one who has drawn

the most far-reaching conclusions from this observation. His views can be

summed up in the slogan:

Every logic is two-valued.

While selecting the class of characteristic functions of the theories of

C (or, more widely, the characteristic functions of the theories from an

arbitrary base B for Th(C)) is a good choice of a possible model class for

C, some doubts however remain. What seems to be a source of difficulty is

that Suszko’s thesis does not provide truth-schemes for the connectives of

S on the basis of the logic C. In other words, Suszko is not here concerned

with the question of finding plausible, general definability conditions which

would enable one to evaluate uniformly, for a given connective of S, the

truth of any compound formula headed by this connective in terms of the

truths of the constituents of this formula and some other fixed intensional

factors.

In our opinion, for a large class of sentential logics C, the problem

of definability of truth-schemes for the connectives for C is adequately

formulated as the question concerning the existence of a class H of truth-

valuations, a suitably defined two-sorted language L of order higher that 0,

and a model M for L, defined on the two-sorted universe (S,H), where S

is the language of C, such that the following conditions are satisfied:

(i) for every connective f of S, say n-ary, there exists a formula

ϕf (x1, ..., xn;X) of L in n variables x1, ..., xn, ranging over elements
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of S, and in one variable X, ranging over truth-valuations in H, such

that the following holds: for any α1, ..., αn ∈ S and any h ∈ H,

h(f(α1, ..., αn)) = 1 iff M � ϕf (x1, ..., xn;X)[α1, ..., αn;h]

i.e., f(α1, ..., αn) is true under h iff ϕf (x1, ..., xn;X) holds in M on

α1, ..., αn, h.

(ii) H determines C.

We will discuss these issues more formally in the next section. We note

here that according to (i), the formula ϕf (x1, ..., xn;X) defines a truth-

scheme for all sentences of S headed by the connective f , and not for an

individual sentence.

We also note that there exists a one-to-one correspondence between

bases for Th(C) and families H of truth-valuations which determine C.

Indeed, we have:

Proposition 0.1. Let C be a logic defined in S. For each set H of

truth-valuations on S define B(H) := {h−1{1} : h ∈ H}. Then the map-

ping H → B(H) establishes a bijection between the families H that deter-

mine C and the bases for Th(C).

We omit the easy proof.

The above proposition shows that instead of working with truth-valua-

tions, one can choose another option and work with bases as suggested by

Suszko. This option is preferred in this paper.

1 Languages of truth-schemes

To each sentential language S a certain class of second-order languages

L is assigned. The elements of this class are called languages of possible

truth-schemes for sentential logics defined on S. Each such a language L is

defined as follows.

L has variables of two types:

x0, x1, ... - individual variables;

X0, X1, ... - second-order monadic variables.
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We assume that the above set of individual variables coincides with

Var(S), the set of sentential variables of S. [We do not make use of this

assumption in this section. It will be used in the construction of canonical

models for sentential logics in Section 2.] Furthermore, L is furnished with

a (possibly infinite) set of relation symbols R1, R2, ... We assume that L

contains the symbol ”∈” of the membership relation. This symbol will play

a special role in the formalism we shall outline. Furthermore L contains

the equality symbol ”≈”.

The variables x0, x1, ... are assumed to range over sentences of S while

the intended interpretation of X0, X1, ... is to range over theories in S, i.e.,

subsets of S. The intended interpretations of relation symbols are certain

relations holding between sentences and theories in S. Thus to each symbol

R a certain pair (m,n) of natural numbers is assigned which is called the

arity of R. This means that R is interpreted as a relation holding between

m-tuples of sentences of S and n-tuples of theories in S. We always assume

that n ≥ 1. The case when m = 0 is allowed. Thus (0, n)-ary relation

symbols are interpreted as n-ary relations between theories in S. Such

relation symbols are called pure; otherwise R is called mixed. In particular,

∈ is a mixed relation symbol of arity (1, 1).

The set Fo(L) of formulas of L is defined recursively as follows:

(i) If X and Y are theory variables, then X ≈ Y is a formula,

(ii) If x is an individual variable and X is a theory variable, then x ∈ X

is a formula,

(iii) If R is an (m,n)-ary relation symbol other than ∈, x1, ..., xm are

individual variables and X1, ..., Xn are theory variables, then

R(x1, ..., xm;X1, ..., Xn) is a formula,

(iv) If ϕ and ψ are formulas, then (ϕ ∧ ψ) and (ϕ ∨ ψ) are formulas,

(v) If ϕ is a formula, then (¬ϕ) is a formula,

(vii) If ϕ is a formula and x is an individual variable, then ((∀x)ϕ) is a

formula,

(viii) If ϕ is a formula andX is a theory variable, then ((∀X)ϕ) is a formula,

(ix) Nothing else is a formula of L.

We adopt the usual conventions of suppressing outer parentheses in

formulas. We also assume that ϕ → ψ and ϕ ↔ ψ are abbreviations for
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¬ϕ ∨ ψ and (ϕ→ ψ) ∧ (ψ → ϕ), respectively. Similarly, (∃x)ϕ and (∃X)ϕ

are abbreviations for ¬(∀x)¬ϕ and ¬(∀X)¬ϕ, respectively.

We note that the identity predicate does not connect individual vari-

ables, i.e., there are no formulas of the shape x ≈ y, where x and y are

individual variables. The absence of formulas is justified by the fact that in

the models we shall consider, individual variables will range over formulas

of sentential languages. Sentential formulas α and β are identical if and

only if they are identical as strings of symbols. Let us abbreviate the for-

mula (∀X)(x ∈ X ↔ y ∈ X) as x ≡ y. In the models we shall consider, the

second-order predicate ≡ is not interpreted as identity because the vari-

able X ranges over a proper subclass of the power set of the universe of the

model. This subclass is too small to determine the identity of two sentential

formulas α and β via the formula α ≡ β.

L is called the language of truth-schemes for the connectives of S.

The notation ϕ(x1, ..., xm;X1, ..., Xn) means that ϕ contains at most

the individual variables x1, ..., xm and second-order variables X1, ..., Xn as

free variables.

A sentence of L is any formula in Fo(L) which does not contain free

occurrences of variables.

Let f ∈ Con(S) be an n-ary connective of S. By a possible truth-scheme

for f we understand any formula ϕf (x1, ..., xn;X) of L with n individual

variables x1, ..., xn and only one free monadic second-order variable X.

Let C be any logic in S. Let T be a set of sentences of L. The language

L together with T are jointly called (possible) model conditions for the logic

C.

Now let B be any base for Th(C). Suppose that the relation symbols

of L have interpretations as relations on the two-sorted domain (S,B) so

that the resulting structure

(1) M = (S,B,∈,R1,R2, ...)

is a model for the language L. [Of course, if L involves only pure relation

symbols (except of ∈), then these symbols are interpreted as relations on

B only.] The symbol ∈ is interpreted as the ordinary membership relation.

The pair (S,B) is thus thought of as a universe on which appropriate

truth schemes for the connectives of S are defined.

We say that (1) is an intended canonical frame for the logic C if the

following conditions hold:
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(a) M is a model of T ,

(b) For any relation symbol R, say (m,n)-ary, for any two m-tuples

α1, ..., αm, β1, ..., βm of elements of S and any n-tuple X1, ...,Xn of

members of B,

if C(α1) = C(α1), ..., C(βm) = C(βm), then

R(α1, ..., αm,X1, ...,Xn) iff R(β1, ..., βm,X1, ...,Xn).

(b) thus assumes the invariance of the relation R under the deductive

equivalence of formulas of S with respect to C. We note that ∈ always

satisfies this invariance condition. Indeed, if C(α) = C(β), then for any

theory X of C, α ∈ X if and only if β ∈ X.

Let f be an n-ary connective of S. We say that a possible truth-

scheme ϕf for f is adequate (for f) in the intended frame (1) if the following

equivalence holds:

(2) For any X ∈ B and any α1, ..., αn in S,

f(α1, ..., αn) belongs to X iff M �ϕf (x1, ..., xn;X)[α1, ..., αn,X].

� stands here for the ordinary satisfaction in M .

Following the terminology adopted in modal and tense logics, M is

called a canonical frame for the logic C if it is intended and (2) holds for

any connective f of S.

Examples.

1. Let CCPC be the consequence operation of the classical propositional

logic in the language S = 〈S,∧,∨,⇒,¬〉.

The language L of truth-schemes for the connectives of S has no relation

symbols different from ∈. The above connectives have the following truth-

schemes:

ϕ∧(x, y;X) is x ∈ X ∧ y ∈ X,

ϕ∨(x, y;X) is x ∈ X ∨ y ∈ X,

ϕ⇒(x, y;X) is ¬(x ∈ X) ∨ y ∈ X,

ϕ¬(x, y;X) is ¬(x ∈ X).
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The model conditions for CCPC reduce to the selection of the language

L and the empty set T of sentences in L.

Let B be the base of Th(CCPC) consisting of all prime theories of CCPC.

The system M = (S,B,∈) is evidently a canonical frame for CCPC since

the above truth-schemes are adequate for the connectives in this model.

2. Let the language S be as in 1 and let CINT be the consequence

operation of the intuitionistic propositional calculus.

The language L of truth-schemes for the above connectives has the

epsilon ∈ and one (0, 2)-ary predicate ≤. This predicate is interpreted as

the inclusion between theories in S.

We have the following truth-schemes for the connectives:

ϕ∧(x, y;X) is x ∈ X ∧ y ∈ X,

ϕ∨(x, y;X) is x ∈ X ∨ y ∈ X,

ϕ⇒(x, y;X) is (∀Y )(X ≤ Y → ¬(x ∈ Y ) ∨ y ∈ Y ).

ϕ¬(x, y;X) is (∀Y )(X ≤ Y → ¬(x ∈ Y )),

The pair (L, T ), where T is the set of axioms of partial order, defines

model conditions for CINT.

Let B be the base consisting of all prime theories of CINT. Then clearly

(3) M = (S,B,∈,⊆)

is a model of T . (3) is a canonical frame for CINT since the above truth-

schemes are obviously adequate for the connectives of S in the model (3).

E.g. the adequacy of (3) for ⇒ simply means that for any α, β ∈ S and for

any theory X ∈ B, α⇒ β belongs to X iff (∀Y ∈ B)X ⊆ Y implies that

α 6∈ Y or β ∈ Y .

3. Let CKR be the Kripke’s modal logic. CKR is thus the consequence

in the modal language

S� = (S,∧,∨,¬,�)

determined by the Kripke’s system K (as a set of logical axioms) and

Modus Ponens (MP) for the material implication as the only proper rule

of inference. CKR is obviously finitary and structural.
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The language L of truth-schemes for S� has ∈ and only one (0, 2)-ary

predicate R. The truth-schemes for the connectives of S� are standard

ones:

ϕ∧(x, y;X) is x ∈ X ∧ y ∈ X,

ϕ∨(x, y;X) is x ∈ X ∨ y ∈ X,

ϕ¬(x;X) is ¬(x ∈ X),

ϕ�(x;X) is (∀Y )(X RY → x ∈ Y ),

The model conditions for CKR are formed by the pair: the language L,

the empty set T of sentences of L.

Let B be the base of Th(CKR) consisting of all prime (= maximal)

theories of CKR. Then clearly

(4) M = (S�,B,∈,R)

is a model of T , where R is defined as follows

X R Y iff, for every α ∈ S�, �α ∈ X implies α ∈ Y .

The model (4) is a canonical frame for CKR since the above truth-schemes

are obviously adequate for the connectives in this model. E.g. the adequacy

of (4) for � is a consequence of the equivalence

�α ∈ X iff, for every prime theory Y , X R Y implies α ∈ Y . �

A sentential logic (S, C) is self-extensional if, for every connective f

of S and two n-tuples α1, ..., αn, β1, ..., βn of elements of S, where n is the

arity of f , C(α1) = C(β1), ..., C(αn) = C(βn) imply that C(f(α1, ..., αn)) =

C(f(β1, ..., βn)).

The class of self-extensional logics was defined and studied by Wój-

cicki [1979], [1988]. He established the existence of closed links between

self-extensional logics and the so called referential semantics. We only

note that the axiomatic extensions of the Kripke consequence CKR or of

the intuitionistic calculus CINT are self-extensional. In turn, many-valued

logics are not self-extensional.

Theorem 1.1. Let C be a logic in a sentential language S. Suppose

that in the language L, for each connective f of S some truth-scheme
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ϕf (x1, ..., xn, X) has been selected. Let T be a set of sentences in L so

that the pair (L, T ) forms model-conditions for C. Suppose furthermore

that for some base B ⊆ Th(C),

M = (S,B,∈,R1,R2, ...)

is a an intended frame for C. If the above truth-schemes are adequate for

the connectives in this model, i.e., M is a canonical frame for C, then the

logic C is self-extensional.

Proof. Under the hypotheses of the theorem we have the following

Lemma 1.2. For every formula ψ(x1, ..., xm;X1, ..., Xn) of L, for any

theories X1, ...,Xn of B, and for any formulas α1, ..., αm, β1, ..., βm ∈ S,

if C(α1) = C(β1), ..., C(αm) = C(βm), then

(*) M � ψ(x1, ..., xm;X1, ..., Xn)[α1, ..., αm; X1, ...,Xn] iff

M � ψ(x1, ..., xm;X1, ..., Xn)[β1, ..., βm; X1, ...,Xn].

The lemma is proved by induction on the degree of complexity of the

formula ψ.

If ψ is x ∈ X, then for any X ∈ B and any α, β ∈ S such that

C(α) = C(β) we have:

M � (x;X)[α,X ] iff α ∈ X iff C(α) ⊆ X iff

C(β) ∈ X iff M � (x;X)[β,X ].

If ψ is X ≈ Y , then for any theories X1,X2 ∈ B the equivalence (*)

reduces to

X1 = X2 iff X1 = X2.

Similarly, if ψ is an atomic formula R(x1, ..., xn;X1, ..., Xn) and

α1, ..., αm, β1, ..., βm ∈ S so that C(α1) = C(β1), ..., C(αm) = C(βm), then

for any theories X1, ...,Xn ∈ B,

M � R(x1, ..., xn;X1, ..., Xn)[α1, ..., αm; X1, ...,Xn]

iff R(α1, ..., αm; X1, ...,Xn)

iff (by the invariance property of R) R(β1, ..., βm; X1, ...,Xn)

iff M � R(x1, ..., xn;X1, ..., Xn)[β1, ..., βm; X1, ...,Xn].
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The cases when ψ is ψ1 ∧ ψ2 or ψ1 ∨ ψ2, or ¬ϕ are easy to handle. The

case when ψ is (∀X)ϕ and ϕ = ϕ(x1, ..., xn;X,X1, ..., Xn) is also easy. For

let C(α1) = C(β1), ..., C(αm) = C(βm) and X1, ...,Xn ∈ B. Then

M � ψ(x1, ..., xn;X1, ..., Xn)[α1, ..., αm; X1, ...,Xn]

iff for all X ∈ B,

M � ϕ(x1, ..., xn;X,X1, ..., Xn)[α1, ..., αm; X,X1, ...,Xn]

iff (by the induction hypothesis) for all X ∈ B

M � ϕ(x1, ..., xn;X,X1, ..., Xn)[β1, ..., βm; X ,X1, ...,Xn]

iff M � ψ(x1, ..., xn; , X1, ..., Xn)[β1, ..., βm; X1, ...,Xn].

Now let ψ be (∀x)ϕ and ϕ = ϕ(x, x1, ..., xn;X1, ..., Xn).

Assume C(α1) = C(β1), ..., C(αm) = C(βm) and X1, ...,Xn ∈ B. Then:

M � ψ(x1, ..., xn;X1, ..., Xn)[α1, ..., αm; X1, ...,Xn]

iff for all γ ∈ S,

M � ϕ(x1, ..., xn;X1, ..., Xn)[γ, α1, ..., αm; X1, ...,Xn]

iff (by the induction hypothesis) for all γ ∈ S

M � ϕ(x1, ..., xn;X1, ..., Xn)[γ, β1, ..., βm; X1, ...,Xn]

iff M � ψ(x1, ..., xn; , X1, ..., Xn)[β1, ..., βm; X1, ...,Xn].

To show that C is self-extensional, assume f is an n-ary connective of

S, α1, ..., αn, β1, ..., βn ∈ S, and C(α1) = C(α1), ..., C(αn) = C(βn). Then,

for the truth-scheme ϕf (x1, ..., xn, X) for f in C and any X ∈ B, we have:

f(α1, ..., αn) ∈ X,

iff M � ϕf (x1, ..., xn;X)[(α1, ..., αn,X ]

iff (by Lemma 1.2) M � ϕf (x1, ..., xn;X)[β1, ..., βn,X ]

iff f(β1, ..., βn) ∈ X.

Thus, for every X ∈ B, f(α1, ..., αn) ∈ X if and only if f(β1, ..., βn)

∈ X. Since B is a base for Th(C), this shows that C(f(α1, ..., αn)) =

C(f(β1, ..., βn)). �

The converse of Theorem 1.1 is also true:
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Theorem 1.3. Suppose C is a self-extensional and finitary logic in S

and let B be any base for Th(C). Then, for some language L and for the

pair (L, ∅) selected as model conditions for C, there exists an interpretation

of the relation symbols of L on B such that the model

M = (S,B,∈,R1,R2, ...)

is an intended frame for C. Furthermore, there exist truth-schemes which

make M a canonical frame for C.

Proof. For each n ∈ ω and each n-ary connective f of S we define the

following (n, 1)-ary relation Rf on S
n × B:

Rf (α1, ..., αn,X) iff there exist γ1, ..., γn ∈ S such that

C(α1) = C(γ1), ..., C(αn) = C(γn) and f(γ1, ..., γn) ∈ X .

Rf is invariant under logical equivalence with respect to C, i.e., if

C(α1) = C(γ1), ..., C(αn) = C(γn), then Rf (α1, ..., αn,X) if and only if

Rf (β1, ..., βn,X).

Now let L be the language of truth-schemes which apart from the (1, 1)-

ary epsilon predicate ∈ has, for each n-ary connective f , an (n, 1)-ary pred-

icate Rf in its vocabulary. The relation Rf , defined as above, is then the

interpretation of Rf . The model M is thus well-defined and it is an in-

tended frame for C.

We claim that the atomic formula Rf (x1, ..., xn;X) is adequate for the

connective f in this model. Indeed, assume

M � Rf (x1, ..., xn;X)[α1, ..., αn,X ]

for α1, ..., αn ∈ S and X ∈ B. So Rf (α1, ..., αn, X) which means that for

some γ1, ..., γn ∈ S,

(*) C(α1) = C(γ1), ..., C(αn) = C(γn) and f(γ1, ..., γn) ∈ X.

Since C is self-extensional, (*) implies that C(f(α1, ..., αn)) = C(f(γ1,

..., γn)). Hence f(α1, ..., αn) ∈ X, by the last conjunct of (*).

Conversely, if f(α1, ..., αn) ∈ X, then trivially Rf (α1, ..., αn,X). [Take

γj := αj, for i = 1, ..., n.]

The theorem has been proved. �

Notes. 1. The above results do not contradict the well-known incom-

pleteness results in modal logic. The truth-scheme ϕ� for the necessity
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connective �, as provided by the above theorem for a modal consequence

C, does not agree with the standard one, given in Example 3. E.g. for the

consequence CKR, the relation R� is defined by

R�(α; X) iff (∃γ ∈ S�)CKR(α) = CKR(γ) & �γ ∈ X.

2. The above syntax of languages L allows for mixed predicates. We

may take a more restrictive course and assume that the epsilon predicate

is the only mixed predicate (of arity (1, 1)). We then modify point (ii) of

the definition of Fo(L) by admitting that the remaining predicate letters

of L, if there are any, are always pure, i.e., they have arities (0, n) for

some natural numbers n. These predicates are thus interpreted as relations

holding only between theories of a given sentential logic, and not elements

of S. After such a modification of the syntax of the languages of possible

truth-schemes, Theorem 1.1 obviously remains true. It is an open problem

if its converse, i.e., the modified Theorem 1.3, is true. In this situation, the

relation Rf , defined as above, does not determine a truth-scheme in the

above, restricted sense since this relation is not pure. In the “ standard ”

formulation of truth-schemes for the intuitionistic calculus or for normal

modal logics, as given in Examples 2 and 3, only pure binary relations are

taken into account. �

2 Canonical models

Let C be a sentential logic in S and let the pair (L, T ) define model condi-

tions for C. Furthermore, suppose that for some base B ⊆ Th(C)

M = (S,B,∈,R1,R2, ...)

is a canonical frame for C. The logic C is thus self-extensional.

We define a mapping V from the set Var(S) of sentential variables to the

power set P (B). [We recall that Var(S) coincides with the set of individual

variables of L.] We put:

V (x) := {X ∈ B : x ∈ X}.

We then extend V to a mapping from S to P (B) as follows. If f is an

n-ary connective of S and α1, ..., αn ∈ S, then:

V (f(α1, ..., αn)) := {X ∈ B : M � f(x1, ..., xn;X)[α1, ..., αn,X ]}.

V is called the canonical valuation of S in M and the pair
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〈M , V 〉

is called a canonical model for C. If X ∈ V (α), then we say that α holds

(is true) at X in the model 〈M , V 〉.

Truth Lemma 2.1. For every α ∈ S, V (α) = {X ∈ B : α ∈ X}.

Proof. The lemma trivially holds if α is a sentential variable. Now

assume α is a compound sentential formula. So α is of the form f(α1, ..., αn)

for some sentences α1, ..., αn and a connective f . Since M is a canonical

frame for C, we have that

{X ∈ B : α ∈ X} = {X ∈ B : f(α1, ..., αn) ∈ X} =

{X ∈ B : M � ϕf (x1, ..., xn;X)[α1, ..., αn,X]} = V (α). �

Corollary 2.2. For any α, β ∈ S, C(α) = C(β) iff V (α) = V (β).

The canonical model 〈M , V 〉 determines a mapping from P (S) to P (S),

denoted by

〈M , V 〉�,

where for any set T ⊆ S,

α ∈ 〈M , V 〉�(T ) iff
⋂
{V (γ) : γ ∈ T} ⊆ V (α).

In fact, 〈M , V 〉� is a consequence operation on S. But we have more:

Theorem 2.3. (Strong Completeness Theorem). C = 〈M , V 〉�.

In particular, the above theorem implies that the consequence

〈M , V 〉� is structural and finitary.

Proof. Let α ∈ S and T ⊆ S. Then:

α ∈ 〈M , V 〉�(T ) iff

⋂
{V (γ) : γ ∈ T} ⊆ V (α) iff

(∀X ∈ B)(X ∈
⋂
{V (γ) : γ ∈ T} implies X ∈ V (α)) iff

(∀X ∈ B)(T ⊆ X implies α ∈ X iff

α ∈ C(T ). �
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3 Relational semantics - open problems

The above considerations leave open the question of defining general rela-

tional semantics for self-extensional logics. In Section 2 we only defined

canonical models formed from bases. We present here some preliminary

remarks on arbitrary frames without the intention of solving completely

the problem.

L is a fixed language of truth-schemes for S and C is a self-extensional

logic in S. Let T be a set of sentences of L so that (L, T ) forms model

conditions for C. Suppose furthermore that for some base B ⊆ Th(C),

M = (S,B,∈,R1,R2, ...)

is a canonical frame for C with a list ϕf , f ∈ Con(S), of adequate truth-

schemes. Now let L* be the language obtained from L by deleting the

epsilon predicate “∈ ” and adjoining a new (1, 1)-predicate “ 
 ” called the

satisfaction predicate (for the sentences of S). Thus, instead of “ x ∈ X ”

we uniformly write “ x 
 X ” and read: “ x is satisfied (holds) at X ” . The

variable X now ranges over possible worlds and x, as before, ranges over

elements of S. ϕf* is the formula obtained from ϕf by replacing uniformly

each subformula of the shape “x ∈ X ” by “X 
 x ” .

By a frame we understand any two-sorted model F for L* with the uni-

verse (S,W ), where W is a non-empty set called the set of worlds (states,

etc.). Since L* may involve mixed predicates, these predicates are repre-

sented in F as relations holding between tuples of elements of S and tuples

of elements of W . In particular, “ 
 ” is interpreted as a subset of S ×W ,

and denoted by the same symbol 
. As is customary, when F is clear from

context, the fact that a pair (α,w) is in the relation 
 is written as w 
 α.

We say that

F = (S,W,
,R1,R2, ...)

is a frame for C if the following conditions are satisfied:

(1) F is a model of T ,
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(2) F has the invariance property, that is, if R is an (m,n)-ary relation of

F and C(α1) = C(β1), ..., C(αm) = C(βm), then for any w1, ..., wn ∈

W ,

R(α1, ..., αm;w1, ..., wn) iff R(β1, ..., βm;w1, ..., wn).

[In particular, it is assumed that if C(α) = C(β), then

w 
 α iff w 
 β,

for every world w.]

(3) For any connective f of S, say n-ary, any n-tuple α1, ..., αn ∈ S, and

any w ∈W ,

w 
 f(α1, ..., αn) iff F � ϕf*(x1, ..., xn;X)[α1, ..., αn, w],

where, on the right side, � stands for the usual satisfaction of the

formulas of L* in the frame F .

Each frame F for C determines a consequence operation on S, denoted

by F
�. For α ∈ S and X ⊆ S we put:

α ∈ F
�(X) iff for every w ∈W , w 
 α whenever w 
 γ, for

all γ ∈ X.

The above definitions give rise to two open problems:

Problem 1. Formulate sufficient conditions imposed on C, on model

conditions (L∗, T ), and truth-schemes ϕf*, f ∈ Con(S), under which, for

every frame F for C, the consequence F
� is equal or stronger than C.

The second problem concerns extendability of subsets of Var(S)×W to

a satisfaction relation. Before formulating the problem we need one more

definition. A logic C in S is almost-inconsistent if C(∅) = ∅ and C(X) = S

for every non-empty set X. We observe that C is inconsistent or almost

inconsistent iff y ∈ C(x) for some (equivalently, for any) distinct variables

x and y.

Problem 2. Let C be a self-extensional logic in S such that C is neither

inconsistent nor almost inconsistent. Let F 0 = (S,W,
0,

R1,R2, ...) be a frame with the following properties:

(i) the relations R1,R2, ... are invariant with respect to the deductive

equivalence on the basis of C;

(ii) 
0 is a subset of Var(S) ×W .
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When can 
0 be extended to a set 
⊆ S ×W such that:

(a) the intersection of 
 with Var(S) ×W coincides with 
0, i.e., 


is an extension of 
0,

(b) F := (S,W,
,R1,R2, ...) is a frame for C ?

We see that

(*) for any variables x, y, C(x) = C(y) implies that for every world w,

w 
 x iff w 
 y,

is a necessary condition for (a) and (b) to hold. But (*) is true because the

antecedent of it is false when x 6= y, by the assumptions made about C.

We may use of course the formulas ϕf∗, f ∈ Con(S), to extend 
0 to

a relation 
 on S ×W . But the crucial issue here is the invariance of 


under the deductive equivalence with respect to C.

4 Final remarks

It is often said that logical constants, and connectives in particular, acquire

their meaning through clauses of a recursive definition which, after Carnap

[1942], are called truth-conditions. In the case of classical sentential logic,

the simplest known procedure of this kind consists in assigning to each

connective the corresponding Boolean operation on {0,1}. This approach

obviously fails for first-order languages because it is not possible to define

the meaning of quantifiers by a simple reference to two objects representing

truth and falsity. For some sentential consequence operations, not neces-

sarily self-extensional, it is possible to provide a list of simple conditions

which characterize a sufficiently large subset of admissible truth-valuations

so that it determines a given consequence. For instance, the consequence of

the three-valued  Lukasiewicz logic C3, originally determined by the three-

element  Lukasiewicz matrix in the language S with implication → and

negation ¬, is characterized by the set of truth-valuations h which satisfy

the following conditions, for all α, β ∈ S (Suszko [1975]:

(0) either h(α) = 0 or h(¬α) = 0

(1) h(β) = 1 implies h(α→ β) = 1

(2) if h(α) = 1 and h(β) = 0 then h(α→ β) = 0

(3) if h(α) = h(β) and h(¬α) = h(¬β) then h(α→ β) = 1
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(4) if h(α) = h(β) = 0 and h(¬α) 6= h(¬β) then h(α → β) = h(¬α)

(5) if h(¬α) = 0 then h(¬¬α) = h(α)

(6) if h(α) = 1 and h(β) = 0 then h(¬(α → β)) = h(¬β)

(7) if h(α) = h(¬α) = h(β) and h(¬β) = 1 then h(¬(α → β)) = 0.

Conditions (0) - (7) fully characterize admissible truth-valuations for

C3 determined by reference assignments, i.e., homomorphisms from S to

the three-element  Lukasiewicz matrix. Further examples can be found e.g.

in Malinowski [1977], Scott [1973], Suszko [1974], Urquhart [1973].

The essential property of the truth-defining clauses (0) - (7) is their

recursiveness: they enable to compute the truth value of any compound

sentence α provided that the values of all atomic sentences appearing in α

are already established.

The above example opens a possibility of building a uniform conception

of truth- conditions for sentential logics treated as finite lists of Boolean

combinations of expressions of the form

h(x) = 0,

h(x) = 1,

h(f(x1, ..., xn)) = 0,

h(f(x1, ..., xn)) = 1,

where f ranges over the connectives of S and x, x1, x2, ... represent sentences

of S, and h represents truth-valuations. (The analysis of conditions (6) and

(7) shows that the syntax of such a language is even more involved.) Each

such list should determine the value of a truth valuation on a complex

sentence by means of the values of the truth-valuation on the constituents

of the sentence. This conception differs from the one discussed in this

paper since the language which reflects the properties of so defined truth-

conditions does not resemble the languages of truth schemes, discussed in

Section 1. It is clear that such expressions defining truth-conditions for a

given logic C cannot be provided without having a prior knowledge of the

structure of the matrix models of C. At the same time, even for relatively

simple consequences, the expressions defining admissible truth-valuations

are rather obscure.
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